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Abstract. The forces on individual electrons in an unscreened nondegenerate electron fluid,
due to electron density fluctuations, have been calculated using Monte Carlo simulations and
determined experimentally over a broad range of the plasma parameter0. The experimental
results are obtained from the magnetoconductivityσ(B) measured for electrons on liquid helium
below 1 K for B 6 8 T. The magnitude and density dependence ofσ(B) are explained
by the many-electron theory of magnetotransport. The internal electric fields found from the
experiments are in excellent agreement with the simulations.

Electrons above the surface of superfluid helium often form a two-dimensional (2D)normal
fluid [1]: for characteristic electron densitiesn ∼ 1012 m−2 the interelectron distance∼ n−1/2

exceeds the de Broglie wavelength, and the system is nondegenerate; at the same time, the
ratio of the characteristic Coulomb energy of electron–electron interaction to the kinetic
energy, the plasma parameter0 = e2(πn)1/2/4πε0kT is large, and therefore there is short-
range order in the electron system [2]. For0 > 127 (low T ) electrons form a 2D crystal
[3]. Mean-field effects such as long-wavelength plasma oscillations are well understood for
a normal 2D electron liquid [4] but much less is known about the detailed behaviour of
individual electrons. An experimental probe is required while, on the theoretical side, the
problem is complicated by the absence of ‘good’ quasiparticles.

In this letter, we present data from Monte Carlo simulations and experimental
measurements of an important but unexplored characteristic of a 2D electron fluid, the
internal electric fieldEf that drives an electron as a result of its interaction with other
electrons. Unlike the long-wavelength fluctuational fields known in plasma physics [5], the
field Ef , although also of fluctuational origin, determines the force driving anindividual
particle, and is not described by the theory [5]. The force on a particle is an important
dynamical characteristic of a system. In ‘conventional’ fluids with short-range interatomic
interaction, the forces have been a subject of extensive research [6]. The mean square force
remains finite in a fluid (though the mean square displacement diverges), but it would be
expected to display singular behaviour at the liquid–crystal transition.
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A special significance of the fieldEf for a nondegenerate 2D electron system stems
from the fact that, over a broad range of parameters, it strongly affects magnetotransport.
In the single-particle approximation the electron energy spectrum in a magnetic fieldB

perpendicular to the electron layer consists of discrete Landau levels, separation ¯hωc

(ωc = eB/m is the cyclotron frequency). The centres of the cyclotron orbits move only
because of the random potential of the scatterers. Therefore scattering is always strong, and
the pattern of transport is very different from the standard Drude picture which applies for
weak coupling atB = 0 and in which scattering events are short and well separated in time.

The fieldEf causes the centres of the cyclotron orbits to drift at a velocityEf /B, and
may ‘restore’ the weak-coupling picture. This effect was first discussed and investigated
[7] for transport in the quantum limit ¯hωc/kT � 1. It was shown later [8, 9] that
the field Ef also dramatically affects the magnetoconductivityσ(B) in classically strong
magnetic fields,µB � 1, h̄ωc/kT < 1 (µ is the zero-field electron mobility), for
vapour-atom scattering above 1 K. In particular, it restores the Drude-type behaviour
of σ(B) for comparatively smallB which has been known experimentally since [10].
Cyclotron resonance measurements [11] have also demonstrated the importance of Coulomb
interactions in this system. Several other mechanisms have been proposed to explain
previous measurements ofσ(B) at higherB [12].

Our new measurements ofσ(B) have been done below 1 K, in the ripplon scattering
regime. In this range the mobilityµ is extremely high (. 2000 m2 V−1 s−1), enabling
quantitativecharacterization ofEf as a function of density and temperature.

We consider the distribution ofEf for a classical normal liquid; the results also apply
for quantizing magnetic fields provided the motion of the centres of the cyclotron orbits is
semiclassical. Since fluctuations in the system are thermal, and the field is due to electron–
electron interaction, the scale forEf is given by the characteristic fieldE0:

〈E2
f 〉 = F(0)E2

0 E0 = (
kT n3/2/4πε0

)1/2
. (1)

The scaled dimensionless mean square fieldF(0) can be easily found for large0 (low
T ) in the 2D crystal phase [13]. Here, the force on an electroneEf arises because of
the displacement of electrons from their lattice sitesRn. In the harmonic approximation
the force is linear in the displacements and has a Gaussian distribution. The functionF

incorporates contributions from both transverse and longitudinal modes of the crystal, and
F(0) ≈ 8.91, independent of0.

In the opposite limit of a nearly ideal plasma,0 � 1, the major contribution to the
force on an electron originates from pair collisions, which givesF(0) ≈ 2π3/2/0.

