
Switching via quantum activation: A parametrically modulated oscillator

M. Marthaler and M. I. Dykman
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

�Received 8 January 2006; published 20 April 2006�

We study switching between period-two states of an underdamped quantum oscillator modulated at nearly
twice its natural frequency. For all temperatures and parameter values switching occurs via quantum activation:
it is determined by diffusion over oscillator quasienergy, provided the relaxation rate exceeds the rate of
interstate tunneling. The diffusion has quantum origin and accompanies relaxation to the stable state. We find
the semiclassical distribution over quasienergy. For T=0, where the system has detailed balance, this distribu-
tion differs from the distribution for T→0; the T=0 distribution is also destroyed by small dephasing of the
oscillator. The characteristic quantum activation energy of switching displays a typical dependence on tem-
perature and scaling behavior near the bifurcation point where period doubling occurs.
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I. INTRODUCTION

Switching between coexisting stable states underlies
many phenomena in physics, from diffusion in solids to pro-
tein folding. For classical systems in thermal equilibrium
switching is often described by the activation law, with the
switching probability being W�exp�−�U /kT�, where �U is
the activation energy. As temperature is decreased, quantum
fluctuations become more and more important, and below a
certain crossover temperature switching occurs via tunneling
�1–3�. The behavior of systems away from thermal equilib-
rium is far more complicated. Still, for classical systems
switching is often described by an activation type law, with
the temperature replaced by the characteristic intensity of the
noise that leads to fluctuations �4–12�. Quantum nonequilib-
rium systems can also switch via tunneling between classi-
cally accessible regions of their phase space �13–16�.

In addition to classical activation and quantum tunneling,
nonequilibrium systems have another somewhat counterin-
tuitive mechanism of transitions between stable states. We
call this mechanism quantum activation and study it in the
present paper. It describes escape from a metastable state due
to quantum fluctuations that accompany relaxation of the
system �17�. These fluctuations lead to diffusion away from
the metastable state and, ultimately, to transitions over the
classical “barrier,” that is, the boundary of the basin of at-
traction to the metastable state.

We study quantum activation for periodically modulated
systems. Switching mechanisms for such systems are shown
schematically in Fig. 1, where g�Q� is the effective potential
of the system in the rotating frame. This figure describes, in
particular, a nonlinear oscillator studied in the present paper,
which displays period doubling when its frequency is peri-
odically modulated in time. The energy of periodically
modulated systems is not conserved. Instead they are char-
acterized by quasienergy �. It gives the change of the wave
function ���t� when time is incremented by the modulation
period �F, ���t+�F�=exp�−i��F / � ����t�, and is defined
modulo 2�� /�F.

Coupling to a thermal reservoir leads to transitions be-
tween the states of the system. For T=0 the transitions are

accompanied by the creation of excitations in the thermal
reservoir. The energy of the system decreases in each transi-
tion. However, the quasienergy may decrease or increase,
albeit with different probabilities W↓ and W↑. This effect has
quantum origin. It is due to the functions �� being superpo-
sitions of the eigenfunctions �N� of the energy operator of the
system in the absence of modulation. Therefore bath-induced
transitions down in energy �N�→ �N−1� lead to transitions
��→��� with ��	�. The values of W↑, W↓ for the latter
transitions are determined by the appropriate overlap inte-
grals and depend on � ,��.

More probable transitions determine in which direction,
with respect to quasienergy, the system will most likely
move. Such motion corresponds to relaxation over quasien-
ergy. Figure 1 refers to the case W↓
W↑. In this case relax-
ation corresponds to quasienergy decrease. The minima of
g�Q� are the classical stable states. However, quantum tran-
sitions in which quasienergy increases have a nonzero prob-

FIG. 1. �Color online� The effective double-well potential g�Q�
of a parametrically modulated oscillator. Sketched are scaled
period-two quasienergy levels �see Sec. II� in the neglect of inter-
well tunneling. The minima of g correspond to classically stable
states of period two motion. The arrows indicate relaxation, diffu-
sion over quasienergy away from the minima, and interwell tunnel-
ing. The effective Hamiltonian g�P ,Q� is defined by Eq. �6�, and
g�Q��g�P=0,Q�; the figure refers to �=0 in Eq. �6�.
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ability even for T=0. Because this probability is less than
W↓, such transitions lead to diffusion over quasienergy �
away from the minima of g�Q�. In turn, the diffusion leads to
a finite-width distribution over � and ultimately to activated-
type overbarrier transitions between the wells in Fig. 1. In
fact, discussed in this paper and sketched in Fig. 1 are
period-two quasienergy states, with quasienergy � defined by

the condition �̃��t+2�F�=exp�−2i��F / � ��̃��t�. They are
more convenient for the present problem; their relation to the
standard quasienergy states is explained in Sec. II.

Of interest for the problem of switching is the semiclas-
sical situation where the basins of attraction to the metastable
states �the wells in Fig. 1� have a large number N of localized
states. In this case the rate of tunneling decay is exponen-
tially small. The activation rate is also exponentially small
since it is determined by the ratio of transition probabilities
W↑ /W↓ raised to the power N. Both the tunneling and acti-
vation exponents are �N for the situation sketched in Fig. 1.
Indeed, the tunneling exponent is given by the action,
in units of �, for classical motion in the inverted effective
potential −g�Q� from one maximum of −g�Q� to the other. It
is easy to see that this action is of order N, unless g�Q� has
a special form. Therefore for N�1 the activation exponent
is either much larger or much smaller than the tunneling
exponent.

In this paper we develop a theory of the statistical distri-
bution and consider switching of a parametrically modulated
quantum oscillator. We show that, irrespective of tempera-
ture, the activation exponent is smaller than the tunneling
exponent. Therefore switching always occurs via activation,
not tunneling, as long as the relaxation rate exceeds the
tunneling rate.

We study a nonlinear oscillator with frequency modulated
at nearly twice the natural frequency 0. When the modula-
tion is sufficiently strong, the oscillator has two stable vibra-
tional states with periods 2�F�2� /0. These states differ
in phase by � but otherwise are identical �18�. They corre-
spond to the minima of the effective potential in Fig. 1.
The lowest quantized states in Fig. 1 are squeezed. Squeez-
ing in a parametric oscillator has attracted interest in many
areas, from quantum optics �19–21� to phonons �22�, micro-
cantilevers �23� and electrons and ions in Penning traps �24�.
Recent progress in systems based on Josephson junctions
and nanoelectromechanical systems �25–28� makes it pos-
sible to study squeezed states in a well controlled and versa-
tile environment. Both classical and quantum fluctuations
can be investigated and the nature of switching between the
states can be explored. The results can be further used in
quantum measurements for quantum computing, as in the
case of switching between coexisting states of a resonantly
driven oscillator �25�.

The probability distribution and interstate transitions of a
parametrically modulated oscillator have attracted consider-
able attention. Much theoretical work has been done for
models where fluctuations satisfy the detailed balance condi-
tion either in the classical limit �29� or for T=0 �30–34�.
Generally this condition does not hold in systems away from
equilibrium. In particular a classical nonlinear parametric os-
cillator does not have detailed balance. Switching of such an

oscillator was studied experimentally for electrons in Pen-
ning traps �35,36�. The measured switching rate �36� agreed
quantitatively with the theory �37�.

