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Speeding up disease extinction with a limited amount of vaccine
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We consider optimal vaccination protocol where the vaccine is in short supply. In this case, the endemic state
remains dynamically stable; disease extinction happens at random and requires a large fluctuation, which can
come from the intrinsic randomness of the population dynamics. We show that vaccination can exponentially
increase the disease extinction rate. For a time-periodic vaccination with fixed average rate, the optimal
vaccination protocol is model independent and presents a sequence of short pulses. The effect can be reso-
nantly enhanced if the vaccination pulse period coincides with the characteristic period of the disease dynamics
or its multiples. This resonant effect is illustrated using a simple epidemic model. The analysis is based on the
theory of fluctuation-induced population extinction in periodically modulated systems that we develop. If the
system is strongly modulated (for example, by seasonal variations) and vaccination has the same period, the
vaccination pulses must be properly synchronized; a wrong vaccination phase can impede disease extinction.
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I. INTRODUCTION

Spreading of an infectious disease is a random process.
An important source of randomness is the noise associated
with the stochastic character of such events as infection, re-
covery, birth, and death. In a large population this noise is
small on average, and the infection spread leads to an en-
demic state where a certain fraction of the population stays
infected for a long time. However, if there is no influx of
infected individuals from the outside, the disease will ulti-
mately disappear due to fluctuations. Disease extinction re-
quires a large fluctuation, as it involves an unlikely chain of
elementary events where, for example, susceptible individu-
als happen to avoid getting infected while infected ones re-
cover [1-3]. Such spontaneous disappearance of a disease is
an example of population extinction studied in stochastic
population dynamics.

Spontaneous extinction of species is important also for
physical and chemical reaction systems. An underlying com-
mon feature of the phenomena involving fluctuation-induced
extinction is that the extinction results from a series of short
random events, such as collisions between molecules that
lead to chemical reactions and interactions between individu-
als that lead to the disease spread. As a consequence, for
different systems extinction can be described within the same
general formalism. This provides a broader scope for the
present paper. Moreover, the method of optimal control of
extinction that we propose can be applied to systems of vari-
ous types.

A conventional way of fighting epidemics is via vaccina-
tion. If there is enough vaccine, the infection can be eradi-
cated “deterministically” by eliminating the endemic state
[4]. The amount of available vaccine, however, is often in-
sufficient. The vaccine may be expensive, or it may be dan-
gerous to store in large amounts, as in the case of anthrax, or
it may be effectively short lived due to mutations of the
infection agent, as for human immunodeficiency virus [5]
and influenza [6].

Even where the endemic state may not be eliminated de-
terministically, vaccination can dramatically affect the sto-
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chastic dynamics of the epidemics. The underlying mecha-
nism is the change in the rate of large fluctuations leading to
disease extinction. For a well-mixed population, this rate W,
is usually exponentially small for a large total population
size N> 1, W,xexp(—Q) with Qo N [3,7-16]. We call Q the
disease extinction barrier. Vaccination changes the value of
Q/N. Even a small change in Q/N can lead to a significant
change in Q and thus to an exponentially strong change in
the disease extinction rate. This effect was previously dis-
cussed for vaccination applied at random [15].

The goal of this paper is to find an optimal way of admin-
istering a limited amount of vaccine which would maximally
increase the disease extinction rate. We find a vaccination
protocol that applies for a broad class of epidemic models.
Our approach is based on the observation that, in a large
fluctuation that leads to disease extinction, the population is
most likely to evolve in a well-defined way. It moves along
the most probable path in the space of the dynamical vari-
ables which characterize different subpopulations (cf. Refs.
[15-17]). Vaccination perturbs the system as it moves along
the optimal path. One can think of vaccination as “force” and
its effect as “work” done on the system. This work reduces
the barrier Q. The problem then is to maximize the work for
given constraints on the vaccine.

Optimization of the effect of vaccination resembles an-
other problem of optimal control of random systems, control-
ling large fluctuations in noise-driven dynamical systems by
applying an external field with a given average intensity
[18,19]. There are, however, important differences, which
come from the very nature of the control field. Indeed, vac-
cination only reduces the number of susceptible individuals.
In other words, as a control field, vaccination never changes
sign. Then, remarkably, if the available amount of vaccine is
constrained by a given mean vaccination rate, the optimal
vaccination protocol turns out to be model independent. This
our finding applies also to using a limited amount of medi-
cations and other situations where the control field drives the
system only in one direction.

A natural way of applying the vaccine for a given mean
vaccination rate is to do this periodically in time. We show
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that the corresponding optimal vaccination protocol is a se-
quence of &-like pulses. The disease extinction rate can
strongly depend on the period of this sequence. Furthermore,
the extinction rate can display exponentially sharp peaks
when the vaccination period is close to the characteristic pe-
riod of oscillations of the system in the absence of fluctua-
tions or to its multiples. We illustrate this resonant phen-
omenon for the susceptible-vaccinated-infected-recovered
(SVIR) model. We note that strong periodic vaccination has
been investigated in the framework of deterministic epidemic
models, and it was found that pulsed vaccination is advanta-
geous compared to vaccination at a constant rate [20].

Epidemics often display seasonal variations [21,22]. It is
natural to apply a vaccine with period equal to the modula-
tion period. As we show, there is a qualitative difference
between the effect of a periodic vaccination in this case and
in the case where seasonal modulation is absent. For a sys-
tem with seasonal modulation, an improperly applied pulsed
vaccination can actually reduce the disease extinction rate
and therefore prolong the duration of the epidemic. The over-
all effect of the pulsed vaccination critically depends here on
the phase at which the periodic pulses are applied.

The analysis of periodic vaccination, with and without
seasonal variations, necessitates a general formulation of the
extinction problem in a periodically varying environment,
that is, for periodically modulated population dynamics. This
problem was previously addressed for single-population sys-
tems [23,24]. We provide a complete extinction theory for
modulated multipopulation systems in the eikonal approxi-
mation. It includes a formulation, using topological argu-
ments, of the nontrivial boundary conditions for the optimal
path of disease extinction. These conditions make the prob-
lem significantly different from the well-understood problem
of switching between metastable states in periodically modu-
lated systems with noise [25].

