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Characterization of MEMS Resonator Nonlinearities
Using the Ringdown Response

Pavel M. Polunin, Yushi Yang, Mark I. Dykman, Thomas W. Kenny, and Steven W. Shaw

Abstract— We present a technique for estimation of the model
parameters for a single-mode vibration of symmetric microme-
chanical resonators, including the coefficients of conservative
and dissipative nonlinearities. The nonlinearities result in an
amplitude-dependent frequency and a nonexponential decay,
which are characterized from the ringdown response. An analysis
of the amplitude of the ringdown response allows one to estimate
the linear damping constant and the dissipative nonlinearity, and
the zero-crossing points in the ringdown measurement can be
used for characterization of the linear natural frequency and
the Duffing and quintic nonlinearities of the vibrational mode,
which arise from a combination of mechanical and electrostatic
effects. [2015-0263]

Index Terms— MEMS characterization, ringdown, nonlinear
damping, Duffing nonlinearity, quintic nonlinearity.

I. INTRODUCTION

M ICROMECHANICAL (MEMS) resonators have been
extensively studied and attracted significant attention

in both the physics and engineering communities due to their
multiple beneficial features including high stability, low power
consumption and compatibility with integrated circuits [1]–[4].
Being designed as an alternative to conventional oscillators,
such as quartz oscillators, MEMS resonators are applied for
time keeping and synchronization purposes [5], [6] as well as
for sensing of force [7], mass [8], and electronic and nuclear
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spins [9], for example. The necessity of high precision in
these applications imposes various performance requirements
including high quality factor, low phase noise [10] and large
signal-to-noise ratio [11]. In order to satisfy these require-
ments, MEMS oscillators are frequently operated at large
vibration amplitudes, which are typically limited by the onset
of nonlinearity. To adequately describe and predict the dynam-
ics of the system operating at amplitudes beyond the linear
range, it is useful to have a model that includes coefficients
for both conservative Duffing and quintic nonlinearities [12]
and nonlinear dissipation [13]–[15].

Parameter estimation in vibrational systems is a challenging
problem arising in systems of different size scales [16]–[20].
It is important since it allows one to describe the dynam-
ics of systems of interest using standard models [21]–[23],
to understand the fundamental physical mechanisms respon-
sible for certain observed effects [24], [25], and to design
systems with desired performance characteristics [26], [27].
While several methods have been developed for nonlinear
system identification [28], a common approach for determining
the model parameters of MEMS resonators is based on the
resonant response of a vibrational mode to a periodic force.
In this case, the resonator amplitude and phase are measured
as a function of the frequency of the external driving field
for a fixed level of the drive amplitude. For systems operating
in the linear regime this spectral method provides estimates
for the linear resonant frequency and the quality factor [29]
from a frequency response. When the resonator is driven into
its nonlinear regime, the shape of the frequency response is
determined by both conservative [30] and dissipative nonlin-
earities [1], [14], [15]. As a result, it is necessary to perform
several measurements at different forcing amplitudes in order
to completely characterize the parameters of the vibrational
mode [29], [30], and the precision is limited, particularly
where several nonlinear mechanisms are involved.

Here we show that a single ringdown response measurement
enables full characterization of a vibrational mode of a
micromechanical resonator, including parameters for symmet-
ric conservative and dissipative nonlinearities. In particular,
estimates of the linear decay rate and the nonlinear friction
coefficient are achieved by analyzing the vibrational amplitude
during the ringdown. Additionally, the sequence of zero-
crossing points is used in this work for characterization of the
linear resonant frequency and the Duffing and quintic non-
linearities that cause an amplitude-dependent frequency. This
zero-crossing-based method, as compared with the quadrature
analysis presented in [1], is simpler for the post-processing
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Fig. 1. Top: COMSOL model of a micromechanical DA-DETF resonator
showing the symmetric vibrational mode under study. The expected (using
FEM analysis) values of the resonator linear parameters in the experiment are
as follows: effective mode mass mef f ∼ 0.2 μg, quality factor Q ∼ 103−104,
and natural frequency f0 ≈ 1.2 MHz. The square denotes the location of the
cross-sectional SEM. Bottom: SEM from a 45°-view angle of the resonator
encapsulated with the epi-seal process.