A quantum parametric oscillator also does not have de-
tailed balance in the general case. The results presented be-
low show that breaking the special condition where detailed
balance holds leads to a sharp change of the statistical dis-
tribution and the switching rate. This change occurs already
for an infinitesimally small deviation from detailed balance,
in the semiclassical limit. The fragility of the detailed bal-
ance solution is previewed in Fig. 2. This figure shows the
effective inverse temperature of the intrawell distribution
over the scaled period-two quasienergy g. The function
�−1R�g� is the exponent of the distribution �−1R�gn�=−ln �n,
where �n is the population of an nth state and ��1/N is the
scaled Planck constant defined in Eq. �4� below. The effec-
tive inverse temperature �−1dR /dg depends on g and differs
from the inverse temperature of the bath T−1. The T= n̄=0
result for dR /dg is obtained from the solution with detailed
balance �here n̄= �exp��0 /kT�−1�−1 is the Planck number
of the oscillator�. It is seen from Fig. 2 that the T→0
�n̄→0� limit of the solution without detailed balance does
not go over into the T=0 result.

The effective quantum activation energy RA�−� ln Wsw,
which gives the exponent of the switching rate Wsw, is shown
in Fig. 3. It is equal to RA=R�0�−R�gmin�, where g=0 and
g=gmin are, respectively, the values of g�Q� at the barrier top
and the minimum of the wells in Fig. 1. The n̄=0 detailed
balance value for RA strongly differs from the n̄→0 value in
a broad range of the control parameter � that characterizes
the detuning of the modulation frequency from 20, see Eq.
�8� below. It is also seen from Fig. 3 that the quantum acti-
vation energy RA decreases with increasing temperature. Ul-
timately when the Planck number of the oscillator becomes
large, n̄�1,we have RA�T−1, the law of thermal activation,
and the results coincide with the results �37� obtained by a
different method.

FIG. 2. �Color online� The scaled inverse temperature
R��dR /dg of the distribution over scaled period-two quasienergy
g of a parametrically modulated oscillator for different oscillator
Planck numbers n̄ in the limit of a large number of intrawell
quasienergy states. The figure refers to �=−0.3.
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In Sec. II we obtain an effective Hamiltonian that de-
scribes the oscillator dynamics in the rotating frame. We de-
scribe the classical dynamics and calculate semiclassical ma-
trix elements of the coordinate and momentum. In Sec. III
we derive the balance equation for the distribution over
quasienergy levels. This distribution is found in the eikonal
approximation in Sec. IV. Its explicit form is obtained in
several physically important limiting cases in Sec. V. In Sec.
VI the probability of interstate switching due to quantum
activation is analyzed. In Sec. VII it is shown that the distri-
bution obtained for T=0, where the system has detailed bal-
ance, is fragile: in the limit of a large number of intrawell
states it differs from the distribution for T→0. It is also
dramatically changed by even weak dephasing due to exter-
nal noise. In Sec. VIII we discuss tunneling between the
coexisting states of period two vibrations and show that in-
terstate switching occurs via quantum activation rather than
tunneling, if the relaxation rate exceeds the tunneling rate. In
Sec. IX we summarize the model, the approximations, and
the major results.

II. DYNAMICS OF THE PARAMETRIC OSCILLATOR

A. The Hamiltonian in the rotating frame

We will study quantum fluctuations and interstate switch-
ing using an important model of a bistable system, a para-
metric oscillator. The Hamiltonian of the oscillator has a
simple form

H0 =
1

2
p2 +

1

2
q2�0

2 + F cos�Ft�� +
1

4
�q4. �1�

We will assume that the modulation frequency F is close to
twice the frequency of small amplitude vibrations 0, and
that the driving force F is not large, so that the oscillator
nonlinearity remains small,

� =
1

2
F − 0, ��� �0,

F �0
2, ���	q2� �0

2. �2�

Here, 	q2� is the mean squared oscillator displacement; in
what follows for concreteness we set �
0.

We will change to the rotating frame using the canonical
transformation U�t�=exp�−iâ†âFt /2�, where â† and â are
the raising and lowering operators, â= ��F�−1/2�ip+Fq /2�.
It is convenient to introduce the dimensionless coordinate Q
and momentum P,

U†�t�qU�t� = C�P cos�Ft/2� − Q sin�Ft/2�� ,

U†�t�pU�t� = − C
F

2
�P sin�Ft/2� + Q cos�Ft/2�� , �3�

where C= �2F /3��1/2. The commutation relation between P
and Q has the form

�P,Q� = − i�, � = 3� � /FF. �4�

The dimensionless parameter � will play the role of � in the
quantum dynamics in the rotating frame. This dynamics is
determined by the Hamiltonian

H̃0 = U†HU − i � U†U̇ �
F2

6�
ĝ , �5�

with

ĝ � g�P,Q� =
1

4
�P2 + Q2�2 +

1

2
�1 − ��P2 −

1

2
�1 + ��Q2.

�6�

Here we used the rotating wave approximation and disre-
garded fast oscillating terms �exp�±inFt� , n�1. As a re-

sult H̃0 is independent of time.
In the “slow” dimensionless time

� = tF/2F, �7�

the Schrödinger equation has the form i�d� /d�= ĝ�. The
effective Hamiltonian ĝ, Eq. �6�, depends on one parameter

� = 2F�/F . �8�

For �
−1, the function g�P ,Q� has two minima. They are
located at P=0, Q= ± ��+1�1/2, and gmin=−��+1�2 /4. For
��1 the minima are separated by a saddle at P=Q=0, as
shown in Fig. 4. When friction is taken into account, the
minima become stable states of the parametrically excited
vibrations in the classical limit �18,37� �we note that the
function G in Ref. �37� is similar to g�P ,Q�, but has opposite
sign�.

The function g�P ,Q� is symmetric, g�P ,Q�=g�−P ,−Q�.
This is a consequence of the time translation symmetry. The
sign change �P ,Q�→ �−P ,−Q� corresponds to the shift in
time by the modulation period t→ t+2� /F, see Eq. �3�. In
contrast to the standard Hamiltonian of a nonrelativistic par-
ticle, the function g�P ,Q� does not have the form of a sum of

FIG. 3. �Color online� Quantum activation energy of a transition
between the stable states of period two vibrations of a modulated
oscillator �a phase-flip transition�. The transition probability is
Wsw�exp�−RA /��, where �, Eq. �4�, is the effective Planck con-
stant. The scaled switching exponent RA is plotted as a function of
the single scaled parameter � that controls oscillator dynamics, Eq.
�8�, for different values of the oscillator Planck number n̄.
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kinetic and potential energies, and moreover, it is quartic in
momentum P. This structure results from switching to the
rotating frame. It leads to a significant modification of quan-
tum dynamics, in particular tunneling, compared to the con-
ventional case of a particle in a static potential.

B. Quasienergy spectrum and classical motion

1. Period-two quasienergy states

The quasienergies of the parametric oscillator �m are de-
termined by the eigenvalues gm of the operator ĝ=g�P ,Q�,
with an accuracy to small corrections 
F /F

2 . They can be
found from the Schrödinger equation ĝ �m��0�=gm �m��0�. Be-
cause of the symmetry of ĝ the exact eigenfunctions �m��0�

are either symmetric or antisymmetric in Q.
The eigenstates �m��0� give the Floquet states of the para-

metric oscillator ���t+�F�=exp�−i��F / � ����t�. From the
form of the unitary operator U�t�=exp�−iâ†âFt /2� it is
clear that U��F� �m��0�= ± �m��0�, with “+” for symmetric and
“−” for antisymmetric states �m��0�. Therefore we have
�m= �F2 /6��gm for symmetric and �m= �F2 /6��gm+ ��F /2�
for antisymmetric states.