Section II describes the class of epidemic models we con-
sider in this work. Section III presents a general eikonal
theory of disease extinction rate in periodically modulated
systems, including the theory of the boundary conditions for
the optimal extinction path. Section IV formulates the opti-
mization problem for time-periodic vaccination with a mod-
erately small average vaccination rate. Its solution for sys-
tems that are stationary in the absence of vaccination is
presented in Sec. V. The shape of the vaccination pulses is
shown to be model independent. In Sec. VI the case of peri-
odically modulated systems with periodically applied vac-
cine is studied. In Sec. VII we discuss the vaccination-
induced reduction of the disease extinction barrier for two
types of constraints on the vaccination period, a limited life-
time of the vaccine, and a limited vaccine accumulation. Sec-
tion VIII illustrates, on the example of the stochastic SVIR
model, the phenomenon of resonant response to vaccination.
Section IX contains concluding remarks.

II. MODEL OF POPULATION DYNAMICS

We consider stochastic disease dynamics in a well-mixed
population which includes infected (I) and susceptible (S)
individuals and possibly other population groups such as re-
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covered or vaccinated. The system state is described by a
vector X=(S,7,...) with integer components equal to the
sizes of different population groups. Along with X it is con-
venient to consider a quasicontinuous vector x=X/N, where
N is the characteristic total population size, N>1. We as-
sume that the population dynamics is Markovian. It is quite
generally described by the master equation for the probabil-
ity distribution P(X,1),

PX,0) =2, [WX -r,r,)P(X —1,1) - WX, r,0) P(X,1)].

(1)

Here, W(X,r,?) is the rate of an elementary transition X
—X+r in which the population size changes by r
=(ry,r,,...). Examples of such transitions are infection of a
susceptible individual as a result of contacting an infected
individual, recovery of an infected individual, or arrival of a
susceptible individual. In population dynamics and epidem-
ics, |r| is much smaller than the characteristic population size
N, typically |r|~1.

As it is often done in the models of epidemics [1-3], we
assume that there is no influx of infected individuals into the
population. Therefore, no transitions occur from states where
there are no infected to states where infected are present,

W(X,r,r)=0 for X;=0, rp#0, (2)

where the subscript E is used for the component of X which
enumerates infected, Xy =/. This condition plays an impor-
tant role in the analysis.

In the neglect of fluctuations the population dynamics can
be described by the deterministic (mean-field) equation for
the reduced mean population size X,

=2 rw(x,r,1), (3)

x=X/N, w(x,r,t)=WX,r,t)/N.

It immediately follows from Eq. (1) if the width of the prob-
ability distribution P(X,7) is set equal to zero.

A. Static environment

We start with the case of static environment where the
transition rates W(X,r,z) are independent of time,
W(X,r,t)=W(X,r). We refer to this case in a standard way
as the case of stationary systems. We assume that the system
has an endemic state. This state is characterized by a finite
fraction of infected and corresponds to an attracting fixed
point x, of the mean-field dynamics [Eqs. (3)]. We will as-
sume throughout this work that there is only one such point,
typical of many epidemics models [1-3]. We will also as-
sume that Egs. (3) have one fixed point X in the hyperplane
xg=0. The state xg is stable with respect to all variables
except xgz. We call it the disease extinction state. If xz>0
(there is a nonzero number of infected), the deterministic
trajectory leaves the vicinity of xg and approaches the en-
demic state x,.
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Due to fluctuations the endemic state is actually meta-
stable. The fluctuations ultimately drive the population into a
disease-free state. The rate W, of fluctuation-induced disease
extinction is given by the probability current to the extinction
plane, reminiscent of the problem of escape from a meta-
stable state where the escape rate is determined by the prob-
ability current away from the basin of attraction [26]. For
time-independent W(X,r) this current is quasistationary for
times 1,<t<W,'!, where ¢, is the characteristic relaxation
time for the noise-free motion described by Egs. (3).

The exponent Q in the rate W, is determined by the most
probable fluctuation leading to extinction; this fluctuation
brings the system to the fixed point xg [15,16]. Even though
the state X is a saddle point in the mean-field approximation,
it differs from the saddle-point states encountered in the
problem of switching between metastable states of reaction
systems. In the case of interstate switching, the rates of el-
ementary transitions W(X,r) in the unstable direction are
nonzero, and ultimately fluctuations drive the system away
from the saddle point. In contrast, the extinction hyperplane
is absorbing. Fluctuations around Xxg occur only in this hy-
perplane; the probability of exiting is zero, as a consequence
of Eq. (2).

B. Periodically varying environment

The above picture can be extended to the case where the
transition rates are periodic functions of time, W(X,r,z+7)
=W(X,r,1). Time periodicity of the rates is a natural way of
modeling seasonal variations of epidemics [21,22]. Periodic-
ity may be also imposed by vaccination. In physics terms,
the system is periodically modulated in time. We use the
term “modulation” in what follows to account for all types of
periodic variations of the system parameters.

In a modulated system, the attracting solution of Egs. (3),
which describes the endemic state, is no longer stationary.
We will assume that this solution, x,(7), is periodic in time
with the modulation period 7T, x,(t+7)=x,(t). The
asymptotic disease extinction state xg(7) is also periodic in
time; it lies in the hyperplane x;=0.

An important characteristic of a modulated system is the
period-averaged disease extinction rate W,. It can be intro-
duced if the modulation period 7'<< W;l and, in addition, ¢,
<W;l. In this case, for time ¢ such that 7, T<r<< W;l, a
quasistationary time-periodic probability distribution is
formed, centered at x,4(7). The probability current from x4(z)
into the extinction plane is also periodic in time, and the
period-averaged value of this current gives W, [24], in a
direct analogy with the problem of switching between meta-
stable states in noise-driven dynamical systems [27-29].

III. EIKONAL APPROXIMATION
A. Equations of motion

We will be interested in evaluating the disease extinction
barrier Q which gives the exponent in the disease extinction
rate, W,xexp(—Q), at N> 1. This barrier is entropic in na-
ture, as it results from an unlikely sequence of elementary
transitions. The entropic barrier and the extinction rate can
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be found by solving the mean first passage time problem for
reaching xg(¢) [7-9], or by calculating the lowest positive
eigenvalue of the evolution operator of master equation (1)
[13], or from the tail of the quasistationary probability dis-
tribution P(X, ) for x close to x4(7) [11,14-16,30]. Here, we
choose the latter strategy and determine, to the leading order
in N, the logarithm of the distribution tail.

We seek the solution of Eq. (1) in the eikonal form,
P(X,1)=exp[—Ns(x,1)] [31-33]. In the limit of large N, from
Eq. (1) we obtain the following equation for s(x,?):

ds=—H(X,0,5,1), 4)
H(x,p,t) = 2 w(x,r,f)[exp(pr) - 1].

