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Mobility of a spatially modulated electron liquid on the helium surface
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We present the results of large-scale numerical simulations of the mobility of a two-dimensional electron
liquid on the helium surface in the presence of a one-dimensional periodic potential. Even where the potential is
much weaker than the electron-electron interaction, it can strongly change the mobility. The effect depends on
the interrelation between the potential period and the mean interelectron distance. It is most pronounced where
the period is close to the period of the Wigner crystal that would form if the liquid were cooled to a lower
temperature. The results suggest, in particular, that the correlation length in the electron liquid can be found by
measuring the mobility in a weak periodic potential. The simulations are based on the microscopic model of the
electron scattering by the excitations in helium.
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I. INTRODUCTION

Electrons floating above the surface of liquid helium form
a peculiar two-dimensional (2D) condensed-matter system. Its
major distinctive features are the absence of a disorder po-
tential and the strong electron correlations [1,2]. The absence
of disorder makes it the best-known condensed-matter con-
ductor, with the electron momentum relaxation time ∼10−7 s
for T � 0.3 K [3,4]. The strong correlations lead to Wigner
crystallization for low temperatures [5,6], with the Wigner
crystal having unusual and not yet entirely understood proper-
ties [7,8]. On the higher-temperature side of the transition, the
electrons form a liquid, which displays anomalous classical
and quantum magnetotransport [9–11] and numerous nontriv-
ial nonequilibrium phenomena, see Refs. [12–14] and refer-
ences therein. We emphasize that, even though the electron
liquid is nondegenerate, its dynamics is determined entirely
by the electron-electron interaction. The interaction is not a
perturbation.

Since the electrons float in free space with no leads at-
tached, a major way of studying them is by measuring the
response to a low-frequency electric field or to microwaves.
The response to a spatially uniform field is not directly
affected by the electron-electron interaction, which preserves
the total momentum [15]. However, this interaction modi-
fies, sometimes dramatically, the short-wavelength electron
scattering by helium excitations, in particular by the surface
capillary waves (ripplons) and phonons. In turn, this changes
the electron transport compared to the single-electron trans-
port, as observed in the experiments mentioned above, cf. also
Refs. [16,17]. While the general picture of the many-electron
transport on helium is commonly accepted, we are not aware
of a direct observation of correlations in the electron liquid.
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In this paper, we argue that the electron correlations in the
liquid can be directly revealed by studying electron transport
in the presence of a one-dimensional periodic potential with
period close to the mean interelectron distance. We provide
the results of numerical simulations of the electron mobility
that substantiate this claim. Since the mean interelectron dis-
tance on helium is ∼1 μm, a potential with the corresponding
period can be created by a conventionally grown grating of
electrodes submerged beneath the helium surface, as sketched
in Fig. 1.

A strong effect of the periodic potential on the electron
transport is easy to see already in a single-electron picture.
Here, in the classical regime, the mobility μ⊥ transverse
to the potential troughs will be thermally activated, μ⊥ ∝
exp(−�U/kBT ), where �U is the difference between the
maximum and the minimum of the potential. Strong cor-
relations in the electron liquid modify this picture in two
ways. First, if the potential is much weaker than the electron-
electron interaction and has a period very different from the
mean distance between the electrons as, the effect of the
potential is partly averaged out, as there are electrons both
near the minima and near the maxima of the potential. On
the other hand, even where the potential is weak, but its
period is close to as, the electron density can become strongly
modulated. In this case, the mobility should strongly depend
on the correlation length in the electron liquid, since moving
the system with a modulated density as a whole over the
periodic potential barriers is impossible, in the limit of a large
system. Indeed, our simulations show a strong dependence of
μ⊥ on the correlation length.

Placing a system of interacting particles into a one-
dimensional (1D) periodic potential is known to affect
the transition from the liquid to the ordered phase, cf.
Refs. [18,19]. The change of the critical temperature and of
the very character of the transition is particularly strong in a
system with the Coulomb coupling [20]. This is because such
a system displays a true crystalline order if the period of the
potential is equal to the lattice constant of the system [21].
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FIG. 1. Left panel: Sketch of the electron liquid floating above
the helium surface with a submerged periodic grating of nanowires
that create a periodic one-dimensional potential for the electrons. The
potential is shown in the right panel. It is essentially sinusoidal, if
the electrodes are submerged by a depth that noticeably exceeds the
interelectrode spacing.

Understanding the transport of a crystal in a periodic poten-
tial is interesting and challenging, cf. recent papers [22–24]
and references therein. However, for electrons on helium the
analysis is complicated by a specific mechanism of scattering
by helium excitations [25,26]. Therefore here we do not study
the dynamics of the electron crystal and do not consider the
rich area of commensurate-incommensurate transitions in a
periodic potential, cf. Refs. [27–29]. Our goal in this paper is
to reveal the features of the electron liquid.

Our analysis is based on numerical simulations of a classi-
cal 2D electron system on helium. Simulations of 2D electron
systems have attracted significant attention over the years, cf.
Refs. [20,30–41]. The classical and quantum Monte Carlo
as well as molecular dynamics (MD) methods have been
employed. However, the MD simulations were done by adding
friction forces and uncorrelated noises that drive individual
electrons. Such phenomenological description does not de-
scribe the dynamics of electrons on helium. Rather, the major
mechanism of electron scattering for low temperatures is
scattering by surface capillary waves, ripplons [42,43]. Such
scattering is quasielastic, since ripplons are very slow.

We simulate the mobility directly by taking into account
the scattering by ripplons and studying the current induced by
a weak electric field applied to the electron system. Such a
field unavoidably heats up the electron system. Therefore it
is necessary to incorporate a mechanism of energy exchange
between the electrons and helium. An important mechanism
of such exchange is scattering by phonons [21,44]. Even
though the corresponding scattering rate is small compared
to the rate of scattering by ripplons, it is sufficient to avoid
electron overheating in the range of the fields we study.

The microscopic picture of the electron relaxation for an
electron liquid takes into account the forces that the electrons
exert on each other and that affect their scattering by ripplons
and phonons [9]; it also relies on the assumption of the fast
exchange of energy and momentum between the electrons
[9,10,16]. This exchange is faster than the electron scattering
by the helium excitations. The results of the analysis based
on this picture are in a good agreement with the experiment,
but in fact, the assumption has not been tested directly. As
we show, numerical simulations suggest a way to carry out
this test. However, the central results of the paper refer to
the mobility in a periodic potential and its dependence on the
amplitude of the potential and the temperature.

Below in Sec. II, we describe the model of the system,
briefly outline the simulations and indicate the parameter
range where they apply. In Sec. III, we present results on
the mobility of a uniform electron liquid. In Sec. IV, we
describe the mobility in a sinusoidal periodic potential with
the period incommensurate with the period of the hexagonal
Wigner crystal for the studied electron density; however, we
emphasize that our system is not a crystal, the lattice constant
of the crystal is used just as the spatial scale. Section V is the
central part of the paper. It describes the correlations in the
electron system and the dependence of the electron mobility
on temperature and the amplitude of the potential where the
potential is commensurate with the would-be Wigner crystal.
In particular, there is discussed the activated dependence of
the mobility on the potential amplitude and its relation to the
correlation length in the electron liquid. Section VI briefly
presents the results on the dependence of the electron mobility
on the commensurability parameter. Section VII contains
concluding remarks.

II. MANY-ELECTRON SYSTEM ON HELIUM

A. The Hamiltonian

The Hamiltonian of the electron system coupled to the
helium excitations has the form

H = Hee + HU + HHe + Hi. (1)

The term Hee is a sum of the electron kinetic energy and the
energy of the electron-electron interaction, whereas HU is the
electron energy in the external potential,

Hee =
∑

n

p2
n

2me
+ 1

2

∑
n �=m

e2

|rn − rm| ,

HU =
∑

n

U (rn), U (r) = −A cos Qx. (2)

Here, rn = (xn, yn) and pn = (pxn, pyn) are the 2D coordinate
and momentum of an nth electron, and U (r) is the external
periodic potential. The electrodes creating the potential, see
Fig. 1, partly screen the electron-electron interaction. The
screening depends on the specific geometry, and for reason-
ably deeply submerged thin electrodes is comparatively weak.
The partial screening does not destroy the long-range nature of
the electron-electron interaction. Therefore it should not qual-
itatively change the mobility of the electron liquid. In what
follows it is disregarded. We note that, in the experiment, the
effect of the screening can be independently tested by varying
the height of the helium layer and simultaneously chang-
ing the electrode potential. If the distance to the electrodes
significantly exceeds the interelectrode spacing, the potential
U (rn) is sinusoidal, as indicated in Eq. (2), with 2π/Q being
the interelectrode spacing and A being the amplitude of the
potential.

The term HHe in Eq. (1) is the Hamiltonian of the excita-
tions in the liquid helium that are coupled to the electrons.
These are vibrational modes, i.e., ripplons and phonons,

HHe =
∑
q, α

h̄ωq α â†
q α âq α. (3)
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Here, q is the 2D wave vector of a mode, ωq α is the mode
frequency, and a†

q α and âq α are creation and annihilation
operators. For phonons, the quantum number α is the wave
number qz > 0 of motion transverse to the surface. Ripplons
are surface waves, in this case α is just the label of the
vibrational branch.