It is convenient to define period-two quasienergy by the

condition �̃��t+2�F�=exp�−2i��F / � ��̃��t�. In this case the
relation �m= �F2 /6��gm holds for both symmetric and anti-
symmetric states. At the same time, there is a simple one to
one correspondence with the standard quasienergy states.
Period-two quasienergy states are particularly convenient for
describing intrawell states �n� for small tunneling between
the wells of g�P ,Q�. Such states are combinations of sym-
metric and antisymmetric states �m��0�. For this reason we use
period-two quasienergies throughout the paper.

2. Classical intrawell motion

We will study the intrawell states �n� in the semiclassical
approximation. The classical equations of motion

dQ

d�
= �Pg,

dP

d�
= − �Qg �9�

can be explicitly solved in terms of the Jacobi elliptic func-
tions. The solution is given in Appendix A. There are two
classical trajectories for each g�0, one per well of g�P ,Q�
in Fig. 4. They are inversely symmetrical in phase space and
double periodic in time,

Q�� + �p� = Q���, P�� + �p� = P��� , �10�

with one real period �p
�1� and one complex period �p

�2�. This
means that �p=n1�p

�1�+n2�p
�2�, where n1,2=0 , ±1, . . ., and

�p
�1� = 21/2�g�−1/4K�mJ� ,

�p
�2� = i21/2�g�−1/4K��mJ� . �11�

Here K�mJ� is the complete elliptic integral of the first kind,
K��mJ�=K�1−mJ�, and mJ�mJ�g�,

mJ�g� =
�� + 1 − 2�g�1/2��� − 1 + 2�g�1/2�

8�g�1/2 − i0 �12�

is the parameter �38�. The real part of mJ can be positive or
negative; for Re mJ�0, the period �p

�2� has not only imagi-
nary, but also a nonzero real part.

The vibration frequency is �g�=2� /�p
�1��2� /�p

�1��g�.
It monotonically decreases with increasing g in the
range where g�P ,Q� has two wells, −��+1�2 /4�g�0, and
�g�→0 for g→0, i.e., for g approaching the saddle-point
value. The periodicity of Q���, P��� in imaginary time turns
out to be instrumental in calculating matrix elements of the
operators P, Q on the intrawell wave functions �n� as dis-
cussed in the next section.

C. The semiclassical matrix elements

Of central interest to us will be the case where the number
of states with gn�0, that is the number of states inside the
wells of g�P ,Q� in Fig. 4, is large. Formally, this case cor-
responds to the limit of a small effective Planck constant �.
For ��1 the wave function �n� in the classically accessible
region can be written in the form

�n� = C���Pg�−1/2exp�iSn�Q�/�� + c.c.,

Sn�Q� = �
Qn

Q

P�Q�,gn�dQ�. �13�

Here, C� is the normalization constant, P�Q ,gn� is the mo-
mentum for a given Q as determined by the equation
g�P ,Q�=gn, Qn is the classical turning point, P�Qn ,gn�=0,
and the derivative �Pg is calculated for P= P�Q ,gn�.

We parametrize the classical trajectories �9� by their phase
�=�g��, which we count �modulo 2�� from its value at Qn.
With this parametrization we have

Sn+m�Q� − Sn�Q� � �m� , �14�

for �m ���−1; on a classical trajectory, Q is an even and P is
an odd function of �.

FIG. 4. �Color online� The scaled effective Hamiltonian of the
oscillator in the rotating frame g�P ,Q�, Eq. �6�, for �=0.2. The
minima of g�P ,Q� correspond to the stable states of period two
vibrations.
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With Eqs. �13� and �14�, we can write the semiclassical
matrix element of the lowering operator â= �2��−1/2�P− iQ�
as a Fourier component of a�� ;g�= �2��−1/2�P�� ;g�
− iQ�� ;g�� over the phase �=�g�� �39�,

	n + m�â�n� � am�gn� ,

am�g� =
1

2�
�

0

2�

d� exp�− im��a��;g� , �15�

to lowest order in �. As we discuss below, these matrix ele-
ments determine relaxation of the oscillator.

We will be interested in calculating am�g� for g�0. Then
if we neglect interwell tunneling, we have two sets of wave
functions �n�, one for each well. The interwell matrix ele-
ments of the operator â are exponentially small. The in-
trawell matrix elements are the same for the both wells ex-
cept for the overall sign, because Q and P in different wells
have opposite signs on the trajectories with the same g. We
will consider the matrix elements am�gn� for the states in the
right well Q
0.

The integral �15� can be evaluated using the double
periodicity of the functions Q, P. It is clear that a��
+2� ,g�=a�� ;g� for any complex �. In addition, from Eq.
�A3� for g�0 we have a��+�0 ,g�=−a�� ;g�, where �0

=��1+�p
�2� /�p

�1�� is a complex number, which is determined
by the ratio of the periods of Q and P. The shift in time by
�0 /�g� corresponds to a transition from Q��� , P��� in one
well to Q��� , P��� in the other well. We can now write the
matrix element am�g� as

am�g� =
1

2�
�1 + e−im�0�−1�

C

d�e−im�a��;g� , �16�

where integration is done along the contour C in Fig. 5. It is
explained in Appendix A that each of the functions
Q(� /�g�), P(� /�g�) has two poles inside the contour C
�38�. Therefore it is easy to calculate the contour integral
�16�. The result has a simple form

am�g� = − i�2��−1/2�g�
exp�− im�*�

1 + exp�− im�0�
, �17�

with �* given by the equation

cn�2K�*/�� = − 1 + � + 2�g�1/2

1 + � − 2�g�1/2�1/2

,

Im �* �
�

2
Im��p

�2�/�p
�1�� =

1

2
Im �0. �18�

An important feature of the matrix elements am�g� is their
exponential decay for large �m�. From Eqs. �17� and �18�

am�g� � exp�− m Im��0 − �*��, m � 1,

am�g� � exp�− �m�Im �*�, − m � 1. �19�

We note that the decay is asymetric with respect to the sign
of m. This leads to important features of the probability dis-
tribution of the oscillator.

III. BALANCE EQUATION

Coupling of the oscillator to a thermal reservoir leads to
its relaxation. We will first consider the simplest type of re-
laxation. It arises from coupling linear in the oscillator coor-
dinate q and corresponds to decay processes in which the
oscillator makes transitions between neighboring energy lev-
els, with energy ��0 transferred to or absorbed from the
reservoir. We will assume that the oscillator nonlinearity is
not strong and that the detuning � of the modulation fre-
quency is small, whereas the density of states of the reservoir
weighted with interaction is smooth near 0. Then the quan-
tum kinetic equation for the oscillator density matrix � in the
rotating frame has the form

��

��
= i�−1��,g� − �̂� ,

�̂� = ���n̄ + 1��â†â� − 2â�â† + �â†â�

+ n̄�ââ†� − 2â†�â + �ââ†�� , �20�

where � is the dimensionless relaxation constant and
n̄= �exp��0 /kT�−1�−1 is the Planck number.

We will assume that relaxation is slow so that the broad-
ening of quasienergy levels is much smaller than the distance
between them, ���g�. Then off-diagonal matrix elements
of � on the states �n� are small. We note that, at the same
time, off-diagonal matrix elements of � on the Fock states of
the oscillator �N� do not have to be small.