Here, we have taken into account that, as mentioned above,
[r|< N, and that typically W(X,r,#) depends on X polyno-
mially, whereas P is exponential in X. Therefore, we ex-
panded P(X+r,1)= P(X,1)exp(-rd,S) and replaced, to the
leading order in 1/N, w(x—N"'r,r,?) with w(x,r,?).

Equation (4) has the form of the Hamilton-Jacobi equa-
tion for an auxiliary Hamiltonian system with Hamiltonian
H(x,p,1); s(x,t) is the action of this system. The Hamilton
equations of motion are

X= E rw(x,r,t)eP",
r

p=—2> dw(x,r,0)(eP = 1). (5)

These trajectories determine, in turn, the most probable or
optimal trajectories that the system follows in a fluctuation to
a given state x at time 7. We will calculate the action s(x,?)
using these trajectories.

B. Boundary conditions for the optimal extinction trajectory

To find the boundary conditions for Hamiltonian trajecto-
ries (5), we note that the quasistationary (or quasiperiodic,
for a periodically modulated system) distribution P(X,¢) has
a Gaussian maximum at X, (7). This means that, close to
attractor x4(z), the action s(x,r) is quadratic in x—x, for
stationary systems, whereas for periodically modulated sys-
tems s(x,f)=s(x,t+7T) is quadratic in the distance from
x,(¢) [34]. On the Hamiltonian trajectories that give such an
action, the momentum p=d,s—0 for x—x,(¢), and since
x=x4(7), p=0 is a fixed point (a periodic trajectory) of the
Hamiltonian dynamics, the trajectories of interest start at
1 — —00,

s(x,1) = dtL(X,X,1),

-0

L(X,x,0) = >, w(x,r,0)[(pr—1)eP" +1]. (6)

In the Lagrangian L [Egs. (6)], p should be expressed in

terms of x,x using Egs. (5). Since w=0, we have L=0.
The extinction barrier Q is determined by Ns(x,¢) for x in

the extinction hyperplane, x;=0. In the spirit of the eikonal
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approximation, we have to find the point (x,7) in this hyper-
plane where that s(x, ) is minimal. The minimum determines
the boundary conditions for the optimal Hamiltonian trajec-
tory of extinction, (Xep(?),Pop(?)). The condition that s(x,?)
is minimal with respect to x;.x on the extinction hyperplane
means that, for i #E, pi=0ys goes to zero as the trajectory
(Xopt(?) s Popi(?)) approaches the hyperplane. The minimum of
s(x,t) with respect to ¢ within the period of modulation is
reached if H(x,p,7) — 0 as the trajectory approaches the hy-
perplane.

A consequence of the conditions H(x,p,?)—0 and p,.g
—0 is that the momentum component py remains bounded
on trajectory (X,n(?),Pop(?)). Indeed, near the extinction hy-
perplane, x;<<1, we have

Xp= E rw(X,r,1)eP" = XEE VE[¢9W(X,l’,f)/t?xE]xE=oepErE-
r r

()

Here, we assumed that w(x,r,7) is nonsingular at x; — 0 and,
since w=0 for xz=0 and r;z# 0 [cf. Eq. (2)], we expanded w
in xz to the lowest order. Since w(x,r,f)=0, we have
ow(x,r,1)/dxp=0 for x;=0.

Let us assume now that |pg| — o for x;— 0; it is also clear
that py should be negative; otherwise, the trajectory would
not approach x;=0 [unless all rz’s in Eq. (7) are negative,
which is incompatible with the assumption that X is an un-
stable state in the mean- field approximation]. Then only the
term with maximal —rp=-rg,, should be kept in the sum
over rg in Eq. (7). From the Hamilton equation for py and
Eq. (7) it follows that dpy/dxg=—1/xgrg,,. Using this rela-
tion, along with the explicit form of the Hamiltonian H, one
can show that, if py were diverging for x;— 0, the Hamil-
tonian would not become equal to zero but would remain
=~=const X dw/ dxp with the derivative calculated for x;=0 and
rp=rg,. This contradiction shows that the assumption |pg]
— % is wrong; pg remains bounded for x;— 0.

If |pg| remains bounded, it follows from Eq. (7) that xg
goes to zero exponentially as r— . As xy approaches zero,
variables x;.j are approaching the equilibrium position in the
hyperplane x;=0. This happens because p;.r—0 and the
dynamics of x;.. in the hyperplane is described by the mean-
field equations [Egs. (3)]. Therefore,

o

Q = Nsext? Sext = f dtL(X,Xst) s (8)

—00

x(t) — x5(1), p@t) — ps(t) for r— oo,

The function pg(¢) is periodic in time, with p,;.=0 and with
hitherto unknown component pg(t), which is discussed be-
low.

The heteroclinic Hamiltonian trajectory (Xqp(?),Popi())
that is given by Egs. (5) and goes from periodic orbit
(x4(2),p=0) to periodic orbit (xs(z),ps) plays a special role.
First of all, it determines the action for extinction s.,. In
addition, the trajectory X,(t) is the optimal path to disease
extinction: it describes the most probable sequence of el-
ementary transitions leading to extinction. We note that, in
periodically modulated systems, there is one optimal path per
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period, whereas in stationary systems
(Xopt(2) , Pope(?)) are time-translation invariant.

trajectories

C. t— o value of the momentum on the optimal
Hamilton trajectory

The momentum component (pg); is generically nonzero.
This property is a consequence of the topology of the pattern
of optimal paths in the extinction problem [15,35]. It was
found for both single- and multiple-population stationary
systems [9,16,36].

For periodically modulated systems, one can show that
(ps)g# 0 by extending the arguments presented in Refs.
[15,35]. This amounts to showing that the stable manifold of
the periodic orbit (x5(z),p=0) lies entirely in the invariant
hyperplane x;=0, p,.;=0 and, as a consequence, does not
intersect the unstable manifold of the periodic orbit
(x4(1),p=0). Such an intersection is necessary in order to
have a heteroclinic trajectory that would go from (x4(z),p
=0) to (x5(1),p=0).

The hyperplane x;=0, p;.z=0 is formed by trajectories

Xivp= 2 [wx,r,0)] o7,
r

PE=-— E [(7XEW(X,r,t)]xE=o(€pErE -1). )

The invariance of this hyperplane is a consequence of Eq.
(2), which leads to p;.z=0 and xz=0 for p;.;=0 and x;=0.

