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A b s t r a c t  

We study local features, and provide a topological insight into the global structure of the probability density distribution 
and of the pattern of the optimal paths for large rare fluctuations away from a stable state. In contrast to extremal paths in 
quantum mechanics, the optimal paths do not encounter caustics. We show how this occurs, and what, instead of caustics, 
are the experimentally observable singularities of the pattern. We reveal the possibility for a caustic and a switching line to 
start at a saddle point, and discuss the consequences. 

The problem of large occasional fluctuations in 
nonequilibrium systems is of substantial general in- 
terest and importance. These fluctuations form the 
tails of  statistical distribution, give rise to escape from 
a stable state, and are responsible for the onset of 
many effects investigated in various areas of physics 
- some recent examples are stochastic resonance [ 1 ] 
and transport in ratchets [2]. One of the basic con- 
eepts in the analysis of large fluctuations is optimal 
path - the path along which the system moves, with 
overwhelming probability, on its way to a given point 
remote from the stable state, Optimal paths are ex- 
perimentally observable, and have been an object of 
active study for the last 20 years (see Refs. [3,4] for 
a review). They play, in the context of  fluctuations, 
the same role as trajectories for dynamical systems, 
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and therefore understanding the pattern of  the optimal 
paths is a key to understanding large fluctuations. 

From the formal point of  view, optimal paths are 
similar to the extremal paths in quantum mechanics 
since both provide an extremum to the integrands in 
the appropriate path integrals. A well-known feature 
of the pattern of  the extremal paths is the occurrence 
of caustics [ 5 ]. Caustics have also been revealed nu- 
merically in the pattern of optimal paths for fluctu- 
ating systems of various types [ 6-11 ]. For quantum 
mechanical systems the physical meaning of caustics 
is well understood - a semiclassical wave function is 
oscillating on one side of a caustic and exponentially 
decaying (or increasing) on the other side. In con- 
trast, the probability density distribution, which is de- 
termined by the optimal paths, is nonnegative definite. 
Therefore it cannot be continued beyond a caustic, 
and it follows that caustics may not  be encountered 
by these paths. 
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In the present paper we address the problem of 
avoidance of  caustics by the physically meaningful 
optimal paths, and of the global structure and the ob- 
servable singularities of the pattern of these paths. 
The physical and topological arguments we apply are 
quite general, but as an illustration of how they work 
we consider the simplest case, that of a two-variable 
system performing Brownian motion described by the 
stochastic equation 

~1i = Ki(q) q- ~i(t), q =~ (ql, q2), 

(~i(t)) =0 ,  (1) 

(~i(t)scj(t')) = D6i jS( t -  t'), i , j  = 1,2. 

Here, ~:(t) is Gaussian white noise. The drift coeffi- 
cients K1,2 are assumed nonsingular for finite q. 

We assume noise intensity D to he small. In this case 
if the system is prepared initially within the basin of 
attraction of an attractor a, it will most likely approach 
the attractor in a characteristic relaxation time tre~, as if 
there was no noise. Then it will perform mostly small 
fluctuations about the position of the attractor qa, so 
that over trel a (quasi)stationary probability density 
distribution Pa(q) will be formed. Large fluctuations 
occasionally bring the system to points q remote from 
qa, and thus form the tails of pa(q). To logarithmic 
accuracy [ 3 ] 

Pa(q) = const x exp[-Sa(q)/D],  (2) 

where Sa (q) is given by the solution of the variational 
problem 

0 

=min  / £,(q(t) ,q(t))  dt, (3) Sa(q) 

/ : ( ~ , q ) = ½ ( q - K )  2, q(--C~)=qa, q ( 0 ) = q .  

Eq. (3) defines the optimal (most probable) path 
qopt(t) to  a point q from the stable position q~ 
(K(qa) = 0),  in the small vicinity of which the large 
fluctuation starts. The optimal path can be associ- 
ated with the trajectory of an auxiliary four-variable 
(two coordinates, ql,2, and two conjugate momenta, 
Pl,2) Hamiltonian system, with the action Sa(q) and 
Lagrangian/~ (3),  and with the respective Hamilto- 
nian 7-/= ½p2 + p .  K. The Hamiltonian equations of 
motion for the trajectories are of the form 

q = K + p ,  p = - ( p . ~ r ) K - p x ( V x K ) ,  (4) 

where these trajectories lie on the energy surface E = 
0. 

The approximation (2) is similar to the WKB ap- 
proximation in quantum mechanics, with the noise in- 
tensity D corresponding to ih. As in quantum mechan- 
ics, the extremal paths q(t) (3), (4) intersect each 
other, generically, and the set of these paths displays 
caustics [6-8].  