FIG. 5. �Color online� The contours of integration in the com-
plex phase plane for calculating Fourier components of the oscilla-
tor coordinate Q and momentum P. The left and right panels refer,
respectively, to the negative and positive real part of the parameter
of the elliptic functions mJ, Eq. �12� �the imaginary part of mJ is
infinitesimally small�. Both Q and P have poles at �=�* ,�**, but
a�� ;g� has a pole only for �=�*. The increment of phase by �0

leads to a transition between the trajectories with a given g in dif-
ferent wells of g�P ,Q�.
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To the lowest order in � /�g� relaxation of the diagonal
matrix elements �n= 	n �� �n�, is described by the balance
equation

��n

��
= − 2��

n�

�Wnn��n − Wn�n�n�� , �21�

with dimensionless transition probabilities

Wnn� = �n̄ + 1��	n��â�n��2 + n̄�	n�â�n���2. �22�

It follows from Eqs. �17� and �22� that, even for T=0, the
oscillator can make transitions to states with both higher and
lower g, with probabilities Wnn� with n�
n and n��n, re-
spectively. This is in spite the fact that transitions between
the Fock states of the oscillator for T=0 are only of the type
�N�→ �N−1�.

The explicit expression for the matrix elements �17�
makes it possible to show that the probability of a transition
to a lower level of ĝ is larger than the probability of a tran-
sition to a higher level, that is, Wn�n
Wnn� for n�
n. There-
fore the oscillator is more likely to move down to the bottom
of the initially occupied well in Fig. 4. This agrees with the
classical limit in which the stable states of an underdamped
parametric oscillator are at the minima of g�P ,Q�. However,
along with the drift down in the scaled period-two quasien-
ergy g, even for T=0 there is also diffusion over quasienergy
away from the minima of g�P ,Q�, due to nonzero transition
probabilities Wnn� with n�
n.

Equation �21� must be slightly modified in the presence of
tunneling between the states with gn�0. The modification is
standard. One has to take into account that the matrix ele-
ments of � depend not only on the number n of the period-
two quasienergy level inside the well, but also on the index �
which takes on two values �= ±1 that specify the wells of
g�P ,Q�. These values can be associated with the eigenvalues
of the pseudospin operator �z. The matrix elements of the
operator �̂� on the wave functions of different wells are
exponentially small and can be disregarded. The operator
describing interwell tunneling can be written in the pseu-
dospin representation as −i�2��−1T�g���x ,��, where T�g� is
the tunneling splitting of the states in different wells.

We assume that the tunneling splitting is much smaller
than �. Then after a transient time �
�−1, there is formed a
quasistationary distribution over the states �n� inside each of
the wells of g�P ,Q� in Fig. 4. This distribution can be found
from Eq. �21� using the wave function �n� calculated in the
neglect of tunneling. Interwell transitions occur over much
longer time.

IV. DISTRIBUTION OVER INTRAWELL STATES

The stationary intrawell probability distribution can be
easily found from Eqs. �21� and �22� if the number of levels
with gn�0 is small. Much more interesting is the situation
where this number is large. It corresponds to the limit of
small �. We will be interested primarily in the quasistation-
ary distribution over the states in the well in which the sys-
tem was initially prepared. It is formed over time 
�−1

and is determined by setting the right-hand side of Eq. �21�
equal to zero. The resulting equation describes also the sta-
tionary distribution in both wells, which is formed over a
much longer time given by the reciprocal rate of interwell
transitions.

For ��1 we can use the Wentzel-Kramers-Brillouin
�WKB� approximation both to calculate the matrix elements
in Wnn� �22� and to solve the balance equation. The solution
should be sought in the eikonal form

�n = exp�− Rn/��, Rn = R�gn� . �23�

It follows from Eq. �19� that the transition probabilities
Wn + m n rapidly decay for large �m�. Therefore in the balance
equation �21� we can set

�n+m � �nexp�− m�gn�R��gn�� ,

R��g� = dR/dg . �24�

The corrections to the exponent in Eq. �24� of order
�m22R�, �m2�R� are small for ��1 �prime indicates
differentiation over g�. We note that �g�R��g� is not small
in the quantum regime and the exponential in Eq. �24� will
not be expanded in a series in R�.

From Eq. �21�, the function R��g� is determined by the
polynomial equation

�
m

Wn + m n�1 − �m� = 0,

� = exp�− �gn�R��gn�� . �25�

Here the sum goes over positive and negative m. In obtaining
Eq. �25� we have used the relation Wn + m n=Wn n - m for �m �
�n, which is the consequence of the WKB approximation
for the matrix elements: ��g�d ln�am�g�� /dg�1 for ��1.

Equation �25� has a trivial solution �=1, which is un-
physical. Because all coefficients Wn + m n are positive and
Wn + m n
Wn - m n for m
0, one can show that the polynomial
in the left-hand side of Eq. �25� has one extremum in the
interval 0���1. Since its derivative for �=1 is negative
and it goes to −� for �→0, it has one root in this interval.
This root gives the value R��gn�. Since ��1, we have
R��g�
0. In turn R��g� gives R�g� and thus the distribution
�n. In obtaining R�g� from R��g�, in the spirit of the eikonal
approximation, one should set R�gmin�=0, where gmin=−��
+1�2 /4 is the minimal quasienergy.

It is seen from Eq. �23� that �−1R��g� has the meaning of
the effective inverse temperature of the distribution over
period-two quasienergy. The function R��g� can be calcu-
lated for different values of the control parameter � and dif-
ferent oscillator Planck numbers n̄ by solving Eq. �25� nu-
merically. The numerical calculation is simplified by the
exponential decay of the coefficients Wn + m n with �m�. The
results are shown in Fig. 6. The function R��g� /� smoothly
varies with g in the whole range gmin�g�0 of intrawell
values of g, except for very small n̄.

Numerical results on the logarithm of the distribution
R�gn�=−� ln �n obtained from Eq. �25� for n̄=0.1 are com-
pared in Fig. 7�a� with the results of the full numerical solu-
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tion of the balance equation �21�. In this latter calculation we
did not use the WKB approximation to find the transition
probabilities Wnn�. Instead they were obtained by solving nu-
merically the Schrödinger equation ĝ �n�=gn �n� and by cal-
culating Wnn� as the appropriately weighted matrix elements
�	n � â �n���2, Eq. �22�.

In the calculation we took into account that, for small �,
the levels of ĝ form tunnel-split doublets. The tunneling
splitting is small compared to the distance between intrawell
states ��g�. The exact eigenfunctions of the operator ĝ are
well approximated by symmetric and antisymmetric combi-
nations of the intrawell wave functions. This allows one to
restore the intrawell wave functions from the full numerical
solution and to calculate the matrix elements Wnn�. By con-
struction, such numerical approach gives R�g� only for the
values of g that correspond to quasienergy levels gn. It is
seen from Fig. 7�a� that the two methods give extremely
close results for small � �see also below�.

V. THE DISTRIBUTION IN LIMITING CASES

The effective inverse temperature R��g� /� and the distri-
bution �n can be found in several limiting cases. We start
with the vicinity of the bottom of the wells of g�P ,Q�. Here
classical vibrations of P, Q are nearly harmonic. To leading
order in �g=g−gmin we have 	n+m � â �n����m�,1�g1/2 for m
�0, and therefore the transition probabilities Wn + m n���m�,1.
Then Eq. �25� becomes a quadratic equation for �, giving

R��gmin� =
1

2
�� + 1�−1/2ln

�� + 2��2n̄ + 1� + 2�� + 1

�� + 2��2n̄ + 1� − 2�� + 1
.

