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We investigate the way in which large fluctuations in an oscillating, spatially homogeneous chemical system
take place. Starting from a master equation, we study both the stationary probability density of such a system
far from its limit cycle and the optimal (most probable) fluctuational paths in its space of species concentrations.
The flow field of optimal fluctuational paths may contain singularities, such as switching lines. A “switching
line” separates regions in the space of species concentrations that are reached, with high probability, along
topologically different sorts of fluctuational paths. If an unstable focus lies inside the limit cycle, the pattern
of optimal fluctuational paths is singular andself-similarnear the unstable focus. In fact, a switching line
spirals down to the focus. The logarithm of the stationary probability density has a self-similar singular
structure near the focus as well. For a homogeneous Selkov model, we provide a numerical analysis of the
pattern of optimal fluctuational paths and compare it with analytic results.

I. Introduction

Chemical systems with ingoing and outgoing flows are an
important class of nonequilibrium systems. For steady external
conditions they can display unusual behavior of various sorts,
including the presence of multiple stable stationary states and
states of persistent oscillation (limit cycles in a space of species
concentrations). These and other phenomena have been ob-
served for autocatalysis in continuous flow stirred tank reac-
tors.1,2

In many-particle systems, fluctuations about stable states are
mostly small. For example, fluctuations in the number of
molecules of a specified species are proportional to the square
root of the mean number of molecules. However, large
fluctuations also occasionally occur. Large fluctuations are
responsible for transitions between coexisting stable states of a
system. They are of particular interest for mesoscopic systems,
including biochemical systems where it has been noticed3,4 that
the average number of molecules of a species in a vesicle may
differ substantially from an estimate based on the density of
the species in the surrounding solution.
If stirring is sufficiently rapid, the reacting system is spatially

uniform, and the only dynamical variables are the total number
of molecules of each species,X ≡ (X1, X2, ...). In systems with
limit cycles these numbers depend periodically on time, if
fluctuations are neglected. Because of the explicitly broken time
symmetry, fluctuations in such oscillating systems are qualita-
tively different from fluctuations in systems in thermal equi-
librium. An analysis of fluctuations around a limit cycle was
recently performed, in both stationary and transient regimes (see
ref 5 and references therein). In the present paper we investigate
large fluctuations away from a limit cycle.
A fluctuation to the vicinity of a given stateX may occur in

many ways. However, the probability densities for different
fluctuational trajectoriesX(t) are different, and for large
fluctuations the probability density in “trajectory space” peaks
sharply (indeed exponentially sharply) at a single most probable

pathXopt(t) extending from the limit cycle toX. Such optimal
(i.e., most probable) fluctuational paths are physically real. In
fact, for fluctuating continuous dynamical systems they have
been observed experimentally.6

In Markovian systems in thermal equilibrium, optimal fluc-
tuational trajectories are time-reversed deterministic trajectories
(cf. ref 2; see also ref 7). This is not the case in nonequilibrium
systems, in general. It was found numerically for fluctuating
dynamical systems8-10 and for chemical systems11 that the
pattern of optimal paths may have singularities even in the case
when the deterministic paths are smooth. These singularities
are similar to those seen in the pattern of extreme paths, when
one computes a semiclassical (WKB) approximation to a
quantum-mechanical wave function.12 However, there is a
fundamental difference between optimal fluctuational paths and
the extreme paths of WKB theory: optimal paths determine a
real and positive probability density and may be directly
observed, whereas extreme paths determine the phase of a wave
function and, at most, the shape of an interference pattern.
Therefore we may expect different types of singularities to occur
in the pattern of optimal paths.
In this paper we consider a chemical oscillator of the simplest

type, one with two species, and perform a global and local
analysis of the pattern of optimal fluctuational paths emanating
from its limit cycle in the (X1, X2)-plane. In section II we
describe an eikonal approximation to the solution of its master
equation, in the stationary regime. In section III we formulate
a problem of Hamiltonian dynamics, whose solution will
determine the optimal paths and give the logarithm of the
stationary probability density. In section IV we discuss singular
features of the pattern of optimal paths, by applying the results
of catastrophe theory to the auxiliary Hamiltonian system. In
section V we consider the case when the limit cycle contains
an unstable focus. We linearize Hamilton’s equations near this
unstable focus and discuss the eigenvalues and eigenvectors of
the resulting linear problem. Section VI is the central part of
the paper, as in this section we show that generically the flow
field of optimal paths is self-similar near the focus. In section
VII we use our results to find the shape of the stationary
probability distribution near the focus and the switching line
that separates the areas in the (X1, X2)-plane to which the system
fluctuates, with high probability, along topologically different
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paths. In section VIII we numerically analyze large fluctuations
in a spatially homogeneous Selkov model with a limit cycle.
Section IX contains concluding remarks.

II. Eikonal Approximations in Chemical Kinetics

A. The Master Equation. For dilute homogeneous chemi-
cal systems, time intervals between reactions greatly exceed the
reaction duration, and the probability of a reaction depends on
the number of molecules only at a given instant of time. That
is, there are no appreciable memory effects. Therefore the
evolution of the probability densityP(X,t) of the vectorX ≡
(X1, X2), whose components are the number of molecules of
each species, is given by a Markovian master equation

HereW(X,r ) is the probability per unit time for the transition
X f X + r to occur. The vectorr ≡ (r1, r2) shows the change
in the numbers of molecules in a reaction. The transition rates
W(X,r ) are smooth functions ofX (often they are polynomials
in Xi13,14).
In a macroscopic (or mesoscopic) system the mean numbers

of molecules are proportional to the volumeΩ, as are the
probabilitiesW(X,r ). We takeΩ to be dimensionless and large,
i.e., Ω . 1. (In fact,Ω can be thought of as the mean total
number of molecules.) It is convenient to introduce a vectorx
whose components are the density of each species and reduced
transition probabilitiesw(x,r ):

An evolution equation for the vector ofmeandensitiesxj(t),
defined by

can be obtained from (1) to zeroth order inΩ-1. It is known13

to be of the form

We shall consider the case when the stable stationary solution
of (4) is a limit cyclexj(cl)(t), with a periodτ(cl). That is,

The reacting system with specified initial densities (x1, x2) will
approach the limit cycle (5) over a relaxation timetr and then
move along the limit cycle. However, because of the number
of molecules being finite, fluctuations away from the limit cycle
will occur. In fact, a steady-state probability distribution will
be formed.
The evolution of the probability densityP(X,t) close to the

cycle was analyzed in ref 5. Over a period of time proportional
to Ω phase diffusion occurs: the “chemical clocks” become
mistuned. It is this that causes a stationary densityPst to be
formed; ast f ∞, P(X,t) f Pst(x). (For a different source of
fluctuations, this effect is well-known for lasers and ac genera-
tors, cf. ref 15). The steady-state densityPst(x) satisfies the
equation

The functionPst(x) is crater shaped,16 with a maximum on the

cycle (see ref 17 for the shape of the distribution when the
reacting system is close to a Hopf bifurcation point). The width
of the distribution in the direction normal to the cycle is
proportional toΩ-1/2.
B. The Eikonal Approximation. The stationary probability

densityPst(x), in the limitΩ . 1, may most easily be analyzed
by means of aneikonal approximation. This approximation
has much in common with the WKB approximation in quantum
mechanics.12 The role ofp is played byΩ-1.
The idea behind the eikonal approximation is that the density

Pst(x) is a much steeper function ofx than the coefficientsw(x,r).
(Similarly, a rapidly oscillating semiclassical wave function is
a much steeper function of the coordinates than the potential in
the Schro¨dinger equation that it satisfies.) Indeed, it follows
from eqs 7 and 8 below that in general,Pst(x) varies on a
characteristic length scale of orderΩ-1. On the other hand,
the coefficientsw(x,r ) vary only slightly whenx is changed by
Ω-1.
In the limit of largeΩ we seek a solution of eq 6 that is of

eikonal form, i.e.,

(cf. ref 18). HereS is an eikonal function, andc is a slowly
varying “prefactor” function whose properties we shall not
explore in this paper in any detail. Instead, we shall focus on
S. Substituting (7) into (6), and keeping only the terms of lowest
order inΩ-1, yields the following equation for the functionS:

Equation 8 is a nonlinear first-order partial differential equation
for the eikonal functionS(x). A similar equation arises in the
asymptotic analysis of Markov chains19 and Markov jump
processes.20 In the context of chemical kinetics, eq 8 was
considered in refs 11 and 21 (in ref 11, large fluctuations in
homogeneous chemical systems with point attractors were
analyzed).
C. The Distribution near the Limit Cycle. Equation 8

can be solved near the limit cycle. To approximate the function
S there, it is convenient to introduce local coordinatesê1 and
ê2 such that the corresponding unit vectorsê̂1 andê̂2 are locally
parallel and perpendicular to the limit cycle, respectively. The
coordinateê1 is the distance along the cycle (measured from
an arbitrary point on the cycle), and we have

where

Here V(ê1) is the (position-dependent) velocity of the system
on the cycle, in the absence of fluctuations. We setê2 ) 0 on
the cycle. At any point on the cycle, the matrix of partial
derivatives (∂xi/∂êj) of the transformation from the old to the
new variables is orthogonal.
Since the stationary densityPst(x) has a maximum on the

cycle, the functionShas a minimum in theê2-direction atê2 )
0. Therefore the derivative

and a Taylor series forSwill start with the term that is quadratic

∂P(X,t)

