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We investigate the way in which large fluctuations in an oscillating, spatially homogeneous chemical system
take place. Starting from a master equation, we study both the stationary probability density of such a system
far from its limit cycle and the optimal (most probable) fluctuational paths in its space of species concentrations.
The flow field of optimal fluctuational paths may contain singularities, such as switching lines. A “switching
line” separates regions in the space of species concentrations that are reached, with high probability, along
topologically different sorts of fluctuational paths. If an unstable focus lies inside the limit cycle, the pattern
of optimal fluctuational paths is singular asdlf-similarnear the unstable focus. In fact, a switching line
spirals down to the focus. The logarithm of the stationary probability density has a self-similar singular
structure near the focus as well. For a homogeneous Selkov model, we provide a numerical analysis of the
pattern of optimal fluctuational paths and compare it with analytic results.

I. Introduction pathXqp(t) extending from the limit cycle t&X. Such optimal
(i.e., most probable) fluctuational paths are physically real. In
fact, for fluctuating continuous dynamical systems they have
been observed experimentafly.

In Markovian systems in thermal equilibrium, optimal fluc-
tuational trajectories are time-reversed deterministic trajectories
(cf. ref 2; see also ref 7). This is not the case in nonequilibrium
systems, in general. It was found numerically for fluctuating

Chemical systems with ingoing and outgoing flows are an
important class of nonequilibrium systems. For steady external
conditions they can display unusual behavior of various sorts,
including the presence of multiple stable stationary states and
states of persistent oscillation (limit cycles in a space of species
concentrations). These and other phenomena have been o

served for autocatalysis in continuous flow stirred tank reac- dynamical systenisi® and for chemical systerHsthat the

1’2 - . .. .

tors: . . pattern of optimal paths may have singularities even in the case

In many-particle systems, fluctuations about stable states areyhen the deterministic paths are smooth. These singularities
mostly small. For example, fluctuations in the number of 5¢e gimilar to those seen in the pattern of extreme paths, when
molecules of a specified species are proportional to the squareyq computes a semiclassical (WKB) approximation to a
root of the mean number of molecules. However, large q,antum-mechanical wave functiéh. However, there is a
fluctuations also occasionally occur. Large fluctuations are g,nqamental difference between optimal fluctuational paths and
responsible for transitions between coexisting stable states of o extreme paths of WKB theory: optimal paths determine a
system. They are of particular interest for mesoscopic systems, a5 and positive probability density and may be directly

including biochemical systems where it has been nofitdt observed, whereas extreme paths determine the phase of a wave
the average number of molecules of a species in a vesicle Ma¥f nction and, at most, the shape of an interference pattern.

differ substantially from an estimate based on the density of Therefore we may expect different types of singularities to occur
the species in the surrounding solution. in the pattern of optimal paths.

If stirring is sufficiently rapid, the reacting system is spatially | this paper we consider a chemical oscillator of the simplest
uniform, and the only dynamical variables are the total number type, one with two species, and perform a global and local
Qf molecules of each species,= (Xi, X2, ) In systems ‘_""th _analysis of the pattern of optimal fluctuational paths emanating
limit cycles these numbers depend periodically on time, if fom jts limit cycle in the Ki, Xo)-plane. In section Il we
fluctuations are neglected. Because of the explicitly broken time gescribe an eikonal approximation to the solution of its master
symmetry, fluctuations in such oscillating systems are qualita- gquation, in the stationary regime. In section Il we formulate
tively different from fluctuations in systems in thermal equi- 5 problem of Hamiltonian dynamics, whose solution will
librium. An analysis of fluctuations around a limit cycle was  getermine the optimal paths and give the logarithm of the
recently performed, in both stationary and transient regimes (Sé€stationary probability density. In section IV we discuss singular
ref5and references therein). In f[hg present paper we investigatgq atures of the pattern of optimal paths, by applying the results
large fluctuations away from a limit cycle. of catastrophe theory to the auxiliary Hamiltonian system. In

A fluctuation to the vicinity of a given staté may occurin  section V we consider the case when the limit cycle contains
many ways. However, the probability densities for different an unstable focus. We linearize Hamilton’s equations near this
fluctuational trajectoriesX(t) are different, and for large  unstable focus and discuss the eigenvalues and eigenvectors of
fluctuations the probability density in “trajectory space” peaks the resulting linear problem. Section VI is the central part of
sharply (indeed exponentially sharply) at a single most probable the paper, as in this section we show that generically the flow
field of optimal paths is self-similar near the focus. In section
T This paper is dedicated to John Ross with deep respect and sincereV|l we use our results to find the shape of the stationary

graji':/l“i‘gﬁi-gan State University probability distribution near the focus and the switching line
SUniversity of Arizona. that separates the areas in the, (X2)-plane to which the system

€ Abstract published irAdvance ACS Abstractdjovember 15, 1996. fluctuates, with high probability, along topologically different
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paths. In section VIII we numerically analyze large fluctuations
in a spatially homogeneous Selkov model with a limit cycle.
Section IX contains concluding remarks.

Il. Eikonal Approximations in Chemical Kinetics

A. The Master Equation. For dilute homogeneous chemi-

cal systems, time intervals between reactions greatly exceed the?

reaction duration, and the probability of a reaction depends on
the number of molecules only at a given instant of time. That
is, there are no appreciable memory effects. Therefore the
evolution of the probability densiti?(X,t) of the vectorX =

(X1, X2), whose components are the number of molecules of
each species, is given by a Markovian master equation

IP(X,t)
at

= z[W(X—r,r) PX—r,t) = W(X,r) POX,)] (D)

HereW(X,r) is the probability per unit time for the transition

X — X +r to occur. The vector = (ry, ro) shows the change

in the numbers of molecules in a reaction. The transition rates
W(X,r) are smooth functions of (often they are polynomials

in X319,

In a macroscopic (or mesoscopic) system the mean number
of molecules are proportional to the volun§®, as are the
probabilitiesW(X,r). We takeQ to be dimensionless and large,
i.e.,, Q> 1. (In fact,Q can be thought of as the mean total
number of molecules.) It is convenient to introduce a vextor
whose components are the density of each species and reduce
transition probabilitiesv(x,r):

X = X/Q, w(xr)=WXr)/Q (2)

An evolution equation for the vector aheandensitiesx(t),
defined by

X(t) = Q‘lzx P(X,1) (3)

can be obtained from (1) to zeroth orderT?. It is known'3
to be of the form

dx
— =% rw(x,r 4
o W) (4)
We shall consider the case when the stable stationary solution
of (4) is a limit cyclex©)(t), with a periodz(). That is,
() = x4+ (5)
The reacting system with specified initial densitigg &) will
approach the limit cycle (5) over a relaxation timp@nd then
move along the limit cycle. However, because of the number
of molecules being finite, fluctuations away from the limit cycle
will occur. In fact, a steady-state probability distribution will
be formed.

The evolution of the probability densitfy(X,t) close to the
cycle was analyzed in ref 5. Over a period of time proportional
to Q phase diffusion occurs: the “chemical clocks” become
mistuned. It is this that causes a stationary denBifyto be
formed; ast — o0, P(X,t) — Ps(x). (For a different source of
fluctuations, this effect is well-known for lasers and ac genera-
tors, cf. ref 15). The steady-state dendiy(x) satisfies the
equation

> [W(x—Q 1) Py(x—Q7'r) — w(x) Py()] =0 (6)

The functionPs(x) is crater shapetf, with a maximum on the
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cycle (see ref 17 for the shape of the distribution when the
reacting system is close to a Hopf bifurcation point). The width
of the distribution in the direction normal to the cycle is
proportional toQ~12

B. The Eikonal Approximation. The stationary probability
densityPs(X), in the limit Q > 1, may most easily be analyzed
y means of areikonal approximation This approximation
has much in common with the WKB approximation in quantum
mechanicg? The role offi is played byQ~1.