�26�

The inverse effective temperature R��gmin� as given by
Eq. �26� monotonically decreases with the increasing Planck
number n̄, i.e., with increasing bath temperature T. We note
that R��gmin� smoothly varies with n̄ for low temperatures
n̄�1, except for small ���. We have �R��gmin� /�n̄
=−22/3��+1� /� for n̄→0. For �=0, on the other hand, we
have R��gmin�� �F /4kT, i.e., the effective inverse tempera-
ture for g=gmin is simply �T−1. We now consider the param-
eter ranges where R��g� can be found for all g.

A. Classical limit

For n̄�1 the transition probabilities become nearly sym-
metric, �Wn + m n−Wn - m n ��Wn + m n. As a result, the effective
inverse temperature R� /� becomes small, and the ratio
�n+m /�n can be expanded in R��gn� /�. This gives

R��g� = 2−1�g��
m

mWn + m n��
m

m2Wn + m n. �27�

It is shown in Appendix B that Eq. �27� can be written in the
simple form

R��g� =
2

2n̄ + 1
M�g�/N�g� ,

M�g� =� �
A�g�

dQdP ,

N�g� =
1

2
� �

A�g�
dQdP��Q

2 g + �P
2 g� �28�

where the integration is performed over the area A�g� of the
phase plane �Q , P� encircled by the classical trajectory Q���,
P��� with given g.

From Eq. �28�, the effective inverse temperature R� /� is
����2n̄+1��−1. In the high-temperature limit �2n̄+1�
�2kT / �0. Therefore R� /� is �T−1 and does not contain �,
as expected. Eq. �28� in this limit coincides with the expres-
sion for the distribution obtained in Ref. �37� using a com-
pletely different method.

B. Vicinity of the bifurcation point

The function R��g� may be expected to have a simple
form for � close to the bifurcation value �B=−1 where the

FIG. 6. �Color online� The scaled inverse temperature R� of the
distribution over scaled period-two quasienergy g for two values of
the control parameter � and for different oscillator Planck numbers
n̄. For n̄�0.1 the function R� only weakly depends on g inside the
well, gmin�g�0.

FIG. 7. �Color online� Comparison of the results of the eikonal
approximation for the scaled logarithm of the probability distribu-
tion R over period-two quasienergy g �solid lines� with the results
obtained by direct calculation of the transition probabilities fol-
lowed by numerical solution of the balance equation �squares�.
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two stable states of the oscillator merge together and g�P ,Q�
becomes single well. This is a consequence of the universal-
ity that characterizes the dynamics near bifurcation points
and is related to the slowing down of motion and the onset of
a soft mode. The situation we are considering here is not the
standard situation of the classical theory where the problem
is reduced to fluctuations of the soft mode. The oscillator is
not too close to the bifurcation point, its motion is not over-
damped and the interlevel distance exceeds the level broad-
ening. Still as we show R�g� has a simple form.

The motion slowing down for � approaching −1 leads to
the decrease of the vibration frequencies. From Eq. �11�,

�g� = 2�/�p
�1� � �g�1/4 � ��� + 1�/2�1/2

for �+1�1. Therefore one may expect that �g�R��g� be-
comes small, and we can again expand �n+m /�n in
�gn�R��gn�, as in Eq. �27�. One can justify this expansion
more formally by noticing that the transition probabilities
Wn + m n are nearly symmetric near the bifurcation point
�Wn + m n−Wn - m n ��Wn - m n. In the present
case the latter inequality is a consequence of the
relation Im��0−2�*��1 in Eq. �17�, which leads to
��a−m�g� �−�am�g� � �� �am�g��. In turn, the above relation be-
tween �0 and �* can be obtained from Eqs. �12� and �18�,
which show that the right-hand side of Eq. �18� is
�−�mJ / �1−mJ��1/2 for �+1�1. Since �cn�K+ iK�� �
= �mJ / �1−mJ��1/2 �38�, we have from Eqs. �11� and �18�
Im �*� Im �p

�2� /2�p
�1�=Im �0 /2.

It follows from the above arguments that near the bifur-
cation point R��g� is given by Eq. �28� for arbitrary Planck
number n̄, i.e., for arbitrary temperature. Since �Q

2 g+�P
2 g

�2 for �+1�1, we obtain from Eq. �28� a simple explicit
expression

R��g� � 2/�2n̄ + 1� , �29�

Eq. �29� agrees with Eq. �26� near gmin in the limit �+1
�1. It shows that the inverse effective temperature R� /� is
independent of g. It monotonically decreases with increasing
temperature T.

C. Zero temperature: detailed balance

The function R��g� can be also obtained for T= n̄=0. This
is a consequence of detailed balance that emerges in this case
�34�. The detailed balance condition is usually a consequence
of time reversibility, which does not characterize the dynam-
ics of a periodically modulated oscillator. So, in the present
case detailed balance comes from a special relation between
the parameters for T=0. Detailed balance means that transi-
tions back and forth between any two states are balanced. It
is met if the ratio of the probabilities of direct transitions
between two states is equal to the ratio of probabilities of
transitions via an intermediate state

Wnn�

Wn�n
=

Wnn�Wn�n�

Wn�n�Wn�n
. �30�

One can see from Eqs. �17� and �22�, that the condition
�30� is indeed met for n̄=0. Therefore the balance equation

has a solution �n /�n�=Wn�n /Wnn�, which immediately gives

R��g� = 2−1�g�Im��0 − 2�*� . �31�

The function R��g� is plotted in Fig. 8 for two values of
the control parameter �. It displays different behavior de-
pending on the sign of �. For ��0 the parameter of the
elliptic function mJ, Eq. �12�, is negative for all g�0.
Therefore the periods �p

�1,2��g� of P���, Q���, Eq. �11�, are
smooth functions of g, except near gmin=− 1

4 ��+1�2, where
Im �p

�2���1+��−1/2 � ln�g−gmin��. This divergence of Im �p
�2� is

seen in Fig. 8. The function R��g� remains finite near gmin,
Eq. �26�.

For �
0, on the other hand, the function R��g� has a
singularity. Its location gd is determined by the condition
mJ=0, which gives gd=−�1−��2 /4. For small �g−gd� we
have Im �0� Im �p

�2�� �ln��g−gd � ��, whereas �*, Eq. �18� re-
mains finite for g=gd. Therefore R��g� diverges logarithmi-
cally at gd, as seen from Fig. 8�b�.

Physically the divergence of the inverse temperature is
related to the structure of the transition probabilities Wnn� for
n̄=0. For g→gd we have Wn n + m� �gn−gd�2m for m
0, see
Eqs. �17� and �22�. This means that, for gn close to gd,
diffusion towards larger g slows down. The slowing down
leads to a logarithmic singularity of R��g�. The eikonal ap-
proximation is inapplicable for g close to gd. However, the
width of the range of g where this happens is small, �g
�,
as follows from the discussion below Eq. �24�. In addition,
there are corrections to the balance equation due to off-
diagonal terms in the full kinetic equation. These corrections
give extra terms ��2 /2�gd� in the transition probabilities
Wnn�. The analysis of these corrections as well as features of
R that are not described by the eikonal approximation is
beyond the scope of this paper because, as we show, these
features are fragile.

The function R�gn�=−� ln �n obtained by integrating Eq.
�31� is compared in Fig. 7�b� with the result of the numerical
solution of the balance equation �21� with numerically cal-
culated transition probabilities Wnn�. The semiclassical and

FIG. 8. �Color online� The scaled inverse temperature R� and
the imaginary part of the period �p

�2� of the oscillator coordinate and
momentum Q�� ;g� , P�� ;g� for T=0. For �
0 both R� and Im �p

�2�

have a logarithmic singularity.
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numerical results are in excellent agreement. We checked
that the agreement persists for different values of the control
parameter � and for almost all ��1, except for a few ex-
tremely narrow resonant bands of �.

