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Abstract

We present measurements and theory of the magnetoconductivity p(B) of the 2D electron fluid and Wigner crystal
above the surface of liquid helium. Many-electron effects give rise to (i) Drude behaviour p(B)"p(0)/(1#k2B2), even in
classically strong fields, kBA1 (k is the zero-field mobility), (ii) saturation and density dependence of p(B)/p(0) above an
onset field B

0
, which depends on the fluctuational internal electric field E

&
, (iii) an increase in p(B) in quantising fields. Far

in the quantum limit, single-particle scattering dominates. For typical electron densities, p(B)J¹~1@2 for B'2 T and
¹(0.6 K, which is as expected for ripplon scattering, and does not change at the melting transition at ¹

.
. In low fields

in the Wigner solid on 4He, p(B) is non-linear due to the Bragg—C7 erenkov radiation of coherent ripplons, which limits the
Hall velocity to v

1
, the phase velocity of the ripplons at the first reciprocal lattice vector. Above a threshold drive voltage,

p(B) decreases sharply. Above ¹
.
, fluctuations in p(B) are observed below a temperature ¹

&
"(2.8$0.3)¹

.
indicating

that some aspects of the 2D electron solid might persist to well above the melting temperature. ( 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Electrons in surface states above liquid helium
form an almost ideal two-dimensional conductor
[1]. For a typical interelectron distance of 1 lm the
electrons are highly correlated, in a normal electron
fluid or a Wigner crystal, with a melting transition
at C"e2(pn)1@2/4pe

0
k¹"127$3 [2] (n is the

electron density and the plasma parameter C is the

*Corresponding author. Fax: #44 1784 472794; e-mail:
m.lea@rhbnc.ac.uk.

ratio of potential and kinetic energies). The phase
diagram is shown in Fig. 1.

The electron dynamics in a non-degenerate
electron fluid are qualitatively different from a
non-interacting ideal gas. The electron motion is
a combination of vibrations in a potential well
(which is related to short-range order) and self-
diffusion. In the Wigner crystal, the diffusion
ceases. The characteristic angular frequency of vi-
bration is u

1
" (e2n3@2/2e

0
m)1@2"39.9 n3@4 rad/s.

The temperature ¹
1
"+u

1
/k is shown in Fig. 1. For

¹'¹
1

the electron vibrations are classical, while
for ¹(¹

1
, they are quantised, in both the fluid and
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Fig. 1. The melting temperature ¹
.

for 2D electrons on helium.
The classical (B"0) and semi-classical (B"2 and 6 T) regions
lie to the right of the dashed lines.

the solid. This crossover occurs close to ¹
.

for
n(1012 m~2 (Fig. 1).

In a magnetic field B, the characteristic vibra-
tional frequency becomes X"u2

1
/u

#
for

u
1
@u

#
"eB/m, the cyclotron frequency. The char-

acteristic temperature ¹X"+X/k is shown in Fig. 1
for B"2 and 6 Tesla. For ¹'¹X, the electronic
motion becomes semi-classical, with the centres of
the cyclotron orbits (radius the magnetic length
l
B
"(+/eB)1@2) moving as classical objects with vi-

brational frequency X. This magnetically induced
semiclassical region may extend to very low tem-
peratures, well into the solid.

A key role in the theory of the magnetoconduc-
tivity in the classical and semi-classical region is
played by the internal field E

&
which is seen by each

electron and arises due to electron density fluctu-
ations [3,4]. The rms field SE2

&
T1@2 has been found

from Monte Carlo simulations [5] and is given by
SE2

&
T"F(C)E2

0
, where E2

0
"k¹n3@2/4ne

0
. The nu-

merical parameter F(C)+9 is a weak function of C,
only changing slightly through the melting
transition.

The electrons are scattered by helium vapour
atoms (above 1 K) and by ripplons on the helium
surface. Since the vapour density varies exponen-
tially with ¹, the mobility k changes by many
decades with temperature. In the classical and
semiclassical domains in Fig. 1, the scattering is
short range. The magnetoconductivity p(B) is
measured using Corbino disk electrodes under an
electron sheet [1,6] or extracted from the damping
of edge magnetoplasmons [7,8].

Several regions of magnetoconductivity can be
distinguished. In weak and moderately strong (in-
cluding classically strong) magnetic fields in the
fluid, p(B) is described by the Drude formula, due to
many-electron effects [9,10]. In stronger classical,
and also in quantising fields, the ratio p(B)/p(0) be-
comes explicitly density dependent. At still higher
fields there occurs a crossover to independent elec-
tron scattering [3,4,9,10].