The idea behind the eikonal approximation is that the density
Ps(X) is a much steeper function gfthan the coefficienta(x,r).
(Similarly, a rapidly oscillating semiclassical wave function is
a much steeper function of the coordinates than the potential in
the Schrdinger equation that it satisfies.) Indeed, it follows
from egs 7 and 8 below that in gener&k(x) varies on a
characteristic length scale of ord®1. On the other hand,
the coefficientsv(x,r) vary only slightly wherx is changed by
-1

In the limit of large2 we seek a solution of eq 6 that is of
eikonal form, i.e.,

Ps(X) ~ c(x) exp[-QS(x)] (7)

S(cf. ref 18). HereSis an eikonal function, and is a slowly

varying “prefactor” function whose properties we shall not

explore in this paper in any detail. Instead, we shall focus on
S Substituting (7) into (6), and keeping only the terms of lowest
%rder inQ~1, yields the following equation for the functic®

H(x,09(x)/ax) = 0, H(x,p) = Zw(x,r)[exp(r-p) —1] (8)

Equation 8 is a nonlinear first-order partial differential equation
for the eikonal functior§(x). A similar equation arises in the
asymptotic analysis of Markov chalisand Markov jump
processe¥’ In the context of chemical kinetics, eq 8 was
considered in refs 11 and 21 (in ref 11, large fluctuations in
homogeneous chemical systems with point attractors were
analyzed).

C. The Distribution near the Limit Cycle. Equation 8
can be solved near the limit cycle. To approximate the function
Sthere, it is convenient to introduce local coordinatesand
&> such that the corresponding unit vect&gsand&, are locally
parallel and perpendicular to the limit cycle, respectively. The
coordinateg; is the distance along the cycle (measured from
an arbitrary point on the cycle), and we have

& =3 rwx 9)

where

v=v(&) =y W) (10)

Here v(&,) is the (position-dependent) velocity of the system
on the cycle, in the absence of fluctuations. We&et 0 on
the cycle. At any point on the cycle, the matrix of partial
derivatives §x/d;) of the transformation from the old to the
new variables is orthogonal.

Since the stationary densifys(x) has a maximum on the
cycle, the functiorS has a minimum in thé&,-direction até, =
0. Therefore the derivative

999E,=0 at &=0

and a Taylor series f@will start with the term that is quadratic
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in &. Itis not difficult to deduce from eq (8) tha&/d&; must
also equal zero &, = 0, i.e.,

[S(X)] £,=0 = const

In what follows, we choose a normalization by setting this
constant equal to zero. Accordingly near the limit cycle

)~ TAEDES, 18] <1

The functioni(&1) gives the curvature of the functiddin the
direction normal to the cycle.

To find the functiond, one should substitute (11) into (8),
and expandv(x,r) in eq 8 abouk() to first order in&,. This
gives a first-order differential equation fdr which must be
solved with the boundary condition of periodicity $fand thus
of 1) on the cycle, i.e.,

AEA) = A(&)

wherel© is the length of the cycle. The corresponding solution
is of the form (cf. ref 16; see also refs 22, 23)

(11)

ANE) = [0 y) dy @O) p(Ey) +

P(Sl,O) B . .
ool WYy (2)

(e

where

pX) = [-2[d5, £ QE) = T (&) wixyr)
r (13)

with
&) = —v71(§1)2(r E)[OW(X,r )05, o (14)

It is not difficult to see thatl(&;) > O for all £;. This is a
consequence of the inequality

)

Jo

which is a criterion for the stability of the cycle in the absence
of fluctuations.

The stationary probability densitis(x) as given by eqgs 7
and 11 is Gaussian in the transverse coordifatdn fact4 is
a position-dependent reciprocal variance. Equations 7 and 11
apply up to the not too far tail of the distributid®(x), where
AE2 > Q71 but &2 < 1. For larger|&,| the distribution will
be non-Gaussian, and to find it, one would have to use eq 7
without approximatingS.

We note in passing that the prefactor of the transverse
Gaussian distribution, like the reciprocal variaricedepends
on &1, the position along the limit cycle. It was given in ref
16; see also ref 23.

d&,¢(,) > 0

lll. Extreme Fluctuational Trajectories

A. Equations for the Extreme Trajectories. The analysis
of section Il does not apply far from the limit cycle. A
convenient way to analyze the functi§fx) over a broad range
of species concentrationsis based on the idea that eq 8 can
be viewed as a HamiltenJacobi equation for an auxiliary
classical-mechanical system, with Hamiltonian funct(m,p).

In this interpretationp is a momentum variable, and the eikonal
function Sis aclassical action at zero energyThis idea was

J. Phys. Chem., Vol. 100, No. 49, 19969199

first used to analyze fluctuation phenomena in continuous
Markov systemg?

Hamilton’s equations of motion for the dynamical system with
the Hamiltonian of (8) are of the standard fofm:

X = er(x,r) exp(-p)

ow(x,r)
X

p=—> [exp(-p) - 1]

T

(15)

They determine classical trajectories in a four-dimensional phase
space of the auxiliary system, whose coordinates and momenta
are the 2-vectors and p. Along any zero-energy classical
trajectory,S will satisfy the differential equation
S=L(x,X) (16)
HereL(x,X) is the Lagrangian corresponding to the Hamiltonian
H, ie.,
L(x,x) = px — H(x,p) a7
The differential equation (16) may be integrated numerically,
in tandem with Hamilton’s equations, to yield the valueSat
points lying along any zero-energy trajectory. We shall call
such trajectories “extreme trajectories”, since any such trajectory
will be an extremum of the action functional
SX(O] = f7L(0).X() (18)
though possibly not a minimum. The quanti) appearing
in the eikonal approximation (7) is reallyrainimumclassical
action at zero energy. Numerical computatiorSff) requires
a minimization over all extreme trajectories terminatingcat

The physical meaning of the extreme trajectories and the
initial conditions for eqgs 15 follow from a now standard picture
of the way in which large fluctuations occ#?42627 The
stationary density at a poirtfar from the limit cycle is formed
by occasional large fluctuations. The value Bf(x) is
determined, to logarithmic accuracy@s— o, by the frequency
with which themost probable or optimal fluctuation to the
pointx occurs. The optimal fluctuational trajectory,(t) along
which the system must move in order to rexdls a particular
extreme trajectory: the least-action one that terminates at
One way to see this is based on the path-integral formulation
of fluctuation theory; for systems described by master equations
such a formulation was developed in ref 18. In this formulation,
extreme trajectories are extrema of the path-integral expression
for a transition probability.

The preceding picture, involving an extremum of an action
or action-like functional, is similar to the theoretical infrastruc-
ture of the WKB approximation used in tiie— 0 limit of
guantum mechanid?. Both in the semiclassical limit of
guantum mechanics and in the problem of large fluctuations as
Q — oo, there may be several extreme pat(y that terminate
at the same poink. In the semiclassical limit of quantum
mechanics all extreme paths are “meaningful”: if the action
S(x) is multivalued, the wave function will be a sum of terms
proportional to the several values of ex§ff)/A). In contrast,
in the present problem the stationary probability density would
be a sum of terms proportional to the several values of-exp(
QSYx)). The absence of an “i" in the exponent explains why
only the least-action extreme path is physically meaningful; as
Q — oo, it dominates all others.

Optimal fluctuational trajectories and other extreme trajec-
tories start in the vicinity of the limit cycle, where the system
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spends most of its time. In fact they emerge from the limit
cycle att = —oo, and gradually move away. On the cycle the
action is constant (cf. ref 11), aqpl= dS0x = 0. Therefore
the initial conditions for eqs 15 are of the form
x() ~x®), p)—0, SH—0 as t——co (19)
B. Extreme Trajectories near the Limit Cycle. To find
the flow of outgoing extreme trajectories as they emerge from
the limit cycle, it is convenient to change eqs 15 to the
coordinates, &») discussed in section IIC. Singe= 950X,
the quadratic approximation (11) to the action implies

P~ AEDEAE,

Linearizing egs 15 if¢,, the distance from the cycle, and using
(20), we obtain

£—0 (20)

L0 =&ty + frvde (21)
)
s = MEOEW)
where
1/2
@@’éﬂ %éﬁmmwmumﬂ
(22)

Sincel = A(&y) is a periodic function, and > 0, Q©) > 0, it
follows from (21) that the extreme trajectories spiral away from
the limit cycle. The distance from the cycle is increased over
each turn by a factor

M = M(&+H @ &)

The direction of rotation is the same as that of the limit cycle.
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reader that even though the present formulation seems remote
from the original reacting chemical system, it will yiegx):

the value of the eikonal function at any specified vector of
species concentratioms This in turn will yield an approxima-

tion to the value of the stationary probability density at the point

X in the species concentration space.