∂t
) ∑

r

[W(X-r ,r ) P(X-r ,t) - W(X,r ) P(X,t)] (1)

x ≡ X/Ω, w(x,r) ≡W(X,r )/Ω (2)

xj(t) ≡ Ω-1∑
X

XP(X,t) (3)

dxj

dt
) ∑

r

rw(xj,r ) (4)

xj(cl)(t) ) xj(cl)(t+τ(cl)) (5)

∑
r

[w(x-Ω-1r ) Pst(x-Ω-1r ) - w(x) Pst(x)] ) 0 (6)

Pst(x) ≈ c(x) exp[-ΩS(x)] (7)

H(x,∂S(x)/∂x) ) 0, H(x,p) ≡∑
r

w(x,r )[exp(r ‚p) - 1] (8)

ê̂1 ) ∑
r

rw(xj(cl),r )/V (9)

V ) V(ê1) ≡ |∑
r

rw(xj(cl),r )| (10)

∂S/∂ê2 ) 0 at ê2 ) 0
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in ê2. It is not difficult to deduce from eq (8) that∂S/∂ê1 must
also equal zero atê2 ) 0, i.e.,

In what follows, we choose a normalization by setting this
constant equal to zero. Accordingly near the limit cycle

The functionλ(ê1) gives the curvature of the functionS in the
direction normal to the cycle.
To find the functionλ, one should substitute (11) into (8),

and expandw(x,r ) in eq 8 aboutxj(cl) to first order inê2. This
gives a first-order differential equation forλ, which must be
solved with the boundary condition of periodicity ofS(and thus
of λ) on the cycle, i.e.,

wherel(cl) is the length of the cycle. The corresponding solution
is of the form (cf. ref 16; see also refs 22, 23)

where

with

It is not difficult to see thatλ(ê1) > 0 for all ê1. This is a
consequence of the inequality

which is a criterion for the stability of the cycle in the absence
of fluctuations.
The stationary probability densityPst(x) as given by eqs 7

and 11 is Gaussian in the transverse coordinateê2. In factλ is
a position-dependent reciprocal variance. Equations 7 and 11
apply up to the not too far tail of the distributionPst(x), where
λê22 . Ω-1 but ê22 , 1. For larger|ê2| the distribution will
be non-Gaussian, and to find it, one would have to use eq 7
without approximatingS.
We note in passing that the prefactor of the transverse

Gaussian distribution, like the reciprocal varianceλ, depends
on ê1, the position along the limit cycle. It was given in ref
16; see also ref 23.

III. Extreme Fluctuational Trajectories

A. Equations for the Extreme Trajectories. The analysis
of section II does not apply far from the limit cycle. A
convenient way to analyze the functionS(x) over a broad range
of species concentrationsx is based on the idea that eq 8 can
be viewed as a Hamilton-Jacobi equation for an auxiliary
classical-mechanical system, with Hamiltonian functionH(x,p).
In this interpretation,p is a momentum variable, and the eikonal
functionS is a classical action at zero energy. This idea was

first used to analyze fluctuation phenomena in continuous
Markov systems.24

Hamilton’s equations of motion for the dynamical system with
the Hamiltonian of (8) are of the standard form:25

They determine classical trajectories in a four-dimensional phase
space of the auxiliary system, whose coordinates and momenta
are the 2-vectorsx and p. Along any zero-energy classical
trajectory,Swill satisfy the differential equation

HereL(x,x3 ) is the Lagrangian corresponding to the Hamiltonian
H, i.e.,

The differential equation (16) may be integrated numerically,
in tandem with Hamilton’s equations, to yield the value ofSat
points lying along any zero-energy trajectory. We shall call
such trajectories “extreme trajectories”, since any such trajectory
will be an extremum of the action functional

though possibly not a minimum. The quantityS(x) appearing
in the eikonal approximation (7) is really aminimumclassical
action at zero energy. Numerical computation ofS(x) requires
a minimization over all extreme trajectories terminating atx.
The physical meaning of the extreme trajectories and the

initial conditions for eqs 15 follow from a now standard picture
of the way in which large fluctuations occur.6,24,26,27 The
stationary density at a pointx far from the limit cycle is formed
by occasional large fluctuations. The value ofPst(x) is
determined, to logarithmic accuracy asΩ f ∞, by the frequency
with which themost probable, or optimal, fluctuation to the
pointx occurs. The optimal fluctuational trajectoryxopt(t) along
which the system must move in order to reachx is a particular
extreme trajectory: the least-action one that terminates atx.
One way to see this is based on the path-integral formulation
of fluctuation theory; for systems described by master equations
such a formulation was developed in ref 18. In this formulation,
extreme trajectories are extrema of the path-integral expression
for a transition probability.
The preceding picture, involving an extremum of an action

or action-like functional, is similar to the theoretical infrastruc-
ture of the WKB approximation used in thep f 0 limit of
quantum mechanics.12 Both in the semiclassical limit of
quantum mechanics and in the problem of large fluctuations as
Ω f ∞, there may be several extreme pathsx(t) that terminate
at the same pointx. In the semiclassical limit of quantum
mechanics all extreme paths are “meaningful”: if the action
S(x) is multivalued, the wave function will be a sum of terms
proportional to the several values of exp(iS(x)/p). In contrast,
in the present problem the stationary probability density would
be a sum of terms proportional to the several values of exp(-
ΩS(x)). The absence of an “i” in the exponent explains why
only the least-action extreme path is physically meaningful; as
Ω f ∞, it dominates all others.
Optimal fluctuational trajectories and other extreme trajec-

tories start in the vicinity of the limit cycle, where the system

[S(x)]ê2)0 ) const

S(x) ≈ 1/2λ(ê1)ê2
2, |ê2|, 1 (11)

λ(ê1+l
(cl)) ) λ(ê1)

λ-1(ê1) )∫0ê1V-1(y) dy Q(cl)(y) F(ê1,y) +

F(ê1,0)

1- F(l(cl),0)
∫0l(cl)dx V-1(y) Q(cl)(y) F(l(cl),y) (12)

F(x,x′) ≡ [-2∫x′xdê1 ú(ê1)], Q(cl)(ê1) ≡∑
r

(r ‚ê̂2)
2w(x(cl),r )

(13)

ú(ê1) ≡ -V-1(ê1)∑
r

(r ‚ê̂2)[∂w(x,r )/∂ê2]ê2)0 (14)

∫0l(cl)dê1ú(ê1) > 0

x3 ) ∑
r

rw(x,r ) exp(r ‚p)

p3 ) -∑
r

[exp(r ‚p) - 1]
∂w(x,r )

∂x
(15)

Ṡ) L(x,x3 ) (16)

L(x,x3 ) ) px3 - H(x,p) (17)

S[x(t)] ≡ ∫tmintmaxL(x(t),x(t)) dt (18)
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spends most of its time. In fact they emerge from the limit
cycle att ) -∞, and gradually move away. On the cycle the
action is constant (cf. ref 11), andp ) ∂S/∂x ) 0. Therefore
the initial conditions for eqs 15 are of the form

B. Extreme Trajectories near the Limit Cycle. To find
the flow of outgoing extreme trajectories as they emerge from
the limit cycle, it is convenient to change eqs 15 to the
coordinates (ê1, ê2) discussed in section IIC. Sincep ) ∂S/∂x,
the quadratic approximation (11) to the action implies

Linearizing eqs 15 inê2, the distance from the cycle, and using
(20), we obtain

where

Sinceλ ) λ(ê1) is a periodic function, andλ > 0,Q(cl) > 0, it
follows from (21) that the extreme trajectories spiral away from
the limit cycle. The distance from the cycle is increased over
each turn by a factor

The direction of rotation is the same as that of the limit cycle.
One can see from eqs 20 and 21 that the flow of extreme

trajectories is self-similar near the limit cycle. A path that goes
through the point (ê1, ê2) goes also through the point (ê1 + l(cl),
Mê2). Since the valuesê1 andê1 + l(cl) are physically identical,
this means that the entire flow of the outgoing extreme
trajectories may be mapped onto two intervals ofê2, one for
positive and one for negativeê2, which lie between the
neighboring turns of two extreme trajectories on opposite sides
of the cycle. In other words, outgoing trajectories form a one-
parameter setx(t;ê2

(0)), p(t;ê2
(0)), with the parameterê2

(0) lying
within an interval betweenµ andMµ, with |µ|, 1 but otherwise
arbitrary. Instead of using (19), we may accordingly set initial
conditions for the outgoing extreme trajectories at a finite time
t0:

Clearly, ê1(t0) ≡ |xj(cl)(t0)|, and ê2(t0) ≡ µ. By integrating
Hamilton’s equations, equipped with these initial conditions,
forward in time, we can in effect coordinatize the space of
species concentrations near the limit cycle byµ (which labels
the outgoing extreme trajectories) andt (the transit time along
any given extreme trajectory).
Equations 15 and 23 make it possible to perform a numerical

analysis of the set of extreme trajectoriesx(t,µ), p(t,µ) and the
corresponding action functionS(t,µ). The results of such an
analysis will be given in section VIII. We emphasize to the

reader that even though the present formulation seems remote
from the original reacting chemical system, it will yieldS(x):
the value of the eikonal function at any specified vector of
species concentrationsx. This in turn will yield an approxima-
tion to the value of the stationary probability density at the point
x in the species concentration space.