The Hamiltonian of the electron coupling to the vibrational
modes is

Hi =
∑

n

∑
q,α

Vq αeiqrn (âq α + â†
−q α ). (4)

The coupling parameters Vq α are well-known. For complete-
ness, they are given in Appendix A. As mentioned previously,
electron scattering by ripplons is the major mechanism of
the electron momentum relaxation, whereas the scattering by
phonons is a major mechanism of the energy relaxation; the
other energy relaxation mechanism is two-ripplon scattering.
Since we allow for energy relaxation primarily to avoid
electron heating when the electrons are additionally driven
by an electric field, we consider only one energy relaxation
mechanism, the phonon scattering.

To study the conductivity of the electron liquid, we add to
the Hamiltonian the term

Hd = eEd

∑
n

xn, (5)

where Ed is the driving field. This field is weak, we chose it to
be much smaller than the fluctuational field that drives an elec-
tron due to electron density fluctuations and is ∼n3/4

s (kBT )1/2

[9,35], where ns is the electron density. As we show, for the
values of Ed we use, the electron heating is weak.

The major parameters of the electron liquid are (i) the
characteristic short-wavelength plasma frequency ωp, which
is the value of the long-wavelength plasma frequency ωl (q) =
ωpq1/2n−1/4

s extended to the wave number q = n1/2
s , cf.

Ref. [6], and (ii) the plasma parameter �, which is the ratio
of the typical interaction energy per electron EC to the kinetic
energy (the analog of rs in degenerate systems),

ωp = (
2πe2n3/2

s /me
)1/2

, � = EC/kBT,

EC = e2(πns)1/2. (6)

Parameter ωp gives the typical rate of the momentum and
energy exchange between the electrons, whereas � shows
how strong the electron correlations are. In the absence of the
periodic potential, Monte Carlo simulations suggest that the
classical electron liquid crystallizes into a Wigner crystal for
� ≈ 140, cf. Ref. [41] and references therein.

We note that sometimes, particularly in comparing the
simulated temperature of the Wigner crystallization with the
experiment, the conditions that the electron system is classical
and nondegenerate are tacitly presumed to be equivalent.
However, a nondegenerate electron system is not necessarily
classical, see Fig. 2. In the absence of a transverse magnetic
field, the characteristic temperature that separates the classical
and quantum electron dynamics can be chosen as h̄ωp/kB,
where ωp is given by Eq. (6). This temperature is an analog
of the Debye temperature of the Wigner crystal, but it also
characterizes the electron dynamics in the liquid phase. It
is shown by the dashed line in Fig. 2. The majority of
experiments on Wigner crystallization on helium were done

FIG. 2. The characteristic boundaries of the classical motion
(blue dashed line) and Wigner crystallization (red solid line) on
the temperature/electron density plane. The plasma frequency ωp =
(2πe2n3/2

s m)1/2 is the characteristic frequency of electron vibrations
about their quasiequilibrium positions in a liquid or solid with the
electron density ns. The temperature T� is the temperature given by
the relation T = e2(πns)1/2/kB�, where � is the plasma parameter
and ns is the electron density. Recent Monte-Carlo simulations of
the classical system [41] set the value of � for crystallization in the
classical limit at � = 140.

for the electron densities ns > 108 cm−2, where the simulated
transition temperature is essentially in the quantum regime. A
comparison with classical simulations requires going to lower
densities or higher temperatures. Our simulations refer to the
temperatures T > h̄ωp/kB.

B. Simulations

We simulate the electron dynamics in a periodic potential
and a superimposed uniform electric field by integrating the
many-electron equations of motion. In contrast to the standard
molecular dynamics simulations, to find the electron mobility
and to describe the features of the many-electron dynamics
on helium, we explicitly incorporate scattering by the helium
excitations into the equations of motion. This is done by
considering scattering as a random event in which the electron
momentum and energy change. The probability of scattering
of a given electron within a short time interval is determined
by the instantaneous value of the electron momentum and by
the temperature of helium.

Both ripplons and phonons are short-range scatterers,
therefore the probability for an electron to scatter is inde-
pendent of the state of other electrons, i.e., the electrons are
scattered independently of each other. The scattering events
are rare, whereas the dynamics between the scattering events
is fully controlled by the electron-electron interaction. This
approach was used [21] to describe self-diffusion and Wigner
crystallization in the absence of a driving electric field.

It should be emphasized that the self-diffusion in an in-
teracting system does not give the long-wavelength diffusion
coefficient. Therefore it does not give the electron mobility.
This is particularly clear from noting that self-diffusion arises
in an isolated electron system at a finite temperature, whereas
the mobility is limited by the momentum transfer from the
electrons to external scatterers, in our case, to ripplons and
phonons in helium.
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Direct simulation of scattering is essential to separate the
momentum and energy relaxation in the system. For electrons
on helium, the quasielastic ripplon scattering rate is at least
an order of magnitude higher than that of inelastic scattering
processes. Separating scattering mechanisms allows us to
capture such effects as electron heating in the driven system.
However, qualitatively, several effects of a periodic potential
described below can also be reproduced in the standard molec-
ular dynamics approach based on solving Langevin equations
of motion with a friction force proportional to the electron
velocity. The phenomenological friction coefficient has to
be assumed small, so that the electron motion is strongly
underdamped.

To obtain reliable results we used a comparatively large
system of 1600 electrons placed into a rectangular area, with
periodic boundary conditions. The ratio of the sides of the
rectangular area along the y and x axes was Ly/Lx = 2/

√
3,

which allows a Wigner crystal with hexagonal symmetry to fit
into the area [30] (however, we studied the parameter range
where Wigner crystallization did not occur). Importantly, we
allowed the system to form a stationary distribution for a long
time of > 106 integration steps per electron and collected the
data for more than 107 steps. More details of the simulations
are given in Appendix A.

III. MOBILITY OF A UNIFORM SYSTEM

The conductivity of a strongly correlated electron system
on helium is not described by the standard Boltzmann kinetic
equation. In this equation, the momentum of an individual
electron is randomized by successive short collisions with the
vibrational excitations in helium and, for elastic scattering,
the conductivity is given by the Drude expression σxx =
e2ns〈τ 〉/me, where 〈τ 〉 is the momentum relaxation time av-
eraged over the Boltzmann distribution of the single-electron
energy.

We are not aware of a closed-form equation for the single-
particle distribution function in the case of strong electron-
electron interaction. In the electron liquid, after a collision
with a vibrational excitation, and prior to the next collision,
the momentum and energy of an individual electron are
randomized by the electron-electron interaction. The long-
wavelength many-electron conductivity can be calculated
starting with the Kubo formula and using a transport equation
for the many-electron Green function. In the case of elastic
scattering, this equation was derived earlier [9,45], with the
account taken of a strong effect of the electron-electron in-
teraction on the scattering by vibrational excitations in the
presence of a magnetic field.

The analysis [45] immediately extends to the case of
inelastic scattering. The corresponding theory is developed in
Ref. [46].

Even though the many-electron theory of magnetoconduc-
tivity was in an excellent agreement with the experiment with
no adjustable parameters [11], the underlying picture of the
many-electron relaxation could not be tested directly. In con-
trast, realistic simulations of the electron dynamics provide a
means for such testing, as they allow one not only to calculate
the (generally nonlinear) conductivity of the many-electron
system, but also to find the electron energy distribution.

FIG. 3. The drift velocity vd (a) and the electron temperature
Teff (b) vs the driving field Ed for a uniform strongly correlated
electron liquid. For Ed = 0, where the electron system is in thermal
equilibrium with the excitations in helium, � = 90. The filled circles
are the simulation data. In (a) the black solid line is the velocity
vd = (eτ/me)Ed calculated with the many-electron relaxation time
τ given by the analytical expressions (18) and (19) of Ref. [46],
which are evaluated for the same coupling to ripplons and phonons
and the same electron density as in the simulations. The inset in
(b) shows the distribution of the electron kinetic energies in the
driven system measured in the frame moving with the drift velocity
vd for Ed/nse = 4.24 × 10−5; the solid line shows the Boltzmann
distribution.

The results of the simulations of the drift velocity of the
spatially uniform electron liquid are presented in Fig. 3(a) and
are compared with the theory. The driving field Ed is scaled
by the field nse, which is the field created by an electron at the
distance on the order of the mean interelectron distance; the
studied fields Ed are much smaller than nse. The velocity is
scaled by the factor ωpn−1/2

s , which is the velocity required to
go over the characteristic interelectron distance over the time
1/ωp, and again, vd 
 ωpn−1/2

s .
For the parameters used in the simulations, the mobility

μ = vd/Ed for small Ed is 3.5 × 107 cm2 V−1 s−1. We note
that the rate of quasielastic ripplon scattering is proportional
to temperature. Therefore the value of μ depends not only
on �, but also independently on T , with μ ∝ 1/T for a
fixed �. The above value and the plot in Fig. 3 refer to
T = 0.354 K, or equivalently, to ns ≈ 1.15 × 108 cm−2 for
� = 90. Strictly speaking, for such ns one should also take
into account the coupling to ripplons due to the field that
presses the electrons against the helium surface [1]; this would
reduce the numerical value of the mobility, but will not affect
the qualitative results discussed below.

The simulations demonstrated that the distribution over the
electron energy is the Boltzmann distribution with the effec-
tive temperature Teff that increases with the driving field. This
increase is shown in Fig. 3(b). Such form of the distribution
confirms the underlying assumption of the analytical theory.
For the fields Ed used in the simulations, the electron heating
is weak and has a negligible effect on the mobility.