An interesting example of a system where caus- 
tics occur [9] is an underdamped nonlinear oscillator 
driven by a nearly resonant force and by weak noise. 
Such an oscillator is a reasonably good model of a 
few physical systems, including optically bistable sys- 
tems, and in particular a relativistic electron trapped in 
a Penning trap and driven by cyclotron radiation [ 12]. 
We emphasize that the onset of caustics in this system 
is not related to bistability that emerges in a compar- 
atively strong field and was investigated in Ref. [9]. 
This is seen from the pattern of optimal paths shown 
in Fig. 1. The variables ql, q2 are the (dimensionless) 
coordinate and momentum of the oscillator in the ro- 
tating frame. The equations of motion in this frame 
are of the form (1) (of. Ref. [9]) ,  with 

g l  -~ q2 ( q~ + q~ - 1) - r/q1, 

K 2  = - q l  ( + - 1)  - + 

Here, r/ is a dimensionless friction coefficient, and 
flU2 is the dimensionless force amplitude (the bista- 
bility arises for/3 > 7/2). 

It follows from the definition of the optimal path as 
the most probable way to reach a given point that, if 
a point q can be reached along two (or more) paths, 
only one of them is physically meaningful: this is the 
path that provides an absolute minimum to the action 
So (q). We show below that such a path has never 
touched a caustic. 

We first consider monostable systems, with the at- 
tractor a being the only steady state in the absence of 
noise. In this case the auxiliary Hamiltonian system 
has only one fixed point (q = qa, P = 0). The tra- 
jectories (q( t) ,p( t ))  (4) emanating from this point 
at t --~ - ~  form a smooth flow (cf. Ref. [13]) 
on a two-dimensional Lagrangian manifold (LM) 
[ 14]. Except for special cases (like detailed balance, 
~7 × K = 0) the projections of LM onto the original 
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0'o 

Fig. 1. Pattern of optimal paths of a periodically driven monostable nonlinear oscillator, r/= 0.1 and fl = 0.0005. 

two-dimensional plane (ql ,q2) will generally have 
singularities. 

In two dimensions the only structurally stable types 
of singularities [ 15] are folds and cusps, as illustrated 
in Fig. 2. The projections of the folds of the LM are 
caustics. Each cusp gives rise to a pair of folds, and 
in the case under consideration folds can only begin 
or end at a cusp, or at infinity. This pattern is clearly 
seen in the plot of the optimal paths of a periodically 
driven oscillator in Fig. 1. 

It is a feature of the dynamics (3),  (4) that the 
Lagrangian is nonnegative definite. Thus, the action 
always increases along the extremal paths. This cor- 
responds, quite naturally, to a decrease in probability 
density as the system moves along the path away from 
the attractor. An analysis which makes use of the nor- 
mal form of the action near a caustic [ 14] and of the 
explicit form of the Hamiltonian 7-/leads to an explicit 
local expression for the action. From this it can be 
seen [ 16] that the action to reach a point along a path 

which has not  touched a caustic is a lways  less than 
that along a path which has passed  through a caustic. 

Near a cusp from which the caustics are going away 
(a "direction" of a caustic is that of the paths for which 
the caustic is an envelope) the probability distribu- 
tion can be obtained by modifying the appropriate re- 
suits of the WKB approximation in quantum mechan- 
ics [5]: 

Pa(q)  ocexp ( - ~ - ~  - '~) 

x / dPl exp , q2) - Pl ql 
D ' 

~ ( p l , q 2 )  = 1 4 1 a p2  
- Z a l l P i  - ~ 12 1 q2 - la22q~2. (5) 

Here, ql, q2 are the coordinates measured from the 
cusp point qe = 0 along the directions transverse to, 
and parallel to the caustics at this point, i.e., the ve- 
locity of the path in the cusp is pointing along q2, 
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is a smooth function on L~. 
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Fig. 2. Generation of singularities. 

ve -- (#)e = (0, vo); Pc = -K(qo) + re, a12 = - v c  l, 
a22 = a [ (2re) - l K 2 _ K2 ]/0q2 (the derivatives of K 
are evaluated at the cusp point). The parameter all 
depends on the global features of the flow of the tra- 
jectories. It determines how sharply the caustics ql = 
~2all(q2/3vc) 3/2 diverge with the distance from the 
cusp q2. The prefactor in the probability distribution 
(2) blows up near the cusp point like D -1/4. 

For Iql l~ D3/4, Iq2l/D1/2 large and not close to the 
caustics the integral (5) can be evaluated by the steep- 
est descent method, and the action Sa(q) in (2) can 
be expressed in terms of S(P1, q2) by implying ql = 
OS/c~Pl. For q2 < 0 the action Sa(q) is single val- 
ued. On the other side of the cusp point, between the 
caustics, the action has three values, that is, the sur- 
face Sa (q) has three sheets as shown in Fig. 2c. The 
top sheet, the one with the largest Sa, corresponds to 
the middle sheet of the LM in Fig. 2a. It is formed by 
the paths which have been reflected from one of the 
caustics, and contains the path which passes through 

the cusp point. The two other sheets of the surface Sa 
and of the LM are formed by the paths which have 
not touched a caustic. 