IV. Singular Features of the Pattern of Extreme Paths

As we noted above, although extreme trajectories (x(t,µ),
p(t,µ)) with different values of the parameterµ do not intersect
each other in the four-dimensional phase space, trajectoriesx(t,µ)
with different values of the parameterµ may pass through the
same pointx. For these trajectories the values of the action
S(t,µ) are different; that is, the actionS(x) is a multivalued
function of x. The surface ofminimumactionSmin ) Smin(x)
can be constructed piecewise from the lowest sheets of the
surfaceS) S(x).
Generically, the surfaceSmin ) Smin(x) has singular curves

along which different sheets of the surfaceS) S(x) intersect
each other. On these curves the first derivative ofSmin(x) in
the transverse direction is discontinuous.8,28 The global structure
of Smin ) Smin(x) and related singular features of the pattern of
optimal trajectories can be understood from an analysis of the
generic topological properties of the auxiliary Hamiltonian
system in its four-dimensional phase space. For noise-driven
dynamical systems such an analysis was carried out in ref 29.
We show below that the results apply to systems described by
master equations as well.
In the four-dimensional phase space of the auxiliary system,

the limit cycle of the original reacting chemical system can be
viewed as lying in the planep ) 0. That is, this plane is the
plane of species concentrations (x1, x2). The extreme trajecto-
ries, which satisfy Hamilton’s equations (15), emanate from the
limit cycle and form a two-dimensional surface known as a
Lagrangian manifold (LM).30,31 The trajectories never intersect
each other on the LM: only one trajectory goes through a given
point (x, p). However, the LM may have a complicated
structure in the phase space and in general will have singular
projections onto the planep ) 0.30

It was shown by Whitney33 that, generically, a smooth surface
may have only two types of singularities, namely, folds and
cusp points from which folds emanate in pairs, as shown in
Figure 1. If the LM formed by the trajectories (x(t,µ), p(t,µ))
has folds, then the projections of the folds of the LM onto the
species concentration planep ) 0 will be caustics. As shown
in Figure 1, a caustic is the envelope of a family of paths of the
form x(t,µ). To put it another way, a caustic is a curve in the
two-dimensional space of species concentrations from which
extreme trajectories arereflected. Caustics may merge together
at cusp points.
Extreme trajectoriesx(t,µ) reflected from different caustics

do not intersect each other unless there are other cusp points,
since the paths (x(t,µ), p(t,µ)) lie on the same sheet of the LM
(the middle sheet of the LM shown in Figure 1). Therefore the
points inside the area bounded by the caustics can be reached
along three different paths: two paths that have not yet touched
a caustic and one that has been reflected from a caustic.
Correspondingly, the actionS(x) takes on three values. Only
the minimum value (the lowest branch of the multivalued
functionS(x)) is of physical interest, as we have explained.
We now show that the action computed from an extreme path

that has been reflected from a caustic is larger than the action
computed from an extreme path that has not. Near a caustic it

x(t) ∼ x(cl)(t), p(t) f 0, S(t) f 0 as t f -∞ (19)

p ≈ λ(ê1)ê2ê̂2 ê2 f 0 (20)

ê1(t) ) ê1(t0) +∫t0tV dτ (21)

ê2(t)

ê2(t0)
) M(ê1(t),ê1(t0))

M(ê1,ê′1) ) [λ(ê′1)
λ(ê1)]

1/2

exp{12∫ê′1

ê1dy[λ(y) Q(cl)(y) V-1(y)]}
(22)

M ≡ M(ê1+l
(cl),ê1)

p(t0,µ) ) λ(ê1(t0))µê̂2, x(t0,µ) )

xj(cl)(t0) + µê̂2, S(t0,µ) ) 1/2λ(ê1(t0))µ
2 (23)
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is convenient to choose coordinates so thatx̂1 points along the
caustic, andx2 is the distance to the caustic. This implies that

As shown in Figure 1, the coordinatex2 is quadratic in the
momentum component transverse to the caustic. So this
momentum component has two branches, i.e.,

The sign ofA determines whether the extreme trajectories that
are reflected from the caustic lie on thex2 > 0 side (forA > 0)
or on thex2 < 0 side (forA < 0).
The actionS(x) as a function ofx also has two branches near

the caustic. The quantity of interest is the difference between
the values ofS on its two sheets, at the same pointx. Since
extreme trajectories are zero-energy classical trajectories, the
actionSas a function of (t,µ) is given by the integral

Therefore the difference between the values ofS on the two
sheets may be written as

It follows from the equations of motion (15), with account taken
of (24) and of the fact that on the caustic the transverse velocity
x̆2 is zero, that near the caustic

From this equation it follows thatx̆2 ) sgn[p2
(()(x1,x2) - p2-

(x1,0)]. It follows then from eqs 24 and 26 that the smaller
action corresponds to the trajectories thatapproachthe caustic
(for which x̆2/x2 < 0), whereas the action for the trajectories
that have been reflected from the caustic is larger, at the same
point x.
A. The Switching Line. The preceding argument shows

that when the Lagrangian manifold of the auxiliary Hamiltonian
system has a fold as shown in Figure 1, in which casep ) p(x)
has three branches, the action associated with points (x, p) in
phase space that lie on the “middle” sheet of the Lagrangian
manifold will never be the minimum action. Equivalently, the
least of the three values ofS(x), one value being associated
with each sheet, must be attained on the top or bottom sheet of
the Lagrangian manifold. The reason is that the middle sheet
is formed by extreme trajectories that have “gone over a fold”,
i.e., have been reflected from a caustic. Such trajectories cannot
have minimum action.
Let us label the upper and lower sheets of the Lagrangian

manifold with the superscripts 1 and 2, respectively. The
corresponding action sheetsS(1,2) ) S(1,2)(x) intersect along a
curve on the (x1, x2) plane, which is determined by the equation

If the fold in the Lagrangian manifold merges with another fold
at a cusp point, this curve will terminate there, since that is
where the sheetsS(1,2) merge. Moreover, this curve will lie
between the two folds, i.e., between the two corresponding
caustics (Figure 1b). Points that are a small distance away from
this curve but lie on opposite sides of it are reached via
topologically different optimal paths; these paths generate the
actionsS(1) andS(2), respectively. It is reasonable therefore to
call the line determined by (28) aswitching line. For noise-
driven continuous dynamical systems the presence of a switching
line has recently been observed experimentally.6b

The stationary probability density of the system will be
regular in the vicinity of a switching line. Away from a cusp,
but near the switching line, it will have the form (cf. refs 28b,
29)

That is, bothS(1) andS(2) will contribute. The prefactorsc(i)

in (17) are known to blow up asx approaches a cusp point. For
continuous Markov systems, an explicit form for the prefactor
in the vicinity of a cusp point was obtained in ref 29, and the
form can easily be generalized to the present case.
Once an extreme trajectory crosses the switching line, by

definition it no longer provides the minimum action. Well
beyond the switching line (at a distance. Ω-1) it does not
contribute significantly to the stationary probability density of
the system. As is shown in Figure 1, if a fold is present, extreme
trajectories cross the associated switching linebeforethey are
reflected from a caustic. As a consequence, caustics are never
reached by optimal paths: by the time an optimal path reaches
a caustic and is reflected from it, the path has ceased to be
optimal. For this reason, caustics are “unobservable”: the
observable singular features of the flow field of optimal
trajectories emanating from the limit cycle are, instead, switching
lines and cusp points.