To prove that the stable manifold of (x4(z),p=0) lies en-
tirely in the invariant hyperplane x;=0, p;.z=0, we first
show that the trajectories, which are described by Egs. (9)
and which start close to the state (x5(z),p=0), approach this
state for — 0. Then, since the dimension of the hyperplane
xg=0, p;»-r=0 is equal to the dimension of the stable mani-
fold of (x5(r),p=0), we conclude that the stable manifold
indeed lies in the hyperplane.

Equations (9) for x;. are the mean-field equations in the
extinction hyperplane x;=0 [cf. Egs. (3)] and therefore x;
—[x4(2)]; for t—o0. Linearization of the second of Egs. (9)
for py about (x5(r),p=0) gives

pE=— 2 [axEW(X’r’t)]XS(I)pErE' (10)
r

We compare this equation with the mean-field equation
for xp near xg(r). The latter has the form Xz
=xpZ,rpl 3, WX, 1, 1) ] (- Since the state X5(f) is unstable in
xg direction in the mean-field approximation, from Eq. (10),
Pe/ pe<<0. Therefore, all trajectories on the hyperplane xg
=0, p;£=0 close to the state (x5(z),p=0) approach this state
asymptotically as r—o0, and thus the stable manifold of
(x5(1),p=0) lies in this hyperplane.

From the above analysis one concludes that there are no
Hamiltonian trajectories that would go from (x4(¢),p=0) to
(x5(1),p=0). Therefore, the optimal trajectory leading to ex-
tinction should go to a periodic state (xs(7),ps(r)) with
[ps(t)]z# 0. This completes the eikonal formulation of the
problem of extinction rate in monostable periodically modu-
lated systems.
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D. Systems with several steady states

The above analysis should be modified if the system has,
in the mean-field approximation, more than one steady state
away from the extinction hyperplane. Here, extinction goes
in steps, from the endemic state to another steady state and,
ultimately, to the extinction hyperplane. Of interest is the
situation where the state X is an attractor for the mean-field
dynamics, whereas the only additional steady state is a
saddle point at the boundary between the basins of attraction
of x, and xs. Here, the problem of extinction is reduced to
the problem of escape over this saddle point [30,36], which
was discussed for reaction systems earlier [33]. The exten-
sion to periodically varying environments is straightforward.

IV. OPTIMAL VACCINATION:
THE VARIATIONAL PROBLEM

Vaccination increases the number of individuals who are
at least temporarily immune to the disease. It thus reduces
the pool of susceptible individuals and ultimately leads to a
reduction in the number of infected. When the available
amount of vaccine is small, so that the disease extinction still
requires a large fluctuation, the goal of vaccination is to re-
duce the disease extinction barrier Q.

An outcome of vaccination is often modeled as the cre-
ation of a subpopulation of vaccinated individuals out of
susceptibles. The corresponding elementary transition rate is

W(X,l‘,t)=§0(t)xs fOl‘ rsz_l, rvzl, I’#S’VZO,

where subscripts V and S refer to vaccinated and susceptible
individuals, respectively, and &(7) is the control field that
characterizes the vaccination (subscript S should not be con-
fused with subscript S used to indicate the extinction state).
Another broadly used model is vaccination of newly arrived
susceptibles, which leads to an effective reduction of the
arrival rate wN. In this model, the elementary transition rate
for the arrival is

WX,r,0)=N[u—&(0)] for rg=1, r;.5=0,

with &)(1)N being the change in the arrival rate due to vac-
cination.

We will consider a general model where vaccination
modifies the rate of an elementary transition of a certain type
or creates a new transition; the change in the population in
the vaccination-related transition is re. The field & (1) that
characterizes the vaccination is assumed to be weak. The
affected rate has the form W(X,rg,t)=W(0)(X,r§,t)
+§0(I)W“)(X,r§), with W being the rate without vaccina-
tion. The vaccination either increases or decreases the rate,
as for transitions from susceptibles to vaccinated or for vac-
cination of newly arrived susceptibles, respectively. There-
fore, we will assume without loss of generality that &y(z)
=( and that WM)(X,rg) is either positive or negative. We
consider models in which the number of susceptibles
changes by 1 in an elementary transition associated with vac-
cination, S— S—1. We note that the analysis can be immedi-
ately extended to describe other processes, such as modifica-
tion of the infection rates [3] or recovery acceleration by
administrating medicine.
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It should be noted that the vaccination model adopted in
this work is probabilistic by nature. An alternative is where
vaccination is done in a predetermined fashion, when indi-
viduals are vaccinated at a certain rate at a given time. The
analysis of such deterministic vaccination lies beyond the
scope of this paper.

We will assume that the vaccination rate is periodic, with
& (1) =&)(t+T), and that the amount of vaccine available per
period T is limited. We model this limitation as a constraint
on the ensemble-averaged number of individuals vaccinated
per period 7. The constraint can be written as

T
r‘J digy(n 2 WX, r)|P(X,)=NE.  (11)
0 X

Here, E is the average vaccination rate rescaled by the char-
acteristic population size N. The constraint is well defined
for t,<t<W,', where P(X,t+T)=~P(X,1). Since for N> 1
the population distribution sharply peaks at the endemic state
X,(1), the sum over X in Eq. (I11) can be replaced with
[W(X (), ry)] to the leading order in 1/N.

In the presence of vaccination, one can still seek a solu-
tion of the master equation in the eikonal form. The exponent
Q in the extinction rate is again given by the action of an
auxiliary Hamiltonian system [Egs. (8)]. The Hamiltonian
now has the form

H(va’t) = H(O)(X’p’t) + gO(I)H(l)(X’p),

H(O)(x,p,t) = E wOx,r,0) (e’ = 1),
r

H(U(x,p)=w(1)(x,r§)(el’r§— 1). (12)

Our goal is to find the optimal form of &y() which would
minimize the disease extinction barrier Q subject to con-
straint (11). Since w(V(x,(7), ry) is a known periodic function
of time, we can equivalently search for the optimal vaccina-
tion rate &(1)= &(t)|wV(x,4(1),r¢,1)|. It minimizes the func-
tional

T
Tl = s E0]+ AT f () - Ear,
0

&) = &+ T) = &)WV (x4(1),rp)[ = 0, (13)

where \ is the Lagrange multiplier. The functional s..[ £] is
given by Egs. (8), where the Lagrangian corresponds to the
Hamiltonian (12) and depends on the vaccination rate &(z).