IV. ELECTRON LIQUID IN A PERIODIC POTENTIAL

The effect of the periodic potential on the electron system
strongly depends on the interrelation between the period of
the potential 2π/Q and the mean interelectron distance. More
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FIG. 4. The mobility μ⊥ ≡ μxx transverse to the troughs of
the sinusoidal periodic potential (2) with amplitude A scaled by
μeff = e/meωp, see Eq. (11). The results refer to � = 90 and the
commensurability parameter pc = 0.3. The squares and the circles
show the data for the electron liquid and the ideal electron gas,
respectively.

specifically, one can think of the electrons forming a Wigner
crystal with a triangular lattice and define the commensurabil-
ity parameter

pc = (
√

3/2ns)1/2Q/2π ≡ as

√
3Q/4π, (7)

where as = (2/
√

3ns)1/2 is the interelectron distance in the
Wigner crystal.

For the considered one-dimensional potential, pc gives
the ratio of the distance between the rows of the Wigner
crystal as

√
3/2 and the period of the potential. The rows

here have been chosen in such a way as to minimize the
interelectron distance in a row, see Appendix B. Depending
on pc, the periodic potential can lead to Wigner crystallization
for smaller values of the plasma parameter � (6), i.e., for
higher temperatures than in a uniform system, or can impede
crystallization [21].

The effect of a weak potential on crystallization is small
if pc is such that a crystal has to be strongly distorted to fit
into the periodic potential [28]. For a classical Wigner crystal,
the effect is also small if pc is small, as the electron-electron
interaction effectively screens the potential. Respectively, one
expects that not only the mobility along the potential troughs,
but also the mobility transverse to the troughs μ⊥ will be
weakly affected for small pc. This is indeed seen in Fig. 4.

As mentioned in the Introduction, the mobility of the
electron liquid in a periodic potential should strongly differ
from that of an ideal electron gas. This is also seen in Fig. 4.
The scale of the barrier height 2A on which the single-electron
transverse mobility μ⊥ exponentially falls off should be given
by the temperature. In Fig. 4, on the abscissa, the scaled
amplitude of the periodic potential A/EC can be written as

�−1(A/kBT ), and as expected, for the studied � = 90 the
exponential fall-off of μ⊥ with A starts for A/EC � 0.01.

V. “MAXIMALLY COMMENSURATE” POTENTIAL

The effect of the periodic potential is most pronounced in
the case where pc = 1. In this case, if the electrons formed
a crystal, it would be fully commensurate with the potential,
cf. Appendix B. We call such a potential maximally com-
mensurate, with one electron row per one potential trough.
Even where the amplitude of the potential A is much smaller
than the electron interaction energy EC and the temperature
is well above the temperature of the Wigner crystallization in
a uniform system, the electron liquid preferentially occupies
the potential troughs. Respectively, the electron density can be
comparatively strongly periodically modulated.

The strong effect of the maximally commensurate potential
comes from the fact that the potential lifts the translational and
orientational symmetries of the electron liquid and, rather than
competing with the electron correlations, it constructively
interferes with them. Therefore such a potential can signif-
icantly modulate the electron density without changing the
small-amplitude fluctuations about quasiequilibrium electron
positions in the liquid.

The latter can be seen from the following argument. A
single electron localized at the minimum of a potential trough
vibrates normal to the trough with frequency (AQ2/me)1/2. On
the other hand, an electron in an unconfined electron liquid vi-
brates about its quasiequilibrium position with frequency ∼ωp

(6). For pc = 1, the ratio of the squares of these frequencies is
(A/EC )4π3/2/

√
3. In the range of the potential strengths and

electron densities that we studied this ratio was very small (it
is equal to ≈ 0.02 for A/EC = 0.0016).

By the same token, a maximally commensurate potential
may be expected to weakly affect the relative positions of
the electrons. Those are characterized by the two-particle
correlation function. For a system in a periodic potential, it
can be defined as

g(2)
U (r′, r′′) = 1

ρs(r′)ρs(r′′)

∑
n,m

′
δ(r′ − rn)δ(r′′ − rm), (8)

where ρs(r) is the electron density. For ρs(r) = const, Eq. (8)
goes over into the standard expression for the pair correlation
function of a spatially uniform system.

For the considered potential U (r), the density ρs(r) is
periodic in x with period 2π/Q and is independent of y; its
average value is ns,

ρs(r) = ns

[
1 +

∑
m

αm cos(mQx)

]
. (9)

The coefficients αm quickly fall off with the increasing m for
a weak potential, where they can be found by a perturbation
theory in A/kBT . They can be found also if the electrons are
strongly confined within the troughs, see Appendix B.

An example of ρs(r) is shown in Fig. 5. The result refers
to a small ratio of the potential amplitude to temperature,
A/kBT = �A/EC ≈ 0.14. The modulation of ρs(r) is much
stronger than it would be in the single-electron picture (∝
exp[−(A/kBT ) cos Qx]). This is the result of the commensu-
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(a) (b)

(c) (d)

FIG. 5. (a) The pair correlation function g̃(2)(r), Eq. (10), for
the maximally commensurate periodic potential, pc = 1. The scaled
amplitude of the potential is A/EC = 0.00157, and the plasma pa-
rameter is � = 90. (b) The pair correlation function in the absence of
a potential for the same � = 90. (c) The averaged over time electron
density along the direction x of the oscillations of the potential for
the same parameters as in (a). (d) One-dimensional slices of the pair
correlation function g̃(2)(r) in (a).

rability: the potential constructively interferes with the strong
electron correlations and just lifts the translational and rota-
tional degeneracy of the system.

The function g(2)
U (r′, r′′) defined by Eq. (8) depends on y′ −

y′′ and does not change if both x′ and x′′ are incremented by
the period of the potential 2π/Q. Therefore, if written as a
function of x′ − x′′ and (x′ + x′′)/2, it is a periodic function
of (x′ + x′′)/2. In addition, g(2)

U (r′, r′′) → 1 for |x′ − x′′|, |y′ −
y′′| → ∞.

One can also consider the zeroth Fourier component of
g(2)

U (r′, r′′) with respect to (x′ + x′′)/2 and introduce the func-
tion

g̃(2)(r) = ns

N

∫
dRg(2)

U

(
R + 1

2
r, R − 1

2
r
)

= ns

N

∑
n,m

′
δ[r − (rn − rm)]/[ρs(rn)ρs(rm)], (10)

where N is the total number of electrons. Function g̃(2)(r) is
an analog of the pair correlation function of a uniform system.

The correlation function g̃(2)(r) is shown in Fig. 5. Re-
markably, even though the electron density is strongly peri-
odically modulated by the weak periodic potential used in
the calculation, g̃(2) is very similar to the pair correlation
function of a spatially uniform system for the same �, which
is also shown in Fig. 5. Both with and without the potential,
the correlations in the electron liquid decay over several
interelectron distances. However, because of the potential,
the decay of g̃(2)(r) in the modulation direction (the x axis)
is slightly slower. Moreover, as seen from Fig. 5(a), g̃(2)(r)
shows sixfold symmetry, with the y axis and the directions
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FIG. 6. Delaunay triangulation for a snapshot of the electron
liquid in the periodic potential of amplitude A/EC = 0.00157; pc =
1. The electrons are represented by vertices. The plasma parameter
is � = 50 and 90 for the left and right panels, respectively.

obtained by rotating this axis by 60◦ being the directions of
the fastest decay.

Decay of electron correlations can be also seen from the
Delaunay triangulation shown in Fig. 6. The short-range order
is pronounced for the both values of the plasma parameter �

in this figure. However, for larger �, the number of unbound
vortices with 5 or 7 nearest neighbors is smaller. As �

increases, such defects play an increasingly important role in
the electron dynamics.

It is also seen from Fig. 6 that, for � = 90, already a single
snapshot shows that the density is anisotropic and periodically
modulated along the x axis. For the shown snapshot, the
Fourier spectrum of the density as a function of x displays
a pronounced peak at the wave number Q of the potential.
The peak has height ≈ 0.25/ns and width at half-maximum ≈
0.05/as. Visible in the spectrum is also a peak at 2Q, but with
a smaller amplitude and a larger width. The overall spectrum
is noisy for a single snapshot, in contrast to the results of
Fig. 5(c) obtained by averaging over many snapshots.

A. Electron mobility transverse to the potential troughs

Placing the electron system into a sufficiently strong com-
mensurate periodic potential should strongly affect the elec-
tron mobility. In particular, the mobility transverse to the
potential troughs μ⊥ should decrease. This decrease should
sensitively depend on the amplitude of the potential and the
temperature. In turn, as we show, this dependence may be used
to reveal and characterize the correlations in the system.

It is instructive to compare the mobility μ⊥ with the self-
diffusion coefficient. For a spatially uniform classical 2D
electron liquid, the self-diffusion coefficient is of the order
of D0 = kBT/meωp [21], an estimate close to the De Gennes
estimate for a normal three-dimensional liquid [50]. In our
simulations, we used a fixed electron density and varied the
temperature. Then one can scale the self-diffusion coefficient
and the mobility by the temperature-independent parameters
Deff and μeff , respectively,

Deff = ωp/ns = 2
√

π �D0, μeff = e/meωp. (11)

For the electron liquid in the absence of a periodic potential
and far from the crystallization transition, we expect D ∼
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FIG. 7. The mobility of the electron liquid μ⊥ transverse to the
troughs of the periodic potential (left y axis) and the coefficients of
self-diffusion along (D‖) and transverse (D⊥) to the troughs (right
y axis) as functions of the reciprocal temperature T −1 ∝ � (the
electron density is fixed). The results refer to the maximally com-
mensurate potential, pc = 1. The amplitudes of the potential in the
left and right panels are A/EC = 0.000628 and 0.00157, respectively.

