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We show that nonlinear response of a quantum oscillator displays antiresonant dips as the field frequency
passes adiabatically through multiphoton resonance. This coherent quantum effect has no analog in two-level
systems. Its emergence is a consequence of special symmetry of a weakly nonlinear oscillator. We discuss the
possibility to observe the antiresonance and the associated multiphoton Rabi oscillations in Josephson
junctions.
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Many resonant nonlinear phenomena are described by the
model of a nonlinear oscillator in a resonant field. Examples
range from laser-induced dissociation of molecules1 to re-
cently studied hysteresis in resonantly driven Josephson
junctions2,3 and nanomechanical resonators.4 The generality
of the oscillator as a model system and the current interest in
quantum computing and coherent phenomena lead to a ques-
tion: Does a resonantly driven nonlinear oscillator display
coherent quantum effects that would qualitatively differ from
those in two-level systems? In the present paper we provide
an example of such an effect.

A specific feature of a nonlinear oscillator is that its en-
ergy levelsEn are nearly equidistant. Therefore, a periodic
force of frequencyvF can be nearly resonant for many tran-
sitions at a time, i.e.,"vF can be close to the interlevel
distanceEn+1−En for manyn. This makes an oscillator con-
venient for studying multiphoton Rabi oscillations. They
arise when the spacing between remote energy levelsn and
m coincides with the energy ofn−m photons,En−Em=sn
−md"vF.1 The multiphoton transition amplitude is reso-
nantly enhanced, because them→n transition occurs via a
sequence of virtual field-induced transitionsk→k+1 swith
møkøn−1d, all of which are almost resonant.

In this paper we show that multiphoton transitions in the
oscillator are accompanied by an unexpected effect,antireso-
nanceof the response. When the frequency of the driving
field adiabatically passes through a resonant value, the vibra-
tion amplitude displays a sharp minimum or maximum, de-
pending on the initial conditions. We argue that the antireso-
nance and the multiphoton Rabi oscillations can be observed
in Josephson junctions.

The antiresonance is a consequence of a special degen-
eracy of a weakly nonlinear oscillator. In the neglect of mul-
tiphoton mixing, the amplitudes of forced vibrations in the
resonating states coincide with each other, as seen from the
intersection of the dashed lines in Fig. 1sbd. Mixing of the
resonating states lifts the degeneracy, leading to the ampli-
tude “repulsion,” which increases with increasing field. In
turn, it leads to pronounced dipsspeaksd in the vibration
amplitude asvF adiabatically passes through resonances.

In the semiclassical picture, resonant multiphoton transi-
tions correspond to tunneling between Floquet states of the
oscillator with equal quasienergiesfthe quasienergy« gives

the change of the wave functioncstd when time is
incremented by the modulation periodtF, cst+tFd
=exps−i«tF /"dcstdg. Tunneling of a driven oscillator is a
carefully studied5 example of dynamical tunneling.6 As we
show, the WKB analysis gives an important insight into the
origin of the antiresonance, which goes beyond the perturba-
tion theory in the driving field.

The Hamiltonian of a driven nonlinear oscillator with
massM =1 has the form

Hstd =
1

2
p2 +

1

2
v0

2q2 +
1

4
gq4 − qAcossvFtd. s1d

We assume that the driving field is nearly resonant, i.e., the
frequency detuningdv is small,

udvu ! vF, dv = vF − v0. s2d

We consider not too large amplitudes of the driving field
A, so that the oscillator anharmonicity is small, and in par-
ticular uguq2!v0

2 for typical q. We also assume thatg anddv
have the same sign. If there is a cubic termaq3/3 in the
potential energy, its major effect of interest for this paper is
the renormalizationg→g−s10/9dsa /v0d2 sRef. 7d.

To study quantum dynamics, we will write the Hamil-
tonian in terms of the raising and lowering operators of the
oscillator a†,a, and switch to the rotating frame with a ca-
nonical transformationUstd=exps−ivFa†atd. The trans-

formed HamiltonianH0=U†stdHstdUstd− i"U†stdU̇std is time
independent in the rotating wave approximationsRWAd,

H0 = − dvn̂ +
1

2
Vn̂sn̂ + 1d − fsa + a†d, n̂ = a†a,

V = 3"g/4v0
2, f = s8"v0d−1/2A. s3d

In the expression forH0 and in what follows"=1.
The eigenvalues of the Hamiltonians3d «n give the

quasienergies of the driven oscillator. In the limit of weak
driving their spectrum is particularly simple,

«n = − ndv + Vnsn + 1d/2, f → 0. s4d

We will study multiphoton resonance for the ground state
of the oscillator,EN−E0=NvF, or equivalently«0=«N. From
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Eq. s4d, for small f and givenN the resonance occurs for

dv = dvN ; VsN + 1d/2.