For a 2D solid on liquid 4He, even for weak
driving fields and small B, the transport is non-
linear due to coherent Bragg—C7 erenkov radiation
of ripplons [11,12]. Some features of this may ex-
tend above ¹

.
and give rise to new effects in an

inhomogeneous 2D electron phase [13]. But the
2D solid on 3He [14] does not display the same
non-linearity and follows the Drude model in both
fluid and solid. Shirahama et al. [15] have also
recently observed the scattering of 3He quasipar-
ticles from the 2D Wigner solid on superfluid 3He
in zero field.

2. The Drude region (weak and moderately strong
fields)

Iye [16] first showed experimentally that p(B) is
described by the Drude model

p(B)"
p(0)

1#k2B2
+

ne

kB2
(1)

up to classically strong fields as confirmed later by
several groups [6,14,17] see Fig. 2 [18]. It is sur-
prising that this holds for lBA1, when Landau
level quantisation should change the density of
states and quasi-elastic scattering by ripplons or
vapour atoms becomes forbidden, in lowest order
perturbation theory. Many-electron effects restore
the Drude model [4,9,10] as the kinetic energy of
an electron wave packet is smeared in the fluctua-
tional field by eE

&
j1 T, (j1 T is the thermal de Broglie

wavelength). For eSE2
&
T1@2j1 TA+u

#
, this washes out

the Landau quantisation for a quasi-elastic scatter-
ing of an electron in the field of other electrons.
Experimental Drude mobilities agree well with zero
field measurements, though there are often slightly
lower than the theoretical values [6,14].
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Fig. 2. The Drude model (d) for n"0.64]1012 m~2 at 1.3 K,
k"24 m2/V s.

3. Strong fields

3.1. Saturation of the magnetoconductivity

For B beyond the Drude region, p(B) first satu-
rates and then increases again as in Fig. 3 at 0.7 K
in the ripplon scattering regime. Deviations from
Eq. (1) become substantial where an electron re-
peatedly collides with the same short-range scat-
terer because, for a given B, the fluctuational field

Fig. 3. The magnetoconductivity p(B) for n"0.55]1012 m~2

at 0.7 K in the 2D electron fluid. Theory lines are shown: d:
Drude model, s: SCBA, m: many-electron and t: total.

E
&
is not strong enough to drive it away from the

scatterer, over a cyclotron period, by a distance
exceeding the size of the electron wavepacket
j1 T. This defines an onset field for magnetoresistance
B
0
"[2pm3k¹/+2e2SE~1T2]1@4 which lies in the

range 0.2—1 tesla. At saturation, for BAB
0
,

p(B)"ne/pkB2
0

for a d-correlated random poten-
tial. Measurements of p for B*B

0
give the fluctua-

tional field E
&
[19].

The many-electron quantum transport equation
[4] gives for u

#
qA1

p"
ne2

4m2u2
c
k¹

+
q

q2D»qD2m(q) (2)

where D»qD2 is the mean square Fourier component
of the scattering field, and m(q) is the electron den-
sity correlator. For B'B

0
and arbitrary B/B

T
"

+u
c
/k¹

m(q)"
2q

%
l
B
q
exp[!q2l2

B
(2nN #1)/2]

]
=
+

m/0
A
q2l2

B
2 B

2m [nN (nN #1)]m

(m!)2
,

q
%
"Bl

B
SE~1

&
T (3)

where nN "[exp(B/B
T
)!1]~1 is the Planck num-

ber. For nN @1 (the ultraquantum limit) only one
term (with m"0) should be kept in the sum. The
characteristic size of the electron wave packet is
then l

B
and q

%
gives the time of flight of an electron

past a short-range scatterer in the crossed B and
E
&
fields.
In the case of ripplon scattering, Eq. (2) applies

provided the electron drift velocity E
&
/B exceeds the

phase velocity u
q
/q of ripplons with wave vectors

q&1/l
B
. Otherwise the C7 erenkov scattering rate is

suppressed. For an arbitrary ratio of the velocities
and for a Gaussian distribution of the field E

&
[5]

the factor m(q) is renormalised as (for nN @1,
k¹A+u

q
).

m(q)Pm(q) exp[!p~1(u
q
q
%
/l
B
q)2]. (4)

The related decrease of p at low densities n was
observed in Ref. [7].
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For non-quantising fields, B(B
T
, but for arbit-

rary B/B
0

m(q)"A
2pm

k¹q2B
1@2

expC!
+2q2
8mk¹D

]
=
+

s/~=

expA!
p2s2+2q2B4

0
2mk¹B4 B (5)

again assuming that the distribution of E
&
is Gaus-

sian. Eq. (5) goes over into the high-field limit of the
Drude formula, Eq. (1) for B@B

0
.