and more accurate as it utilizes raw data and does not require
additional spectral tools like Fourier analysis. In this work
we illustrate the ringdown-based system identification method
for characterization of a micromechanical oscillator, but it can
be equally successfully applied to nano-scale devices, such as
graphene resonators and carbon nanotubes, as well as macro-
scale systems. This time-domain characterization method is
unique in that its precision does not suffer from noise in
the driving electronics, resulting in a model that allows for
the prediction of the resonator response in the presence of a
driving field or when placed in a feedback loop.

II. RINGDOWN-BASED CHARACTERIZATION METHOD

A. Device Under Study

In this work we carry out the ringdown-based
characterization for the double-anchored double-ended-tuning-
fork (DA-DETF) resonator shown in Fig. 1. The resonator,
which was originally designed for time-keeping applications,
was fabricated using an epitaxial polysilicon encapsulation
process [31] and it consists of two micromechanical beams
200μm long, 6μm wide and 40μm thick that are connected
on both ends to perforated masses, which are further anchored

Fig. 2. Variable-phase closed-loop feedback system with added capabil-
ity for ringdown measurement. The encapsulated devices are placed into
a Thermotron S-1.2c environmental chamber for temperature stabilization
at −40° C.

to the base. The perforation in the coupling mass serves as
release-etch holes and does not affect the device performance.
The encapsulation process results in a pressure of < 1 Pa in
the cavity containing the resonator.

B. Measurement Setup

To prepare the system for the ringdown measurement, we
first force the resonator to oscillate in the nonlinear regime
using a feedback loop. Previous research has demonstrated
stable oscillation of this device beyond the critical bifurcation
limit by controlling the operating phase of the resonator
when driven in closed-loop [12]. Physically, the feedback loop
compensates the losses in the resonator due to damping and
provides an additional shift in the resonator phase ensuring that
Barkhausen stability criterion is met. In this work, a Zurich
HF2LI lock-in amplifier is used to control and maintain a
variable-phase feedback loop, as shown in Fig. 2. The output
of the lock-in amplifier maintains the resonator motion by
supplying a periodic signal (VAC = 250 − 350mV ) to two
“Drive” electrodes. By tuning the phase shift in the feedback
loop, we achieve the frequency of self-sustained oscillations
to be close to the nonlinear resonance; see Fig. 3. To achieve
a strong output signal, we apply a DC voltage (VDC = 30V )
to the resonator body. Additionally, we maintain both driving
and sensing electrodes at this “ground” voltage potential,
thus ensuring the symmetry of the system potential energy.
Note that a non-zero bias voltage between the resonator body
and the attendant electrodes generally affects the conservative
forces of MEMS resonators, which we discuss in detail in
Section II.C. However, due to the high conductivity of the
transmission lines in the measurement setup, we neglect any
additional electrostatic damping introduced by the capacitive
actuation/sensing scheme.

The resonator response is detected by the “Sense” electrode
in the form of current that is electrostatically transduced due
to the resonator vibration. This output current is then con-
verted to a voltage signal and amplified via a transimpedance
amplifier (TIA). We further pass the signal through a band-
pass filter with corner frequencies 1.2 MHz and 7 MHz
in order to remove low- and high-frequency measurement
noise, and then split the signal with a 0° power splitter.
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Fig. 3. Measured amplitude-frequency responses of the micromechanical
resonator in the feedback loop with VDC = 30V and different values
of VAC at T = −40°C; the phase step of the closed loop is 5°. Circles
denote positions of nonlinear resonance where the system has been prepared
for the subsequent ringdown measurement.