Remarkably, at resonanceall quasienergy levelss4d with n
øN are pairwise degenerate,«N−n=«n.

8 Equivalently,EN−n
−En=sN−2ndvF. One can see that the degeneracy is not
lifted by the lowest-orders~f2d field-induced level shiftfex-
cept for the levelsn=sN±1d /2 for odd N and n=sN/2d±1
for evenNg. As shown below, it persists for allf in the WKB
approximation in the neglect of tunneling.

The response of the oscillator to the field is characterized
by the expectation value of its coordinateq. For an eigenstate
unl of the Hamiltonians3d, this value is

qn = s2v0d−1/2ane
−ivFt + c.c., an = knuaunl. s5d

To first order in the field, the reduced amplitude of forced
vibrationsan is

an = − fdv/„fdv − Vngfdv − Vsn + 1dg…. s6d

For dv=dvN the vibration amplitudes in the resonating
states coincide with each other,aN−n=an for 0øn,N/2, cf.
the dashed lines in Fig. 1sbd.

Multiphoton mixing leads to splitting of the quasienergy
levels and the vibration amplitudes. It can be calculated by
diagonalizing the Hamiltonians3d and is shown in Fig. 1 as a
function of frequency detuningdv. One of the involved reso-
nating states is the ground state of the oscillatorn=0 in the
limit f →0.

The minimal splitting of the levels«0 and«N is given by
the multiphoton Rabi frequencyVR. For weak field it can be
obtained from Eq.s3d by perturbation theory.1 To the lowest
order in f /dvN

VR = 2f u2f/VuN−1N2sN!d−3/2. s7d

For N@1 this expression becomes

VR = Vsf/fNdNN5/4s2pd−3/4,

fN = uVuN3/2 exps− 3/2d/2. s8d

The Rabi frequency depends onN exponentially,VR~ fN.
In the caseN=5 it is shown in Fig. 2. One can see from this
figure that Eq.s7d works well in the whole range of the field
amplitudes f / fN&0.5. For larger fieldsVR depends onf
much weaker than the asymptotic expressions8d sRef. 5d.

The most interesting feature of Fig. 1 is the antiresonant
splitting of the amplitudes. It occurs at the adiabatic passage
of dv through resonance, where the system switches be-
tween the ground and excited states. In particular, the ampli-
tude displays an antiresonant dip if the oscillator is mostly in
the ground state forsdv−dvNd /V,1 or in the stateN for
sdv−dvNd /V.1. The magnitude and sharpness of the dip
are determined byVR/V and depend very strongly on the
field andN. With decreasingVR/V the dip sand peakd start
looking like cusps located at resonant frequency. The ampli-

FIG. 1. sColor onlined Anticrossing of the quasienergy levelssad
and reduced susceptibilitiessbd with varying frequencydv near
five-photon resonance. The lines 1 and 2 refer to the statesn=0 and
n=5. The solid and dashed lines refer to the reduced driving force
f / f5=0.75 andf / f5=0.075, respectively, withf5 given by Eq.s8d;
«n8=«n− f2/2V. In the limit f →0 the levels cross fordv5=3V. For
sdv5−dvd /VR@1 the adiabatic statesu0l and u5l are close to the
corresponding Fock states of the oscillator.

FIG. 2. sColor onlined Upper panel: Field-induced splitting of
the quasienergy levelsn=0 andn=5 for resonant driving frequency,
dv=dv5=3V. The splitting gives the five-photon Rabi frequency
VR. The dashed line shows the weak-field perturbation theorys7d.
Lower panel: Splitting of the reduced amplitudes of forced vibra-
tions in the corresponding Floquet states. The curve labeling coin-
cides with that in Fig. 1.
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tude splitting as a function of the field is shown in Fig. 2.
The dip in the oscillator response has no analog in two-

level systems. There, for nearly resonant driving, the coher-
ent response in the two adiabatic states differs only in sign. It
displays a peak when the radiation frequency adiabatically
passes through the transition frequency.