D0 
 Deff and μ⊥ ∼ eτ/me � μeff , where τ is the electron
relaxation time due to the scattering by ripplons, τ � ω−1

p .
When the electron liquid is in a 1D periodic potential,

both the mobility and the self-diffusion become anisotropic.
Similar to the case of the mobility, one can introduce the
coefficients of self-diffusion along and transverse to the
troughs, D‖ and D⊥, respectively. They are defined by
the long-time mean-square displacements of an electron in
the corresponding directions, 〈[yn(t ) − yn(0)]2〉 = 2D‖t and
〈[xn(t ) − xn(0)]2〉 = 2D⊥t . Simulations of these coefficients
are described in Ref. [21].

The mobility along the troughs is limited by the scattering
by ripplons and should be weakly affected by the potential.
We have indeed seen this in the simulations and do not
discuss this mobility. In contrast, self-diffusion is controlled
by the electron correlations, and therefore the coefficient
of self-diffusion along the troughs D‖ is strongly affected
by the commensurate potential. Moreover, when the system
freezes into a Wigner crystal, the self-diffusion along the
troughs vanishes [21], whereas the mobility along the troughs
does not.

In Fig. 7, we show the dependence of the mobility trans-
verse to the troughs μ⊥ and the self-diffusion coefficients D‖
and D⊥ on temperature for two values of the potential ampli-
tude A. In Fig. 8, we show the dependence of these parameters
on A for a fixed temperature. Self-diffusion monotonically
decreases with the decreasing temperature (increasing �) and
with the increasing potential amplitude. Moreover, the self-
diffusion coefficients D‖ and D⊥ are close to each other for
the considered weak potential in Fig. 7, A 
 EC (they become
very different for a stronger potential [21]).

In contrast, for a very weak potential, Fig. 7(a), the mobil-
ity depends on T nonmonotonically, first increasing with the
decreasing T for higher temperature. This increase is related
to the decrease of the rate of electron scattering by ripplons,
which is ∝ T . However, for still smaller T , the mobility
decreases with the decreasing T (increasing �).

Figure 8 shows that μ⊥ monotonically decreases with the
increasing potential amplitude A. This decrease is close to
exponential. Moreover, for the value of the plasma parameter
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FIG. 8. (a) The mobility of the electron liquid μ⊥ transverse
to the potential troughs (left y-axis) and the coefficients of self-
diffusion along (D‖) and transverse (D⊥) to the troughs (right
y-axis) as functions of the potential amplitude. The results refer to
the maximally commensurate potential, pc = 1, and to the plasma
parameter � = 90. Note the difference in the scales compared to
Fig. 7(b). (b) The logarithm of the transverse mobility for the same
� = 90.

� = 90 shown in the figure, the mobility falls off with the
increasing A sharper than the self-diffusion coefficients.

Both the transverse mobility and the self-diffusion should
vanish where electrons crystallize in a commensurate poten-
tial. The mobility is advantageous for finding the Wigner
crystallization temperature as it is much easier to access in the
experiment than the self-diffusion. However, measuring a very
small mobility is complicated not only in the experiment, but
also in the simulations, as seen from the error bars in Fig. 8.

We note the difference in the scales in Figs. 7(b) and 8(a).
The scale for μ⊥ is larger whereas the scale for D‖ and D⊥ is
smaller in 8(a). On the scale of Fig. 7, the difference between
the parameter values where the mobility and the self-diffusion
become close to zero is within the error bars.

To gain a better feeling for the scaling factors in Figs. 7
and 8, it is instructive to look at the Einstein ratio μ⊥kBT/eD,
which in the single-electron approximation should be equal to
one. For our scaling factors, we have

μeffkBT (eDeff )−1 = (2
√

π �)−1, (12)

i.e., for � = 102, we have μeff kBT/eDeff ≈ 1/300. Therefore,
for μ⊥ and D measured in the units of μeff and Deff , if
the Einstein relation held, the Einstein ratio would be ∼300.
Instead, as seen from Figs. 7 and 8, it is ∼104. This shows that,
even though the mobility is reduced by the periodic potential,
it is still orders of magnitude higher than what follows from
the Einstein relation. We emphasize again that D⊥ and D‖ are
the coefficients of self-diffusion, not of the long-wavelength
diffusion, therefore the Einstein relation should not hold; it
is just that the difference with this relation is as large as two
orders of magnitude.

B. Many-electron nature of overcoming the barriers

The transverse drift in the commensurate potential involves
overcoming the periodically repeated potential barriers. One
can picture the transport of the electron liquid in a small
electric field along the x axis as motion in a slightly tilted
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FIG. 9. The mobility μ⊥ of the strongly correlated electron sys-
tem as a function of the potential amplitude A for three values of �.
The dashed lines show the least squares fit.

washboard potential. If the electron system were incompress-
ible and formed a Wigner crystal, it would not move in
the commensurate potential, as such motion would involve
overcoming a barrier by all electrons at a time, i.e., the barrier
height would be proportional to the system size. The very
occurrence of the mobility is thus due to the correlation length
of the electron system being finite. Still one would expect that
the mobility will exponentially depend on the barrier height.
The corresponding dependence has been indeed seen in the
simulations and is shown in Fig. 9 for several values of �.

To understand the result one can think of a cartoon of the
electron liquid as made up of “clusters” with a typical size
given by the correlation length ξ . The electrons are reasonably
well ordered within clusters. Such clusters can be seen in
Fig. 6, particularly distinctly for � = 90. The number of
electrons in a cluster is ∼π (ξ/as)2. The mobility results from
the electron motion in which the clusters rearrange and move
while the correlation length is preserved. For the considered
case of maximal commensurability, the ultimate result is that
the areas with a typical size given by the correlation length
go over the potential barriers of height 2A. Such transitions
are thermally activated. Thus the mobility should contain the
Arrhenius factor,

μ⊥ ∝ exp(−γ A/EC ), γ ∼ 2π �ξ 2/a2
s . (13)

We note that �A/EC ≡ A/kBT , so that the exponent in μ⊥ is
γ A/EC ∼ (2πξ 2/a2

s )A/kBT . It is important that, although the
mobility is activated, γ ∝ � ∝ 1/T , the overall dependence
of γ on temperature is more complicated than just 1/T ,
because the correlation length depends on temperature. This
leads to a nonexponential dependence of μ⊥ on 1/T . Such
a dependence has been seen in our simulations and can be
inferred from Fig. 7.

The picture of a locally nonuniform transport implies
internal friction in the electron liquid, with the momentum
of the system as a whole being ultimately transferred to the
periodic potential. If this is indeed the case, the mobility μ⊥
in the regime where it is activated, Eq. (13), should become
largely independent of the ripplon scattering, which controls
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FIG. 10. A comparison of the mobility μ⊥ of the electron liquid
as a function of the potential amplitude A with and without electron
scattering by ripplons. The results refer to � = 90. The inset shows
the results in the region A/EC > 3.8 × 10−4, where the mobility is
described by the activation law (13). Notice the different scales of
μ⊥ in the main figure and the inset.

the mobility in the absence of the potential. This is indeed
seen from Fig. 10.

It is important that, for the potential amplitudes we are
studying, the interaction energy is much larger than the ampli-
tude of the potential. Therefore the correlation length should
be approximately the same as in the absence of the potential,
the picture corroborated by Fig. 5. We determined the correla-
tion length approximately from the radial distribution function
g(r) of the electron liquid in the absence of the potential,

g(r) = (2πrnsN )−1
∑
n,m

′
δ(r − |rn − rm|). (14)

This expression immediately follows from Eq. (10) if ρs(r) =
ns and the system is isotropic.

The radial distribution function for an isolated electron
system was studied earlier, cf. [30,33]. For the large system
studied here it is shown in Fig. 11(a). It has a familiar for a
liquid form of decaying oscillations, with g(r) approaching
1 for large r/as. If the decay of g(r) − 1 is exponential, the
correlation length can be associated with the decay length.
However, for not large r/as, the decay is not exponential and
not a modulated exponential. On the other hand, for very
large r/as the complicated form and the finite resolution of
the calculated g(r) do not allow us to characterize the decay
quantitatively.

The procedure we adopted for estimating the correlation
length ξ was to fit the heights of the resolved maxima of
oscillating g(r) by exponentials, starting with the second
maximum, as shown by the dashed lines in Fig. 11(a). We
then associate ξ with the corresponding decay length. We
calculated ξ for � varying from � = 30 to � = 110 with step
�� = 10. In this range the values of ξ are increasing with the
increasing � from ≈ 1.0 as to ≈ 1.7 as.