Fig. 4. A measured ringdown response of the resonator under study;
VDC = 30V and VAC = 250mV . Red solid line indicates extracted
vibrational envelope a(t).

One of the outputs is fed back to the lock-in amplifier, where
the resonant frequency and amplitude can be tracked. The
second signal component goes into an AlazarDSO ATS9360
digitizer for recording the ringdown response. A voltage-
controlled RF switch, placed between the lock-in output and
the resonator, acts as the mechanism for cutting the resonator
driving. When the trigger voltage is set “High”, the connection
between the lock-in amplifier and resonator is closed, and
we observe stable oscillatory signal via the AlazarDSO. Once
the resonator vibrations reach steady-state, the trigger voltage
is switched to “Low”. In this case the falling edge cuts the
input to the resonator coming from the lock-in amplifier (the
transition time constant is ∼ 10−6 s) and triggers the digitizer,
allowing us to capture the full ringdown response, see Fig. 4.
The collected data is post-processed for characterization of the
parameters of the vibrational mode via the procedure described
below.

C. Model

The dynamics of a micromechanical resonator with capaci-
tive sensing depends on both mechanical forces arising in the
resonator body and the electrostatic effects due to the bias

voltage [19]. In this work, the resonator flexural displacement
y(x, t), where x is the spatial coordinate along the beam,
is much smaller than the resonator width, y(x, t) � h, which
allows us to approximate the mechanical restoring force of the
symmetric vibrational mode under the study by a 3rd -order
polynomial ω2

0mq + γmq3, where q is the modal displacement
coordinate, ω0m is the mechanical linear vibration frequency
and γm is the mechanical Duffing nonlinearity which is
positive for a clamped-clamped (CC) beam. These modal
parameters can be obtained by approximating the resonator
deformation function as y(x, t) = q(t)θ(x), where θ(x) is
the ideal mode shape of a CC beam. Alternatively, one can
use the method of assumed modes, where θ(x) is given by a
simple polynomial that satisfies the CC boundary conditions,
for example, θ(x) = 16x2(1 − x)2, and perform a Galerkin
projection of the original equation of motion for the beam
onto θ(x) [19], [32]. Further, since the resonator is biased
symmetrically we model the electrostatic force acting on the
resonator during its ringdown as Fel = κ[(d − y(x, t))−2 −
(d + y(x, t))−2], where d is the nominal electrode gap size
and κ is the strength of the electrostatic force, which depends
on the resonator dimensions and the bias voltage. In order
to obtain the expression for an equivalent electrostatic force
acting on the vibrational mode, one would have to project Fel

on this mode, which is generally a challenging task. However,
noticing that, by definition, y(x, t)/d < 1, we can expand Fel

in a Taylor series about q = 0. Since d � h, we can keep
in this expansion higher-order terms. These terms can become
comparable to the nonlinear term ∝ q3 where the expansions
of the both mechanical and electrostatic forces apply. We will
keep terms up to 5th order in q/d and then perform the
Galerkin projection. It is important to note that the mechanical
and electrostatic forces are both symmetric. Since the terms
of different powers in q can become comparable in these
two forces, different effects can come into play depending
on the amplitude. The mechanical nonlinearity is hardening
and the electrostatic nonlinearity is softening. The natural
frequency (from the linear term) includes both effects, and for
the present device and bias voltage the cubic term is dominated
by mechanical effects and is thus hardening, while the quintic
nonlinearity is dominated by the electrostatic effects and is
softening. This leads to the inflection point on the amplitude
dependence of the vibration frequency seen in Fig. 3.