IV. Singular Features of the Pattern of Extreme Paths

As we noted above, although extreme trajectorig$,),
p(t,.)) with different values of the parameterdo not intersect
each other in the four-dimensional phase space, trajecidtje¥
with different values of the parametermay pass through the
same pointx. For these trajectories the values of the action
Stu) are different; that is, the actioB(x) is a multivalued
function ofx. The surface ofninimumaction Syin = Snin(X)
can be constructed piecewise from the lowest sheets of the
surfaceS = x).

Generically, the surfac&min = Snin(X) has singular curves
along which different sheets of the surfase= S(x) intersect
each other. On these curves the first derivativesgf(x) in
the transverse direction is discontinu6d&. The global structure
of Smin = Snin(X) and related singular features of the pattern of
optimal trajectories can be understood from an analysis of the
generic topological properties of the auxiliary Hamiltonian
system in its four-dimensional phase space. For noise-driven
dynamical systems such an analysis was carried out in ref 29.
We show below that the results apply to systems described by
master equations as well.

In the four-dimensional phase space of the auxiliary system,
the limit cycle of the original reacting chemical system can be
viewed as lying in the planp = 0. That is, this plane is the
plane of species concentrationsg, (x2). The extreme trajecto-
ries, which satisfy Hamilton’s equations (15), emanate from the
limit cycle and form a two-dimensional surface known as a
Lagrangian manifold (LM$%31 The trajectories never intersect

One can see from egs 20 and 21 that the flow of extreme €ach other on the LM: only one trajectory goes through a given

trajectories is self-similar near the limit cycle. A path that goes
through the point&i, &€,) goes also through the poirgy(+ 1),
M&,). Since the valued; and&; + 1@ are physically identical,
this means that the entire flow of the outgoing extreme
trajectories may be mapped onto two intervalsigfone for
positive and one for negativé,, which lie between the

point (x, p). However, the LM may have a complicated
structure in the phase space and in general will have singular
projections onto the plang = 0.3°

It was shown by Whitn€e¥ that, generically, a smooth surface
may have only two types of singularities, namely, folds and
cusp points from which folds emanate in pairs, as shown in

neighboring turns of two extreme trajectories on opposite sides Figure 1. If the LM formed by the trajectories(t,x), p(t,))

of the cycle. In other words, outgoing trajectories form a one-
parameter sex(t;£L), p(t;c?), with the parametet? lying
within an interval between andMg, with |u| < 1 but otherwise
arbitrary. Instead of using (19), we may accordingly set initial
conditions for the outgoing extreme trajectories at a finite time
to:

A& (t)uss  X(tou) =
K(te) + u&,  Stou) = TAE () (23)

Clearly, &1(to) = [XC(tg)|, and &x(t)) = u. By integrating
Hamilton’s equations, equipped with these initial conditions,
forward in time, we can in effect coordinatize the space of
species concentrations near the limit cycledbgwhich labels
the outgoing extreme trajectories) anfthe transit time along
any given extreme trajectory).

P(tout) =

has folds, then the projections of the folds of the LM onto the
species concentration plape= 0 will be caustics As shown

in Figure 1, a caustic is the envelope of a family of paths of the
form x(t,u). To put it another way, a caustic is a curve in the
two-dimensional space of species concentrations from which
extreme trajectories areflected Caustics may merge together
at cusp points.

Extreme trajectorieg(t,u) reflected from different caustics
do not intersect each other unless there are other cusp points,
since the pathsx(t,u), p(t,w)) lie on the same sheet of the LM
(the middle sheet of the LM shown in Figure 1). Therefore the
points inside the area bounded by the caustics can be reached
along three different paths: two paths that have not yet touched
a caustic and one that has been reflected from a caustic.
Correspondingly, the actiofi(x) takes on three values. Only
the minimum value (the lowest branch of the multivalued

Equations 15 and 23 make it possible to perform a numerical function Sx)) is of physical interest, as we have explained.

analysis of the set of extreme trajecton€su), p(t,u) and the
corresponding action functiof(t,x). The results of such an
analysis will be given in section VIIl. We emphasize to the

We now show that the action computed from an extreme path
that has been reflected from a caustic is larger than the action
computed from an extreme path that has not. Near a caustic it
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From this equation it follows that, = sgnp$?(x1,%) — pa-
(x1,0)]. It follows then from egs 24 and 26 that the smaller
action corresponds to the trajectories thpproachthe caustic

(for which x/x, < 0), whereas the action for the trajectories
that have been reflected from the caustic is larger, at the same
point x.

A. The Switching Line. The preceding argument shows
that when the Lagrangian manifold of the auxiliary Hamiltonian
system has a fold as shown in Figure 1, in which qgasep(x)
has three branches, the action associated with points) (in
phase space that lie on the “middle” sheet of the Lagrangian
manifold will never be the minimum action. Equivalently, the
least of the three values &(x), one value being associated
with each sheet, must be attained on the top or bottom sheet of
the Lagrangian manifold. The reason is that the middle sheet
is formed by extreme trajectories that have “gone over a fold”,
i.e., have been reflected from a caustic. Such trajectories cannot
have minimum action.

Let us label the upper and lower sheets of the Lagrangian
manifold with the superscripts 1 and 2, respectively. The
corresponding action shee®s-2 = S12)x) intersect along a
curve on theXy, xo) plane, which is determined by the equation

(b)

Figure 1. Singular feature of the sort that may appear in the flow
field of extreme fluctuational trajectories. (a) The Lagrangian manifold
formed by the zero-energy trajectories of the auxiliary Hamiltonian 1) 2)
system, in its four-dimensional phase space. The manifold contains a S x) = S ) (28)

fold, in fact, a joined pair of folds. (b) Extreme fluctuational trajectories, . . ) )

obtained by projecting these zero-energy trajectories down to the planelf the fold in the Lagrangian manifold merges with another fold
of species concentrationg( x;). The projections of the folds in the  at a cusp point, this curve will terminate there, since that is
Lagrangian manifold are callechustics the extreme trajectories are  where the sheet§12 merge. Moreover, this curve will lie
reflected from them. The caustics in part b emerge from a cusp point, hetween the two folds, i.e., between the two corresponding

which is the projection of the point where the folds join. A switching caustics (Figure 1b). Points that are a small distance away from
line, discussed further in the text, lies between the two caustics; it )

separates the regions in the space of species concentrations that ark!iS Curve but lie on opposite sides of it are reached via
reached along different sorts of optimal fluctuational trajectories. topologically different optimal paths; these paths generate the
actionsSV) andS?), respectively. It is reasonable therefore to

is convenient to choose coordinates so thaioints along the call the line determined by (28) switching line For noise-
caustic, anck; is the distance to the caustic. This implies that driven continuous dynamical systems the presence of a switching
~ line has recently been observed experimentlly.
X=Xx|, atx,=0 The stationary probability density of the system will be
regular in the vicinity of a switching line. Away from a cusp,

As shown in Figure 1, the coordinate is quadratic in the  pyt near the switching line, it will have the form (cf. refs 28b,
momentum component transverse to the caustic. So thisog)

momentum component has two branches, i.e.,

P~ Y ¥ —0s'(x)], @—w (29
P20 = Po0x0) £ AN [l <1 (24) (9~ 2. £709 expl- ST (29)

The sign ofA determines whether the extreme trajectories that ~ That is, bothSY andS? will contribute. The prefactors()

are reflected from the caustic lie on tke> 0 side (forA > 0) in (17) are known to blow up asapproaches a cusp point. For

or on thex, < 0 side (forA < 0). continuous Markov systems, an explicit form for the prefactor
The actionS(x) as a function ok also has two branches near in the vicinity of a cusp point was obtained in ref 29, and the

the caustic. The quantity of interest is the difference between form can easily be generalized to the present case.

the values ofS on its two sheets, at the same paiat Since Once an extreme trajectory crosses the switching line, by
extreme trajectories are zero-energy classical trajectories, thedefinition it no_Ion_ger _prowdes the minimum- action. Well
actionS as a function of ) is given by the integral beyond the switching line (at a distanee Q%) it does not
contribute significantly to the stationary probability density of
Stu) = fdt p(t,)*X(t ) (25) the system. As is shown in Figure 1, if a fold is present, extreme

trajectories cross the associated switching beérethey are
Therefore the difference between the valuesSafn the two reflected from a caustic. As a consequence, caustics are never
sheets may be written as reached by optimal paths: by the time an optimal path reaches
a caustic and is reflected from it, the path has ceased to be
gy — Sy — 2 oD R () optimal. For this reason, caustics are “unobservable”: the
$709 ~ $7) e/;<2:0p2 dx, »/;z:opz dx, (26) observable singular features of the flow field of optimal