V. VACCINATION PROTOCOL
FOR A STATIC ENVIRONMENT

In this section we consider optimal vaccination for sys-
tems that are stationary in the absence of vaccination. Re-
spectively, the rates W and the states x4,X s are indepen-
dent of time.

A. Double optimization problem

For a low average vaccination rate = it suffices to keep in
the action s.,[ £(7)] only the leading-order term in &(r). Since
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Hamiltonian (12) is linear in &, this term is linear in &, too. In
the spirit of the standard perturbation theory for Hamiltonian
systems [37], the change in the action, caused by the small
perturbation, can be calculated along the unperturbed trajec-
tory (Xg%)t(t) popt(t)) of the Hamiltonian H?), which describes
the optimal path of disease extinction in the absence of vac-
cination.

For systems that are stationary in the absence of vaccina-

tion,
Sl E0)] = 500+ &,

©

stalén] = mm f drx(t— 1) &),

—00

x(1) == HOQ 0. p()w(x,ro [ (14)

The quantity x(z) is called logarithmic susceptibility
[15,24,38]; it gives the change in the logarithm of the extinc-
tion rate, which is linear in the vaccination rate for moder-
ately low vaccination rate.

The minimization over £, in Egs. (14) accounts for lifting
the time-translational invariance of the optimal extinction
paths mentioned earlier. For &(r) =0, extinction can occur at
any time (f,<t<W-') with rate W,. Periodic vaccination
synchronizes extinction events; it periodically modulates the
extinction rate, and the modulation is exponentially strong
for exp(N|sg()t|)>1 (see below). Formally, in a modulated
system there is only one optimal extinction path per period,
as explained in Sec. III, which is reflected here in the mini-
mization over #,. This optimal path minimizes the disease
extinction barrier Q=Ns.,, [15,23,24,27,38]. Equations (14)
are closely related to the Mel’nikov theorem for dynamical
systems [39].

The constraint for minimizing the action over &(¢) in Egs.
(13) has a form of an integral over the Vaccmatlon period 7.
It is therefore convenient to write action s'!) also in the form
of such an integral,

CXt

T
sg()t[g([)] = minf dré(t) x1(t = 1),

o Jo

o)

xr{t)= 2 x(t+nT). (15)

n=—0

The function x(¢) is obtained by superimposing the parts of
x(7) which differ by 7. By construction, y(¢) is periodic in
time ¢.

Synchronization of extinction events, which underlies the
approximation (14), occurs if the temporal width of the tube
of fluctuational paths leading to extinction is smaller than T;
this tube is centered at the optimal extinction path X (t
—1y). From the analogy with the problem of escape of modu-
lated systems [25,27] we expect that this tube is Gaussian,
with a characteristic width determined by the change in s&i
when ¢, is changed from its optimal value, that is, this width
is ~T|Ns'"|="2. The actual condition of synchronization is
that the corresponding Gaussian distribution has a sharp
peak, which requires exp(N|s (1)|) > 1. In the case where T is

ext
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small compared to the relaxation time ¢, and with the char-
acteristic oscillation period of the path x,,() (if this path is
oscillating), the synchronization may be lost for not too large
|Ns(l) the value of sext is then determined by the time-
average component of the modulation, but the modulation
still leads to the strong effect for exp|Nsw| > 1. We note that
we have not considered the prefactor in the disease extinc-
tion rate. The corrections to the prefactor due to the vaccina-
tion are small compared to the factor exp|Ns

B. Temporal shape of optimal vaccination

To find the optimal shape of vaccination rate &(r) we first
minimize the time integral in the variational problem
(13)—(15) with respect to &(r) for a given #,. Since &(r) =0, it
is convenient to perform the minimization with respect to
£Y2(f) rather than &(r). The minimization shows that £"%(r)
#0 only for t=t,, where r, is given by the equation y;(z,
—ty)=—N/T. From the constraint on the period-averaged &(r)
we then have

&n=ETY, 8t—t,+nT). (16)

n

Substituting this expression into the functional s.,; and mini-
mizing with respect to #,, we obtain the action in a simple
explicit form

(1)

+ Sexto

Sext = MIN Sey = Sext

ste=ET min x(1). (17)

0=1<T

Alternatively, this expression can be rewritten in terms of the
Fourier transform of the logarithmic susceptibility,

s\ = 2 min 2, ¥(nQ)exp[inQi],
t

n

©

dix(t)exp(iwt), (18)

—%

X(w) =

where Q=27/T is the cyclic frequency of Vaccination.

We are interested in the solution for which Vexr is negative,
which requires min x,(¢) <0. Only in this case will vaccina-
tion reduce the barrier for disease extinction and increase the
disease extinction rate. The barrier reduction due to vaccina-
tion, Q(l)=ng)tO<NE, becomes large for N>1 even if the
average vaccination rate = is small. The effect of vaccination
on the disease extinction rate is exponentially strong for
exp|QW|>1.

The expression for the action change s'!) [Egs. (17)] can
be also obtained in a more intuitive way. Indeed, since &(7) is
non-negative, it follows from Egs. (15) that

sl &n]= min X (1) f dré(r) = ET min x(1). (19)
t
The minimum is provided by &) =ET=,8(t—t,,,+nT). For-

mally, £,,, is the instance of time where y;(¢) is minimal. In
fact, it is the optimal path that adjusts to the vaccination
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pulses so as to increase the probability of disease extinction.
This provides the mechanism of synchronization by vaccina-
tion. Equation (19) immediately leads to Egs. (16) and (17)
with ¢, replaced with 7,,,.

C. Effect of the constraint on the maximal vaccination rate

In addition to the constraint on the average vaccina-
tion rate, there may be an upper limit on the instanta-
neous vaccination rate, which is imposed by the condition
w(x,r)=w(x,r)+&tw(x,r) =0. In the case where
w(l)(x,r§)<0, as for vaccination of newly arrived suscep-
tibles, this condition is met provided &(f)=§&,
=min{w®(x,ry)/[w(x,r)|}. In this case the optimal vac-
cination protocol changes.