After combining mechanical and electrostatic effects
together, the dynamics of a vibrational mode of a symmetric
micromechanical resonator can be described for moderate
modal amplitudes (q � d) by the following phenomenological
model

q̈ + 2(�1+�2q2)q̇ + q(ω2
0 + 2ω0η(t)) + γ q3 + βq5 = f (t),

(1)

where q is again the modal displacement coordinate, ω0
is the natural frequency of the mode, �1 and �2 are the
coefficients of linear and nonlinear friction, and γ and β
are the coefficients of the conservative Duffing and quintic
nonlinearities respectively. The linear damping constant �1
determines the resonator decay at small vibration amplitudes
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and is related to the resonator quality factor as Q = ω0/2�1.
Note that ω0 is primarily defined by ω0m , but is slightly
reduced by the presence of the electrostatic actuation/sensing
scheme (electrostatic frequency tuning effect). To complete the
model, we also include additive, f (t), and multiplicative, η(t),
noise sources, which can be of thermal or non-thermal origin.

Qualitatively, the nonlinear and noise terms in Eq. (1)
have the following effects, to first order: the stiffness non-
linearities γ and β cause an amplitude-dependent frequency
shift, the nonlinear damping �2 produces an amplitude-
dependent damping (and non-exponential decay), while the
noise processes make both the amplitude and frequency fluc-
tuate about the deterministic response of the resonator. The
decay of the oscillation amplitude is determined by the terms
of Eq. (1) proportional to �1 and �2, and also by f (t) and η(t).
Thus, in a standard spectral measurement, γ , β and �2
(and the noise terms [25]) lead to a deviation of the spectral
contour from the Lorentzian, and it is usually impossible to
accurately extract these parameters from a single frequency
sweep. In contrast, as we show, a ringdown measurement is
very sensitive to these nonlinearities.

In the absence of the noise terms in Eq. (1), the dynamics
of the resonator ringdown response can be studied in terms
of slowly-varying (on the time scale ∼ ω−1

0 ) resonator
amplitude a(t) and phase φ(t)

q(t) = a(t) cos (ω0t + φ(t)) ,

q̇(t) = −ω0a(t) sin(ω0t + φ(t)). (2)

Substituting this change of variables into equation Eq. (1),
applying the method of averaging, and neglecting fast-
oscillating terms [33], we obtain the following equations of
motion for the modal amplitude and phase

ȧ = −(�1 + 1

4
�2a2)a, (3a)

φ̇ = 3γ

8ω0
a2 + 5β

16ω0
a4. (3b)

From Eq. (3a) it is clear that the amplitude dynamics are
unaffected by the conservative nonlinearities, while the phase
depends on the amplitude through both γ and β, as expected.
In fact, it can be shown that the amplitude decay is independent
of γ and β even in the presence of noise [34]. The solution for
the resonator vibrational envelope can be obtained in closed
form as

a(t) = a0e−�1t/
√

g(t), (4)

where g(t) = 1 + 1
4

�2
�1

a2
0(1 − e−2�1t ) and a0 is the initial

value of the modal amplitude in the ringdown response; see
Fig. 4. Using this solution in the expression for φ̇ in Eq. (3b),
we obtain the solution for the resonator phase

φ(t) = 3γ

4ω0�2

(
1 − 10β�1

3�2

)
ln g(t)+ 5βa2

0

8ω0�2

g(t) − e−2�1t

g(t)
,

(5)

where we omit the initial resonator phase since it is determined
by an arbitrary choice of t = 0.

The existence of closed-form solutions for the resonator
amplitude and phase allows us to develop a ringdown-based

Fig. 5. Measured vibrational amplitude of the DA-DETF resonator during
its ringdown response with VDC = 30V (solid line). The dashed line
represents the exponential decay of the resonator amplitude at low vibration
amplitudes. Upper inset: nonlinear friction causes the ringdown amplitude
envelope to deviate from exponential at large amplitudes, which is used for
the characterization of �2. Lower inset: the effect of nonlinear dissipation on
the ringdown response becomes stronger as the initial amplitude increases.

technique for estimating the resonator parameters, including
conservative and dissipative nonlinear coefficients.