To explain the antiresonance we note that, fordv=dvN,
the field leads to two major effects. One is mixing of the
wave functions of the resonating Fock statesunl0, uN−nl0
into symmetric and antisymmetric combinationsun,N−nl±
=sunl0± uN−nl0d /Î2 with quasienergies«n±. The second ef-
fect is nonresonant mixing of the statesun,N−nl± with adja-
centn, which determines the expectation values of the vibra-
tion amplitudes in these states.

To first order in f, the vibration amplitudesa0±
= ±k0,Nuau0,Nl± are determined by mixing of the states
u0,Nl± with u1,N−1l± and uN+1l0. For comparatively weak
fields, the level splitting«1+−«1−~VRsdv / fd2 largely ex-
ceeds the splitting«0+−«0−=VR. Setting«0±=«0, from per-
turbation theory we obtain

a0+ − a0− ~ ffs«0 − «1+d−1 − s«0 − «1−d−1g ~ sf/VdN−1.

This scaling describes the resonant small-field amplitude
splitting in Fig. 2 extremely wellsthe prefactor is determined
by the admixture of statesun,N−nl± with n.1 and will be
discussed elsewhered.

The simultaneous degeneracy of quasienergies and vibra-
tion amplitudes for many pairs of states in a broad field range
can be shown analytically in the case where the oscillator
dynamics is described by the WKB approximation. This ap-
proximation applies for

l ! 1, l = V/s2dvd. s9d

It is convenient to introduce the reduced coordinate and
momentum of the oscillator in the rotating frame

Q = sV/4dvd1/2sa + a†d, P = − isV/4dvd1/2sa − a†d

with the commutatorfP,Qg=−il. In these variables, in the
neglect of terms~l, the Hamiltonian s3d becomesH0
=2sdvd2V−1fgsQ,Pd−1/4g, where

gsQ,Pd = sQ2 + P2 − 1d2/4 − b1/2Q. s10d

Hereb= f2V/ sdvd3 is the reduced field intensity.
The functiongsQ,Pd is illustrated in Fig. 3;dv gsQ,Pd is

the classical Hamiltonian in the RWA, it gives the quasien-
ergy of the oscillator;5,9 Q, P are the canonical variables. The
minimum and local maximum ofgsQ,Pd correspond to the
stable states of forced vibrations. They coexist for 0,b
,4/27. For suchb, in a certain range ofg there are two
Hamiltonian trajectories with the sameg, one on the internal
“dome” and the other on the external part of the surface
gsQ,Pd. We call them, respectively, internal and external tra-
jectories.

The external trajectory for givengsQ,Pd=g has the form
Qstd=b−1/2fX2std−gg, with

Xstd =
c2sc1 − c3d − c3sc1 − c2dsn2u

c1 − c3 − sc1 − c2dsn2u
. s11d

Here, snu is the Jacobi elliptic function; the elliptic modulus
is m=sc1−c2dsc3−c4d / sc1−c3dsc2−c4d, and u=fsc1−c3dsc2

−c4dg1/2dv t /2 is the appropriately scaled time. The coeffi-
cientsc1.c2.c3.c4 are the roots of the polynomialbs1
+2xd−sx2−gd2.

The internal trajectoryQstd is given by Eq.s11d with u
→u+K+ iK8, whereK;Ksmd is the complete elliptic inte-
gral, andK8;Ks1−md.

An immediate consequence of the analytical interrelation
between the external and internal trajectories is that their
periods 2p /vsgd are the same.10 When the motion is quan-
tized, vsgd gives the distance between the energy levels.
Therefore if, for somedv andb, two levels that correspond
to the external and internal trajectories coincide with each
other, many levels will coincide pairwise as well. Level split-
ting santicrossing with varyingdvd is due to tunneling be-
tween the external and internal parts of the surfacegsQ,Pd.

In the WKB approximation, the expectation valuean of
the vibration amplitude in a quantum stateunl is given by the
period-averaged coordinateQ on the appropriate classical
trajectory, kQsgndl. It can be shown, using the analytical
properties of the elliptic functions, that the values ofkQsgdl
turn out to be the same on the internal and external trajecto-
ries with the sameg. Thereforean for resonating states are
the same, in the neglect of tunneling.

In order to observe coherent multiphoton quantum effects,
the Rabi frequencyVR should exceed the relaxation rate.
Relaxation of a nonlinear oscillator can often be described by
the quantum kinetic equation.9 Evolution of the density ma-
trix r due to decay into excitations of the medium and fluc-
tuational modulation of the oscillator energy is given by the

equationsṙddm=−Ĝr−Ĝwr, with

Ĝr = Gsn̂r − 2ara† + rn̂d, Ĝwr = Gwfn̂,fn̂,rgg. s12d

The parametersG andGw characterize the rates of decay and
phase diffusionsenergy modulationd, respectively, and we
have assumed that exps"vF /kBTd@1.