The new protocol can be found from the variational prob-
lem (13) by changing from &(r) = &()|wV(x 4,1, to an aux-
iliary function 7(¢) such that &(f)=&,,[1+ 7°(t)]"!, and then
finding the minimum of 5, with respect to 7(z). This choice
satisfies the constraints 0 =< &,(1) < §,,. Variation with respect
to 7(r) shows that 5,, has an extremum for 7(r)=0 or 7(r)
= for t#t,, where t, is given by the equation x(t,—t,)
=—N/T. The value of 7(¢) at the isolated instances r=t, is
arbitrary. Only regions where 7(r)=0, so that &y(¢) = &y,,, con-
tribute to 5,,,. Obviously, 5, is minimal when &(¢)=¢&,,, for
|t—t,is| = At/2, where t,,, is the time when y() is minimal
and At is determined by the average vaccination rate =. In
other words, the vaccination rate &(¢) has the form of peri-
odic rectangular pulses of width At, centered at t,,;,+nT,
with n=0, =1, £2,.... The pulse width is

____ET
§0m|W(1)(XA’r§)| .

Since the vaccination rate is limited by the rate of elementary
transitions without vaccine, we have &,,|w"(x,,r)|=<r".
Then for weak vaccination, ET<<1, from Eq. (20), Ar<t,.
Therefore, x(t) = x7{t,;,) during the pulse of &() to the lead-
ing order in ET [we note that y;(f) may vary on a time scale
shorter than ¢, (see below); however, this time scale is always
long compared to At for sufficiently weak vaccination]. The
resulting change in the action is again given by Egs. (17).

At (20)

VI. VACCINATION PROTOCOL FOR A PERIODICALLY
VARYING ENVIRONMENT

Optimal vaccination requires a separate consideration if
the environment is periodically varying in time, and thus the
system is strongly periodically modulated even without vac-
cination. Here, there is only one optimal extinction path per
modulation period 7. The optimal paths are periodically re-
peated (cf. Ref. [25]). If the added vaccination has a low
average rate £ and the same period 7, it will only weakly
perturb the paths. It is important, however, that the vaccina-
tion will only slightly shift each optimal path in time. This is
a consequence of the lack of the continuous time-translation
symmetry in a modulated system. Qualitatively, this means
that vaccination does not synchronize extinction events; they
are already synchronized by the modulation.
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Formally, to first order in =, the linear in & term in the
action still has the form of Egs. (15), but without minimiza-
tion over #j,, which corresponds to shifting optimal paths in
time. Since &(f)=0, the minimum of the action is still
achieved for &(1)=ETZ,8(t-t,,,+nT), but now f,;, is
uniquely determined by the variations in the environment.
This means that the phase of the optimal vaccination pulses
is uniquely determined. The resulting expression for sei)t for
the optimal vaccination protocol has the form of Egs. (17).

If the vaccination pulses are applied at a wrong time, that
is, the phase difference between the vaccination and the
modulation differs from the optimal one, the vaccination will
not be as efficient. Quite counterintuitively, vaccination may
even be harmful: it may prolong the lifetime of the endemic
state by increasing the disease extinction barrier Q.

The possibility of a harmful effect of vaccination can be
understood by noting that the logarithmic susceptibility x(z)
may change sign and become oscillating [40]. An example of
such a behavior is given in Sec. VIIL. In particular, it happens
where, in the absence of fluctuations, the system does not
simply monotonically approach the endemic state x,(z) but
performs decaying oscillations about it. Formally, it means
that the characteristic exponent of x4(¢) (the Floquet expo-
nent) is complex. In this case, on the optimal extinction path
different population groups also oscillate in time, at least not
too far from x4(z). As the amplitude of these oscillations
increases the system moves away from x,(7) toward the ex-
tinction plane.

If the vaccine pulses are applied in such a way as to
amplify the oscillations along the optimal extinction path, the
vaccination will accelerate disease extinction. In the opposite
case, even though the vaccination pulses decrease the num-
ber of susceptibles, they will decrease the oscillation ampli-
tude and drive the system back toward x,(r), making the
disease extinction less likely. Alternatively, and more for-
mally, one can notice that a 5-shaped vaccination pulse shifts
the system along the optimal path. This shift has a certain
sign since the vaccination is sign definite. If the shift is in the
positive direction, the extinction probability increases. How-
ever, if the optimal path is oscillating, the shift can be also in
the negative direction, leading to the increase in the extinc-
tion barrier.

VII. DISEASE EXTINCTION BARRIER AS A FUNCTION
OF VACCINATION PERIOD

The vaccination-induced reduction of the disease extinc-
tion barrier Q=Ns'!) as given by Egs. (17), depends on the
interrelation between the vaccination period 7 and the char-
acteristic time scales of the logarithmic susceptibility x(z).
The function x(7) may or may not oscillate in time, but gen-
erally x(z) is relatively large within a time interval of the
order of the relaxation time of the system ¢, [24,38,40]. To
reveal some qualitative features of the effect of vaccination
and, in particular, its dependence on the vaccination period,
we will consider s(e}()[ for two types of constraint on this pe-
riod.

A. Limited lifetime of the vaccine

The vaccination period T is naturally limited by the effec-
tive lifetime 7, of the vaccine. This lifetime is usually deter-
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mined by the maximum storage time of the vaccine and/or
by the mutation rates of the infectious agent. If 7, is long,
7,31, vaccination can be made most efficient by increasing
the vaccination period up to ~,. It follows from Egs. (17)
that s{") o T in this case. Indeed, it can be seen from Egs. (5),
(12), and (14) that, as the system moves along the optimal
path to extinction, x() is significant when the system is far
from the stationary states x, and Xg. The characteristic time

scale of this motion is ~t. For T>t we have
ming—,=7 x7(¢) = min, x(¢) and
s&)ﬁETmin X0, T,=T>1,. (21)
t

We note that the decrease in (1=27/T causes a decrease in
the effect of the vaccination on the disease extinction rate
W,, just because a smaller number of vaccination pulses are
applied per unit time. However, the sharp increase in the
exponential factor exp(—ng({) in W, is far more important
(we remind that W, T<<1).

In the opposite limit of 7,<<t,, and thus 7<<t,, we have

from Egs. (18)

sO=2%0), t,>7=T. (22)
In this case the vaccination-induced reduction of the extinc-
tion barrier is independent of the vaccination period and is
determined by the zero-frequency component of the logarith-
mic susceptibility.

An interesting situation may occur in the intermediate
range 7, ~t, if, in the mean-field description, the system ap-
proaches the endemic state in an oscillatory manner. In this
case the function x(r) is also expected to oscillate. The os-
cillations are well pronounced if their typical frequency is
wo>t;1. It is clear from Egs. (18) that a strong effect on
disease extinction can be achieved by tuning the vaccination
frequency Q)=27/T or its overtones in resonance with .
An example of such a resonance will be discussed in Sec.
VIII.