V. Extreme Trajectories near an Unstable Focus

Two-variable dynamical systems with a stable limit cycle
have a dynamically unstable stationary state or an unstable limit
cycle inside the stable cycle.31 A simple and very general

Figure 1. Singular feature of the sort that may appear in the flow
field of extreme fluctuational trajectories. (a) The Lagrangian manifold
formed by the zero-energy trajectories of the auxiliary Hamiltonian
system, in its four-dimensional phase space. The manifold contains a
fold, in fact, a joined pair of folds. (b) Extreme fluctuational trajectories,
obtained by projecting these zero-energy trajectories down to the plane
of species concentrations (x1, x2). The projections of the folds in the
Lagrangian manifold are calledcaustics; the extreme trajectories are
reflected from them. The caustics in part b emerge from a cusp point,
which is the projection of the point where the folds join. A switching
line, discussed further in the text, lies between the two caustics; it
separates the regions in the space of species concentrations that are
reached along different sorts of optimal fluctuational trajectories.

x3 ) x̂1|x3 |, atx2 ) 0

p2
((x1,x2) ) p2(x1,0)( [A(x1)x2]

1/2, |x2|, 1 (24)

S(t,µ) )∫dt p(t,µ)‚x(t,µ) (25)

S(+)(x) - S(-)(x) )∫x2)0x2 p2
(+) dx2 -∫x2)0x2 p2

(-) dx2 (26)

x̆2
(() ≈∑

r

r2
2w(x,r) exp[r ‚p(x1,0)][p2

(()(x1,x2) - p2(x1,0)]

(27)

S(1)(x) ) S(2)(x) (28)

Pst(x) ≈ ∑
i)1,2

c(i)(x) exp[-ΩS(i)(x)], Ω f ∞ (29)
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situation is where this state is an unstable focus, the location of
which we symbolize byxf. In the chemical kinetics context,
the presence of a focusxf in the space of species concentrations
may be determined by examining the deterministic equations
(4). If a focus is present, it gives rise to a fixed pointx ) xf,
p ) 0 of the auxiliary Hamiltonian system (8), and (15) in its
four-dimensional phase space.
In the following sections we shall investigate the pattern of

optimal fluctuational trajectories and the stationary probability
density, in the vicinity of an unstable focus of a reacting two-
component chemical system. We shall show that, except the
case when the system is close to a Hopf bifurcation point and
radial and angular fluctuations near the unstable focus are
essentially independent of each other, the pattern of optimal
trajectories issingular. Despite the completely different origin
of fluctuations, the singularities of the pattern appear to be
similar to those discussed in ref 32 for noise-driven continuous
dynamical systems with a stable limit cycle. The results we
shall obtain apply not only to systems with a stable limit cycle
but to arbitrary systems with an unstable focus.
A. The Hamiltonian near the Unstable Focus. The

unstable focusxf is determined by the dynamical equations (4)
for the mean species concentrations of the reacting chemical
system and must satisfy the time-independent equation

We shall assume that at the focusΩ|xf| . 1, and that eq 4 for
the mean densities is meaningful. However, even if this is not
true, the results below will still apply, since the structure we
shall discover arises at distances from the focus|x - xf|, which,
though small compared to the length scale of the limit cycle,
are much larger thanΩ-1/2.
It follows from the inequalityez - z- 1 g 0 and from the

nonnegativity of the transition probabilitiesw(x,r) that eqs 8
and 30 can be satisfied at the focus only ifp ) 0 there.
Therefore in the vicinity of the focus the momentum components
of the Hamiltonian trajectory (x(t,µ), p(t,µ)) are small. To
leading order we can rewrite the Hamiltonian (8) in the form

whered̂ andQ̂ are 2× 2 matrices,

The approximate HamiltonianH(q,p) is quadratic in the
dynamical variables of the system near the focus; in fact, it has
a special structure in the sense thatH does not contain second-
order terms in the new coordinateq (which is the old coordinate
x, normalized in that it is measured from the focusxf).
B. Eigenvectors and Eigenvalues near the Focus.The

Hamiltonian equations of motion that follow from (31) may be
written in matrix form as

HereT̂ is a 4× 4 matrix. It is significant that one of the four
2× 2 blocks of this matrix is equal to 0. This is not a specific
feature of a particular model, but a consequence of the general
features of the dynamics of extreme fluctuational paths. As a
result, the eigenvalues and eigenvectors ofT̂ generically have
certain special features.
Two eigenvaluesλ1,2 of the matrix T̂ coincide with the

eigenvalues of the matrixd̂. The corresponding eigenvectors

of T̂ have their momentum partsp1,2
D equal to zero, whereas

their coordinate partsq1,2
D are the eigenvectors of the matrixd̂.

A linear combination

describes the evolution of the mean species concentration vector
qj ≡ xj(t) - xf on theq-plane. The trajectoriesqD(t) can be
obtained from the deterministic equations (4) linearized in the
vicinity of xf. They move away from the unstable focus, and
accordinglyη, the real part of the eigenvalues, is positive. To
emphasize the “deterministic” nature of these trajectories and
of the corresponding eigenvectors of the matrixT̂, we are using
the superscriptD.
The other two eigenvalues of the matrixT̂ (33), λ3 andλ4,

are equal to-λ1 and-λ2, respectively. The corresponding
“fluctuational” (in contrast to deterministic) eigenvectors have
nonzero coordinate and momentum parts,q1,2

F and p1,2
F ; here

we use the subscripts 1, 2, in combination with the superscript
F, to enumerate these eigenvectors. Linear combinations

are the solutions of (33) specific to the auxiliary system with
the Hamiltonian (31). In contrast to the deterministic trajectories
(34), the trajectories (35) approach the unstable focusq ) 0 as
t f ∞.
An arbitrary zero-energy classical trajectory, as determined

by Hamilton’s equations together with the Hamiltonian (31), is
a linear superposition of the trajectories (34) and (35), i.e.,

C. Extreme Fluctuational Paths. We are interested in zero-
energy classical trajectories of the form (36), which are extreme
fluctuational paths, extended to the vicinity of the unstable focus.
These paths emerge from the limit cycle and, as we have
explained above, lie in the Lagrangian manifold of the limit
cycle. According to eq 23 they form a one-parameter set,
(q(t,µ), p(t,µ)) (whereq(t,µ) ≡ x(t,µ) - xf). The parameterµ
determines the values of the coefficientsC1,2

F,D in eqs 34-36
for the paths on the LM. In general, to find this dependence,
it is necessary to integrate eqs 15 with the initial conditions
(23) from the vicinity of the limit cycle down to the range of
small |q|. We shall show, however, that the singular features
of the pattern of extreme paths in the vicinity of an unstable
focus in the chemical kinetics context can be found from a local
analysis.
A key role in this analysis is played by themost probable

hitting path (MPHP), along which the oscillating chemical
system is most likely to move from the limit cycle to the
unstable focusq ) 0, whenΩ is large. The action for reaching
the focus along (possibly, several) extreme trajectories is
different; the MPHP is the trajectory for which this action is a
minimum. We normalize our parametrization of extreme
trajectories by setting the parameterµ to zero for the MPHP.

∑
r

rw(xf,r ) ≡ 0 (30)

H(x,p) ≈ H(q,p) ≡ pd̂q + 1/2pQ̂p, q ≡ x - xf (31)

dij ≡∑
r

ri[∂w(x,r )/∂xj]xf, Qij ≡∑
r

w(xf,r )rirj, i, j ) 1, 2

(32)

(q3p3 ) ) T̂(qp ), T̂ ≡ (d̂ Q̂
0 -d̂†) (33)

(qD(t)
0 ) ≡ C1

D(q10 )eλ1t + C2
D(q2D0 )eλ2t (34)

λ1,2) η ( iω ≡ 1/2tr d̂ ( i[det d̂ - 1/4(tr d̂)
2]1/2, η, ω > 0

q1
D ) (q2

D)*, C1
D ) (C2

D)*

(qF(t)

pF(t) ) ≡ C1
F(q1Fp1F )e-λ1t + C2

F(q2Fp2F )e-λ2t (35)

q1
D ) (q2

D)*, C1
F ) (C2

F)*

(q(t)p(t) ) ) (qD(t) + qF(t)

pF(t) ) (36)
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In general the Lagrangian manifold formed by the paths
(q(t,µ), p(t,µ)) is locally smooth near the MPHP. This means
that, for paths lying on the LM, the coefficientsC1,2

F , C1,2
D are

smooth functions ofµ for small |µ|. In other words, at any
given instant of timet the values of the coefficientsC1,2

F , C1,2
D

for the extreme pathsq(t,µ), p(t,µ) are close to the values of
C1,2

F , C1,2
D for the MPHP (q(t,0), p(t,0)) and can be found by

expandingC1,2
F , C1,2

D in a Taylor series inµ.
At µ ) 0 the coefficientsC1,2

D ) 0 (otherwise the path would
not go to the focus ast f ∞, cf. (34)). On the other hand, the
coefficients C1,2

F take on nonzero values atµ ) 0. By
changing the time origin these coefficients can always be made
equal to each other. Their value (denoted byκ in eq 37 below)
can be found by integrating eqs 15 all the way down from the
vicinity of the limit cycle. Then, with account taken of eqs 34
and 35, any extreme trajectories that lies on the Lagrangian
manifold close to the MPHP can be written as a linear
combination of the form