) ] ) trajectories emanating from the limit cycle are, instead, switching
It follows from the equations of motion (15), with account taken  |ines and cusp points.

of (24) and of the fact that on the caustic the transverse velocity

Xz is zero, that near the caustic V. Extreme Trajectories near an Unstable Focus
) . (£) _ Two-variable dynamical systems with a stable limit cycle
%2 Zrzzw(x,r) explr-p(x, )[R (1. %z) = Po(0,0)] have a dynamically unstable stationary state or an unstable limit

(27) cycle inside the stable cycfe. A simple and very general
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situation is where this state is an unstable focus, the location of of T have their momentum parfs;, equal to zero, whereas
which we symbolize by:. In the chemical kinetics context,  their coordinate partgy, are the eigenvectors of the matdx
the presence of a focugin the space of species concentrations A linear combination

may be determined by examining the deterministic equations

(4). If afocus is present, it gives rise to a fixed paint X;, D D
i itoni in O ) — oM )+ P[P |t (34

p = 0 of the auxiliary Hamiltonian system (8), and (15) in its 0
four-dimensional phase space.

In the following sectiqns we shall investig{:\te the pattern .of A,=ntio= 1/2tr d+ i[deta _ 1/4(tr a)z]l/z, n,w>0
optimal fluctuational trajectories and the stationary probability
density, in the vicinity of an unstable focus of a reacting two- b b b_ D

. — * *

component chemical system. We shall show that, except the dr = (@)%, Cp =(C)
case when the system is close to a Hopf bifurcation point and
radial and angular fluctuations near the unstable focus aredescribes the evolution of the mean species concentration vector
essentially independent of each other, the pattern of optimal @ = X(t) — X; on theg-plane. The trajectoriegP(t) can be
trajectories isingular. Despite the completely different origin ~ obtained from the deterministic equations (4) linearized in the
of fluctuations, the singularities of the pattern appear to be Vvicinity of ;. They move away from the unstable focus, and
similar to those discussed in ref 32 for noise-driven continuous accordinglyy, the real part of the eigenvalues, is positive. To
dynamical systems with a stable limit cycle. The results we emphasize the “deterministic” nature of these trajectories and
shall obtain apply not only to systems with a stable limit cycle of the corresponding eigenvectors of the maifjxve are using
but to arbitrary systems with an unstable focus. the superscripD. .

A. The Hamiltonian near the Unstable Focus. The The other two eigenvalues of the matiix(33), A3 and 4,
unstable focug is determined by the dynamical equations (4) are equal to—4; and —4,, respectively. The corresponding
for the mean species concentrations of the reacting chemical“fluctuational” (in contrast to deterministic) eigenvectors have

system and must satisfy the time-independent equation nonzero coordinate and momentum pao;g2 and pEZ; here
we use the subscripts 1, 2, in combination with the superscript
er(xf,r) =0 (30) F, to enumerate these eigenvectors. Linear combinations
.
F F
We shall assume that at the foci2$x¢| > 1, and that eq 4 for 9 ®)_ cF ql e Mty cF F( 9% e Mt (35)
the mean densities is meaningful. However, even if this is not OV ! pl 2 p2
true, the results below will still apply, since the structure we
shall discover arises at distances from the fggus x|, which, q? = (qu)*, ClF = (cg)*
though small compared to the length scale of the limit cycle,
are much larger tha@~12. are the solutions of (33) specific to the auxiliary system with

It follows from the inequalityer — z — 1 = 0 and fromthe  {he Hamiltonian (31). In contrast to the deterministic trajectories
nonnegativity of the transition probabilities(x,r) that eqs 8 (34), the trajectories (35) approach the unstable fages0 as
and 30 can be satisfied at the focus onlypif= O there. t — oo,

Therefore in the vicinity of the focus the momentum components  ap, arbitrary zero-energy classical trajectory, as determined

of the Hamiltonian trajectoryx(t,u), p(tu)) are small. To by Hamilton’s equations together with the Hamiltonian (31), is
leading order we can rewrite the Hamiltonian (8) in the form 5'jinear superposition of the trajectories (34) and (35), i.e.,

H(x,p) ~ H(q,p) = pdq + Y , gq=x—x (31
(x.p) ~ H(a.,p) = pdg + /,pQp, g ¢ (31) o) _ [oC0 + o™ )
whered and® are 2x 2 matrices, p(b) pT(t)
D C. Extreme Fluctuational Paths. We are interested in zero-
=Sr _ | = T =12
Zrl[aw(x D%l Qy ZW(xf,r)r,r], " ’ energy classical trajectories of the form (36), which are extreme
(32) fluctuational paths, extended to the vicinity of the unstable focus.

These paths emerge from the limit cycle and, as we have
explained above, lie in the Lagrangian manifold of the limit
cycle. According to eq 23 they form a one-parameter set,
(a(ty), p(t)) (Whereq(tu) = x(tu) — xq). The parameten
determines the values of the coefficiei@§; in eqs 34-36

for the paths on the LM. In general, to find this dependence,
it is necessary to integrate eqs 15 with the initial conditions
(23) from the vicinity of the limit cycle down to the range of
small |q]. We shall show, however, that the singular features

The approximate HamiltoniarH(q,p) is quadratic in the
dynamical variables of the system near the focus; in fact, it has
a special structure in the sense thiadloes not contain second-
order terms in the new coordinaigwhich is the old coordinate
X, normalized in that it is measured from the foouks

B. Eigenvectors and Eigenvalues near the FocusThe
Hamiltonian equations of motion that follow from (31) may be
written in matrix form as

q -[q N d Q of the pattern of extreme paths in the vicinity of an unstable

( ) = T( ) T= ( AT) (33) focus in the chemical kinetics context can be found from a local
. P P 0 —d analysis.

HereT is a 4 x 4 matrix. It is significant that one of the four A key role in this analysis is played by threost probable

2 x 2 blocks of this matrix is equal to 0. This is not a specific hitting path (MPHP), along which the oscillating chemical
feature of a particular model, but a consequence of the generalsystem is most likely to move from the limit cycle to the
features of the dynamics of extreme fluctuational paths. As a unstable focug = 0, whenQ is large. The action for reaching
result, the eigenvalues and eigenvectord afenerically have the focus along (possibly, several) extreme trajectories is
certain special features. different; the MPHP is the trajectory for which this action is a
Two eigenvaluesi, of the matrix T coincide with the minimum. We normalize our parametrization of extreme
eigenvalues of the matrid. The corresponding eigenvectors trajectories by setting the parameteto zero for the MPHP.
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In general the Lagrangian manifold formed by the paths We have from (39)
(a(t,w), p(t,w)) is locally smooth near the MPHP. This means

that, for paths lying on the LM, the coefficien@f,, C7, are C=(CD)* =ie ™, ¢=arctarl (41)
smooth functions oft for small |«|. In other words, at any @
given instant of timet the values of the coefficien, Cr,  Equations 37 and 41 show that any extreme trajectiity:)

for the extreme pathg(t,u), p(tu) are close to the values of  eqr the unstable focus can be viewed as a superposition of
C1 2 C12 for the MPHP €(t,0), p(t,0)) and can be found by o spirals,q(t,0) = gF(t) and xdg/du = q°(t). The spirals
eXpandlngcl 2 12 ina Taylor series in. have equal-in-magnitude and opposite-in-sign decrements
At u = 0 the coefﬂmentsf:12 0 (otherwise the path would  and the same angular frequeneyand direction of rotation.
not go to the focus as— o, cf. (34)). On the other hand, the = The last is determined by the direction of the cross product of
coefficients sz take on nonzero values at = 0. By the velocity and the coordinate, or equivalently by the sign of
changing the time origin these coefficients can always be madethe wedge product
equal to each other. Their value (denotedcdin eq 37 below)
can be found by integrating egs 15 all the way down from the dq () at () _
vicinity of the limit cycle. Then, with account taken of eqs 34 (t)) r( a (t)) sgnd,, (42)
and 35, any extreme trajectories that lies on the Lagrangian
manifold close to the MPHP can be written as a linear Here we have taken into account tidgdd,, < 0 and thath2d;
combination of the form + H4(dia — d2)? < 0 for a focus, according to eq 34.
The MPHP corresponds to the converging spiral above, i.e.,
(q(t #)) q q-D is an extreme trajectory with no admixture of the deterministic
=« Z ElexplAtl +4 S CPlY lexplit] spiral. We note that the global parameten (37) can always
p(tu) i=T2 pu i=T2 0 37) be chosen within an interval