B. Limited vaccine accumulation

A different situation occurs if the total amount of vaccine
that can be accumulated is limited. This limitation implies
that ET=< M; note that M constrains the ensemble-averaged
amount of the accumulated vaccine. A limitation on vaccine
accumulation is typical for live vaccines, as it may be dan-
gerous to store too much vaccine in this case. The actual
average vaccination rate can be now 7 dependent. We use the
notation =, for this rate, with

=,=min(Z,M/T). (23)

This is =, that should be used in Egs. (21) and (22) for sg&
in the limits 7> ¢, and T<t,, respectively.

The behavior of sg()t with varying vaccination period T
depends on the form of the logarithmic susceptibility x(7).
Let us first consider the case where x(r) has a single local
minimum (at t=t,), x(z.) <0, and |x(#)] monotonically de-
cays to zero with increasing |t—t,|. Here, once the vaccine
accumulation has reached saturation with increasing 7T
(which happens for ET=M), the action |s'")|=M|min x,(?)|

extl ™

PHYSICAL REVIEW E 81, 051925 (2010)

N

v LS| g BSIN

1 2R
uv us MIL MR‘

FIG. 1. The SVIR epidemic model with susceptible, vaccinated,
infected, and recovered subpopulations. The arrows indicate pro-
cesses leading to changes in subpopulation sizes. The corresponding
rates are indicated next to the arrows.

monotonically decreases with further increase in 7. To show
this we introduce a parameter a, that defines the minimum of
x7(t) over ¢ and is given by the equation dx(t.—a.T)/da.
=0; we choose 0 <a,<1. In terms of this parameter,

d 0
— min H=— te—a,T+nT
dToom xr(t) &T% x( )

_ E (d)((t—a*T+ nT)

-a,) >0.
o )Izt(n a.)

n *

(24)

We have used here that, if y(r) is minimal for t=t,, then
dx/dt>0 for t>1, and dy/dt<0 for t<t,. It follows from
Eq. (24) that, once the vaccine accumulation has reached
saturation, an increase in 7 will only reduce the effect of the
vaccine. This result is understandable because, if 7 increases
beyond M/E, the actual average vaccination rate =, de-
creases.

A counterintuitive situation may occur if x(z) is oscillat-
ing. Here, the inequality (24) may be violated. As a result,
the dependence of the effect of the vaccine on 7T and, conse-
quently, on the actual vaccination rate =, [Eq. (23)] may be
nonmonotonic. An example of this behavior is discussed in
the next section.

VIII. RESONANCES IN THE STOCHASTIC SVIR MODEL

A. Logarithmic susceptibility

We now apply some of our results to a widely used sto-
chastic epidemic model, the susceptible-vaccinated-infected-
recovered (SVIR) model. The model is sketched in Fig. 1. In
the absence of vaccination, &,(r)=0, the SVIR model reduces
to the susceptible-infected-recovered (SIR) model with
population turnover, which was originally introduced to de-
scribe the spread of diseases that confer long-lasting immu-
nity, such as measles, mumps, and rubella (see [1,3]). In the
SIR model, susceptible individuals are brought in, individu-
als in all population groups leave (for example, die), a sus-
ceptible individual can become infected upon contacting an
infected individual, and an infected individual can recover. If
we set X;=S, X,=1, and X3=R, the rates of the correspond-
ing processes are (i) influx of the susceptibles, W(X,r)
=uN for ry=1,r,,=0; (ii) leaving, with the same rate for all
populations, W(X,r)=puX; for r;=—1,r;,;=0; (iii) infection,
W(X,r)=BX,X,/N for ri==1, r,=1, r;+;,=0; and (iv) re-
covery of the infected, W(X,r)=vyX, for r,=—1,r;
=1 N ri¢2’3 =0 (Flg l)
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FIG. 2. (Color online) The most probable trajectories in the
stochastic SIR model on the plane of the scaled numbers of suscep-
tibles and infected, x;=X;/N and x,=X,/N, respectively. The
dashed line shows a mean-field trajectory toward the endemic state,
and the solid line shows the most probable trajectory followed dur-
ing the fluctuation-induced disease extinction [16]. The plot refers
to B/ u=80 and y/u=>50.

In the SIR model the recovered keep their immunity; they
do not become susceptible again. The pool of recovered is a
“sink;” there is no influx to other groups and the transition
rates are independent of R. Therefore, the model is described
by two dynamical variables: S and I. For B>1"= y+u the
SIR model possesses a single endemic state. This state cor-
responds, in the mean-field theory, to an attracting fixed
point x, on the two-dimensional phase plane of susceptibles
and infected. For u<<4(8-T")(I'/ B)? this attracting point is a
focus.

In the mean-field approximation, the populations of sus-
ceptibles and infected exhibit decaying oscillations in time as
the system approaches the endemic state. This is a generic
behavior for a two-variable dynamical system. It was found
in Ref. [16] that, in the same parameter range, the popula-
tions oscillate also on the optimal disease extinction path.
These oscillations are illustrated in Fig. 2.

We will now incorporate vaccination and introduce a sub-
population of vaccinated X,=V. The vaccination is described
by the transition rate W(X,r)=§&(t)x; for ri=—1, r,
=1, ri+14=0. The correspondlng term in the Hamiltonian
(12) has the form &,(1)H'" with

HY(x,p) =x;(ePsP1-1). (25)

Vaccinated individuals leave at the same rate w as individu-
als in other populations. For simplicity, we assume that the
immunity from the vaccination is never lost. In this case
fluctuations of the vaccinated population do not affect fluc-
tuations of other populations, and p,=0 along the optimal
extinction path. Then from Egs. (14), the logarithmic suscep—
tibility is () =x {3731 ~expl=p{0 (]}, where x{0)(1).
plopt(t) and x4 are calculated for the SIR model.

The Fourier spectrum of the logarithmic susceptibility
X(w) is plotted in Fig. 3(a). It corresponds to the optimal
extinction path shown in Fig. 2. As one can see, the spectrum
has a peak at the characteristic frequency of oscillations of
the system in the absence of vaccination w,. For the chosen
parameter values wy=5.2u and the vibration decrement near
X, is Bu/2I'=0.8u. The height of the peak of Y(w) in-
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FIG. 3. (Color online) (a) The Fourier transform of the logarith-
mic susceptibility in the SIR model. The parameters are the same as
in Fig. 2. The susceptibility spectrum displays a sharp peak at the
characteristic vibration frequency . (b) The change in the scaled
extinction barrier s, = ,u,sgx)l/ = with vaccination period 7. The solid
line shows s.,, where there is no limit on vaccine accumulation,
whereas the dashed lines refer to the case of a limited amount of
accumulated vaccine. The accumulation limit M is scaled by the
small-T average vaccination rate 5, M'=uM/E. The locations of
resonances of v [ are independent of M.

creases and the width decreases with the decreasing decre-
ment.