The first term in (37) corresponds to the MPHP. The terms∝
µ allow for admixture of the deterministic solution (34). In
the derivative∂q(t,µ)/∂µ in (37) we have neglected the terms
proportional to the fluctuational eigenvectorsq1,2

F and retained
only those proportional to the deterministic eigenvectorsq1,2

D .
This could be done because the terms∝ q1,2

F in (37) decay in
time, whereas those∝q1,2

D increase exponentially witht.
Therefore even if the termsµq1,2

F exp[-λ1,2t] and µq1,2
D exp-

[λ1,2t] were of the same order of magnitude at a certain instant
t ) t0, when

the former terms would be exponentially smaller than the latter.
By appropriately renormalizingµ one can always make the

absolute value of the coefficientsC1,2
D in (37) equal to 1. The

phase ofC1,2
D is determined by the normalization of the

eigenvectors in (34) and (35). To choose the normalization,
we notice first thatqi

D and p3-i
F are eigenvectors of the

matrices d̂ and -d̂†, respectively, and therefore they are
orthogonal forλ1 * λ2, i.e.,

It follows from the zero-energy condition, i.e.,H ) 0, that
for any extreme trajectory there holds the identity

from which we have|p2F‚q2
D| ) |p1F‚q1

D|.
The phases and lengths of the eigenvectors with superscripts

D andF are independent of each other, and it is convenient
for what follows to choose them so that

(respectively,p1
F‚q1

D ) -i/2). Here

is the standard definition of the wedge product of two 2-vectors.

We have from (39)

Equations 37 and 41 show that any extreme trajectoryq(t,µ)
near the unstable focus can be viewed as a superposition of
two spirals,q(t,0) ) qF(t) andµ∂q/∂µ ) qD(t). The spirals
have equal-in-magnitude and opposite-in-sign decrements(η
and the same angular frequencyω and direction of rotation.
The last is determined by the direction of the cross product of
the velocity and the coordinate, or equivalently by the sign of
the wedge product

Here we have taken into account thatd12d21 < 0 and thatd12d21
+ 1/4(d11 - d22)2 < 0 for a focus, according to eq 34.
The MPHP corresponds to the converging spiral above, i.e.,

is an extreme trajectory with no admixture of the deterministic
spiral. We note that the global parameterκ in (37) can always
be chosen within an interval

whereκ1 is arbitrary. The results should be independent ofκ1,
and in what follows we assume thatκ is of order unity.
Extreme trajectories of the form (37) with|µ|, 1 spiral down

to the unstable focus, remaining close to the MPHP (which has
µ ) 0) up to the time whent ≈ (2η)-1ln|µ|-1, or equivalently,
until they reach a distance∼|µ|1/2 from the focus. At that time,
the second term in (37) becomes of the same order as the first
term. At larger times, the deterministic termµ∂q/∂µ increasingly
dominates. The extreme trajectories begin to wind back
outward, and eventually approach deterministic trajectories of
the form (34).

VI. Structure of the Lagrangian Manifold near an
Unstable Focus

A. The Caustic in the Vicinity of an Unstable Focus. A
remarkable feature of the flow field of extreme trajectories near
an unstable focus is the presence of a caustic that spirals down
to the focus. To show this, we note that a caustic is the envelope
of a family of trajectories. In this case, it is an envelope of the
parametrized set of pathsq(t,µ). So on a caustic, the one-to-
one correspondence between the spatial coordinates (q1, q2) and
the alternative coordinates (t, µ) is broken. That is, the Jacobian
of the transformation fromq1, q2 to t, µ is equal to zero.12 This
condition can be written in the form

It can be shown from eqs 37, 39, and 40 that eq 43 always has
a solution near an unstable focus. This means that a caustic is
always present near an unstable focus except in the special
(nongeneric) case when angular and radial fluctuations are
decoupled (e.g., near a Hopf bifurcation point). In fact, we
obtain from (43) that on the caustic

and

C2
D ) (C1

D)* ) ie-iφ, φ ) arctan
η
ω

(41)

sgn(dqD(t)
dt
∧ qD(t)) ) sgn(dqF(t)

dt
∧ qF(t)) ) sgnd12 (42)

κ1 exp(-2πη/ω) e κ < κ1

∂q(t,µ)
∂t
∧ ∂q(t,µ)

∂µ
) 0 (43)

µ ) µc(t) ≡ κ

cosφ
exp(-2ηt)(Γ12

FD exp[-2i(ωt + φ)] -

Γ11
FD) + c.c. (44)

q ) qc(t) ≡ q(t,µc(t)) (45)

(q(t,µ)p(t,µ) ) ) κ∑
i)1,2

(qiFpiF )exp[-λit] + µ ∑
i)1,2

Ci
D(qiD0 )exp[λit]

(37)

exp[(λ1+λ2)(t-t0)] . 1

qi
D‚p3-i

F ≡ 0, i ) 1, 2 (38)

λ1q1
D‚p1

FC1
D + λ2q2

D‚p2
FC2

D ) 0 (39)

p2
F‚q2

D ) q1
D ∧ q2D ) i/2 (40)

A ∧ B ≡ A1B2 - A2B1
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Here

are the (oriented) areas spanned by the corresponding pairs of
eigenvectors, as defined in the last section.
It follows from eqs 37, 44, and 45 that the caustic spirals

down to the unstable focus. However, although the displace-
ment vectorqc(t) is proportional to exp(-ηt), the decay of
|qc(t)| as t f ∞ will be nonmonotonic. In fact,qc(t) will
oscillate nonsinusoidally: sinceµc(t) is oscillating at the
frequency 2ω, the functionqc(t) has terms that oscillate at
frequenciesω and 3ω.
Using explicit expressions for the eigenvectorsq1,2

F,D, which
can be obtained from (33), and taking into account that the
matrix Q̂ is nonnegative, one can show that

As a consequence,µc never becomes equal to zero. This means
that the MPHP (the extreme trajectory withµ ) 0) touches the
caustic at no point. Depending on the parameters of the system,
the caustic may either be smooth or have cusp points, i.e., points
whereq3 c ) 0, lying along it.
The total number of irreducible parameters that characterize

the dynamics of extreme paths near the focus turns out to be
equal to 3. Although the Hamiltonian (31) contains two 2× 2
matrices, one can make a linear (but not unitary) transforma-
tion,32 which reduces the matricesd̂, Q̂ to the form

The only three parameters of the transformed Hamiltonian are
then a, b, and η. (These parameters are not quite uniquely
determined; the signs ofa, b can be changed by changing the
directions of the axes.) In the present and next sections we
assume thatη > 3|a|, in which case the caustic in the vicinity
of the focus turns out not to have cusp points lying along it;
that is,q3 c(t) * 0 at all sufficiently large timest. One can show
that in this case the velocity of any extreme trajectory is
antiparallel to that of the caustic at the moment it is reflected
from it, i.e.,

B. The Pattern of Extreme Trajectories in Polar Coor-
dinates. The behavior of extreme paths near an unstable focus
can easily be expressed in terms of polar coordinates|q| andΘ
defined by

In what follows we defineΘ as a running phase; it is allowed
to vary continuously from-∞ to∞ along an extreme trajectory.
In polar coordinates, the focus is located atq) 0. It follows

from eq 37 that, for the MPHP (the extreme trajectory withµ
) 0), the phaseΘ ≡ ΘMPHP is a monotonic function of time:
tanΘMPHP is a linear function of tanωt. By choosing the initial
phase, one can put the phaseΘMPHP and timet into one-to-one
correspondence. Over a period 2π/ω the phaseΘMPHP is
incremented by 2π sgnd12, whereas the radius of the MPHP
decreases by a factor exp[-2πη/ω].
Extreme paths in polar coordinates are shown in Figure 2.