For ripplon scattering, D»qD2"S~1(k¹e2/
aq2)[E

z
#E

10-
(q)]2, where a is the surface tension,

E
z

is the vertical pressing field, E
10-

(q)"(+2c(0)/
2me)q2/(q/2c) is the effective interaction field
due to polarisation charges, c and c(0) (1.3]
10~8 m) are the inverse localisation lengths of
the electron wave function perpendicular to the sur-
face with and without the pressing field, and /(x)"
(x2!1)~1!(x2!1)~3@2 tan~1[(x2!1)1@2] for
x'1 (the value of /(x) for x(1 can be obtained
by analytic continuation).

Theoretical values for the many-electron p(B) in
the classical and quantum regions are shown in
Fig. 3 and give a good account of the data for fields
lower than 5 T. These many-electron effects have
also been observed in the damping of edge mag-
netoplasmons in the gas—atom scattering region [8].

3.2. Independent electrons — the method of moments

For higher fields and temperatures, the scattering
rate is no longer small compared to the reciprocal
collision duration. Many-electron effects are then
less significant [3], and the conductivity can be
treated in the independent electron approximation.
Several approximate methods have been used to
describe this strong-coupling regime. The self-con-
sistent Born approximation (SCBA) has been given
for gas—atom scattering in Ref. [20] and a modified
version for ripplon scattering by Saitoh [21] for
B'B

T
. For gas—atom scattering, the SCBA agrees

well with data by Tress [17] for B)20 tesla. The
ripplon SCBA plotted in Fig. 3 (the original explicit
expressions [21], used in our previous papers [6],
have been extended to arbitrary cl

B
) approaches the

data at the highest fields.

An alternative, asymptotically exact approach to
the analysis of magnetoconductivity is based on the
method of moments, where p is obtained from the
integrals of un weighted with the frequency-depen-
dent conductivity pu. The function pu has a peak of
width &q~1 at the frequency u"0, and it is the
shape of this peak that can be analysed using the
method of moments. In the short-range scattering
region, the method of moments confirms the SCBA
to a very good accuracy, )5% [22]. There is
also good agreement between the method of
moments and the results [21] for the contribut-
ions from the short-range term JE

z
E

10-
in the

electron—ripplon coupling. However, for the
term JE2

z
the difference is quite substantial, up to

30%.

3.3. The transition to the solid phase

An interesting feature of the electron transport in
the classical and semiclassical domains in Fig. 1 is
that the many-electron scattering rate is deter-
mined essentially by the short-range order in the
electron system. Therefore the conductivity and
cyclotron resonance should not change signifi-
cantly when the system melts. In particular, for
quantising fields (B'B

T
) the calculations [23,24]

in terms of many-phonon decay of the phonons of
a Wigner crystal give the same expressions for the
magnetotransport coefficients as Eqs. (2) and (3),
while the parameter of the many-electron theory
SE2

&
T1@2 changes by less than 1% at the melting

transition.
The temperature dependence of the magneto-

conductivity p(B) in a fixed quantising magnetic
field (B"2 T) is shown in Fig. 4 for n"1.85]
1012 m~2 [25]. Below 0.6 K, ripplons are the domi-
nant scattering mechanism, Eq. (4). It follows from
Eqs. (2) and (3), with account taken of
q
%
JSE~1

f
TJ¹~1@2 that in this range pJ¹~1@2.

The same temperature dependence is obtained for
the SCBA but with a different prefactor. The lines
in Fig. 4 show the theoretical p(B). Remarkably
there is only a small change in p(B) at the
melting temperature ¹

.
(0.30 K), and the temper-

ature dependence is the same in the liquid and solid
phases.
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Fig. 4. (a) The temperature dependence of p(B) for
n"1.85]1012 m~2 at 2 Tesla. The solid line shows the many-
electron theory for gas—atom and ripplon scattering. The
melting temperature is at ¹

.
"0.30 K. The dashed line shows

the effective conductivity for rigid rotation. (b) The azimuthal
J
(
(r) current density in the Corbino disk for (i) fluid rotation

("u
#
qJ

r
(r)) and (ii) rigid rotation (arbitrary units).