Even after the first maximum of g(r) is skipped, the actual
decay of the heights of the maxima of g(r) is still not strictly
exponential. This leads to an uncertainty in ξ . To estimate this
uncertainty we compared the values of ξ obtained by omitting,
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FIG. 11. (a) Solid lines: the radial distribution function of the
electron liquid in the absence of a periodic potential, Eq. (14), for
several values of �. Dashed lines: the exponential fit to the envelope
of the oscillations of g(r). (b) Data points: the parameter γ in the
activation law (13). It is extracted for several values of � from the
falloff of μ⊥ with the increasing potential amplitude using Eq. (16).
This parameter is plotted against the parameter γc obtained from the
decay length ξ of the radial distribution function seen in (a). The
straight solid line that goes through the origin shows the least squares
fit to the relation γ = γc. From this fit we estimate κ = 0.92 ± 0.04
in Eq. (15). The error bars are explained in the text.

along with the first, the second or the last visible maximum
of g(r). The results are shown by the horizontal error bars
in Fig. 11(b). The vertical error bars show the error of the
exponential fit of the mobility as a function of the amplitude
of the periodic potential, see Fig. 9.

The found values of ξ are close to the mean interelectron
distance as. Meanwhile, in Eq. (13) the correlation length was
assumed to be large compared to as. One can, empirically,
extrapolate the estimate of γ in Eq. (13) to the range ξ ∼ as

by replacing ξ → ξ + as, i.e., by setting γ = γc, with

γc = 2πκ�(ξ + as)2/a2
s . (15)

Here, κ is a numerical coefficient, κ ∼ 1.
Figure 11(b) shows a comparison between the factor γc,

which is obtained from the pair correlation function of a
spatially uniform electron liquid, with the factor

γ = − d ln μ⊥
d (A/EC )

, (16)

extracted from the entirely different simulations of the trans-
verse mobility μ⊥ in a periodic potential. It is seen that, in a
broad parameter range, γ as determined from the mobility is
proportional to γc determined from the decay of correlations.

The proportionality of γ and γc provides a reasonably
strong argument in favor of the proposed qualitative picture
of the thermally activated mobility in a commensurate peri-
odic potential. Moreover, and arguably more importantly, the
results suggest that the correlation length in the electron liquid
can be determined by measuring the transverse mobility in a
weak maximally commensurate periodic potential.

VI. TRANSVERSE MOBILITY FOR DIFFERENT VALUES
OF THE COMMENSURABILITY PARAMETER

The previous section described the mobility μ⊥ where the
electron system is a liquid, but the electron crystal with the
same density is maximally commensurate with the external
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FIG. 12. The mobility μ⊥ of the strongly correlated electron
system as a function of the commensurability ratio pc for � = 50,
90, and 130. The scaled potential amplitude us A/EC = 0.00157 for
all three cases.

potential, the commensurability parameter (7) was pc = 1.
The electron density in this case was strongly modulated by
even a week potential that we used. One can expect that
the electron density will be also modulated for pc > 1, with
the modulation becoming the strongest where the potential
is commensurate, including pc = √

3 and pc = 2, see Ap-
pendixes B and C. This should reduce the mobility μ⊥.

For electrons on helium, of interest are the values of pc,
which are not large. Indeed, the potential created by the
electrodes in Fig. 1, exponentially falls off with the decreasing
period 2π/Q, for a given height of the helium layer. Therefore
the results below are limited to pc � 2.

In Fig. 12, we show how μ⊥ varies with the varying pc.
In the simulations, pc is changed by changing the period of
the potential, while keeping the mean interelectron distance
as fixed. Our simulation cell is a rectangle that contains
1600 electrons and has the dimensions Ly = 40as and Lx =
40(

√
3/2)as. To satisfy the periodic boundary conditions, the

period of the potential should be a simple fraction of Lx,
namely Lx/n with an integer n. Keeping in mind that, if the
electrons crystallized, there would be 40 electron rows in the
x direction, we chose the commensurability parameter to take
on the values n/40. We used an integer n from 1 to 80.

It is seen from Fig. 12 that a small periodic potential
weakly affects the mobility for pc 
 1. This is corroborated
by the dependence of μ⊥ on the potential amplitude A shown
in Fig. 4 for pc = 3/10. It is also seen in Fig. 12 that for
all pc � 0.5 the mobility is close to that in the absence of a
periodic potential in the studied range of A/EC . The difference
between the values of μ⊥ for small pc and different � comes
from the increase of the rate of scattering by ripplons with
the increasing temperature, i.e., with the decreasing � for the
given electron density.

As pc approaches 1 from below, the mobility sharply drops.
The decrease of μ⊥ becomes steeper with the increasing �.
For pc close to one, the strong electron correlations do not
“compete” with the periodic potential, electrons can reason-
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ably well fit into the repeated potential minima (perfectly fit,
for pc = 1). Essentially, the potential competes only with the
disorder in the electron liquid. This is why it makes a strong
effect even for A/Ec ∼ 10−2, provided � = EC/kBT � 1.

For � = 130 and pc = 1, the electrons form a Wigner crys-
tal and the mobility becomes zero. For this �, the electrons
crystallize also for other commensurate values pc = √

3 and
pc = 2.

In the range 1 � pc � 2, the mobility in the liquid phase is
smaller than for pc 
 1 even for an incommensurate poten-
tial. As seen from Fig. 12, the dependence on � is inverted
compared to the case of small pc: the larger �, the smaller the
mobility. Such behavior suggests that the mobility is limited
by the momentum transfer to the potential rather than to the
ripplons.

As electron clusters move and rearrange in the incom-
mensurate potential, some electrons go “uphill” whereas the
others go “downhill.” The energy gains and losses are not
exactly locally balanced, which should lead to an exponential
dependence of μ⊥ on A. Such a dependence has been indeed
seen in the simulations, and for pc = 1.4 it is presented
in Appendix C. The rate of the decrease of log μ⊥ with
the increasing A is reduced for an incommensurate potential
compared to the case pc = 1. Also, as Fig. 12 shows, we did
not find a pronounced dip in the mobility near pc = √

3 for
� � 90.

It should be noted that the electron vibrations about their
quasiequilibrium positions in the electron liquid do not av-
erage out the potential. Indeed, it follows from the estimate
in Sec. V that the frequency of electron vibrations is ∼ωp for
A/EC 
 1 and pc ∼ 1. Then the mean-square displacement of
an electron about its quasiequilibrium position (kBT/meω

2
p) ∼

a2
s /� is small compared to the squared period of the potential

for pc ∼ 1 and � � 1, cf. Appendix B.

VII. CONCLUSIONS

The presented numerical simulations of the electron liquid
on helium have shown several effects of the strong electron
correlations on the electron mobility. The results suggest a
way to directly characterize these correlations in an experi-
ment.

For a spatially uniform electron system, the simulations
have confirmed the mechanism of transport inferred in the
earlier work [9,10,16]. The underlying picture in that work is
that the electron scattering by the helium excitations is weak,
whereas the electron-electron interaction is strong. Yet in the
classical regime kBT � h̄ωp and in the absence of a magnetic
field, the major effect of the electron-electron interaction on
the mobility is the interelectron momentum exchange, which
is faster than the momentum exchange with the helium excita-
tions. This picture allowed calculating the mobility explicitly.
The excellent agreement of our simulations with the analytical
results provides a quantitative basis for the above picture.
Moreover, the simulations have explicitly shown that, when
the electron system is slightly heated by the external field, the
distribution of the electron kinetic energy is of the Maxwell-
Boltzmann form in the co-moving frame, with a temperature
higher than the temperature of the helium.

The central results of the paper refer to the mobility of
the electron liquid placed into a sinusoidal one-dimensional
potential. We studied the parameter range where the potential
amplitude A was three orders of magnitude smaller than the
electron interaction energy EC . Yet the effect of the potential
can be strong. It depends on the interrelation between the
mean interelectron spacing as and the period of the potential
2π/Q. More specifically, it depends on whether the potential
is commensurate with the electron crystal with the same
spacing, even though the results refer to the region where the
electrons form a liquid, not a crystal.

We found that, for asQ/2π 
 1, the effect of an incom-
mensurate potential on the mobility is effectively washed out
by strong electron correlations. Even where A/kBT � 1 and
the single-electron mobility is strongly reduced, the many-
electron mobility shows a very small change. This can be
understood by noticing that, for EC � A, the electron system
averages out the potential. At the same time, the potential is
smooth on the electron thermal wavelength, and therefore the
potential does not add to the electron scattering.

A qualitatively different behavior is displayed in a com-
mensurate potential. Even where the two-particle correlation
function is weakly modified compared to the case of no poten-
tial, the electron density becomes periodically modulated with
an amplitude significantly larger than in the single-electron
picture. The mobility transverse to the potential troughs μ⊥
displays an exponential dependence on the potential ampli-
tude A. We associate the very mechanism of the mobility with
the absence of long-range order. In the picture suggested by
the results, the mobility results from the correlated many-
electron activated transitions within areas with the typical size
given by the correlation length in the liquid.

We have found a simple relation between the correlation
length in the electron system in the absence of the periodic
potential and the activated fall-off of the mobility with the
increasing A for A 
 EC . This relation provides a means for
measuring the electron correlation length in the experiment.
We are not aware of other means to measure the correlation
length of the nondegenerate electron liquid on the surface of
helium.