Extreme paths to either side of the MPHP first move toward

the originq ) 0, like the MPHP, but eventually go away from
it. The caustic lies between the MPHP and the origin. This
can be shown by investigating from which side the extreme
paths touch the caustic, but it is also clear from the argument
that the caustic goes toward the origin ast f ∞, whereas
extreme paths withµ * 0 eventually go away from the origin.
Therefore extreme paths lying between the MPHP and the origin
should intersect the MPHP, which is possible provided they have
encountered a caustic and have accordingly moved to another
sheet of the Lagrangian manifold (cf. Figure 1). This argument
does not merely show where the caustic is located: it also shows
why a caustic should arise in the present problem.
Along extreme trajectories that are very close to the MPHP

(|µ| exp(2ηt) , 1), the phaseΘ(t,µ) is monotonic as a function
of time. It is also monotonic for extreme paths that have
deviated far enough from the MPHP that the second (deter-
ministic) term in (37) has become dominant (i.e.,|µ| exp(2ηt)
. 1). In models withη < 3|a|, where the velocity of the caustic
never becomes equal to 0, the phase of the caustic is monotonic
as well. From this argument and from the fact that the velocity
of an extreme trajectory and that of the caustic are oppositely
directed at their point of tangency (cf. (49)), it follows that
extreme paths that touch the caustic must be makingloops.
These loops are clearly seen in Figure 2. We note that the
different parts of a loop lie on different sheets of the Lagrangian
manifold (cf. Figure 1). Extreme paths on the same sheet of
the LM are not self-intersecting and also cannot intersect one
another.
C. Self-Similarity of the Lagrangian Manifold. The above

analysis in terms of polar coordinates suggests that the
Lagrangian manifoldp ) p(q) near an unstable focus, as formed
by the trajectories (q(t,µ), p(t,µ)) of (37), should beself-
similar: it should be invariant with respect to a rotation of the
coordinates byπ and a simultaneous rescaling of variables. That
is, it should be invariant under the transformation

accompanied by a rescaling, i.e., under

The self-similarity can be verified as follows. It follows from
(37) that at any instantt all pointsq(t,µ) on theq-plane lie on
a straight line, with different points corresponding to different
values of the parameterµ. The momentum at each point is the
same and is equal to the momentum for the MPHP,p(t,0). Over
half a periodπ/ω this straight line rotates around the pointq )
0 by the angleΘ ) -π sgnd12. As a result each pointq(t,µ)

Figure 2. Extreme fluctuational trajectories near the unstable focus at
q ) 0, in polar coordinates (q, Θ). The bold line is the formally most
probable hitting path (MPHP), along which fluctuations to the vicinity
of the focus are most likely to occur forΩ . 1. The dashed line
indicates the position of a caustic, from which the extreme trajectories
with µ/µc > 0 are reflected. This Figure is plotted in a frame in which
linearized dynamics near the focus are specified by matrices of the
form given in eqs 48, with parametersa ) 0.13,ω ) 3.5,η ) 0.41,
andb < 0.

Θ f Θ - πn sgnd12 (51)

q f (-1)nq exp(-πnη
ω ), p f (-1)np exp(-πnη

ω ) (52)

Γij
FD ≡ qi

F ∧ qjD, i, j ) 1, 2 (46)

|Γ11
FD| > |Γ21

FD|[1+ ω2

η2]1/2 (47)

Q̂′ ) 2(η - a 0
0 η + a), d̂′ ) (η - a b

-b η + a) (48)

b2 ) a2 + ω2, η > |a|

q3 c(t)‚[q3 (t,µ)]µ)µc(t)
< 0 if η > 3|a| (49)

q1 ) q cosΘ, q2 ) q sinΘ (50)
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on the line goes over into another point on the same line, i.e.,

The only Hamiltonian trajectory on the LM that remains
invariant under the transformation (52) is accordingly the MPHP
(for which µ ) 0).
We shall now consider the cross section of the LMp ) p(q)

by a given planeq2/q1 ) const, i.e., a plane at a specified value
of Θ(mod 2π). The first important feature seen in Figure 2 is
that the LM hasinfinitely many sheets. These sheets correspond
to values of the extended phaseΘ that differ by 2π, i.e., to
cross sections of the pattern in Figure 2 by vertical lines
separated byδΘ ) 2π. All sheets ofp ) p(q) are similar to
each other, according to eq ([52): they can be obtained from
one another by multiplyingp andq by the factor exp(-2πnη/
ω). Therefore to obtain the global shape of the LM, it suffices
to analyze a single sheet, which corresponds to a givenΘ in
Figure 2.
Extreme trajectoriesq(t,µ) with the sameΘ in Figure 2 differ

in their values ofµ andt. It is convenient to parametrizeµ and
q by t andΘ. From (37) we have

(n̂(Θ) is the unit vector that makes an angleΘ(mod 2π) with
theq1-axis of theq-plane). Equation 53 describes, in parametric
form, a branch of the momentump for a givenΘ in Figure 2,
as a function ofq. We note, again, that the value of the
momentum is equal to that for the MPHP, i.e.,p ≡ p(t(q,Θ),0).
The projection of the momentum componentp1 as a function
of the coordinateq is shown in Figure 3 at two values ofΘ
that differ by 2π and hence correspond to one and the same
half-planeq2/q1 ) tanΘ.
A generic feature of the many-branched functionp1 ) p1(q)

that can be seen in Figure 3 is that each continuous branch is
two-valued; that is, it corresponds to two sheets of the LM.
This is a consequence of the presence of the caustic. It was
explained above that caustics correspond to folds of the LM
(cf. Figure 1). The point where|dp1/dq|f ∞ is the cross section
of the fold in the surfacep1(q) by the half-planeq‚n̂(Θ) ) const.
To complete the qualitative picture of the behavior ofp1 )

p1(q), we note that, for a givenΘ in Figure 2, large values of
q (compared to the value ofq on the MPHP forΘMPHP ) Θ)
correspond to large|µ| exp(2ηt) in eq 37; that is, suchq are
given by the deterministic termµ[C1

Dq1
D exp[(η+iω)t] + c.c.]

in eq 37. In Figure 2 there are two paths that arrive at a given
largeq at a givenΘ, one withµ > 0 and one withµ < 0. Since
the value of the coordinateq is the same for both paths, it is
clear that the argumentsωt of the terms with opposite-signµ
differ by π; that is, the values oft differ by π/ω. (This can
also be shown using (37).) The momentap(t,µ) ≡ p(t,0) are
equal in magnitude and opposite in sign for the two paths. This
means that, for largeq, the functionp1 ) p1(q) takes on a pair
of values that are of equal magnitude and opposite sign, as
shown in Figure 3.
We may also note that, for large values ofq at eachµ, the

phaseΘ is given by the ratio of the components of the vector
µ[C1

Dq1
D exp[(η+iω)t] + c.c.]. It is independent of the sign of

µ and is determined only by the timet. Therefore the value of
t is the same at points with a givenΘ but different values for
the parameterµ (and hence different values forq). As a
consequence of this, the functionp1 ) p1(q) reduces to a
constant whenq, the displacement from the unstable focus, is
large.

D. Extreme Trajectories on the LM. The total number of
sheets of the Lagrangian manifoldp ) p(q) is infinite, since
each sheet is a “reduced copy” of the former one (formed by
extreme trajectories witht reduced by 2π/ω). Successive sheets
are nested into one another, as seen in Figure 3. The manifold
as a whole has a helicoidal, whorl-type shape. The fold of the
LM spirals down to the unstable focus (q, p) ) (0, 0). Far
from the small-q range, in regions of the species concentration
space where the linear theory developed above does not apply,
the different branches ofp ) p(q) turn out to be connected to
each other. That is, the Lagrangian manifold is globally
connected, though it does not appear to be connected in the
linear approximation.
Figure 3 gives insight into the behavior of the Hamiltonian

trajectories (q(t,µ), p(t,µ)), which form the LM. Each trajectory
corresponds to a point (q, p1) on a branchp1 ) p1(q), and the
positions of the points on successive branches show how the
trajectory is changed over the time period 2π/ω.
The behavior of the MPHP is of special interest. We note

that the MPHP is aheteroclinic trajectory in the four-
dimensional phase space; it extends from the limit cycle to the
focus and in fact lies both in the LM (which is the unstable
manifold of the limit cycle) and in the stable manifold of the
focus. The latter is traced out by the family of trajectories (qF(t),
pF(t)) of the form (35) and is seen from (35) to be a planep )
Âq in the immediate vicinity of the focus. As a consequence,
successive projections of the MPHP onp1(q) lie on a straight
line, as would be expected also from eq 37.
Extreme trajectories withµ of opposite sign deviate from the

MPHP in opposite directions (cf. Figure 2). Trajectories with
µ/µc < 0 approach the fold of the LM, and their projections
(p1, q) approach the singularity of the LM cross sectionp1(q),
where|dp1/dq| f ∞. Subsequently they go over the fold and
come to the other sheet of the same branch ofp1 ) p1(q). It
follows from eq 44 that each extreme trajectory goes over a
fold only once.
Extreme trajectories withµ/µc > 0, on the other hand, move

away from the MPHP toward larger values ofq, as do the points
(p1, q) in Figure 3 that arise from such trajectories. Such
trajectories never encounter the fold in the LM. Nonetheless
their projections on theq-plane are self-intersecting and intersect
projections of other trajectories. This is an interesting feature
of the topology of the LM. In general, infinitely many
trajectories on the LM, when projected onto theq-plane, pass
through any point.