It is worth mentioning a possible origin of the nonlinear
dissipation in MEMS resonators. According to the microscopic
theory of dissipation discussed in [34], nonlinear friction is
an essential consequence of the nonlinear interaction of the
primary resonant mode with phonons, as is also the case for
linear friction. For high-Q resonators, the adequate description
of nonlinear friction is in fact given by Eq. (3a); in the
phenomenological picture, the term ∝ �2 can come either
from the friction force of the form of q2q̇ or q̇3, or from
their combination. If the phonons that lead to the relaxation
are in thermal equilibrium, there is an interrelation between
the nonlinear friction coefficient �2 and the intensity of the
noise η(t) [14], similar to the familiar interrelation between �1
and the intensity of the additive noise f (t).

D. Characterization Technique and Experimental Results

The shape of the vibrational envelope during the ringdown
response, when assumed to obey Eq. (4), differs from a
simple exponential form at moderate amplitudes, and the effect
becomes stronger as the initial amplitude increases, as shown
in Fig. 5. When the resonator rings down, its amplitude
decreases and the effect of �2 on the vibrational envelope
becomes weaker. In the final part of the ringdown response,
the resonator motion is essentially independent of �2, the
resonator energy decays exponentially, and the parameter �1
can be obtained, see Fig. 5. The deviation of the actual
ringdown envelope at large amplitudes from the exponential
decay characterized by �1 contains the information about the
magnitude of the nonlinear damping coefficient. Analysis of
equation Eq. (4) shows that the maximum of this deviation (on
the logarithmic scale) is 
 = ln{a0/[a(t) exp(�1t)]t→∞} =
(1/2) ln(1 + �2a2

0/4�1), which can be used to estimate the
magnitude of �2.

For the analysis, the amplitude-dependent frequency of the
recorded ringdown data was shifted down by mixing with
the signal at the frequency of the self-sustained oscillations
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TABLE I

ESTIMATED VALUES OF LINEAR AND NONLINEAR DISSIPATION
COEFFICIENTS AND CONSERVATIVE NONLINEARITIES FOR

DIFFERENT INITIAL AMPLITUDES. RINGDOWN MEASUREMENTS

HAVE BEEN PERFORMED WITH VDC = 30V
AND AT T = −40°C

prior to the ringdown, ωss = ω0 + 
ω(a0), and passed
through a low-pass filter, [1]. Note that frequency ωss was
captured by the lock-in amplifier just before the ringdown.
We then construct the filtered quadratures, qx(t) and qy(t),
and compute the measured resonator amplitude as am(t) =√

q2
x (t) + q2

y (t). The am(t) curve is then fitted to the form

described in equation Eq. (4) using a least squares fit, from
which we estimated coefficients �1 and �2, see Table I.

According to Eq. (3b) the resonator frequency changes
along the ringdown response as ω(t) = ω0 + (3γ/8ω0)a2(t) +
(5β/16ω0)a4(t). This behavior of the vibration frequency corre-
sponds to decay along a backbone curve in the amplitude-
frequency space. The effects of β and γ diminish as the
resonator enters its linear regime and the modal frequency
approaches ω0. In order to estimate ω0, γ and β from a single
ringdown response, we analyze the sequence of the zero-
crossing times {ti } in the resonator response, i.e., the points
that satisfy q(ti ) = 0 [35]. During the resonator ringdown,
the vibration amplitude and frequency are not constant, but
change smoothly in time (ignoring the effects of noise). Based
on this, we partition the ringdown response into N intervals
of length 2π/ω0 � 
t � �−1