. ) Ky eXp2nnlw) < k < Ky
The first term in (37) corresponds to the MPHP. The tefins
u allow for admixture of the deterministic solution (34). In  wherex; is arbitrary. The results should be independentof
the derivativedq(t,u)/du in (37) we have neglected the terms  and in what follows we assume thatis of order unity.

proportional to the fluctuational elgenvectqq’é2 and retained Extreme trajectories of the form (37) witl] < 1 spiral down

only those proportional to the deterministic elgenvectqﬁ’§ to the unstable focus, remaining close to the MPHP (which has
This could be done because the terﬁﬁsh2 in (37) decay in p= 0) up to the time when~ (27)~n|u| ™%, or equivalently,
time, whereas thoselqy, increase exponentlally with. until they reach a distance|u |V from the focus. At that time,
Therefore even if the termsqlz exp[-41.4] and quz exp- the second term in (37) becomes of the same order as the first
[41.4] were of the same order of magnitude at a certain instant term. Atlarger times, the deterministic teyrbg/du increasingly

t = to, when dominates. The extreme trajectories begin to wind back

outward, and eventually approach deterministic trajectories of
exp[(L,+4,)(t—t)] > 1 the form (34).

VI. Structure of the Lagrangian Manifold near an

the former terms would be exponentially smaller than the latter. Unstable Focus

By appropriately renormalizing one can always make the
absolute value of the coeff|c|en(§2 in (37) equal to 1. The A. The Caustic in the Vicinity of an Unstable Focus. A
phase of CD2 is determined by the normalization of the remarkable feature of the flow field of extreme trajectories near

eigenvectors in (34) and (35). To choose the normalization, &n unstable focus is the presence of a caustic that spirals down
we notice first thatg® and pj; are eigenvectors of the to the focus. To show this, we note that a caustic is the envelope
1 i

matricesd and —dT, respectively, and therefore they are ©f afamily of trajectories. In this case, itis an envelope of the

orthogonal ford; = s, i.e., parametrized set of patlgt,.). So on a caustic, the one-to-
one correspondence between the spatial coordingteg) and

(38) the alternative coqrdinate’s L) is brokep. That is, the Jacopian
of the transformation fronas, gz to t, u is equal to zerd? This
condition can be written in the form

4 'p3=0, i=1,2

It follows from the zero-energy condition, i.é4 = 0, that
for any extreme trajectory there holds the identity oq(t,w) aq(tu)
A

at ou

=0 (43)
A FCP + 1,05 -p5CY =0 39
lql P 22"P22 (39) It can be shown from egs 37, 39, and 40 that eq 43 always has
a solution near an unstable focus. This means that a caustic is

always present near an unstable focus except in the special
(nongeneric) case when angular and radial fluctuations are
decoupled (e.g., near a Hopf bifurcation point). In fact, we
obtain from (43) that on the caustic

from which we havep5-q5| = [pf-q7).

The phases and lengths of the eigenvectors with superscripts
D andF are independent of each other, and it is convenient
for what follows to choose them so that

F. D D D ;
‘0, =0; AQ, =112 40
P2"Gz =1 A o U = ) = e exp 2T expliot + )] -
(respectivelyp-qf = —i/2). Here I'P)+c.c. (44)
AAB=AB,— AB, and

is the standard definition of the wedge product of two 2-vectors. q = qdt) = q(t,udb) (45)
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Here

IP=a  Ag®, i,j=1,2 (46)
are the (oriented) areas spanned by the corresponding pairs of
eigenvectors, as defined in the last section.

It follows from eqs 37, 44, and 45 that the caustic spirals
down to the unstable focus. However, although the displace-
ment vectorgc(t) is proportional to exp{nt), the decay of
|gc(t)] ast — o will be nonmonotonic. In factge(t) will
oscillate nonsinusoidally: sincec(t) is oscillating at the
frequency 2, the functionqc(t) has terms that oscillate at
frequenciesy and 3v.

Using explicit expressions for the eigenvectquD, which
can be obtained from (33), and taking into account that the
matrix Q is nonnegative, one can show that

0

Figure 2. Extreme fluctuational trajectories near the unstable focus at
g = 0, in polar coordinategy( ®). The bold line is the formally most
probable hitting path (MPHP), along which fluctuations to the vicinity
of the focus are most likely to occur f& > 1. The dashed line
indicates the position of a caustic, from which the extreme trajectories
with u/uc > 0 are reflected. This Figure is plotted in a frame in which
linearized dynamics near the focus are specified by matrices of the
form given in eqgs 48, with parameteas— 0.13,w = 3.5,7 = 0.41,

andb < 0.
W12
Tl > D501+ =5 (47) the origing = 0, like the MPHP, but eventually go away from
n it. The caustic lies between the MPHP and the origin. This

can be shown by investigating from which side the extreme
paths touch the caustic, but it is also clear from the argument
that the caustic goes toward the origin tas> o, whereas
‘extreme paths witly = 0 eventually go away from the origin.
STherefore extreme paths lying between the MPHP and the origin
should intersect the MPHP, which is possible provided they have
encountered a caustic and have accordingly moved to another
sheet of the Lagrangian manifold (cf. Figure 1). This argument
does not merely show where the caustic is located: it also shows
why a caustic should arise in the present problem.

Along extreme trajectories that are very close to the MPHP
(lu] exp(29t) < 1), the phas®(t,u) is monotonic as a function
of time. It is also monotonic for extreme paths that have
deviated far enough from the MPHP that the second (deter-
ministic) term in (37) has become dominant (i), exp(2;t)
> 1). In models withy < 3|a|, where the velocity of the caustic
The only three parameters of the transformed Hamiltonian are never becomes equal to 0, the phase of the caustic is monotonic
thena, b, andz. (These parameters are not quite uniquely aswell. From this argument and from the fact that the velocity
determined; the signs @f, b can be changed by changing the  of an extreme trajectory and that of the caustic are oppositely
directions of the axes.) In the present and next sections wedjrected at their point of tangency (cf. (49)), it follows that
assume thap > 3Jal, in which case the caustic in the vicinity  extreme paths that touch the caustic must be maldogs
of the focus turns out not to have cusp points lying along it; These loops are clearly seen in Figure 2. We note that the
that is,dc(t) = O at all sufficiently large times One can show  different parts of a loop lie on different sheets of the Lagrangian
that in this case the velocity of any extreme trajectory is manifold (cf. Figure 1). Extreme paths on the same sheet of
antiparallel to that of the caustic at the moment it is reflected the LM are not Se|f-intersecting and also cannot intersect one

As a consequencg,; never becomes equal to zero. This means
that the MPHP (the extreme trajectory with= 0) touches the
caustic at no point. Depending on the parameters of the system
the caustic may either be smooth or have cusp points, i.e., point
where(. = 0, lying along it.

The total number of irreducible parameters that characterize
the dynamics of extreme paths near the focus turns out to be
equal to 3. Although the Hamiltonian (31) contains tws 2
matrices, one can make a linear (but not unitary) transforma-
tion,22 which reduces the matrices Q to the form

n—ado v_(n—ab
ORI (e

0 n+a
b’=a’+ o’ 5> |a

A

Ql

) (48)

from it, i.e.,

QO[] o <O if 7> 3lal (49)

B. The Pattern of Extreme Trajectories in Polar Coor-
dinates. The behavior of extreme paths near an unstable focus
can easily be expressed in terms of polar coordinatesnd®
defined by

g, =qcos®, g,=Qgsin® (50)
In what follows we defineé® as a running phase; it is allowed
to vary continuously from-c to 0 along an extreme trajectory.

In polar coordinates, the focus is locatedjat 0. It follows
from eq 37 that, for the MPHP (the extreme trajectory with
= 0), the phas® = Oyppp is @ Monotonic function of time:
tan®wmpnpis a linear function of tamt. By choosing the initial
phase, one can put the pha&gpHp and timet into one-to-one
correspondence. Over a periodr/@ the phase®ypup is
incremented by 2 sgndi,, whereas the radius of the MPHP
decreases by a factor exglry/w].