Figure 3. Cross section of the self-similar helicoidal surfacep1 )
p1(q) by the half-planeq2 ) 0, q1 > 0. Two successive branches,
corresponding toΘ ) 2πn andΘ ) 2π(n + 1), with n an integer, are
shown. The coordinate frame and model parameters are the same as in
Figure 2. The filled circles indicate successive positions (intersection
points, actually) of the MPHP. They lie on a straight line that passes
through the point (q, p) ) (0, 0). The open circles indicate intersection
points of two extreme trajectories other than the MPHP. Over a turn
around the focus, trajectory 1 (withµ/µc > 0) passes over the fold in
the surface and goes from the lower to the upper sheet ofp1(q,Θ).
Trajectory 2 hasµ/µc < 0; it stays on the side opposite the caustic
with respect to the MPHP (cf. Figure 2).

q(t,µ) f q(t+π/ω,µe-2πη/ω)

µ(t;Θ) ) -
q(t,0)∧ n̂(Θ)

[∂q(t,µ)/∂µ] ∧ n̂(Θ)
, n̂(Θ) ≡ (cosΘ, sinΘ)

(53)
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VII. The Action and the Switching Line

The expression for the action, eq 25, in combination with
the explicit expressions for the extreme trajectories in the vicinity
of the unstable focus, i.e., (34)-(37), makes it possible to
evaluate the action near the focus explicitly, as

whereSf is the action at the focus itself. In deriving (54) we
have used the approximation

which is valid at small|µ|.
Using eqs 37-41 and 46, we further obtain

The classical action functionS ) S(t,µ) as given by (55) is
single-valued. However, the action as a function of the species
concentration vectorq is in general multivalued, since extreme
trajectoriesq(t,µ) with different t, µ may cross each other. As
a consequence, extreme trajectories with different values of the
parameterµ may extend from the limit cycle to a pointq.
The form of the actionSas a function ofq can be evaluated

directly from eqs 37 and 55, but insight into it can be gained
from Figure 3. Since all extreme trajectories have zero energy,
we necessarily have25

the line integral being taken along an extreme trajectory
extending from the limit cycle toq. (As noted, this trajectory
may not be unique!) One can use ([56) to compute the cross
section of the action surfaceS) S(q) by a half-planeΘ(mod
2π) ) const, fromp‚n̂(Θ), the momentum component in the
directionn̂(Θ). The form ofp‚n̂(Θ) as a function of the radial
coordinateq is similar to that ofp1(q) displayed in Figure 3 (in
fact if Θ ) 2πn in Figure 3, thenp‚n̂(Θ)). Each branch of the
momentum component in Figure 3 accordingly corresponds to
a branch of the actionS, which is obtained by integrating
p‚n̂(Θ).
A cross section of the action surfaceS) S(q) is displayed

in Figure 4. As would be expected from Figure 3 and eq 56,
each branch of the action cross section contains a cusp point.
Each such cusp point is attributable to the fold of the LM (since
at it, |d[p‚n̂(Θ)]/dq| f ∞). Away from cusp points, the two
sheets of each branch of the cross section ofSare nearly linear
in q and have opposite slopes (since the values ofp‚n̂(Θ) are
nearly q-independent, and have opposite signs). Different
branches ofS intersect each other.
As we explained in section IV A, only the minimum action

at any point,Smin(q), is of physical interest, since it is the
minimum action that appears in the eikonal approximation to
the stationary probability density. The shape of the surface of
minimum action is clear from Figure 4.
A. Self-Similarity of the Switching Line. Generically there

is a singledominant extreme trajectory (by definition, the
optimal fluctuational trajectory) that extends from the limit cycle
to a given pointq in the species concentration space. It is this
trajectory that provides the value of the minimum action
function,Smin(q). Areas of theq-plane reached via different
sets of optimal trajectories are separated from one other by

switching lines. This means that, for optimal trajectoriesq(t,µ)
on one side of a switching line, the values of the parameterµ
lie in one range, whereas for optimal trajectories terminating at
points on the other side of the switching line, the range of values
of µ is totally different. µ jumps discontinuously when the
switching line is crossed.
The presence of a switching line is clearly indicated in Figure

4: its cross section is the series of points where successive
branches of the cross section ofS intersect one another.
The structure of the switching line can be understood if one

takes into account the fact that the MPHP is (i) the optimal
path that extends from the limit cycle to the unstable focus and
(ii) a spiral. It follows from (i) that pointsq close to the MPHP
are reached via optimal paths close to the MPHP and lying either
inside or outside the MPHP spiral, depending on the choice of
q. On the other hand, when one moves transverse to the MPHP,
one goes from the vicinity of one turn of the spiral to the vicinity
of the next turn. Somewhere in between, switching should
occur. The condition for this is that the actions for the two
competing extreme trajectories terminating at a pointq be equal
to each other (cf. (28)), i.e.,

It can be immediately verified from the above equations that
the switching line is self-similar: the transformationq f (-1)nq
exp(-πnη/ω) maps it onto itself, as it corresponds to the change
of parameters

The switching line determined by eqs 37, 55, and 57 is shown
in Figure 5. It is plotted in polar coordinates. In these
coordinates, the points with the sameq and with the values of
Θ that differ by 2π correspond to the same point on theq-plane.
It is seen from Figure 2 that such points are reached along the
trajectories that lie below and above the MPHP, the point with
the value ofΘ larger by 2π being reached along the upper
trajectory. Therefore there should occur switching between the
trajectories above and below the MPHP. The switching line
(which is a single line on theq-plane) is periodically repeating
itself in polar coordinates, with the period 2π along theΘ -axis,
as shown in Figure 5 (the MPHP is repeating itself as well).
The lower and upper trajectories that arrive at the sameq end

S(t,µ) ≈ Sf + µp(t,0)‚[∂q(t,µ)∂µ ]µ)0
-∫t∞p(τ,0)‚q(τ,0) dτ

(54)

S(t,µ) ≈ S(t,0)+ µp(t,µ)‚[∂q(t,µ)∂µ ]µ)0

S(t,µ) ) Sf - κµ cosφ - κ
2 ∑
i,j)1,2

Γj,3-i
FD ( λj

λi + λj)e-(λi+λj)t (55)

S(q) )∫p‚dq (56)

Figure 4. Cross section of the action surfaceS ) S(q1,q2) near the
focus (q ) 0), by the half-planeq2 ) 0, q1 > 0. The coordinate frame
and model parameters are the same as in Figure 2, and the bold dots
are placed at the points where the MPHP intersects the half-plane. The
branches ofScorrespond to values ofΘ that differ by 2π. The minimum
action curve,Smin ) Smin(q1,0), is indicated in bold; it is only piecewise
smooth. The light dashed lines indicate points where the switching line
intersects theq1-axis; by definition, this occurs at points on the axis
where branches intersect, andSmin is nondifferentiable.

q(t1,µ1) ) q(t2,µ2), S(t1,µ1) ) S(t2,µ2) (57)

ti f ti + πn/ω, µi f µi exp(-2πnη/ω), i ) 1, 2

19206 J. Phys. Chem., Vol. 100, No. 49, 1996 Dykman et al.

+ +

+ +



up on the “replicas” of the switching line, which are shifted by
2π. The switching line spirals down to the unstable focusq )
0 along with the MPHP and with the caustic (not shown in
Figure 5), and these spirals nowhere intersect one another.

VIII. Extreme Trajectories for a Selkov Model

In this section we shall investigate numerically the pattern
of extreme trajectories, including optimal fluctuational trajec-
tories, in an oscillating, spatially homogeneous Selkov model.
This model is described by the chemical reaction scheme

The number of molecules of speciesA andB are held constant,
while X1 andX2, the number of molecules of the two intermedi-
ate chemical species, can vary in time. The equations of motion
for the average concentrationsxj1, xj2 of the intermediate species
have the form

(Recall that we are working in a volume of sizeΩ.) We shall
setk1A/Ω ) 2.0,k2 ) 0.34,k3 ) 1.4,k4 ) 0.02,k5 ) 2.2, and
k6B/Ω ) 0.24. With these parameter values, the two-
dimensional dynamical system specified by eqs 59 has a stable
limit cycle. In chemical terms, it models an oscillating reaction.
There is an unstable focus located within the limit cycle, at the
point (x1f, x2f) ≈ (1.83, 0.74).
The reduced transition ratesw(x,r ) for reaction 58, as defined

in (2), are nonzero for (r1, r2) ) (1, 0), (-1, 0), (-1, 1),
(1,-1), (0,-1), or (0, 1). These values ofr correspond to the
six possible reactions; for example, forr ) (-1, 1) we have
w(x,(-1,1))) k3x1x22.
We have analyzed the pattern of extreme trajectories for the

Selkov model (58) by numerically integrating Hamilton’s
equations (eqs 15), equipped with the initial conditions of eq
23. A family of trajectories was obtained by varying the initial
distance from the limit cycle at a certain point on the cycle.
This parameter (initial distance from the limit cycle, denoted
ê2
(0) in section IIIB) is essentially the same as the trajectory-
indexing parameterµ used in the previous sections.