VI. SWITCHING EXPONENT

Quantum diffusion over quasienergy described by Eq.
�21� leads to switching between the classically stable states
of the oscillator at the minima of g�P ,Q� in Fig. 4. The
switching rate Wsw is determined by the probability to reach
the top of the barrier of g�P ,Q�, that is by the distribution �n

for such n that gn=0. To logarithmic accuracy

Wsw = Csw � exp�− RA/��, RA = �
gmin

0

R��g�dg , �32�

where R��g� is given by Eq. �25�. The parameter Csw is of the
order of the relaxation rate � due to coupling to a thermal
bath.

The quantity RA plays the role of the activation energy of
escape. The activation is due to quantum fluctuations that
accompany relaxation of the oscillator, and we call it quan-
tum activation energy. As we show in Sec. VIII, RA is smaller
than the tunneling exponent for tunneling between the
minima of g�P ,Q�. Therefore if the relaxation rate � exceeds
the tunneling rate, switching between the stable states occurs
via quantum activation.

Quantum activation energy RA obtained by solving Eq.
�25� numerically is plotted in Fig. 3. It depends on the con-
trol parameter � and the Planck number n̄, and it monotoni-
cally increases with increasing � and decreasing n̄. Close to
the bifurcation point �B=−1, i.e., for �−�B�1, it displays
scaling behavior with �−�B. From Eq. �29�

RA =
1

2
�2n̄ + 1�−1�� − �B��, � = 2. �33�

The scaling exponent �=2 coincides with the scaling expo-
nent near the bifurcation point of a classical parametric os-
cillator where the oscillator motion is still underdamped in
the rotating frame, i.e., �−�B is not too small �37�. It can be
seen from the results of Refs. �40,41� that the exponent
�=2 also describes scaling of the activation energy of escape
due to classical fluctuations closer to the pitchfork bifurca-
tion point where the motion is necessarily overdamped.

In the classical limit 2n̄+1�1 we have from Eq. �28�
RA� �2n̄+1�−1�T−1, i.e., the switching rate Wsw

�exp�−�RAkBT /�� /kBT�, with temperature independent
RAkBT /� being the standard activation energy. The quantity
RA�2n̄+1� in the classical limit as obtained from Eq. �28�, is
shown with the dashed line in Fig. 9. It is seen that RA
quickly approaches the classical limit with increasing Planck
number n̄, so that even for n̄=0.1 the difference between
RA�2n̄+1� and its classical limit is �15%. Effectively it
means that, for small n̄�1, the exponent in the probability of
quantum activation can be approximated by the classical ex-
ponent for activated switching in which one should replace

kBT → � 0/2 �34�

.

VII. FRAGILITY OF THE DETAILED BALANCE
SOLUTION

It turns out that the expression for the distribution �23�
and �31� found from the detailed balance condition for T
=0 does not generally apply even for infinitesimally small
but nonzero temperature, in the semiclassical limit. This is a
consequence of this solution being of singular nature, in
some sense. A periodically modulated oscillator should not
have detailed balance, because the underlying time revers-
ibility is broken; the detailed balance condition �30� is satis-
fied just for one value of n̄ and when other relaxation mecha-
nisms are disregarded.

Formally, in a broad range of � the correction �n̄ to
the T=0 solution diverges. The divergence can be seen from
Eqs. �19�, �22�, and �31�. The transition probabilities Wn n + m

have terms �n̄ which vary with m as exp�−2m Im �*�
for m�1. At the same time, the T=0 solution �31� gives
�−m=exp�m�g�R��g��=exp�2m Im��0−2�*��. Therefore
for the series �25� with the term �n̄ in Wn n + m to converge we
have to have

Im��0 − 3�*� � 0. �35�

The condition �35� is met at the bottom of the wells of
g�P ,Q� and also close to the bifurcation values of the control
parameter, �−�B�1. We found that, with increasing �, the
condition �35� is broken first for g approaching the barrier
top, g→0. In this region Im �0, Im �*� �ln �g � �−1. A some-
what tedious calculation based on the properties of the ellip-
tic functions shows that the condition �35� is violated when
�
−1/2, and for �=−1/2 we have Im��0−3�*�→0 for
g→0. The increase in � leads to an increase of the range of

FIG. 9. �Color online� Quantum activation energy of switching
between the states of parametrically excited vibrations for different
oscillator Planck numbers n̄ as a function of the scaled frequency
detuning �. The transition rate is Wsw�exp�−RA /��. With increas-
ing n̄, the value of RA multiplied by 2n̄+1 quickly approaches the
classical limit n̄�1 shown by the dashed line. In this limit the ratio
RA /� is �T−1 and does not contain �.
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g where Eq. �35� does not apply. The detailed balance distri-
bution is inapplicable for T→0 in this range.

To find the distribution for small Planck number n̄ in the
range where Im��0−3�*�
0 we seek the solution of the
balance equation �25� in the form

R��g� = 2−1�g��Im �*�g� − ��, � � 1. �36�

This solution does not give diverging terms for n̄
0.
The terms Wn n + mexp�m�g�R��g�� in Eq. �25� are
�n̄ exp�−2m�� for m�1, and their sum over m is �n̄ /�.
Using the explicit expression for the transition probabilities
we obtain that, to leading order in n̄

� = n̄��
m

exp�m Im��0 − 3�*��

�sinh�m Im�*�/�cos�m�0/2��2�−1
. �37�

Here again, the sum goes over positive and negative m. In
obtaining Eq. �37� we used the general expression �17� for
the coefficients am�g� in Wn + m n. In fact, the asymptotic ex-
pressions �19� for am�g� allow one to calculate the sum over
m in Eq. �37� explicitly and the result provides a very good
approximation for �.

Equations �36� and �37� give the effective inverse tem-
perature R� /� and therefore the distribution �n as a whole for
n̄�1. It is clear that the n̄→0 limit is completely different
from the detailed balance solution �31� for n̄=0, that is,
the transition to the T= n̄=0 regime is nonanalytic. The dif-
ference between the n̄=0 and the n̄→0 solution is seen in
Figs. 2 and 3.

It follows from Eq. �37� that the perturbation theory di-
verges for the value of g where Im��0−3�*�=0. At such g
the n̄→0 solution �36� coincides with the n̄=0 solution �31�.
For smaller g the condition �35� is satisfied and the T=0
solution for R��g� applies; the corrections to this solution are
�n̄�1. The derivative of the effective inverse temperature
R��g� /� over g is discontinuous at the crossover between
n̄→0 and n̄=0 solutions, as seen in Fig. 2. Figure 2 illus-
trates also the smearing of the singularity of R��g� due to
terms �n̄ in Wnn�, which is described by the numerical solu-
tion of the balance equation �25�. Away from the crossover
the analytical solutions provide a good approximation to nu-
merical results.

Breaking of detailed balance solution by dephasing

Dephasing plays an important role in the dynamics of
quantum systems. It comes from fluctuations of the transition
frequency due to external noise or to coupling to a thermal
reservoir. A simple mechanism is quasielastic scattering of
excitations of the reservoir off the quantum system. Since the
scattering amplitude depends on the state of the system, the
scattering leads to diffusion of the phase difference of differ-
ent states.