Extreme paths in polar coordinates are shown in Figure 2.
Extreme paths to either side of the MPHP first move toward

another.

C. Self-Similarity of the Lagrangian Manifold. The above
analysis in terms of polar coordinates suggests that the
Lagrangian manifolgh = p(q) near an unstable focus, as formed
by the trajectories ((t,u), p(tw)) of (37), should beself-
similar: it should be invariant with respect to a rotation of the
coordinates byr and a simultaneous rescaling of variables. That
is, it should be invariant under the transformation

® — 0O —ansgnd,, (51)
accompanied by a rescaling, i.e., under
— (=1 _ ot —(—1) g
q—( 1)lep( > ) p—( 1)pexp( p ) (52)

The self-similarity can be verified as follows. It follows from
(37) that at any instaritall pointsq(t,x) on theg-plane lie on

a straight line, with different points corresponding to different
values of the parametgr The momentum at each point is the
same and is equal to the momentum for the MPB{ED). Over
half a periodr/w this straight line rotates around the point=

0 by the angle® = —xz sgndi». As a result each poirg(t,u)
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on the line goes over into another point on the same line, i.e., p

1
Atw) — a(ttaloue ") {ﬁ—l.

The only Hamiltonian trajectory on the LM that remains p
invariant under the transformation (52) is accordingly the MPHP \ . 1
(for which u = 0).
We shall now consider the cross section of the bM p(q)

by a given plane/q; = const, i.e., a plane at a specified value
of ®(mod 2r). The first important feature seen in Figure 2 is
that the LM hasnfinitely many sheetsThese sheets correspond
to values of the extended pha&ethat differ by 2z, i.e., to . X

cross sections of the pattern in Figure 2 by vertical lines ﬁgﬂéfgoﬁ,';?ng"}‘fgpfgj?ﬁ a_nd%)q:l ;n(?] JI Vlv)o v?/?tﬁcne :\?1I\ilr?tetg:rrjc;ris'

separated by® = 27T All sheets ofp = p(q) are Simi_|a" to shown. The coordinate frame and model parameters are the same as in
each other, according to eq ([52): they can be obtained from Figure 2. The filled circles indicate successive positions (intersection

1 2
Figure 3. Cross section of the self-similar helicoidal surfame=

one another by multiplying andq by the factor exp{2zny/ points, actually) of the MPHP. They lie on a straight line that passes
w). Therefore to obtain the global shape of the LM, it suffices through the pointd, p) = (0, 0). The open circles indicate intersection
to analyze a single sheet, which corresponds to a g@en points of two extreme trajectories other than the MPHP. Over a turn
Figure 2 ' around the focus, trajectory 1 (withiu. > 0) passes over the fold in

. . . N . the surface and goes from the lower to the upper shegk(qf®).
~ Extreme trajectorieq(t,«) with the same® in Figure 2 differ Trajectory 2 hasiu. < 0; it stays on the side opposite the caustic
in their values oft andt. It is convenient to parametrizeand with respect to the MPHP (cf. Figure 2).

g bytand®. From (37) we have
D. Extreme Trajectories on the LM. The total number of

L q(t,0) A A(O) . . sheets of the Lagrangian manifgtd= p(q) is infinite, since
ueo) = [3q(t,u)/du] A A(O) A(®) = (cos®, sin6) each sheet is a “reduced copy” of the former one (formed by
! (53) extreme trajectories withreduced by 2/w). Successive sheets
are nested into one another, as seen in Figure 3. The manifold
(A(®) is the unit vector that makes an ang¥mod 27) with as a whole has a helicoidal, whorl-type shape. The fold of the
theqgy-axis of theg-plane). Equation 53 describes, in parametric | M spirals down to the unstable focus,(p) = (0, 0). Far
form, a branch of the momentumfor a given® in Figure 2, from the smallg range, in regions of the species concentration
as a function ofgq. We note, again, that the value of the space where the linear theory developed above does not apply,
momentum is equal to that for the MPHP, ije = p(t(q,0),0). the different branches qf = p(q) turn out to be connected to
The projection of the momentum compongntas a function  each other. That is, the Lagrangian manifold is globally
of the coordinatey is shown in Figure 3 at two values & connected, though it does not appear to be connected in the
that differ by 2r and hence correspond to one and the same Jinear approximation.
half-planeg./c, = tan ©. Figure 3 gives insight into the behavior of the Hamiltonian

A generic feature of the many-branched functanr= pa(q) trajectories §(t,.), p(t,u)), which form the LM. Each trajectory
that can be seen in Figure 3 is that each continuous branch iscorresponds to a pointy(p1) on a branchp; = pi(q), and the
two-valued; that is, it corresponds to two sheets of the LM. positions of the points on successive branches show how the
This is a consequence of the presence of the caustic. It wastrajectory is changed over the time period/@.
explained above that caustics correspond to folds of the LM The behavior of the MPHP is of special interest. We note
(cf. Figure 1). The point wherlpy/dg| — o is the cross section  that the MPHP is aheteroclinic trajectoryin the four-
of the fold in the surfacey(q) by the half-plane-H(©) = const. dimensional phase space; it extends from the limit cycle to the

To complete the qualitative picture of the behaviompet= focus and in fact lies both in the LM (which is the unstable
pi(a), we note that, for a give® in Figure 2, large values of  manifold of the limit cycle) and in the stable manifold of the
q (compared to the value af on the MPHP forOupue = ©) focus. The latter is traced out by the family of trajectorigX({),
correspond to largéu| exp(t) in eq 37; that is, suclky are pF(t)) of the form (35) and is seen from (35) to be a plare

given by the deterministic term[CqulD expl+iw)t] + c.c.] Aq in the immediate vicinity of the focus. As a consequence,
in eq 37. In Figure 2 there are two paths that arrive at a given successive projections of the MPHP pi{q) lie on a straight
largeq at a given®, one withu > 0 and one with: < 0. Since line, as would be expected also from eq 37.

the value of the coordinatg is the same for both paths, it is Extreme trajectories with of opposite sign deviate from the
clear that the argumentst of the terms with opposite-sigm MPHP in opposite directions (cf. Figure 2). Trajectories with

differ by 7; that is, the values of differ by #/w. (This can ulue < 0 approach the fold of the LM, and their projections
also be shown using (37).) The momepigy) = p(t,0) are (p1, ) approach the singularity of the LM cross sectimfq),
equal in magnitude and opposite in sign for the two paths. This where|dpy/dg| — «. Subsequently they go over the fold and
means that, for largg, the functionp; = pa(q) takes on a pair ~ come to the other sheet of the same brancp.of pi(q). It

of values that are of equal magnitude and opposite sign, asfollows from eq 44 that each extreme trajectory goes over a
shown in Figure 3. fold only once.

We may also note that, for large valuescpéit eachu, the Extreme trajectories witp/uc > 0, on the other hand, move
phase® is given by the ratio of the components of the vector away from the MPHP toward larger valuestpfas do the points
u[CPaT exp[(+iw)t] + c.c.]. Itisindependent of the sign of  (p1, q) in Figure 3 that arise from such trajectories. Such
u and is determined only by the timie Therefore the value of  trajectories never encounter the fold in the LM. Nonetheless
t is the same at points with a givéd but different values for their projections on thg-plane are self-intersecting and intersect
the parametep: (and hence different values fay). As a projections of other trajectories. This is an interesting feature
consequence of this, the functigm = pi(qg) reduces to a of the topology of the LM. In general, infinitely many
constant whem, the displacement from the unstable focus, is trajectories on the LM, when projected onto tipplane, pass
large. through any point.
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VII. The Action and the Switching Line

The expression for the action, eq 25, in combination with
the explicit expressions for the extreme trajectories in the vicinity
of the unstable focus, i.e., (34§37), makes it possible to
evaluate the action near the focus explicitly, as

aq(t)
ou

Stw) ~ S + up(t,0)

~ J p(z.0)q(z,0) dr

“e (54)

where& is the action at the focus itself. In deriving (54) we
have used the approximation

aq(t,u)

S(t,ﬂ)%S(t,O)Jrup(t,ﬂ)'[ N

which is valid at smallu|.
Using egs 3741 and 46, we further obtain

Aj
tu) =S — ku cosg — «° P [——|e @t (55
Stu) = § — xu cosp i,jZ,z i '(/li +/1j) (55)

The classical action functio® = St,u) as given by (55) is

single-valued. However, the action as a function of the species

concentration vectay is in general multivalued, since extreme
trajectoriesq(t,u) with differentt, u may cross each other. As

a consequence, extreme trajectories with different values of the

parametep may extend from the limit cycle to a point
The form of the actiorS as a function ofy can be evaluated
directly from egs 37 and 55, but insight into it can be gained

from Figure 3. Since all extreme trajectories have zero energy,

we necessarily have

Sq) = [p-dg

the line integral being taken along an extreme trajectory
extending from the limit cycle tg. (As noted, this trajectory

(56)

may not be unique!) One can use ([56) to compute the cross

section of the action surfac®= §q) by a half-plane®(mod
27) = const, fromp-A(®), the momentum component in the
directionA(®). The form ofp-A(®) as a function of the radial
coordinatey is similar to that ofps(q) displayed in Figure 3 (in
fact if © = 2zzn in Figure 3, therp-A(®)). Each branch of the

momentum component in Figure 3 accordingly corresponds to

a branch of the actior§ which is obtained by integrating
p-A(B).