A low-resolution plot is displayed in Figure 6. Near the limit
cycle the extreme trajectories first go away from the cycle,
forming a small-step spiral. We show an initially narrow tube
of extreme paths (separate paths in the tube cannot be resolved
visually near the cycle) as it spirals down to the unstable focus.
Starting at a certain distance from the cycle, the step of the
spiral dramatically increases, and the tube approaches the
vicinity of the focus within a few turns. Near the focus the
width of the tube sharply increases, and the trajectories in the
tube diverge from one another and begin to move away from
the focus. The only extreme trajectory that spirals down all
the way to the focus is the MPHP (the formally most probable
hitting path, in the limitΩ f ∞).
The behavior of the tube at a larger resolution is shown in

Figure 7a,b. In Figure 7a one sees how the width of the tube
varies as the trajectories spiral down toward the focus. When
they are sufficiently close to the focus, the tube in Figure 7a
splits into two parts. In both parts, the extreme trajectories make
loops. This behavior is generic for one group of extreme
trajectories near the focus, cf. Figure 2 (trajectories that lie on
the opposite side of the MPHP with respect to those in Figure
7 eventually spiral away from the focus without making loops).
The loops, at higher resolution, are shown in Figure 7b.
The envelopes of the loops made by extreme paths are

caustics. The global structure of caustics is shown in Figure
8a,b. As we noted in section VIA, locating caustics numerically
is facilitated by the fact that the JacobianJ ≡ |∂(q1,q2)/∂(t,µ)|
vanishes at the timet when the extreme trajectory with parameter
µ impinges on, and is reflected by, a caustic.12 It is not difficult
to show that as a function oft, the Jacobian satisfies a first-
order differential equation along the extreme trajectory (cf. ref
9). In hunting for caustics we took into account only “primary”
caustics, i.e., caustics that are encountered by extreme trajec-
tories for the first time (caustics that are encountered by extreme
trajectories that have already encountered a caustic are of no
physical interest, since by that time, the extreme trajectories
have ceased to be optimal).
As is shown in Figure 8a, two primary caustics start at a

cusp point located midway between the limit cycle and the
unstable focus (the pointC). One caustic spirals down to the
focus and the other spirals away from it. The caustic that spirals
down to the focus is not smooth; it has an infinite number of
cusp points lying along it, in the vicinity of the focus (see Figure
8b). These cusp points are well separated from the “initial”
cusp, which lies far away from the focus. The presence of cusp
points in the flow field of extreme trajectories is clear from

Figure 5. Optimal fluctuational paths near the unstable focusq ) 0,
in a model with parameter valuesa ) 0.33,ω ) 4.1, andη ) 0.45.
The plot is in terms of polar coordinates (q, Θ). The bold curve is the
most probable hitting path (MPHP), which extends down toq ) 0 as
Θ f ∞. The bold dashed curve is the switching line (the two switching
lines shifted by 2π along theΘ-axis correspond to one and the same
switching line on theq-plane). When an extreme fluctuational trajectory
reaches the switching line, it ceases to be optimal. Optimality passes
from it to another extreme fluctuational trajectory, withΘ shifted by
2π. The light dashed lines indicate the way in which this process occurs.

A y\z
k1

k2
X1, X1 + 2X2 y\z

k3

k4
3X2, X2 y\z

k5

k6
B (58)

xj̇1 ) k1A/Ω + k4xj2
3 - (k2 + k3xj2

2)xj1 (59)

xj̇2 ) k6B/Ω + k3xj2
2xj1 - (k5 + k4xj2

2)xj2

Figure 6. Tube of extreme fluctuational trajectories for the Selkov
model ([REF:selkov]), projected to the species concentration plane.
Parameters of the model are given in the text. The tube is very narrow
near the limit cycle: separate trajectories are not resolved. Near the
unstable focus, after several turns, trajectories other than the MPHP
diverge from one another and spiral away. The arrows show the
direction of motion.
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Figure 7b: cusps are located at points where caustics (the
envelopes of the loops) merge together.
The difference between the shapes of the caustics shown in

Figure 8a and the shape obtained analytically in section VI arises
from the fact that for the parameter values we have chosen for
the Selkov model we haveη ≈ 0.22 anda ≈ 0.17. Here the
parametersη anda, which determine the dynamics of fluctua-
tional trajectories that extend to the vicinity of the unstable focus,
are defined in terms of the linearized dynamics near the focus
by eqs 48. As a consequence, the conditionη > 3|a| we
assumed in section VI is violated. But analysis of the caseη
> 3|a| is quite similar to that given in sections V-VII and will
be presented elsewhere.32 It follows from the results of such
an analysis that, in models withη > 3|a| , the caustic still spirals
down to the focus, but rather than being smooth, it contains
four cusp points per turn.

IX. Conclusions

In this paper we have indicated how techniques of asymptotic
analysis may be applied to yield results on the fluctuational
behavior of oscillating chemical systems. The fluctuations we
have considered are fluctuations away from a limit cycle in a
space of species concentrations. The stationary probability
distribution for an oscillating system in such a space is built up
by fluctuations of this sort, and in the limit whenΩ (a measure
of volume, or total number of molecules) tends to infinity, the
stationary distribution will be increasingly concentrated near
the limit cycle. The tail of the stationary probability distribution,
far from the limit cycle, is built up by large fluctuations. We
have investigated the distribution both close to and far from
the limit cycle.
We have also considered the pattern of optimal fluctuational

trajectories, i.e., the most likely routes for fluctuational motion

of the species concentration vectorx(t) toward a specified point
in the space of species concentrations, that is remote from the
limit cycle. In the limit Ω f ∞, in which large fluctuations
are exponentially rare, there normally exists a unique optimal
(i.e., most probable) fluctuational path terminating at any
specified point not on the limit cycle. The computation of such
optimal trajectories is best accomplished through the analysis
of an auxiliary Hamiltonian dynamical system. The “extreme”
trajectories of this system, which are really zero-energy
trajectories that move through its phase space, have optimal
fluctuational trajectories as their projections on the space of the
species concentrationsx. Extreme trajectories are easily
computed numerically; they trace out a so-called Lagrangian
manifold in the phase space of the auxiliary system.
The flow field of optimal fluctuational trajectories normally

displays a pattern of singularities that is different from the
pattern of singularities appearing in the flow field of extreme
trajectories arising in the semiclassical (WKB) computation of
quantum-mechanical wave functions. In particular, optimal
fluctuational trajectories never encounter caustics. (Strictly
speaking, they may encounter them, but by the time they do
so, they have ceased to be optimal.) However, the flow field
of optimal trajectories in the space of species concentrations
containsswitching lines: curves separating regions that are
reached, in theΩ f ∞ limit, via topologically different sorts
of fluctuational paths.
Transverse to the limit cycle, the stationary probability density

of the system is approximately Gaussian, with variance pro-
portional toΩ-1. But we have seen that if an unstable focus is
contained within the limit cycle, behavior of the stationary
probability density close to the unstable focus is more compli-

Figure 7. Plot implying the presence of a caustic in the flow field of
extreme fluctuational trajectories in the Selkov model. (a) Tube of
trajectories that emanate from the limit cycle (the tube is different from
that shown in Figure 6). Near the unstable focus the trajectories make
loops, are reflected from a caustic, and then spiral away from the focus.
(b) Higher resolution plot of the same tube of extreme trajectories.

Figure 8. Location of the caustics in the flow field of extreme
fluctuational trajectories in the Selkov model. (a) Two caustics that
emerge from a cusp point,C. One of the caustics eventually spirals
into the limit cycle; the other spirals down to the unstable focus. (b)
High-resolution plot, showing the immediate vicinity of the unstable
focus. The caustic is seen to be self-similar and to have, lying along
its extent, infinitely many additional cusp points.

19208 J. Phys. Chem., Vol. 100, No. 49, 1996 Dykman et al.

+ +

+ +



cated. One might think that it would be given, to a good
approximation, by an inverted Gaussian. But we have analyzed
the eikonal approximationPst(x) ≈ c(x) exp[-ΩS(x)] to the
stationary probability densityPst and have shown that normally
the “action” functionS is quite singular near an unstable focus.
In particular, a switching line spirals down to any such focus,
in a self-similar way: successive turns of the switching line
are reduced copies of each other. And the gradient ofS is
discontinuous along a switching line.
We have compared the results of our theoretical analysis with

detailed numerical results on the pattern of optimal fluctuational
paths in an oscillating, homogeneous Selkov model. Numerical
analysis of such a model is not difficult, and it demonstrates
the occurrence of topological singularities we have predicted.
Switching lines, in a flow field of optimal fluctuational
trajectories, have recently been observed in noise-perturbed
continuous dynamical systems.6 Oscillating chemical systems
that are mesoscopic rather than macroscopic, so thatΩ is not
so large as to suppress too greatly large fluctuations away from
the limit cycle, surely merit experimental investigation: it is
possible that a pattern of switching lines can be observed in
such systems.
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