The parameters used in the simulations are within the
typical range of the parameters used in the experiments on
electrons on helium, and the proposed weak one-dimensional
potential with a period ∼1 μm can be implemented with
conventional technology. The system is advantageous for
studying the effect of commensurability given that the elec-
tron density can be easily varied. Our results show that these
effects are strong even for a classical electron liquid. As
a future direction, it would be interesting to study these
effects where the electron dynamics becomes quantum, even
though the system remains nondegenerate and therefore there
is no need to have high electron densities, which significantly
simplifies an experimental implementation.
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APPENDIX A: OUTLINE OF THE SIMULATIONS

1. Matrix elements of coupling to the helium excitations

A key distinctive part of the simulations is the incorpo-
ration of the actual elastic and inelastic scattering into the
electron equations of motion. The scattering is due to the
coupling (4) to ripplons and phonons in liquid helium. The
coupling parameters Vq α are well-known [1,21,44,51]. We
give them here for completeness.

We are interested in the case of a weak field that presses
electrons to the surface. Then the coupling to ripplons comes
primarily from the ripplon-induced change of the image po-
tential that attracts the electrons to the helium surface. The
image potential is also changed by phonons, as they modulate
the helium density and thus the dielectric constant. The cor-
responding changes of the potential energy of an electron at a
distance z from the surface are, respectively,

V (rp)
q (z) = �

(h̄q)1/2

(2ρωqS)1/2
z−2[1 − qzK1(qz)],

V (ph)
q,qz

(z) = −i�q(h̄ωq,qz/V v2
HeρHe)1/2

×
∫ 0

−∞
dz′ sin(qzz′)

z − z′ K1(q(z − z′)). (A1)

Here, S is the area of the system, � = e2(ε − 1)/4(ε + 1)
(ε is the dielectric constant of helium, ε ≈ 1.057), vHe is the
speed of sound in helium, ρHe is the helium density, and K1(x)
is the Bessel function. The parameters Vqα of the coupling
Hamiltonian (4) are obtained by calculating the diagonal
matrix elements of the functions (A1) on the wave function
ψ0(z) of the ground state of electron motion normal to the
helium surface.

2. The calculation

The simulation procedure used in this work is described in
detail in [21]. Here we briefly summarize the most important
aspects. The simulations were conducted using HOOMD-BLUE

[52,53] with a custom interaction potential, integrator, and
external forces.

As indicated in the main text, we consider N = 1600
electrons placed into a rectangular cell with the aspect ra-
tio of Lx/Ly = √

3/2 and periodic boundary conditions. If
an electron crosses the cell boundary, it is introduced back
into the cell from the opposite side. Electrons interact via
a long-range Coulomb force which is handled through the
Ewald summation [30]. We consider an external potential (2)
imposed on electrons, which is periodic along the x axis.
The period is chosen so that the wave vector Q satisfies the
condition QLx = 2πn with a positive integer n. The time step
is chosen to be �t ≈ (2π/ωp)/50. We have checked that the
results do not change upon reducing the step further.

We integrate equations of motion with the velocity Verlet
algorithm modified for direct simulation of scattering events
by excitations in helium. The inelastic scattering provides a
thermal bath that maintains a set temperature in the electron
system. However, since the inelastic scattering rate is low, the
effective temperature of the system may deviate slightly from
the bath temperature. We define the effective temperature in a

FIG. 13. Schematic of a triangular lattice placed in a 1D periodic
potential U = −A cos Qx. The dashed lines show the maxima of
the potential. The left panel refers to what we call the maximally
commensurate potential, pc = 1, whereas the right panel refers to
pc = √

3. This sketch illustrates the definition (7) of the commensu-
rability parameter pc. In simulations, we study the liquid phase with
no crystalline order.

nonequilibrium state as follows:

Teff (t ) ≡ (me/2NkB)
∑

n

(vn(t ) − vd )2, (A2)

where

vd ≡ 1

NNt

N∑
n=1

Nt∑
s=0

vn(s�t ) (A3)

is the drift velocity of the system averaged over time. Nt is the
number of time steps and s is the time step index.

In a typical simulation, we prepare the system in a trian-
gular lattice with one side of the triangle oriented along the
y axis. Initial velocities are randomly oriented with the ab-
solute velocity values distributed according to the Boltzmann
distribution for a set temperature. External drive electric field
Ed is applied along the x axis. We allow the driven system
to stabilize in a stationary state for 106 time steps before
collecting data. This stabilization time is sufficient for the
relatively high temperatures considered here.

We found that the results did not change when the system
size changed from 1024 to 1600 electrons. Some results were
also checked for different aspect ratios of the simulation box.
The absence of changes indicates that the system size effects
are within the simulation uncertainty.

The natural parameter of the state of the electron sys-
tem in the classical regime is � = e2(πns)1/2/kBT . However,
the electron mobility depends on T separately. In our finite
system, we cannot vary the density ns continuously while
maintaining a given ratio of the interelectron distance and
the periodic potential. Therefore our results for different � are
obtained by varying the temperature.

APPENDIX B: ELECTRON DENSITY IN THE
MAXIMALLY COMMENSURATE POTENTIAL

Two simple types of the commensurate potentials are
shown in Fig. 13. For the potential shown in the left panel, the
distance between the electrons in the same potential trough
is equal to the mean interelectron distance as and pc = 1.
For the potential shown in the right panel, this distance is
as

√
3 and pc = √

3. Respectively, the distances between the
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FIG. 14. Plots (a) and (b) show the pair correlation function of
the electron liquid g̃(2)(r), Eq. (10), for pc = 1.4 and pc = 1.725 ≈√

3, respectively. Plots (c) and (d) show the averaged over time
electron density along the x direction for the same parameters as
in (a) and (b), respectively. The scaled amplitude of the potential is
A/EC = 0.00157, and the plasma parameter is � = 90 in all panels.

troughs differ by the factor
√

3. Each of these potentials leads
to a series of potentials with pc = n or pc = n

√
3, into which

the electron crystal can fit with no distortion. As mentioned
in the text, we call the potential with pc = 1 the maximally
commensurate potential.

If the electrons are placed into a sufficiently strong max-
imally commensurate periodic potential (pc = 1) but do not
crystallize, one can approximate the density as uniform along
the potential troughs and a sum of Gaussian peaks in the
transverse direction,

ρs(r) ≈ ns

κQ

√
2π

∑
n

exp[−(x − 2πn/Q)2/2κ
2]. (B1)

The distribution ρ(r) corresponds to a set of “single-electron”
wires: one wire per trough with the mean interelectron dis-
tance along the trough equal to the mean interelectron spacing
as. The width of the peaks κ can be roughly estimated by
assuming Boltzmann distribution about the minima of U (r)
and further assuming that the potential near a given minimum,
in addition to U (r), has a contribution from the electron
“wires” localized in other minima, i.e., disregarding the short-
range ordering along the wire. This gives κ = [kBT/(AQ2 +
1
3πe2nsQ)]1/2. For the considered case of maximum commen-
surability this can be also written as κ = (kBT/Q2)1/2[A +
EC (

√
3/72π )1/2]−1/2. According to this estimate, the major

factor in the width of the peaks is the electron-electron in-
teraction, for the considered range of the potential strength
A 
 EC .

From Eq. (B1), for a strongly confined liquid, the Fourier
components αm of the electron density in Eq. (9) are

αm = 2 exp(−m2
κ

2Q2/2). (B2)
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FIG. 15. The mobility transverse to the potential troughs as a
function of the potential amplitude A for pc = 1.4 on the linear
(a) and logarithmic (b) scales. The plasma parameter � = 90.

They fall off exponentially fast with the increasing m for
m � 1/κQ.

APPENDIX C: ELECTRON CORRELATIONS AND THE
MOBILITY FOR pc > 1

We defined pc using the Wigner crystal with recip-
rocal lattice vectors G1 = 2πa−1

s (−1/
√

3, 1) and G2 =
2πa−1

s (2/
√

3, 0), so that the maximal commensurability pc =
1 corresponded to the reciprocal lattice vector of the one-
dimensional periodic potential Q = G2x. Other commensu-
rate values of Q for a one-dimensional potential are Q =
n1(2G1 + G2) + n2G2 with integer n1, n2. Respectively, the
smallest values of pc that correspond to a commensurate
lattice are pc = 1,

√
3, 2, . . .

As shown in the main text, in the range 1 � pc � 2 the
transverse mobility μ⊥ is significantly smaller than in the
absence of the periodic potential. This is related to the par-
tial adjustment of the electron liquid to the potential. To
demonstrate this adjustment, in Fig. 14, we show the density
modulation and the pair correlation function for pc = 1.4,
which lies between the two smallest values corresponding to
the commensurability, and for pc = 1.725, which is close to
the commensurate case pc = √

3.
It is seen from Figs. 5 and 14 that the pair correlation

function weakly depends on pc for the considered weak
periodic potential. In contrast, the density modulation is sig-
nificantly stronger in the commensurate case than away from
commensurability. Moreover, it is significantly stronger for
pc = 1 than for pc = √

3, i.e., for the electrons being spaced
more closely within the potential trough and, respectively, for
a larger distance between the troughs, cf. Fig. 13.

Figure 15 shows that the electron mobility displays an
exponential dependence on the potential amplitude even away
from the commensurability, where pc = 1.4. However, the
values of the mobility are much larger than in the maxi-
mally commensurate case pc = 1 shown in Fig. 10. This is
a consequence of the partial averaging of the incommensurate
potential in the electron liquid.