In the most interesting range of the electron liquid and the melting transition, the function
F(0) was obtained from Monte Carlo simulations. We used the Metropolis algorithm and
the Ewald summation technique following Gannet al [2], with periodic boundary conditions.
The field on an electron was evaluated as the gradient of the potential in which the electron
was moving.

The results forEf for the number of particlesN = 196, 324 are very close to each other.
In the range0 > 30 the probability density distributionρ of the field componentsEx andEy

is close to Gaussian. The functionsF(0) andρ are plotted in figure 1. The scaling function
F(0) decreases nearly monotonically with increasing0. However, remarkably, its variation
is very smallin the range0 & 10, although the structure of the system changes dramatically,
from a crystal to a liquid with a correlation length of twice the mean electronic separation.
The functionF(0) has a smeared singularity at the melting point. Detailed discussion will
be given elsewhere [14].

The magnetoconductivity of 2D electrons above superfluid helium was measured using
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Figure 1. The scaled mean square fieldF(0) from Monte Carlo calculations. The asymptotic
value of F for a harmonic Wigner crystal is shown dashed. Inset, the field component
distribution.

4 mm diameter Corbino disc electrodes (see figure 2) 100µm beneath the electrons [9].
Free electrons were held over the central drive electrodeA, a ring electrodeE, and receiving
electrodesB1, B2 andB3 surrounded by a planar guardG. An ac voltageV0 (typically 10
mV) at a frequency up to 10 kHz was applied to electrodeA and the ac currentsI to
the electrodesB measured. For a perfect conductor the phase of the capacitively coupled
currentI is π/2 with respect toV0. The phase shiftφ(B) away fromπ/2 was measured for
perpendicular magnetic fieldsB 6 8 T for electron densities 0.5×1012 . n . 2×1012 m−2

at temperatures 0.6 . T . 0.9 K in the fluid phase. The phase shiftφ(B) is proportional
to σ−1(B) for φ . 0.3 rad, while for larger phase shifts the theoretical response function
was used. The densityn was determined from the negative dc bias voltage on electrodeE
required to cut off the current between electrodesA andB.

Figures 2 and 3 show the measured magnetoconductivity for several densities and
temperatures. In low fields,B < 0.5 T, the data accurately follow the simple Drude-like
result, even for values ofµB as large as 500:

σ(B) = σ(0)

1 + (µB)2

ne

µσ(B)
≈ B2 for µB � 1. (2)

The electron mobility was determined from theB2 dependence ofσ−1(B), as a function of
density and temperature, and is in excellent agreement with previousB = 0 measurements
by Mehrotraet al [15]. The measured mobilities from 0.6 to 0.9 K are close to the theoretical
values for a classical strongly correlated electron liquid [14], with scattering by both ripplons
and4He vapour atoms taken into account [16]. The mobility is slightly density dependent,
primarily because the electric field that presses electrons against the helium surface increases
with n, and therefore so does the electron–ripplon coupling. The data are plotted as
ne/µσ(B) againstB (figure 2) or B2 (figure 3) using the experimental values ofµ for
eachn andT . For B < 0.5 T the data lie on theuniversalline, ne/µσ(B) = B2 (line a in
figures 2 and 3).

At this point we should stress that the simple-minded Drude model (2) effectively
appliesbecause of the internal electric fields[8, 14]. To understand the effect qualitatively,
we notice that the many-electron system transfers its momentum to short-range scatterers
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Figure 2. ne/µσ(B) versusB for n = 0.55 (◦), 0.88 (O) and 1.89 (�) ×1012 m−2 at 0.7 K.
The mobility µ = 985, 830 and 520± 20 m2 V−1 s−1, respectively. Solid linesa (low B) and
c–e (high B) show many-electron calculations. Inset, the Corbino electrode geometry.

Figure 3. ne/µσ(B) versusB2 for T = 0.6 (♦), 0.7 (�), 0.8 (O) and 0.9 K (◦). The mobility
µ = 755, 620, 430 and 250±15 m2 V−1 s−1, respectively. Linesa (low B) andb–e (high B)
show many-electron calculations.

via individual electron–scatterer collisions. In a certain range of the parameters, all that an
electron ‘knows’ about other electrons during a collision is the fieldEf , and this field is time
independent if the collision is short enough. Then the Einstein relation for the conductivity
applies:

σ(B) = ne2L2τ−1(B)/kT (3)

whereL ≡ L(B) is the diffusion length andτ−1(B) is the relaxation rate. ForµB � 1
the diffusion length is given by the mean radiusR̄ of the cyclotron orbit,L2 = R̄2/2 =
(h̄/2eB)(2n̄ + 1), with n̄ = 1/[exp(h̄ωc/kT ) − 1].
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Figure 4. Values of the internal field〈E2
f 〉1/2 versusE0 at 0.6 (♦), 0.7 (�), 0.8 (O) and 0.9 K

(◦). The solid line shows the best linear fit with〈E2
f 〉1/2 = 3.11E0.