For an oscillator, dephasing has been carefully studied,
both microscopically and phenomenologically, see Refs.
�42–44� and papers cited therein. It leads to an extra term
−�̂ph� in the quantum kinetic equation �20�, with

�̂ph� = �ph
†â†â,�â†â,��‡ , �38�

where �ph is the dimensionless dephasing rate.
If both �ph and � are small compared to �g�, populations

of the steady states �n are described by the balance equation
�21� in which one should replace �Wn�n→�Wn�n+�phW

n�n
�ph�,

with

Wn�n
�ph� = �	n�â†â�n���2. �39�

It follows from Eq. �19� that, for large �n�−n�, we have
W

n�n
�ph�

�exp�−2 �n�−n � Im �*�, that is, the transition probabil-
ity exponentially decays with increasing �n�−n�, and the ex-
ponent is determined by Im �*.

Even slow dephasing is sufficient for making the detailed
balance condition inapplicable. Mathematically, the effect
of slow dephasing is similar to the effect of nonzero
temperature. If the condition �35� is violated, the sum
�Wn+mn

�ph� exp�−m�gn�R��gn�� with R��g� given by the de-
tailed balance solution �31� diverges. The correct distribution
for the appropriate g and � is given by Eq. �36�. The param-
eter ����g� is given by Eq. �37� in which n̄ is replaced,

n̄ → n̄ + Cph�ph/� ,

Cph = �2�g�/2����
m=0

�

exp�2im�*�/�exp�im�0� + 1��2

.

�40�

It is seen from Eq. �40� and Figs. 2 and 3 that, for low
temperatures, even weak dephasing, �ph/��1, leads to a
very strong change of the probability distribution.

The fragility of the detailed balance solution discussed in
this section is a semiclassical effect. It occurs if the number
of states in each well N��−1 is large. Formally we need
� exp�2cN Im��0−3�*���1, with c=c�g�
1. In other
words, the detailed balance solution is fragile provided � is
sufficiently small. A full numerical solution of the balance
equation confirms that, when � is no longer small, the distri-
bution for small n̄ ,�ph/� is close to that described by the
n̄=0,�ph/�=0.

VIII. TUNNELING

The oscillator localized initially in one of the wells of the
effective Hamiltonian g�P ,Q� can switch to another well via
tunneling. For small � tunneling can be described in the
WKB approximation. We will first find the tunneling expo-
nent assuming that the oscillator is in the lowest intrawell
state and show that it exceeds the quantum activation expo-
nent RA /�. We will then use standard arguments to show that
this is true independent of the initially occupied intrawell
state, for all temperatures.

If we now go back to the original problem of switching
between stable states of a periodically modulated oscillator,
we see that switching via tunneling can be observed only
where the relaxation rate is smaller than the tunneling rate,
that is the prefactor in the rate of quantum activation is very

M. MARTHALER AND M. I. DYKMAN PHYSICAL REVIEW A 73, 042108 �2006�

042108-10



small. Such experiment requires preparing the system in one
of the wells. Tunneling between period two states of a
strongly modulated strongly nonlinear system has been dem-
onstrated in atomic optics �45–47�. For a weakly nonlinear
oscillator, tunneling splitting between the lowest states of the
Hamiltonian ĝ for �=0 was found in Ref. �48�.

The effective Hamiltonian g�P ,Q� is quartic in the mo-
mentum P. Therefore the semiclassical momentum P�Q ,g�
as given by the equation g�P ,Q�=g has 4 rather than 2
branches. This leads to new features of tunneling compared
to the standard picture for one-dimensional systems with a
time-independent Hamiltonian quadratic in P.

For concreteness, we will consider tunneling from the left
well, which is located at Q=Ql0=−�1+��1/2 , P=0. The rate
of tunneling from the bottom of the well of g�P ,Q� in Fig. 4
is determined by the WKB wave function with g=gmin=
−�1+��2 /4. This wave function is particularly simple for
��0. In the region Ql0�Q and not too close to Ql0 it has
the form

��l� = C��Pg�−1/2exp�iS0�Q�/�� ,

S0�Q� = �
Ql0

Q

P−�Q��dQ�, �41�

where

P±�Q� = i�1 ± �Q2 − ��1/2� . �42�

For ��0 the wave function ��l� monotonically decays
with increasing Q. The exponent for interwell tunneling is
Stun /�, with Stun=Im S0�−Ql0� �we use that −Ql0 is the posi-
tion of the right well�,

Stun = �1 + ��1/2 + � ln
1 + �1 + ��1/2

���1/2 . �43�

A more interesting situation arises in the case �
0. Here,
inside the classically forbidden region −�1/2�Q��1/2 de-
cay of the wave function is accompanied by oscillations. We

leave the analysis of this behavior for a separate paper. Here
we only note that the tunneling exponent is still given by Eq.
�43�.

If the level splitting due to tunneling is small compared to
their broadening due to relaxation, the tunneling probability
is quadratic in the tunneling amplitude

Wtun � exp�− 2Stun/�� . �44�

The action 2Stun as a function of � is plotted in Fig. 10. It is
seen from this figure that the tunneling exponent exceeds the
quantum activation exponent RA /� for all values of the con-
trol parameter �. This indicates that, as mentioned above, it
is exponentially more probable to switch between the classi-
cally stable states of the oscillator via activation than via
tunneling from the ground intrawell state, for not too small
relaxation rate.

In the same limit where the relaxation rate exceeds the
tunneling rate, we can consider the effect of tunneling from
excited intrawell states of the Hamiltonian ĝ. The analysis is
similar to that for systems in thermal equilibrium �1–3�. Over
the relaxation time there is formed a quasiequilibrium distri-
bution over the states inside the initially occupied well of
g�P ,Q�. As before, we assume that relaxational broadening
of the levels gn is small compared to the level spacing. The
probability of tunneling from a given state n is determined
by its occupation �n. The overall switching probability is
given by a sum of tunneling probabilities from individual
intrawell states

Wsw = �
n

Cne−2Sn/��n, �45�

where Cn is a prefactor that smoothly depends on n, and

Sn = Im� P�Q,gn�dQ

is the imaginary part of the action of a classical particle with
Hamiltonian g�P ,Q� and energy gn, which moves in com-
plex time from the turning point P=0 in one well of g�P ,Q�
to the turning point in the other well. It follows from the
analysis in Appendix A and Eq. �A3�, that the duration of
such motion is ��p

�1�+�p
�2�� /2. Therefore �Sn /�gn=−Im �p

�2� /2.
Taking into account that �n=exp�−Rn /��, we see that

the derivative of the overall exponent in Eq. �45� over gn is
Im �p

�2�−R��gn�. It was shown in Secs. IV and V that this
derivative is always positive, cf. Fig. 8. Therefore the expo-
nent monotonically increases �decreases in absolute value�
with increasing g. This shows that, with overwhelming prob-
ability, switching occurs via overbarrier transitions, i.e., the
switching mechanism is quantum activation. We emphasize
that this result is independent of the bath temperature.

IX. CONCLUSIONS

In this paper we studied switching between the states of
period two vibrations of a parametrically modulated nonlin-
ear oscillator and the distribution over period-two quasien-
ergy levels. We considered a semiclassical case where the
wells of the scaled oscillator Hamiltonian in the rotating

FIG. 10. �Color online� The scaled exponent 2Stun in the tunnel-
ing probability as a function of the parameter �=2F� /F �solid
line�. Also shown for comparison is the quantum activation energy
RA for n̄=0 and n̄→0.
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frame g�P ,Q�, Fig. 4, contain many levels. The distance be-
tween the levels is small compared to �F but much larger
than the tunneling splitting. We assumed that the oscillator is
underdamped, so that the interlevel distance exceeds their
width. At the same time, of primary interest was the case
where this width exceeds the tunneling splitting.