Only the solution with the smallest Sa (q) should be 
kept in (2) in the range of q where the distance be- 
tween the sheets of Sa (q) greatly exceeds D. There- 
fore the top sheet of So(q) is "invisible" away from 
the cusp, and the trajectories coming to the middle 
sheet of the LM in Fig. 2 drop out of the game. Two 
lower sheets of the action, S~ 1) and Sa ~2), which cor- 
respond to the lower and upper sheets of the LM, in- 
tersect along a line with the projection qlS)(q2) on 
the q-plane: Sa <a) (ql s), q2) ) = Sa (2) (ql s) , q2). This line 
starts at the cusp point and lies between the coalescing 
caustics. There occurs switching at this line: the points 
a small distance from each other, but lying on differ- 
ent sides of it are reached along topologically differ- 
ent optimal paths q(t)  (those providing Sa (1) or Sa <2)). 
They approach the switching line from opposite sides. 

The switching line can be immediately observed via 
experiments [ 17 ] on the probability distribution of the 
paths q(t) along which the system arrives to a given 
point. If this distribution is measured for various po- 
sitions of the final point, its shape will change sharply 
once the final point crosses the switching line. We no- 
tice that caustics may not be observed via experiments 
of this sort, they are hidden: switching to another path 
occurs prior to a caustic being encountered. 

The stationary distribution Pa(q) is regular in the 
vicinity of a switching line: away from the cusp point 
it is given by 

Pa(q) = ~ c(i)(q) exp[ -S(a i) (q)/D], 
i=1,2 

(6) 

where the prefactors are evaluated for the paths ly- 
ing on the different sheets of the LM. However, the 
derivative of D In Pa transverse to the switching line 
is discontinuous in the limit D ~ 0. This discontinu- 
ity was considered by Graham and TEl [ 18], and by 
Jauslin [6] and Day [7]. The switching lines were 
found numerically in Ref. [6]. 

It is clear from the above picture that two switching 
lines emanating from different cusp points can end in 
a point where they intersect each other, and then an- 
other switching line starts at this point. Therefore there 
arise physically observable trees of switching lines, 
with the "free" ends at cusp points. Yet another con- 
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clusion concerns the possibility, expected on physical 
grounds, to reach any point (ql, q2) along an optimal 
path which haS never touched a caustic. This possi- 
bility follows from the fact that caustics are the only 
lines that limit the flow of the optimal paths q(t)  in 
the considered case, and they emerge from the cusp 
points simultaneously with the switching lines. In par- 
ticular the above results provide an insight into the 
switching to a new escape path observed in Ref. [8] 
when the old escape path is crossed by a cusp point 
as a parameter is varied. 

The structure of the singularities becomes more 
complicated if a system has other steady states. A state 
of particular interest is an unstable stationary state: a 
saddle point qs (K(qs)  = O, det(OKi/Oqj) < O, and 
we assume ~7 • K < 0). Saddle points occur on the 
basin boundaries in multistable systems. In such sys- 
tems, in addition to the characteristic relaxation time 
trel of the deterministic motion (that in the absence of 
noise), fluctuations about an initially occupied attrac- 
tor a are characterized by the reciprocal probability 
Wa I of the noise-induced escape from the basin of at- 
traction. In the time interval trel << t << Wa 1 theprob- 
ability distribution Pa(q) is quasistationary far from 
the other attractors. We assume the basin boundary 
(the separatrix) to extend to infinity and to contain 
only one unstable stationary point qs. It is the slowing 
down of the optimal path near qs that gives rise to the 
effects we discuss. 

The point q = qs, P = 0 is a fixed point of the 
Hamiltonian equations (4),  and close to it they can 
be linearized. We shall enumerate the eigenvectors 
{qCn),p(n)} (n = 1 . . . . .  4) so that the ones with n = 
1,2 are "fluctuational", pO,2) 4= 0, while the ones 
with n = 3, 4 are "deterministic", p(3,4) _ 0 (the so- 
lution or (4) with p = 0 corresponds to the determin- 
istic motion, # = K).  In the vicinity of the fixed point 

4 
q( t) = qs + ~ C(n) exp( A(n)t)q (n) (7) 

n=l 

and similarly p(t) = ~-~ c(n) exp( A(n)t)p(n); A O,2) 
are the eigenvalues of the matrix -OKi/Oqj evaluated 
in the saddle point, and A (4'3) are their negatives. We 
choose 