245435-12
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Mobility of a spatially modulated electron liquid on the helium surface
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I. MANY-ELECTRON RELAXATION TIME IN
THE PRESENCE OF INELASTIC SCATTERING

The goal of this Appendix is to derive the quantum ki-
netic equation for the strongly correlated electron system
on helium with the account taken of inelastic scattering.
We will follow the steps outlined in the analysis of elastic
scattering [1]. At the heart of the analysis is the as-
sumption that the rate at which the electrons exchange
energy and momentum with each other, which is charac-

terized by the plasma frequency ωp = (2πe2n
3/2
s /me)

1/2

(ns is the electron density), is much faster than the rate
of scattering by the excitations in helium.

To simplify the analysis, we will assume that there is no
magnetic field applied to the electron system. Incorpo-
rating the field is straightforward, similar to how it was
done for the case of elastic scattering. We will further
assume that the electron system is nearly classical,

kBT � ~ωp ∼ eEflλ (1)

where λ = ~/(2mekBT )1/2 is the thermal wavelength
and Efl is the fluctuational electric field that drives
an electron due to the density fluctuations in the elec-
tron system. We note that, in the case of elastic
scattering, quantum corrections to the scattering rate
∼ (eEflλ/kBT )2/48 contains a small numerical factor,
which suggests that the theory applies even where the
ratio kBT/~ωp is not very small.

When the condition (1) holds, an electron has a well-
defined kinetic energy p2/2me ∼ kBT and a well-defined
potential energy in the field of other electrons. The un-
certainty of each of these energies is determined by the
smearing of the electron wave packet λ– . For an electron
in an electric field Efl this uncertainty is given by eEflλ,
and it is small compared to kBT .

A. Transport equation in the operator form

The long-wavelength many-electron conductivity
σxx(ω) is expressed in the standard way, using the
Kubo formula, in terms of the Fourier transform of the

∗ Pemanent address: SiTime Corporation, 5451 Patrick Henry
Drive Santa Clara, CA 95054. USA

correlator of the total electron momentum P̂ =
∑
n p̂n,

〈P̂x(t)P̂x(0)〉 = Tre

[
eiĤeetP̂xe

−iĤeetĜx(t)
]
,

Ĝx(t) = Z−1TrHe

[
Ŝ(t)P̂xe

−βĤ Ŝ+(t)
]
,

Ŝ(t) = exp(iĤeet) exp(−iĤt) (~ = 1). (2)

Here and below we set ~ = 1; Tre and TrHe are traces over
the wave functions of the isolated electron system and of
the helium vibrations, and Z = TreTrHe exp(−βĤ) is the
partition function (β ≡ 1/kBT ); rn and pn are the 2D
the coordinate and momentum of the nth electron.

The operator Ĝx(t) is the density matrix of the many-
electron system. To the lowest order in the coupling to
helium excitation, the many-electron transport equation
for Ĝx can be written in the operator form as

∂Ĝx(t)

∂t
= −TrHe

∫ t

0

dt′
[
Ĥi(t),

[
Ĥi(t

′), ρ̂HeĜx(t)
]]

Ĥi(t) = exp[i(Ĥee + ĤHe)t]Ĥi exp[−i(Ĥee + ĤHe)t];

ρ̂He = exp(−βĤHe)/TrHe exp(−βĤHe) (3)

Here

Ĥi =
∑
n

∑
q,α

Vqαe
iqr̂n(âqα + â†−qα) (4)

is the coupling Hamiltonian; âqα is the annihilation op-
erator of the vibrational mode in helium with quantum
numbers q, α (q is the 2D wave vector of the mode).

In deriving Eq. (3) we assumed that t �
tcoll, ~(kBT )−1. The quantity tcoll is the characteristic
duration of a collision of an electron with a helium ex-
citation. It gives the width of the interval t − t′ that
contributes to the integral over t′. This interval is sup-
posed to be small compared to the relaxation time τ over
which Ĝx(t) varies. The approximation (3) corresponds
to the ladder approximation in the single-electron trans-
port theory. It takes into account the interaction energy
Ĥi multiplied by a long time t ∼ τ while the term βĤi

is disregarded in the considered range of comparatively
high temperatures.

It is essential that the scattering by ripplons and
phonons is short-range: the density of states of ripplons
and phonons increases with the increasing wave number
|q|, and the values of |q| are essentially limited by the
reciprocal size of the electron wave package ∼ λ−1. In
a strongly correlated electron system at most one elec-
tron at a time can collide with a short-range scatterer.
Therefore short-range scattering can be described in the



2

“single-site” approximation, cf. [2]. In this approxima-
tion only diagonal terms are retained in the double sum

over the electrons that enters the product Ĥi(t)Ĥi(t
′).

We can then write Eq. (3) as

∂Ĝx
∂t

= −
∑
q,α

|Vqα|2
∑
n

∫ t

0

dt′
[
eiqr̂n(t)e−iqr̂n(t′)φqα(t− t′)Ĝx(t) + Ĝx(t)eiqr̂n(t′)e−iqr̂n(t)φqα(t′ − t)

−eiqr̂n(t)Ĝx(t)e−iqr̂n(t′)φqα(t′ − t)− eiqr̂n(t′)Ĝx(t)e−iqr̂n(t)φqα(t− t′)
]

(5)

where

φqα(t) = (n̄qα + 1) exp(−iωqαt) + n̄qα exp(iωqαt)

is the Green function of the mode (q, α) (n̄qα ≡ n̄(ωqα)
is the mode Planck number), and

r̂n(t) = eiĤeetr̂ne
−iĤeet; Ĝx(0) = Z−1

ee P̂xe
−βĤee (6)

with Zee = Tre exp(−βĤee).

B. The general form of the many-electron density
operator

In the absence of a magnetic field, the operator of the
total electron momentum P̂ commutes with Ĥee. There-
fore Ĝx(t) is the only time-dependent term in the mo-
mentum correlation function (2). We are interested in

the diagonal matrix elements of Ĝx(t) on the eigenfunc-

tions of the many-electron Hamiltonian Ĥee.
Alternatively, and equivalently, instead

of Ĝx(t) we could consider the operator

exp(−iĤeet)Ĝx(t) exp(iĤeet), which has the same
diagonal matrix elements. The off-diagonal matrix
elements of this operator decay over the characteristic
time of the many-electron dynamics ω−1

p . Over this time
the many-electron system comes to thermal equilibrium
with respect to a frame that moves with the velocity
determined by the initial conditions [3]; the effective
temperature is also determined by the initial conditions.
In the considered case this temperature is equal to the
temperature of the helium excitations.

The understanding of the time evolution of the mo-
mentum correlator (2) relies on two observations. First,
there is no energy exchange between the two thermal
reservoirs, the vibrational excitations in helium and the
many-electron system, as they are both at the same tem-
perature. Second, there is a momentum exchange. Since
the vibrational reservoir has much more degrees of free-
dom than the electron system, the momentum of the elec-
tron system decays, and so does the correlator (2).

The above observations show that, with the account
taken of the initial condition (6), on the times much

larger than ω−1
p the operator Ĝx(t) can be sought in the

form

Ĝx(t) ≈ Z−1
ee g(t)P̂x exp(−βĤee). (7)

This solution reflects the symmetry of Ĝx(0) as a com-
ponent of a vector, which is preserved by the coupling to
the thermal reservoir, and the fact that Ĝx(t) is diago-

nal on the eigenfunctions of Ĥee. Since the momenta of
different electrons are uncorrelated (see also below), the
total momentum P is small, and therefore only a linear
term in P̂ is held in Eq. (7). Function g(t) describes the
decay of the momentum correlator, with g(0) = 1.

C. Quantum transport equation in the Wigner
representation

It is convenient to us the Wigner representation to an-
alyze the electron dynamics in the classical regime while
taking into account the quantum nature of the electron
scattering by helium excitations. We start with the basis
states of the many-electron system as plane waves

|{kn}〉 ≡
∏
n

(2π)−1 exp (iknrn) . (8)

A many-electron operator in the Wigner representation
has the form

K ({pn}, {rn}) =

∫ [∏
n

dζn exp (iζnrn)

]

×
〈
{pn +

1

2
ζn}

∣∣∣∣ K̂ ({p̂n}, {r̂n})
∣∣∣∣{pn − 1

2
ζn}

〉
. (9)

The correlator (2) can be written as

〈P̂x(t)P̂x(0)〉 =

∫ ∫ [∏
n

(2π)−2 dpndrn

]
×Px ({pn})Gx (t; {pn}, {rn}) , (10)

where Gx (t; {pn}, {rn}) is the matrix element of

the operator Ĝx(t) in the Wigner representation and
P ({pn}) =

∑
n pn.
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The equation for Gx (t; {pn}, {rn}) follows from Eq. (5). The characteristic range of t′ that contributes to the
integral over t′ was shown to be small (. 1/kBT ) for elastic scattering [1]; it is also small for inelastic scattering,
as the energy transfer is ∼ kBT , and therefore for the both scattering mechanisms t − t′ . (kBT )−1. Over the time
t − t′, the change of the electron momentum due to the fluctuational electric field ∼ eEfl(t − t′) is small compared
to the thermal momentum pT = (mekBT )1/2 in the range (1), eEfl(t − t′)/pT . eEflλ/kBT � 1. Therefore one can
approximate

r̂n(t′) = r̂n(t)− 1

me
(t− t′)p̂(t),

exp[−iqr̂n(t′)] = exp[−iqr̂n(t)] exp[iqp̂n(t)(t− t′)/me] exp[−iq2(t− t′)/2me]. (11)

Then the equation for Gx takes the form

∂Gx (t; {pn}, {rn})
∂t

= −
∑
q,α

|Vqα|2
∑
n′

∫ t

0

dt1ξ(t− t1;q, pn′)
[
φqα(t− t1)Gx (t; {pn}, {rn})

− φqα(t1 − t)Gx (t; {pn − qδnn′}, {rn})
]

+ c.c., ξ(t;q, p) = exp

[
i

(
qp(t)− 1

2
q2

)
t/m

]
(12)

Strictly speaking, one should replace {rn} in the argu-
ments of Gx in the first and second terms in the right-
hand side of Eq. (12) with {rn + δnn′q(t − t′)/me} and
{rn−δnn′q(t− t′)/me}, respectively. For the typical val-
ues of q . (mekBT )1/2 and t − t′ . 1/kBT , this would
correspond to shifting the electron coordinate by ∼ λ,
which is the uncertainty of the coordinate; in the consid-
ered regime the corresponding change of Gx should be
disregarded.