We considered relaxation due to coupling to a thermal
bath, which is linear in the oscillator coordinate, as well as
dephasing from random noise that modulates the oscillator
frequency. The problem of the distribution over intrawell
states was reduced to a balance equation. The coefficients in
this equation were obtained explicitly in the WKB approxi-
mation, using the analytical properties of the solution of the
classical equations of motion. The balance equation was then
solved in the eikonal approximation. The eikonal solution
was confirmed by a full numerical solution of the balance
equation, which did not use the WKB approximation for
transition matrix elements.

We found that the distribution over period-two quasien-
ergy has a form of the Boltzmann distribution with effective
temperature that depends on the quasienergy. This tempera-
ture remains nonzero even where the temperature of the ther-
mal bath T→0. It is determined by diffusion over quasien-
ergy, which accompanies relaxation and has quantum origin:
it is due to the Floquet wave functions being combinations of
the Fock wave functions of the oscillator.

Unexpectedly, we found that the quasienergy distribution
for T=0, where the system has detailed balance, is fragile. It
differs significantly from the solution for T→0, for a large
number of intrawell states. The T=0 solution is also de-
stroyed by even small dephasing.

The probability of switching between period two states
Wsw is determined by the occupation of the states near the
barrier top of the effective Hamiltonian g�P ,Q�. We calcu-
lated the effective quantum activation energy RA which gives
Wsw�exp�−RA /��. Both RA /� and the exponent of the tun-
neling probability are proportional to the reciprocal scaled
Planck constant �−1. However, for all parameter values and
all bath temperatures, RA /� is smaller than the tunneling ex-
ponent. Therefore in the case where intrawell relaxation is
faster than interwell tunneling, switching occurs via quantum
activation.

In the limit where fluctuations of the oscillator are classi-
cal, kT��F, we have RA� �kT�−1, and Wsw is described by
the standard activation law. Down to small Planck numbers
n̄�0.1 the quantum activation energy RA is reasonably well
described by the classical expression even for small kT / �F
provided kT is replaced by �F�2n̄+1� /4, with n̄ being the
Planck number of the oscillator. The inapplicability of this
description for small n̄ indicates, however, that classical and
quantum fluctuations do not simply add up. The replacement
kT→ �F�2n̄+1� /4 becomes exact for all n̄ close to the bi-
furcational value of the control parameter �=�B where the
period-two states first emerge. In this range RA scales with
the distance to the bifurcation point as RA� ��−�B�2.

The results on switching rate are accessible to direct ex-
perimental studies in currently studied nanosystems and mi-
crosystems, in particular in systems based on Josephson
junctions, including those used for highly sensitive quantum
measurements.
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APPENDIX A: CLASSICAL MOTION
OF THE PARAMETRIC OSCILLATOR

The Hamiltonian g�P ,Q� �6� is quartic in P and Q. This
makes it possible to solve classical equations of motion �9�.
Trajectories with given g lie on the cross section g�P ,Q�
=g of the surface g�P ,Q� in Fig. 4. We will be interested
only in the intrawell trajectories, in which case g�0. The
trajectories in different wells are inversely symmetrical and
can be obtained by the transformation Q→−Q, P→−P.
Their time dependence can be expressed in terms of the Ja-
cobi elliptic functions �38�. For trajectories in the right well
in Fig. 4, where Q
0, we have

Q��� =
23/2�g�1/2dn��

 + +  −cn��
,

P��� =
 + −�g�1/4sn��

 + +  −cn��
. �A1�

Here

 ± = �1 + � ± 2�g�1/2�1/2, �� = 23/2�g�1/4� . �A2�

The parameter of the elliptic functions mJ=mJ�g� is given by
Eq. �12�. For ��0 the function mJ�g� monotonically de-
creases with increasing g from mJ=0 for g=gmin=−��
+1�2 /4 to mJ→−� for g→0. For �
0 the function mJ�g�
becomes nonmonotonic. It first increases from mJ=0 with
increasing g, but than decreases, goes trough mJ=0 for g=
−�1−��2 /4, and goes to −� for g→0. The Jacobi functions
sn��� �mJ�, cn��� �mJ�, and dn��� �mJ� for mJ�0 are equal
to �1−mJ�−1/2sd��̃� � m̃J�, cd��̃� � m̃J�, and nd��̃� � m̃J� with
m̃J=−mJ / �1−mJ� and �̃�= �1−mJ�1/2�� �38�.

The double periodicity of the functions Q���, P��� dis-
cussed in Sec. II B is a consequence of the double periodicity
of elliptic functions. The expressions for the periods �p

�1,2�,
Eq. �11�, follow from Eq. �A1�. The trajectories in the left
well of g�P ,Q� in Fig. 4, where Q�0, can be written in the
form

Ql��� = Q�� + ��p
�1� + �p

�2��/2� ,

Pl��� = P�� + ��p
�1� + �p

�2��/2� . �A3�

This expression shows how to make a transition from one
well to another by moving in complex time, which simplifies
the analysis of oscillator tunneling.

We note that the function cn�� in the expressions for Q , P
�A1� has periods �p

�1�, ��p
�1�+�p

�2�� /2 �38� as a function of �.
It’s period parallelogram is shown in Fig. 5. In this parallelo-
gram cn�� takes on any value twice. Therefore both Q��� and
P��� have two poles located at �=�* ,�**. The values of
�* ,�** are given by the equation
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cn�23/2�g�1/4�� = −  +/ −,

�** =
1

2
�3�p

�1� + �p
�2�� − �*. �A4�

The positions of the poles are shown in Fig. 5 for mJ
0 and
mJ�0, respectively, with �*=2��* /�p

�1� ,�**=2��** /�p
�2�.

For concreteness we choose

Im �* � Im �p
�2�/4. �A5�

Using the relations between the Jacobi elliptic functions �38�
we find that, near the pole at �=�*,

P − iQ � − �� − �*�−1, �A6�

whereas P− iQ is not singular at �=�**. Eq. �A6� was used to
obtain the explicit form of the matrix element of the operator
â= �2��−1/2�P− iQ� in Sec. II C.

APPENDIX B: THE CLASSICAL LIMIT

In this Appendix we calculate the effective inverse tem-
perature R��g� in the limit of large oscillator Planck number
n̄�1. The explicit form of the coefficients in Eq. �27� for R�
follows from the general expression �22� for the transition
rates Wnn�,

�
m

mWn + m n = �
m=−�

�

m�a−m�gn��2,

�
m

m2Wn + m n = �2n̄ + 1� �
m=−�

�

m2�a−m�gn��2. �B1�

The semiclassical matrix elements a−m are given by Eq. �15�.
They are Fourier components of the function a�� ;g� on the
classical trajectory with given g=gn.

Using the completeness condition �m=−�
� eim��2−�1�

=2����2−�1� we can rewrite

�
m=−�

�

m�a−m�g��2 =
1

2i�
�

0

2�

d�a��;g���a*��;g� ,

�
m=−�

�

m2�a−m�g��2 = �2��−1�
0

2�

d���a��;g���a*��;g� ,

�B2�

with a�� ;g�= �2��−1/2�P�� ;g�− iQ�� ;g�� and �=�g��. The
integrals over � can be written as contour integrals over dP,
dQ along the trajectories with given g. The contour integrals
can be further simplified using the Stokes theorem. This
gives

�
m=−�

�

m�a−m�g��2 �
1

2��
M�g� ,

�
m=−�

�

m2�a−m�g��2 �
−1�g�
2��

N�g� , �B3�

where the functions M�g� and N�g� are given by Eq. �28�.
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