A(I) >,,[(3) > 0 ,  A (2) = - A  (3), 

A (4) = - A  (~). (8) 

The optimal path of particular importance is the one 
along which the system escapes from the attractor. In 
a quite general case of a system driven by Gaussian 
noise the most probable escape path (MPEP) [ I0] 
ends up in the saddle point [4]. Since MPEP ap- 
proaches the saddle point as t ~ c~, for this path 
C l) = C (3) = 0 in (7).  The interrelation between the 
coefficients C (2), C (4) is determined by the motion 
far away from the saddle point (in special cases, like 
detailed balance, C (4) = 0). Because IA(4)I > IA(2)I, 
MPEP is tangent to q(2) in the saddle point (cf. Ref. 
[ 10] ), and for q lying on the IV[PEP 

q × q(2) = M ( q .  q(~))A q(4) × q(2), 

A = A(1)/A (3) (9) 

(we chose the direction of q(2) such that C (2) > 0 for 
the MPEP). 

For the extremal paths other than MPEP C (1'3) #= 
0. The coefficients C (1'3) are interrelated via the ex- 
pression CO)C(4)/C(2)C (3) = r where the constant r 
can be found from the condition that the energy of the 
Hamiltonian motion E = 0. The paths infinitesimally 
close toMPEP ([C(I) I ---, 0) and lyingon the opposite 
sides of it approach asymptotically the eigenvectors 
±qO) as t ~ ~ and then go away from the saddle 
point. The corresponding limiting paths form a "cut" 
of the LM. The singularities related to the cut which 
are of central interest here have not been considered in 
the analysis of the escape probability [ 10,19] where 
the absorbing boundary was placed along the vector 
q(4) (the basin boundary in the absence of fluctua- 
tions). 

If the cut was not crossed by other optimal paths 
emanating from a given attractor a it would determine 
the range that can be reached from this attractor along 
an optimal path. However, crossing of  the cut by the 
paths that have not encountered a caustic may occur, 
and in general, for A < ~ a caustic emanates from 
the saddle point tangent to the cut. The equation for 
the caustic O ( ql , q2 ) / 8 ( t, lz ) = 0 ( tz is the parame- 
ter that "enumerates" the paths, the coordinate on a 
path q =- q(t,  tz))  can be solved for small C (1'3) (but 
IC(4) I exp(A(2)t) << Ic(l)l exp(A(l)t)) .  The result- 
ing interrelation between the coordinates oftbe caustic 
transverse and parallel to q(1) is of the form 
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Fig. 3. Saddle point. 

h - 1 q .  q(l) q(1) × q(2), (10) 

where a = 1 / ( 2 -  a) ,  1 < a < 3, and 

(p ( l )  , q ( 4 ) ) ( q ( l )  × q(3)) 

= A(1 -- A) ( p ( 2 ) .  q(3)) (q(1) X q(2)) 

(the cross-product q(i) × q(j) has only one nonzero 
component, it is perpendicular to the q-plane, and we 
mean the ratio of the corresponding components by 
the ratio of the cross-products). Eq. (10) shows that 
the caustic is tangent to the cut in the saddle point and 
is described by a simple power law with the exponent 
1 < ot < 2 determined by local parameters of the mo- 
tion near the saddle point. The inequality a < 2, or 
h < 2 3- follows from the condition that the corrections 
to (10)  due to nonlinearity be small and gives the cri- 
terion for the onset of the caustic [ 16]. The prefactor 
in (10) depends on the nonlocal characteristic M. 

The general conclusion that optimal paths do not 
encounter caustics applies to the caustic emanating 
from the saddle point as well. The paths "beating" the 
ones approaching the caustic emanate from the sad- 
dle point themselves. When a system is approaching 
qs its motion is slowed down, and it spends a time 

( 1/A (t ! ) ] In D[ performing small fluctuations about 
qs. Over this time a large fluctuation can occur which 
will drive the system away from qs. It is then neces- 
sary to compare the probability to arrive at a given 
q directly from the attractor or via qs, and it can be 
shown that the second scenario wins on the caustic. 
The switching line emanates from qs and lies between 
the cut and the caustic. The system arrives on opposite 
sides of it (as well as on the opposite sides of the cut 
on the other side of the saddle point, cf. Fig. 3) di- 

rectly from the attractor or having reached the saddle 
point first. 

In conclusion, we have established the global struc- 
ture of the pattern of optimal paths for dissipative 
Markov systems and revealed singular features related 
to the saddle points. We have shown why and how op- 
timal paths avoid caustics. The singularities that can be 
immediately observed experimentally by tracing opti- 
mal paths or by measuring the probability distribution 
are switching lines. They start at the cusp points from 
which caustics emanate or at the saddle, and can form 
trees. 
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