1 . We assume that the vibration
amplitude and frequency remain essentially fixed within each
interval, but change in a discrete manner from one interval to
the next. Of course, the frequency is a smooth function of time;
our procedure corresponds to a discretization of this function.
In this spirit, we define the vibration period associated with
kth time interval as Tk = 2(tk,nk − tk,1)/(nk − 1) = 2π/ωk ,
where tk,i is the i th zero-crossing point and nk is the number of
zero-crossing points within the kth interval. Extracted values
of the vibration period Tk are shown in Fig. 6 for N = 50.
As expected, the value of the vibration period at the beginning
of the ringdown, T1, depends on the initial vibration ampli-
tude a0 due to amplitude-dependent frequency pulling. As the
resonator motion decays, the vibration period changes in a
monotonic (for γβ > 0 or if the initial amplitude is below the
inflection point) or non-monotonic (for γβ < 0 and the initial
amplitude above the inflection point) manner and gradually
saturates to T∞, from which we estimated the linear resonant
frequency to be f0 = 1.218 MHz. After obtaining the vibration
period (and frequency) as a function of time, we estimate
the resonator Duffing and quintic nonlinearities by fitting
the amplitude-dependent frequency shift 
ω(a) to the form
described by Eq. (3b) using a least squares method, see Table I.
Fig. 6 shows that the expected behavior of the vibration period
based on the extracted values of ω0, γ and β is in a good

Fig. 6. Vibration period of the resonator during the ringdown as a function
of time for different values of initial amplitude. Due to amplitude-dependent
frequency pulling, the period varies with time allowing characterization of ω0,
γ and β from a single measurement. Discrete dots represent extracted values
of the vibration period Tk during the ringdown response (error bars ∼ 10−11s,
not shown). The solid lines represent the expected behavior of the vibration
period based on the extracted values of ω0, γ and β.

agreement with experimental data. The discrepancy between
these two results at large vibration amplitudes is an artifact
of the ringdown discretization that was used to obtain Tk .
On the other hand, when the resonator amplitude decays, we
expect that measurement noise becomes the main source of the
discrepancy. In fact, the analysis of the resonator ringdown in
Fig. 4 shows that when q ∼ 1 mV, the resonator response
becomes completely random. This observation suggests that
the standard deviation of the measurement noise is ∼ 1 mV,
which justifies the use of the noise-free model for characteri-
zation of the resonator parameters.

In this work we have estimated resonator nonlinear dissipa-
tive and conservative coefficients with respect to the resonator
displacement recorded in units of voltage, see Table I. This
representation of the resonator parameters is sufficient for
correct modeling of the device dynamics, since Eq. (1) can
always be properly scaled using the displacement-to-voltage
transduction constant (determined for a particular detection
scheme), so that q(t) is expressed in voltage units.

Importantly, the zero-crossing-based method presented here
can be easily extended and used to capture the resonator
stiffness nonlinearities of orders higher than 5. These higher-
order nonlinearities will result in additional terms in Eq. (3b)
that dictate the behavior of 
ω(a). Clearly, this method, as
compared with analysis using the response quadratures, [1], is
accurate and very simple from a computational point of view,
as it allows one to extract ω0, γ and β directly from the raw
data without involving the Fourier transform of a signal that
has a non-stationary and, generally, non-monotonic vibration
frequency.

III. CONCLUSION

We have shown a method for estimating the deterministic
parameters for the symmetric vibrational mode of MEMS
resonator using a single ringdown measurement. This is a
distinctive feature of this technique as compared to spectral
methods, such as the frequency sweep. We have illustrated how
to extract values of the linear and nonlinear friction coefficients
from the shape of the vibration envelope and the modal natural
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frequency and the conservative nonlinearity from the ringdown
zero-crossing times. A key to the method is that the vibrational
amplitude is affected only by the dissipation parameters, while
the frequency and phase are additionally affected by the con-
servative nonlinearity, thereby uncoupling the characterization
process. Another advantage of the characterization method
is that the electronics that are responsible for the resonator
drive do not affect the ringdown process and, as a result,
do not contribute uncertainties to the characterization process.
Ongoing work in this area is considering use of the measured
fluctuations in the amplitude and the zero-crossing times in
order to characterize the additive and multiplicative modal
noise processes, and varying the DC bias to distinguish and
characterize the mechanical and electrostatic forces.
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