A cross section of the action surfae= Sq) is displayed
in Figure 4. As would be expected from Figure 3 and eq 56,

Dykman et al.

0
q1

Figure 4. Cross section of the action surfaBe= S(q1,0;) near the
focus @ = 0), by the half-planep, = 0, g, > 0. The coordinate frame

and model parameters are the same as in Figure 2, and the bold dots
are placed at the points where the MPHP intersects the half-plane. The
branches o§ correspond to values @ that differ by 2r. The minimum
action curve Smin = Snin(d1,0), is indicated in bold; it is only piecewise
smooth. The light dashed lines indicate points where the switching line
intersects theyp-axis; by definition, this occurs at points on the axis
where branches intersect, a8gn is nondifferentiable.

switching lines. This means that, for optimal trajectorétsu)

on one side of a switching line, the values of the parameter
lie in one range, whereas for optimal trajectories terminating at
points on the other side of the switching line, the range of values
of u is totally different. 4 jumps discontinuously when the
switching line is crossed.

The presence of a switching line is clearly indicated in Figure
4: its cross section is the series of points where successive
branches of the cross section ®fntersect one another.

The structure of the switching line can be understood if one
takes into account the fact that the MPHP is (i) the optimal
path that extends from the limit cycle to the unstable focus and
(i) a spiral. It follows from (i) that pointg close to the MPHP
are reached via optimal paths close to the MPHP and lying either
inside or outside the MPHP spiral, depending on the choice of
g. On the other hand, when one moves transverse to the MPHP,
one goes from the vicinity of one turn of the spiral to the vicinity
of the next turn. Somewhere in between, switching should
occur. The condition for this is that the actions for the two
competing extreme trajectories terminating at a pgibe equal
to each other (cf. (28)), i.e.,

Styuq) = Stou,) (57)

q(tyug) = q(tyuy),

It can be immediately verified from the above equations that

each branch of the action cross section contains a cusp pointiye switching line is self-similar: the transformatigr— (—1)'q

Each such cusp point is attributable to the fold of the LM (since
at it, |d[p-A(®)]/dq] — «). Away from cusp points, the two
sheets of each branch of the cross sectio8 arfe nearly linear
in g and have opposite slopes (since the valuep-6{®) are
nearly g-independent, and have opposite signs). Different
branches ofSintersect each other.

As we explained in section IV A, only the minimum action
at any point,Snin(q), is of physical interest, since it is the
minimum action that appears in the eikonal approximation to

exp(—nnn/w) maps it onto itself, as it corresponds to the change
of parameters
t—t +anlow, u—u exp2rmyle), i=1,2
The switching line determined by eqs 37, 55, and 57 is shown
in Figure 5. It is plotted in polar coordinates. In these

coordinates, the points with the samand with the values of
O that differ by 2r correspond to the same point on telane.

the stationary probability density. The shape of the surface of It is seen from Figure 2 that such points are reached along the

minimum action is clear from Figure 4.

A. Self-Similarity of the Switching Line. Generically there
is a singledominant extreme trajectory (by definition, the
optimal fluctuational trajectory) that extends from the limit cycle
to a given poing in the species concentration space. It is this
trajectory that provides the value of the minimum action
function, Snin(g). Areas of theg-plane reached via different

trajectories that lie below and above the MPHP, the point with
the value of® larger by 2r being reached along the upper
trajectory. Therefore there should occur switching between the
trajectories above and below the MPHP. The switching line
(which is a single line on thg-plane) is periodically repeating
itself in polar coordinates, with the periogt 2long the® -axis,

as shown in Figure 5 (the MPHP is repeating itself as well).

sets of optimal trajectories are separated from one other by The lower and upper trajectories that arrive at the sgreed
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Figure 5. Optimal fluctuational paths near the unstable foqus O, X

in a model with parameter values= 0.33,w = 4.1, andy = 0.45. ) ) ) )
The plot is in terms of polar coordinates;, @). The bold curve is the Figure 6. Tube of extreme fluctuational trajectories for the_ Selkov
most probable hitting path (MPHP), which extends dowmte 0 as model ([REF:selkov]), prolectgd to'the species concentration plane.
© — . The bold dashed curve is the switching line (the two switching Parameters of the model are given in the text. The tube is very narrow
lines shifted by 2 along the®-axis correspond to one and the same Near the limit cycle: separate trajectories are not resolved. Near the
switching line on they-plane). When an extreme fluctuational trajectory u_nstable focus, after several turns, trajectories other than the MPHP
reaches the switching line, it ceases to be optimal. Optimality passesdiverge from one another and spiral away. The arrows show the
from it to another extreme fluctuational trajectory, whshifted by direction of motion.
2m. The light dashed lines indicate the way in which this process occurs.

A low-resolution plot is displayed in Figure 6. Near the limit

up on the “replicas” of the switching line, which are shifted by cycle the extreme trajectories first go away from the cycle,
27. The switching line spirals down to the unstable foqus forming a small-step spiral. We show an initially narrow tube
0 along with the MPHP and with the caustic (not shown in Of extreme paths (separate paths in the tube cannot be resolved
Figure 5), and these spirals nowhere intersect one another. visually near the cycle) as it spirals down to the unstable focus.
Starting at a certain distance from the cycle, the step of the
VIII. Extreme Trajectories for a Selkov Model spiral dramatically increases, and the tube approaches the
vicinity of the focus within a few turns. Near the focus the
width of the tube sharply increases, and the trajectories in the
tube diverge from one another and begin to move away from
the focus. The only extreme trajectory that spirals down all
the way to the focus is the MPHP (the formally most probable
K ks ks hitting path, in the limitQ — o).
A N Xy, X+ ZXZT 3X,, Xz_‘kf B (58) The behavior of the tube at a larger resolution is shown in
Figure 7a,b. In Figure 7a one sees how the width of the tube
varies as the trajectories spiral down toward the focus. When
they are sufficiently close to the focus, the tube in Figure 7a
splits into two parts. In both parts, the extreme trajectories make
loops. This behavior is generic for one group of extreme
trajectories near the focus, cf. Figure 2 (trajectories that lie on
the opposite side of the MPHP with respect to those in Figure
7 eventually spiral away from the focus without making loops).