The function Gx can be assumed real: the structure of
Eq. (12) shows that Gx(t) is real if Gx(0) is real, which
is indeed the case, see Eq. (14) below. Therefore we are
interested in the real part of the integrals over t1. For
the characteristic t� 1/kBT we have

Re

∫ t

0

dt1ξ(t− t1);q,p) e±iωqα(t−t1) = ξ±(q,p;α),

ξ±(q,p;α) = πδ

[
1

me

(
qp− 1

2
q2

)
±e ωqα

]
, (13)

which is nothing but the energy conservation law: the
change of the kinetic energy of an electron is equal to the
energy of the absorbed/emitted helium vibration. Inter-
estingly, polaronic effects drop out from the equation for
the many-electron density matrix of the form (14). For-
mally, this is because we consider diagonal matrix ele-
ments on the eigenfunctions of the many-electron Hamil-
tonian.

1. The many-electron relaxation time

We now use the explicit form of the operator Ĝx,
Eq. (7). The corresponding form of the Wigner trans-

form is

Gx (t; {pn}, {rn}) =Z−1
ee g(t)Px exp [−βHee ({pn}, {rn})] ,

g(0) = 1. (14)

From Eqs. (10) and (14), the correlation function of the
total electron momentum is simply expressed in terms of
the function g(t),

〈P̂x(t)P̂x(0)〉 = NmekBTg(t), (15)

where N = nSS is the total number of the electrons.
As seen from Eq. (12), the value of Gx (t; {pn}, {rn})

is coupled to the values of this function with the mo-
mentum of one of the electrons (and thus of the whole
many-electron system) incremented by −q and the en-
ergy changed by ωqα; these values are then summed over
q, α. Substituting Eq. (14) into Eq. (12) we obtain

∂Gx
∂t

= −2Z−1
ee g(t)e−βHee({pn},{rn})

∑
q,α

qx |Vqα|2∑
n′

[ξ+(q, pn′ ;α)n̄qα + ξ−(q, pn′ ;α)(n̄qα + 1)] (16)

Here we have used that, with the account
taken of the energy conservation condition
(13), ξ±(q,pn′ ;α)Hee ({pn − qδnn′}, {rn}) =
ξ±(q,pn′ ;α)[Hee ({pn}, {rn})± ωqα].

To evaluate the right-hand side of Eq. (16) we will
use an approach, that differs from that used in Ref. 1
for the case of elastic scattering. First we note that,
at first glance, in the many-electron system summing
over n′ in Eq. (16) should be equivalent to averaging
over the electron states for the electron system in ther-
mal equilibrium, i. e. to integrating ξ±(q,pn′ ;α) over
pn′ with the weight ∝ exp(−βp2

n′/2me). However, the
electron system has a total momentum Px along the
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x-axis. This momentum corresponds to the electrons
moving along the x-axis with velocity Px/Nme, which
is the same for all electrons (one can think of watch-
ing the electron system from a frame that moves with
a velocity −Px/Nme). Therefore the distribution over
pn′ should be centered at Px/Nme. Since N � 1, this
means that the Boltzmann factor should be modified to
exp(−βp2

n′/2me)[1 + β(pn′)xPx/Nme].
We also note that |Vqα|2 and ωqα are independent

of the direction of q. The integral that describes the
averaging over pn′ for Px = 0

I0(q) =

∫
dpn′ξ±(q,pn′ ;α) exp(−βp2

n′/2me)

is independent of the direction of q. Therefore when it
is multiplied by qx to calculate the right-hand side of
Eq. (16) and then integrated over the directions of q, the
result is zero. On the other hand, for the term ∝ Px the
integral multiplied by qx has the form

I±(q) =

∫
dpn′ξ±(q,pn′ ;α)qx(pn′)x exp(−βp2

n′/2me)

=
1

2

∫
dpn′ξ±(q,pn′ ;α)qpn′ exp(−βp2

n′/2me) (17)

It gives a nonzero contribution when integrated over the
directions of q (keeping in mind that |Vqα|2 and ωqα

are independent of the direction of q, we have sym-
metrized qx(pn′)x → qpn′/2). A straightforward calcu-
lation shows that

I±(q) =
1

4

(
q2 ∓ 2meωqα

)
(2π3m3

e/βq
2)1/2

× exp

[
−β

(
q2

8me
∓ 1

2
ωqα +

meω
2
qα

2q2

)]
(18)

Using this expression (multiplied by βPx/Nme), we
see that the right-hand side of Eq. (16) takes the form
τ−1Gx(t; {pn}, {rn}) where

τ−1 =
1

2mekBT

∑
q,α

q2 |Vqα|2 [〈ξ+(q,p;α)〉n̄qα

+ 〈ξ−(q,p;α)〉(n̄qα + 1)] (19)

where the averaging of ξ± means integration over p with
the weight (2πmekBT )−1 exp(−p2/2mekBT ), so that

〈ξ±(q,p;α)〉 =

(
πmeβ

2q2

)1/2

exp

[
− β

2me

(
1

2
q ∓ meωqα

q

)2
]

The time τ−1 gives the static many-electron conductivity,

σxx = e2ns/meτ
−1. (20)

The above analysis can be immediately extended to
the electron transport in a classical magnetic field nor-
mal to the electron layer, where the cyclotron frequency
ωc � kBT/~. In this case in the expression (11) for

r̂n(t′) one should take into account the fluctuational field
that drives an electron Efl because of the electron den-
sity fluctuations and also the cyclotron motion, cf. [1].
The relaxation rate due to inelastic scattering is weakly
affected by the magnetic field for |eEfl|λ � ~ωc, since
the discreteness of the Landau levels is smeared out by
the fluctuational field. However, in the opposite case,
|eEfl|λ � ~ωc, the discreteness of the Landau level will
modify the rate of inelastic scattering. The analysis of
this behavior is beyond the scope of this paper.

D. An alternative derivation

The many-electron conductivity can be derived also
using the fact that, if the electron system moves in an
electric field with a velocity v, this means that the force
from the electric field is balanced by the force from the
scattering of electrons off helium vibrations. The latter
force is given by the change of the total electron momen-
tum per unit time due to the scattering dP(v)/dt. If the
electric field is weak and the velocity is proportional to
the field, it is easy to see that the conductivity is

σxx = −e2nsNvx(dPx/dt)
−1, (21)

where vx and dPx/dt are the x components of the corre-
sponding vectors and the x axis is chosen to point along
the electric field.

The problem of finding the many-electron conductivity
is then reduced to calculating dP/dt for a given v and for
a given coupling to the helium excitations. This approach
was developed for electrons on helium earlier for several
limiting cases [4–7]. Here we formulate it in a general
case, but assuming that no magnetic field is applied to
the electron system.

The total force on the electron system due to the cou-
pling (4) is

dP̂

dt
= −i

∑
q,α

qVqαρ̂q(âqα + â†−qα),

ρ̂q =
∑
n

exp(iqr̂n) (22)

We will calculate the expectation value of this force in
the interaction representation, cf. Eq. (3). In this repre-
sentation, if the electron system moves with velocity v,
the electron density operator becomes

ρ̂q(t|v) = ρ̂q(t)eiqvt, ρ̂q(t) = eiĤeetρ̂qe
−iĤeet (23)

To the lowest order of the perturbation theory, the
expectation value of the force (22) can be obtained by
finding the linear response of the density matrix of the
electron-vibrational system to the coupling Hi. The re-
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sult for the real part of the force is〈
dP̂

dt

〉
= −Re

∫ ∞
0

dt
∑
q,α

q|Vqα|2(1− e−βqv)

× 〈ρ̂q(t)ρ̂−q(0)〉φqα(t) (24)

Using the single-site approximation to calculate
the electron density correlator, 〈ρ̂q(′)ρ̂−q(0)〉 ≈
N〈exp[iqr̂n(t)] exp[−iqr̂n(0)]〉 and taking into account

that the system is isotropic, so that when calculating
the linear in v term, in the sum over q one can replace
q(qv)→ v(q2/2), we obtain from Eqs. (21) and (24) the
same expression for the conductivity as Eq. (20).

We should note that the approximation used to ob-
tain Eq. (24) is essentially equivalent to the approxima-
tion used to obtain the quantum kinetic equation (5).
The derivation used to obtain Eq. (19), although longer,
shows more clearly the approximations involved.
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