3.4. The shear modulus

The continuity of the measured p(B) through
melting presents a paradox. The conductivity is
obtained from the phase shift using Corbino elec-
trodes (Fig. 6) in which a central electrode is driven
with a AC(1(f(100 kHz) voltage »

0
and the AC

current to outer receiving electrodes is measured.
For low phase shifts, h"A/p, where the constant
A assumes a local, homogeneous conductivity, as
for a fluid [6]. The capacitatively coupled radial
current density J

r
(r) produces a Lorentz force J

r
(r)B

which drives an azimuthal current density J
(
(r)"

u
#
qJ

r
(r), Fig. 4b. But the crystal should be expected

to rotate rigidly, with J
(
(r)Jr, giving a non-local

response.

The analysis of the response of the crystal can be
done in terms of the long-wavelength transmission
line modes [26]. Their dispersion law has been
obtained for wavelengths exceeding the depth d of
the electrons above the screening electrodes, for
a free boundary of the electron layer (zero shear
stress at the perimeter of the Corbino disc). The
parameter b that characterizes the dispersion rela-
tions is given by the squared product of the ratio of
the transverse and longitudinal sound velocities
c
5
/c

-
(which is small) times the ratio of the conduc-

tivities p
xy

/p
xx

(which is large), so that in the experi-
mental conditions b+1.

For the system investigated experimentally (see
Fig. 4) the effect of rigid rotation produced by the
shear modulus, for small phase shifts, is to reduce
the losses, as compared to a fluid, by a geometrical
factor of 0.60 for the same scattering rate [26]. The
effective measured conductivity should increase by
+40% at ¹

.
, as calculated in Fig. 4 (dashed line),

but this is not seen experimentally. Neither do we
see the associated change in current amplitude at
the melting transition. The continuity of the tem-
perature dependence confirms that the electrons
are below ¹

.
. We conclude that the solid is not

rotating rigidly but may be polycrystalline, that slip
occurs and that our measurements give the true
local conductivity p(B).

4. Bragg—C7 erenkov scattering

4.1. Hall-velocity limited magnetoconductity

At low fields B in the solid, where quantisation of
short-wavelength electron vibrations is substantial,
the situation changes dramatically. Shirahama and
Kono [27] showed that the magnetoconductivity is
highly non-linear for electrons on 4He (unlike the
semiclassical region considered above and elec-
trons on 3He [14]). Experiments by Kristensen et
al. [11] found that, for a broad range of driving
voltages »

0
, the measured effective Corbino mag-

netoconductivity in the solid, p
4
, was closely given

by the semi-empirical relation

p
4
"(Kf»

0
/v

1
Bd) (6)
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Fig. 5. (a) The magnetoconductivity p(B) for
n"2.26]1012 m~2 in the solid at 60 mK, versus the drive
voltage »

0
. The line shows Eq. (6). (b) The experimental Hall

velocity versus »
0
. The solid line shows the Bragg—C7 erenkov

theory [12].

for the frequency, drive amplitude and magnetic
field dependence of p

4
, where v

1
"(aG

1
/o)1@2 is the

ripplon phase velocity at the first reciprocal lattice

vector G
1
"(8p2n/J3)1@2 of the Wigner crystal,

K is a geometrical constant and o is the density of
the helium. Data for n"2.26]10~12 m~2 are
shown in Fig. 5a. The conductivity increases al-
most linearly up to a threshold voltage.

The effect was explained [12] as the Bragg—
C7 erenkov scattering, coherent many-electron emis-
sion (absorption) of ripplons by the moving lattice,
which resonantly increases the drag force as the
azimuthal Hall velocity (in the Corbino disk) ap-
proaches v

1
. This increase is substantially related to

the absence of long-range translational order in
a 2D solid: for an infinite system the drag force
increases as DG

1
) �!G

1
v
1
D~1`a(G1) for small

DG
1
) �!G

1
v
1
D where � is the crystal velocity (essen-

tially, the Hall velocity), and a(G)"k¹G2/4pmc2
5

is
the characteristic parameter for the smearing of
Bragg peaks in the density correlator of 2D sys-
tems. This locks the Hall velocity to v

1
in a broad

range of driving voltages »
0
and leads to Eq. (6). In

the limit of small »
0

the conductivity is indepen-
dent of »

0
and is determined by many-phonon

scattering by ripplons.