It is the relaxation rate in (3) that is primarily affected by internal electric fields. For
kT � eEf λT

– > h̄ωc (λT
– = h̄/(2mkT )1/2) the field Ef smears out the Landau levels and

thus eliminatesthe effects of their discreteness. Thereforeτ−1(B) = τ−1(0), and theB

dependence ofσ is given by that ofL2 = mkT/e2B2 ∝ B−2, i.e. the many-electron
theory givesen/µσ independent ofn as observed (cf the solid linea in figures 2 and 3).
In contrast, in the single-electron picture the relaxation rate is increased by the density of
states enhancement factorωcτ(B), since the states in the energy strip ¯hωc are ‘compressed’
down to the Landau level collision width ¯hτ−1(B). The total magnetoconductivity from the
self-consistent Born approximation (SCBA) for ripplon [16] and gas-atom scattering [17]
and their self-consistent combinationσs = (σ 2

rs + σ 2
gs)

1/2 is plotted (lineb) in figure 2 for
n = 0.55× 1012m−2 andT = 0.7 K. At 2 T, the SCBA overestimatesσ(B) by an order of
magnitude.

A distinctive feature of the classicalσ(B) is saturation with increasingB. This
arises because an electron in crossedEf and B fields moves along a spiral with a step
∼ 2πEf /Bωc. The number of times it encounters a short-range scatterer in the classically
strong fieldB is thenNenc ∼ λT

– Bωc/2πEf (λT
– is the uncertainty in the position of an

electron). ForNenc > 1 one would expect the scattering rate, and thusσ(B), to increase
by a factor∼ Nenc ∝ B2, and we find (cf equation (2))

ne

µσ(B)
≈ πB2

0 B2
0 =

(
2m3kT

e2h̄2

)1/2

〈E2
f 〉1/2. (4)

The saturation ofne/µσ(B) is clearly seen in figures 2 and 3 forB > 1.0 T. The limiting
value of ne/µσ(B) increases with density (figure 2) and temperature (figure 3) and is
directly proportional to the rms internal electric field, from (4). It is this which enables the
internal field to be determined experimentally.

For B & 1 T quantum effects become substantial. For ¯hωc � kT the diffusion length
L ≈ (h̄/2eB)1/2, and alsoNenc ∼ (h̄/eB)1/2Bωc/2πEf , so thatne/µσ(B) ∝ B−1/2

decreases with increasingB. For higherB & 5 T (depending onn andT ) the duration of
a collisionτcol & τ(B) and this theory no longer applies.
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Equation (4) is written [8] for short-range scatterers (such as helium vapour atoms).
In the case of scattering by ripplons, an extra factor arises which is numerically close to
unity for the experimental conditions here. Calculations of the magnetoconductivity for gas-
atom and ripplon scattering were made using the full semiclassical many-electron theory
in the range ¯hωc & kT [14], with values of〈E2

f 〉 taken from figure 1. The results for the
total many-electron magnetoconductivityσm = σrm + σgm are shown in figure 2 (linesc–e,
increasingn) and figure 3 (linesb–e, increasingT ), and show satisfactory agreement with
the experiments forτcol � τ(B) (the extrapolation of the theoretical curves to the range
τcol ∼ τ(B) is shown dashed).

Conversely, the measuredσ−1(B) at B = 2 T was used to obtain experimental values
of the internal electric fields. This value ofB is within the range of the applicability of
the theory (kT > eEf (h̄/eB)1/2; h̄ωc > kT ) and is also far from the Drude region and the
region where collisional level broadening affects the scattering. The experimental values
of 〈E2

f 〉1/2 againstE0 are shown in figure 4 (we renormalizedE0 in (1) to allow for the
dielectric constant of liquid helium). The points are from over 40 combinations of density
and temperature between 0.6 and 0.9 K where the conductivity varies by more than an
order of magnitude; no adjustable parameters have been used, and so the spread of the
points may be considered to be within reasonable limits. Within the errors the measured
field is proportional toE0, with a constant of proportionalityν = 3.11 ± 0.10. This can
be compared withF 1/2 = 3.07 ± 0.03 from the Monte Carlo simulations for the range
20 < 0 < 70 covered by the experiments. A slight decrease ofν with decreasingT seen
in figure 4 lies within the errors.

In conclusion, we have both computed and measured the internal electric fields in
a nondegenerate 2D electron fluid, and the results are in excellent agreement. We
show that, over a broad range of parameters, the magnitude and density dependence of
the magnetoconductivityσ(B) of electrons on helium are determined by many-electron
effects and can be understood qualitatively in terms of electron diffusion controlled by a
fluctuational internal electric field.
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