In this section we shall investigate numerically the pattern
of extreme trajectories, including optimal fluctuational trajec-
tories, in an oscillating, spatially homogeneous Selkov model.
This model is described by the chemical reaction scheme

The number of molecules of speciésandB are held constant,
while X; andX;, the number of molecules of the two intermedi-
ate chemical species, can vary in time. The equations of motion
for the average concentratiors X, of the intermediate species
have the form

K -3 — Ao
¥ = kAR + kX" — (ke + k%)% (59) The loops, at higher resolution, are shown in Figure 7b.
. iy o The envelopes of the loops made by extreme paths are
X, = KBIQ + K%y — (ks + k%)%, caustics. The global structure of caustics is shown in Figure
8a,b. As we noted in section VIA, locating caustics numerically
(Recall that we are working in a volume of sige) We shall is facilitated by the fact that the Jacobidn= |3(q1,qp)/d(t,u)!

setkiAVQ = 2.0,k; = 0.34,ks = 1.4,ks = 0.02,ks = 2.2, and vanishes at the timiewhen the extreme trajectory with parameter
keB/€2 = 0.24. With these parameter values, the two- 4impinges on, and is reflected by, a causfidt is not difficult
dimensional dynamical system specified by egs 59 has a stableto show that as a function df the Jacobian satisfies a first-
limit cycle. In chemical terms, it models an oscillating reaction. order differential equation along the extreme trajectory (cf. ref
There is an unstable focus located within the limit cycle, at the 9). In hunting for caustics we took into account only “primary”

point (xu, Xar) ~ (1.83, 0.74). _ _ caustics, i.e., caustics that are encountered by extreme trajec-
~ The reduced transition rategx,r) for reaction 58, as defined  tories for the first time (caustics that are encountered by extreme
in (2), are nonzero forrg, rz) = (1, 0), (=1, 0), (-1, 1), trajectories that have already encountered a caustic are of no

(1,-1),(0,—1), 0r (0, 1). These values ofcorrespond to the  physical interest, since by that time, the extreme trajectories
six possible reactions; for example, for= (—1, 1) we have have ceased to be optimal).
W(x,(—1,1)) = kexpxo?, As is shown in Figure 8a, two primary caustics start at a
We have analyzed the pattern of extreme trajectories for the cusp point located midway between the limit cycle and the
Selkov model (58) by numerically integrating Hamilton’s unstable focus (the poir). One caustic spirals down to the
equations (egs 15), equipped with the initial conditions of eq focus and the other spirals away from it. The caustic that spirals
23. A family of trajectories was obtained by varying the initial - down to the focus is not smooth; it has an infinite number of
distance from the limit cycle at a certain point on the cycle. cusp points lying along it, in the vicinity of the focus (see Figure
This parameter (initial distance from the limit cycle, denoted 8b). These cusp points are well separated from the “initial”
5(20) in section 11IB) is essentially the same as the trajectory- cusp, which lies far away from the focus. The presence of cusp
indexing parameter used in the previous sections. points in the flow field of extreme trajectories is clear from
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Figure 7. Plot implying the presence of a caustic in the flow field of
extreme fluctuational trajectories in the Selkov model. (a) Tube of Figure 8. Location of the caustics in the flow field of extreme
trajectories that emanate from the limit cycle (the tube is different from fluctuational trajectories in the Selkov model. (a) Two caustics that
that shown in Figure 6). Near the unstable focus the trajectories make emerge from a cusp poin€. One of the caustics eventually spirals
loops, are reflected from a caustic, and then spiral away from the focus. into the limit cycle; the other spirals down to the unstable focus. (b)
(b) Higher resolution plot of the same tube of extreme trajectories.  High-resolution plot, showing the immediate vicinity of the unstable
focus. The caustic is seen to be self-similar and to have, lying along

Figure 7b: cusps are located at points where caustics (thejg extent, infinitely many additional cusp points.

envelopes of the loops) merge together.
The difference between the shapes of the caustics shown ing¢ ihe species concentration vecit) toward a specified point

Figure 8a and the shape obtained analytically in section VI arises;, ihe space of species concentrations, that is remote from the
from the fact that for the parameter values we have chosen forlimit cycle. In the limit Q — w, in which large fluctuations

the Selkov model we havg ~ 0.22 anda ~ 0.17. Here the 5 ayponentially rare, there normally exists a unique optimal
parameters) anda, which determine the dynamics of fluctua- o " most probable) fluctuational path terminating at any
tional trajectories that extend to the vicinity of the unstable focus, specified point not on the limit cycle. The computation of such
are defined in terms of the linearized dynamics near the focus oniima| trajectories is best accomplished through the analysis
by eqgs 48. As a consequence, the conditipr 3la| we of an auxiliary Hamiltonian dynamical system. The “extreme”
assumed in section VI is violated. But analysis of the 0pse  yraiectories of this system, which are really zero-energy
> 3|a is quite similar to that given in sections-WIl and will trajectories that move through its phase space, have optimal
be presented elsewhef®.lt follows from the results of such  ,c4ational trajectories as their projections on the space of the
an analysis that, in models with> 3a| , the caustic still spirals  ghecies concentrations. Extreme trajectories are easily
down to the .focus, but rather than being smooth, it contains computed numerically; they trace out a so-called Lagrangian
four cusp points per turn. manifold in the phase space of the auxiliary system.

The flow field of optimal fluctuational trajectories normally
displays a pattern of singularities that is different from the

In this paper we have indicated how techniques of asymptotic pattern of singularities appearing in the flow field of extreme
analysis may be applied to yield results on the fluctuational trajectories arising in the semiclassical (WKB) computation of
behavior of oscillating chemical systems. The fluctuations we gquantum-mechanical wave functions. In particular, optimal
have considered are fluctuations away from a limit cycle in a fluctuational trajectories never encounter caustics. (Strictly
space of species concentrations. The stationary probability speaking, they may encounter them, but by the time they do
distribution for an oscillating system in such a space is built up so, they have ceased to be optimal.) However, the flow field
by fluctuations of this sort, and in the limit whé&n (a measure of optimal trajectories in the space of species concentrations
of volume, or total number of molecules) tends to infinity, the containsswitching lines curves separating regions that are
stationary distribution will be increasingly concentrated near reached, in th& — oo limit, via topologically different sorts
the limit cycle. The tail of the stationary probability distribution, of fluctuational paths.

IX. Conclusions

far from the limit cycle, is built up by large fluctuations. We Transverse to the limit cycle, the stationary probability density
have investigated the distribution both close to and far from of the system is approximately Gaussian, with variance pro-
the limit cycle. portional toQ~1. But we have seen that if an unstable focus is

We have also considered the pattern of optimal fluctuational contained within the limit cycle, behavior of the stationary
trajectories, i.e., the most likely routes for fluctuational motion probability density close to the unstable focus is more compli-
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cated. One might think that it would be given, to a good

J. Phys. Chem., Vol. 100, No. 49, 19969209

(10) Chinarov, V. A.; Dykman, M. |.; Smelyanskiy, V. ®hys. Re. E

approximation, by an inverted Gaussian. But we have analyzed1993 47, 2448.

the eikonal approximatiofPs(x) ~ c(x) exp[—QS(x)] to the
stationary probability densitlys;and have shown that normally
the “action” functionSis quite singular near an unstable focus.
In particular, a switching line spirals down to any such focus,
in a self-similar way: successive turns of the switching line
are reduced copies of each other. And the gradien® of
discontinuous along a switching line.

(11) bykman, M. |.; Mori, E.; Ross, J.; Hunt, P. M. Chem. Phys.
1994 100, 5735.

(12) Berry, M. V.Adv. Phys.1976 35, 1. Schulman, L. STechniques
and Applications of Path Integratiorwiley: New York, 1981. Maslov,
V. P.; Fedoriuk, M. V.Semi-Classical Approximation in Quantum Mechan-
ics; Reidel: Boston/Dordrecht, 1981. Delos, J.&lv. Chem. Phys1986
65, 161. Littlejohn, R. GJ. Stat. Phys1992 68, 7.

(13) (a) Haken, HSynergetics: An Introductigrnd ed.; Springer-
Verlag: New York/Berlin, 1978. (b) van Kampen, N. Gtochastic

We have compared the results of our theoretical analysis with Pgéclesses in Physics and Chemishiprth-Holland: New York/Amsterdam,

detailed numerical results on the pattern of optimal fluctuational

(14) Gardiner, G. W.Handbook of Stochastic Methqd2nd ed.;

paths in an oscillating, homogeneous Selkov model. Numerical Springer-Verlag: New York/Berlin, 1990.

analysis of such a model is not difficult, and it demonstrates
the occurrence of topological singularities we have predicted.
Switching lines, in a flow field of optimal fluctuational

(15) Lax, M. In Statistical Physics, Phase Transitions and Supercon-
ductivity; Chretien, M., Gross, E. P., Deser, S., Eds.; Gordon and Breach,
New York, 1968.

(16) Dykman, M. I.; Chu, X.; Ross, Phys. Re. E 1993 48, 1646;

trajectories, have recently been observed in noise-perturbed1995 52, 6916.

continuous dynamical systerfisOscillating chemical systems
that are mesoscopic rather than macroscopic, soShiat not

so large as to suppress too greatly large fluctuations away from

the limit cycle, surely merit experimental investigation: it is

possible that a pattern of switching lines can be observed in

such systems.
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