As mentioned above, the occurrence of a spectral peak in
the logarithmic susceptibility for noise-driven dynamical
systems was discussed earlier [40]. Soskin et al. [41] noticed
that, if in the absence of noise a dynamical system (a particle
in a double-well potential) has an extremely weak damping,
a periodic driving can lead to a stochastic layer near the
separatrix, which also reduces the barrier for noise-induced
switching. The problem discussed in this paper is very dif-
ferent. Even though the mean-field trajectories can be tight
spirals, there are no two stable states and no separatrix (the
extinction hyperplane is not a separatrix), and therefore the
mechanism of Ref. [41] is irrelevant. We consider the case
where vaccination only weakly perturbs the mean-field dy-
namics.

B. Resonant vaccination

We now consider the features of the optimal vaccination
protocol related to the occurrence of a resonant peak in ¥(w).
The dependence of the scaled change in the disease extinc-
tion barrier sfm QW/N on vaccination period T is shown in
Fl% 3(b). The solid line in Fig. 3(b) shows the behavior of

Se. Where there is no limit on vaccine accumulation or,
equivalently, for such periods where the limitation does not
come into play and the actual vaccination rate 2, [Eq. (23)]
is independent of 7. The function |sext| =—s'!) is seen to be
strongly nonmonotonic; it displays pronounced maxima
(which correspond to the minima of sext) They occur where
the vaccination period T coincides with the multiples of the
characteristic period of the system motion without vaccina-
tion 277/ w.

For limited vaccine accumulation M, the actual average
vaccination rate =, depends on the vaccination period [see
Eq. (23)]. Beyond a certain value of T, the increase in T is
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accompanied by the decrease in =,. This leads to a change in
the dependence of s'!) on 7. Remarkably, |s{)| still displays
resonant peaks at 27n/w, with integer n. Their amplitude
decreases with increasing n.

The occurrence of the peaks of |s'!)| shows that, by tuning
the vaccination period, the effect of the vaccination can be
resonantly enhanced. The quantity that displays the resonant
behavior in this case is in the exponent of the disease extinc-
tion rate, and therefore the resonance is extremely strong.
Counterintuitively, since the actual average vaccination rate
E, decreases with increasing T, a strong enhancement of the
effect of vaccination can be achieved by increasing T and
thus decreasing the rate =,. For example, in Fig. 3(b) the
maxima of [s})| for uM/E=1 and uM/E=3 are achieved
for such T that Z,<E. This means that using less vaccine on
average gives a better effect provided the vaccination is reso-
nant.

IX. CONCLUSIONS

We have developed a theory of optimal periodic vaccina-
tion against an endemic disease for low average vaccination
rate, where this rate is insufficient for eliminating the en-
demic state and thus exterminating the disease by “brute
force.” Such a situation occurs where the vaccine is in short
supply, or short lived, or cannot be stored in the sufficient
amount. We find that, nevertheless, vaccination can exponen-
tially strongly change the rate of spontaneous disease extinc-
tion, which occurs as a result of a large and comparatively
rare fluctuation. This happens because the vaccine changes
the effective entropic barrier that needs to be overcome for
the disease to become extinct.

Our analysis refers to fluctuations caused by the random-
ness of the individual events of infection, recovery, etc.
These fluctuations are similar to those coming from the ran-
domness of elementary reactions in reaction systems of vari-
ous types. Our results can be immediately applied to such
systems, with vaccination being understood as inhibition of
certain reactions, for example.

The approach is based on the master equation for the sto-
chastic population dynamics. We solve it in the eikonal ap-
proximation and reduce the problems of the tail of the dis-
tribution and of the disease extinction rate to Hamiltonian
dynamics of an auxiliary system. A general formulation of
the corresponding Hamiltonian problem is obtained for
population dynamics in a periodically varying environment,
i.e., for periodically modulated population systems. This for-
mulation is used to find the optimal vaccination protocol for
a limited average vaccination rate. The feature of the prob-
lem that makes it different from other problems of optimal
control of rare events is that the control field, which is the
vaccination rate, cannot be negative. The analysis can be
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extended to other problems of optimal control of fluctuation-
driven extinction with similar constraints.

We show that, for a fixed average vaccination rate, vacci-
nation should be performed as a periodic sequence of &-like
pulses. This protocol is essentially independent of the epi-
demics model; it only requires that the population be spa-
tially uniform. In a static environment (stationary systems in
the absence of vaccination), the phase of the vaccination
pulses is not important. In contrast, in a periodically varying
environment, like in the case of seasonally varying infection,
it is necessary to appropriately synchronize vaccination
pulses with the environment variations. Moreover, if the
pulse phase is wrong, vaccination may hamper disease ex-
tinction.

We find that the disease extinction rate as a function of
vaccination period T can display exponentially strong reso-
nances. Such vaccination resonances occur if 7 coincides
with the period of decaying oscillations of the population,
which characterize the approach to the endemic state in the
mean-field (fluctuation-free) approximation. The resonances
occur also where 7 coincides with a multiple of the dynami-
cal period, although they may be less pronounced in this
case. The onset of the vaccination resonances is illustrated
using the well-known SVIR model of population dynamics.

For a fixed average vaccination rate, the effect of vacci-
nation in stationary systems increases with the increasing
vaccination period. However, this increase is generally non-
monotonic where there are vaccination resonances. On the
other hand, the results change if there are constraints on the
vaccination period. We have obtained explicit results for two
types of such constraints: a limited lifetime of the vaccine
and a limited maximal amount of the vaccine.

It turns out that, counterintuitively, the effect of vaccina-
tion can be sometimes enhanced by reducing the average
vaccination rate. This happens where the system displays
vaccination resonances and there is a constraint on the
amount of vaccine that can be stored. In this case lowering
the average vaccination rate can allow one to tune the vac-
cination period to a resonant value.

To summarize, vaccination at even a comparatively small
mean rate can exponentially increase the rate of spontaneous
disease extinction. The optimal vaccination strategy for peri-
odic vaccination is to apply the vaccine in the form of &-like
pulses. Tuning these pulses in resonance with the system
dynamics leads to a further exponential enhancement of the
effect of the vaccination.
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