4.2. The conductivity threshold

Wilen and Giannetta [28] discovered hysteresis
in the solid magnetoconductivity, now studied in
detail by Shirahama and Kono [27, 29, 30] who
found a threshold voltage »

#
Jn1.5E

z
/fB0.8 and

mapped out a dynamic phase diagram with two
solid phases: (i) the usual 2D solid with coupled
plasmon-ripplon (CPR) modes and (ii) an un-
coupled 2D solid moving freely over the helium
surface. They proposed a simple model for the
maximum force on an electron displaced in the
small dimple under each localised electron in
the 2D crystal. This accounts for some features of the
breakdown but underestimates »

#
. We have mea-

sured the threshold voltage at higher fields and find
(i) for quantising fields, B'B

T
, above 0.1 T, »

#
is

almost independent of B, in contrast to lower fields
[27], (ii) the non-linearities and the threshold be-
come weaker as B increases and above 2 T the
response is linear and no clear threshold is observed,
(iii) »

#
is a strong function of the pressing field E

z
.

One of the reasons for the breakdown may be the
finite size of crystallites: the maximum friction force
due to the Bragg—C7 erenkov scattering would be
determined by this size, and breakdown could oc-
cur when the drag force exceeds this maximum.

4.3. Amomalous behaviour above the melting temper-
ature

Another striking effect in the low field region is
that some aspects of the unusual conductivity of the
2D electron solid extend to well above ¹

.
. Fig. 6

shows the temperature dependence of p(B) at 0.2 T.
Above 0.7 K the conductivity is given by the Drude
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Fig. 6. The temperature dependence of 1/p(B) for
n"0.74]1012 m~2, B"0.2 T, f"4 kHz and »

0
"10 mV.

Fluctuations occur between ¹
.

and ¹
&
.

model, p(B)+ne/kB2, in agreement with the the-
ory. Below 0.7 K, the conductivity deviates from
the theory and fluctuates until the sharp transition
to the solid at ¹

.
. These fluctuations are not noise

but follow a straight-line locus on the Argand dia-
gram consistent with fluctuating coupled and un-
coupled domains, where the coupling is due to
Bragg—C7 erenkov scattering from the ripplons. The
temperature dependence of the standard deviation
of these fluctuations show that they start at a
temperature ¹

&
"(2.8$0.3) ¹

.
which scales as

n1@2 and ¹
.
, corresponding to C"46$5. Strong

fluctuations are also observed in the solid at high
drive amplitudes, above »

#
, again suggesting

coupled and uncoupled domains as the Hall velo-
city of some electrons exceeds the ripplon phase
velocity v

1
[12]. Small fluctuations are found even

at low drives in the solid, suggesting that a small
fraction (2—5%), may be uncoupled in the crystal
phase, possibly in supercooled grain boundaries,
which could produce slip as discussed above.

5. Conclusions

Two-dimensional electrons above liquid helium
form the simplest conductor but display a wealth of
interesting physics. This is perhaps the first system
where both Wigner crystallization, and also, as we
show, the effects of strong electron correlations in
the fluid phase have been observed. These effects

give Drude behaviour of the electron conductivity
in low B fields and the saturation and density
dependence of p(B) at higher fields. Above 2 T, the
magnetoconductivity does not change through
melting. The many-electron theory of scattering via
the fluctuational field is equivalent to the multi-
phonon scattering in the solid. For electrons on
helium, only in the high field limit are the collisions
with short-range scatterers independent of the
electron—electron interaction. Using the method
of moments, we have quantified the accuracy of the
self-consistent Born approximation (SCBA), which
is excellent for gas—atom scattering but not so good
for long-range ripplon scattering. Surprisingly, no
effects are observed in the solid due to the coupling
of the transmission line mode to the diffusive shear
mode, which suggests that the rotation of the solid
produces a polycrystalline microstructure which
relieves the shear stress by slip. In low fields in the
solid on 4He, p(B) is non-linear due to the Bragg—
C7 erenkov radiation of coherent ripplons which
limits the Hall velocity to the phase velocity of the
ripplons at the first reciprocal lattice vector. Above
a threshold drive voltage, the conductivity de-
creases sharply. Fluctuations in p(B) are observed
above ¹

.
, up to a temperature ¹

&
"(2.8$0.3)

¹
.

and suggest Bragg—C7 erenkov coupled domains
in the 2D electron fluid. Similar fluctuations are
also observed at high voltage drives in the 2D solid.
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