The relaxation rate GN relevant for an N-photon
resonance,dv=dvN, is given by the damping rate of the

FIG. 3. sColor onlined The reduced classical quasienergy of the
oscillator s10d. The plot refers to the reduced fieldb=2/27.
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population differencer++−r−− of the symmetric and anti-
symmetric adiabatic statesu0,Nl±=su0l0± uNl0d /Î2, rnn8
= nk0,Nuru0,Nln8

sn ,n8= ± d. From Eq. s12d we obtain GN

=GN+GwN2/2. The first term is just the decay rate of the
population of theNth Fock state of the oscillator, whereas
GwN2 is the diffusion rate of the phase difference of the Fock
statesu0l and uNl.

The rateGN quickly increases with increasingN. There-
fore the coherence conditionuVu*VR@GN imposes a limita-
tion on N from above. From our analysis, strong antireso-
nance in the susceptibility is pronounced already forN
=3–5. Wenote that this coherent quantum effect is qualita-
tively different from the nonmonotonic field dependence of
the stationary amplitude of a driven damped oscillator for
nonzero temperatures.11

The antiresonance in the vibration amplitude can be ob-
served in Josephson junctionssJJsd and JJ-based systems and
can provide a spectroscopic tool for studying their energy
spectrum. Resonant dynamics of JJs is well described by the
model of a nonlinear oscillators3d. The measurement could
be similar to the one in which forced vibrations of a JJ and
their bistability were studied.3 The antiresonance requires
that the system be in the quantum regime, exps"v0/kBTd
@1, and the level nonequidistance exceed damping,uVu
@GN.

The JJ energy spectrum is controlled by the dc bias cur-
rent Idc. For Idc=0 we haveuVu="vp

2/EJ, wherevp is the JJ
plasma frequency andEJ="I0/2e sI0 is the critical currentd.
Such uVu is often small; e.g.,uVu,G for the parameters of
Ref. 3. It can be largely increased ifIdc is close toI0, i.e.,
h=sI0− Idcd / I0!1. Then the effective potential of the JJ near
a local minimum is a cubic parabola, and in Eq.s3d

v0 = vps2hd1/4, V = − 5"vp
2/48EJh. s13d

A limitation on h is imposed by the condition that there are
several levels in a metastable potential well and their tunnel-
ing decay ratesgn! uVu for nøN. The ratesgn depend onh
exponentially, lnfg0/vpg<−ctEJh

5/4/"vp, with ct<11.4,

and lnfgN+1/gNg<2p. Experimentally, the ratiouVu /vp

,0.1 was obtained for a three-level JJ, withvp/2G,103

sRef. 12d. For such damping, even smalleruVu /vp will allow
observing the antiresonance. From Eq.s8d the needed rf cur-
rent is&IN=s5/48dIc exps−3/2ds2N"vp/EJd3/2s2hd−7/8.

Along with adiabatic passage it may be interesting also to
study multiphoton Rabi oscillations between the Fock states
u0l0 and uNl0 when a resonant field is turned on. Fordv
=dvN the oscillation frequency is given byVR. In JJ-based
systems, oscillations of state populations can be detected
from tunneling decay, which is much faster in the excited
Fock states. This approach has been used to detect single-
photon Rabi oscillations in strongly nonlinear JJs with a
small number of metastable states.12,13

The susceptibility should also display multiphoton Rabi
oscillations. Their amplitude is close to half the distance be-
tween the branches 1 and 2 in Fig. 2. Itincreaseswith the
field for small f / fN. This is in contrast with the case of two-
level systems, where the oscillation amplitude decreases with
the increasing field at resonance.

In this paper we have shown that multiphoton response of
a quantum oscillator displays antiresonant dipsspeaksd as a
function of frequency. This coherent quantum effect is spe-
cific for multilevel systems; it does not arise in two-level
systems and is related to resonant pairwise mixing of several
oscillator states at a time. The effect provides a means of
coherent nonlinear spectroscopy of excited vibrational states.
The shape and magnitude of the dipsspeaksd of the response
strongly depend on the field. We discuss the possibility to
observe the predicted antiresonant response and the multi-
photon Rabi oscillations in Josephson junctions.
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