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We study the breaking of the discrete time-translation symmetry in small periodically driven quantum systems.
These systems are intermediate between large closed systems and small dissipative systems, which both display
such symmetry breaking but have qualitatively different dynamics. As a nontrivial example, strongly different
from the familiar case of parametric resonance, we consider period tripling in a quantum nonlinear oscillator.
We develop theoretical methods of the analysis of period tripling, including the theory of multiple-state resonant
tunneling in phase space with the account taken of the involved geometric phase. For moderately strong driving,
the period tripling persists for a time, which is exponentially long compared with all dynamical times. This time
is further extended by an even weak decoherence.
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I. INTRODUCTION

The breaking of translation symmetry in time, first proposed
by Wilczek [1], has been attracting much attention recently.
Such symmetry breaking can occur only away from thermal
equilibrium [2]. It is of particular interest for periodically
driven systems, which have a discrete time-translation sym-
metry imposed by the driving. Here, the time-symmetry
breaking is manifested in the onset of oscillations with a
period that is a multiple of the driving period tF . Oscillations
with period 2tF due to simultaneously initialized protected
boundary states were studied in photonic quantum walks
[3]; period-two oscillations can also be expected from the
coexistence of Floquet Majorana fermions with quasienergies
0 and h̄π/tF in a cold-atom system [4]. The onset of broken
time-symmetry phases was predicted and analyzed [5–10] in
Floquet many-body systems, and the first observations of such
phases in disordered systems were reported [11,12].

In classical systems coupled to a thermal bath, on the other
hand, the effect of period doubling has been well known. A
textbook example is an oscillator modulated close to twice
its eigenfrequency and displaying vibrations with period 2tF
[13]. The oscillator has two states of such vibrations; they
have opposite phases, reminiscent of a ferromagnet with two
orientations of the magnetization.

The goal of this paper is to establish a relation between the
symmetry breaking in the quantum coherent and incoherent
regimes. Of interest in this respect are almost-isolated driven
quantum systems with a few degrees of freedom. They are in-
termediate between large coherent systems and dissipative dy-
namical systems, and the transition between different regimes
can be carefully examined. A driven nonlinear quantum
oscillator is a good example of such an “intermediate” system.
It is also of interest on its own, as it models diverse physical
systems, from trapped electrons to Josephson junctions to
electromagnetic and nanomechanical modes [14,15].

It follows from our analysis that an oscillator can display
period doubling not only in the incoherent regime, but also
in the coherent regime. However, of primary interest to us
is period tripling. In a disordered system, it was observed in
Ref. [12] for an elegant periodically repeated pulse sequence.

As we show, period tripling displays a number of peculiar
features, which are generic for multiple-period transitions
but do not occur in period doubling. They are manifested
both in the presence of dissipation and in the quantum
coherent regime. In a dissipative system, in contrast to period
doubling (cf. Ref. [16]), the period-tripling transition cannot
generically occur via the Landau-type symmetry breaking
because it would require continuous merging of the symmetric
(zero-amplitude) and three broken-symmetry states.

In the quantum coherent regime, period tripling reveals
the nontrivial features of resonant tunneling between multiple
states, which are degenerate by symmetry and are centered
at points in phase space rather than coordinate space. Such
tunneling is qualitatively different from the familiar resonant
tunneling in a symmetric double-well potential [17] and its
analysis requires new means, which we develop. We find that
the tunneling is affected by a geometric phase, which comes
from the discrete rotation symmetry in phase space. Combined
with oscillations of the wave functions in the classically
forbidden region, it results in crossing of the eigenvalues of the
effective Hamiltonian with varying parameters; see Figs. 1(b)
and 1(e). To make the analysis complete, we establish the
conditions for the transition between the symmetry breaking
in the coherent and incoherent limits.

The paper is organized as follows: In Sec. II we introduce
multiple-period Floquet states of a driven oscillator, discuss the
rotating wave approximation (RWA), relate the eigenvalues of
the Hamiltonian in this approximation and the quasienergies,
and introduce the operator of discrete rotations in phase space.
In Sec. III we formulate the problem of tunneling between the
minima of the RWA Hamiltonian function in phase space. In
Sec. IV we calculate the symmetry-related phase difference
of the intrawell functions, the geometric phase. In Sec. V we
find the tunnel splitting of the lowest eigenvalues of the RWA
Hamiltonian with the account taken of the oscillations of the
wave functions in the classically forbidden region. In Sec. VI
we discuss the onset of period tripling. We also show how
dissipation leads to a transition from the coherent interwell
tunneling to incoherent interwell hopping. The details of the
calculations are given in Appendixes A and B. All results of
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FIG. 1. (a) Quasienergy levels of a driven oscillator. The results
are for the drive frequency ωF close to 3ω0, f is the scaled driving
amplitude. For f = 0 the states from top to bottom are the lowest Fock
states of the oscillator |0〉 (red), |2〉 (green), and |1〉 (blue). The same
color coding is used in panels (b) and (e). The dimensionless Planck
constant for motion in the rotating frame is λ = 0.3; see Eq. (8).
(b) A multiplet formed when the same quasienergies are calculated
mod (h̄ωF /3). (c) The scaled Hamiltonian function g of the driven
nonlinear oscillator, Eq. (10), for f = 1.2; Q and P are the coordinate
and momentum in the frame rotating at frequency ωF /3. (d) The orbits
for several low-lying intrawell states of the Hamiltonian g for f =
3.5; the values of g on the orbits are in excellent agreement with the
Bohr quantization condition. (e) Crossing of the scaled quasienergies
g(k) corresponding to the tunnel-split lowest intrawell states in panel
(d) and calculated mod (h̄ωF /3); the lowest (green), middle (blue),
and top (red) curves in the range 3 < f < 3.1 are the higher-field
continuations of the middle, lowest, and top curves in panel (b) for
f < 0.4. A superposition of the states with crossing g(k) is a period-
three state. The dotted curves are the analytical results (19).

this paper, except for the sketches Fig. 1(d) and Fig. 3, were
posted in Ref. [18].

II. MULTIPLE-PERIOD FLOQUET STATES

Coherent quantum dynamics of a driven system is conve-
niently described by the Floquet (quasienergy) states ψε(t).
Such states are eigenstates of the operator TtF of time transla-
tion by tF , TtF ψε(t) ≡ ψε(t + tF ) = exp(−iεtF /h̄)ψε(t). For
a broken-symmetry state ψK,εK

with an integer K > 1, time
translation by tF is not described by the factor exp(−iεtF /h̄).
Instead, ψK,εK

(t + KtF ) = exp(−KiεKtF /h̄)ψK,εK
(t). We

call ψK,εK
a period-K Floquet state. It is an eigenstate of

TKtF = (TtF )K , but not of TtF .

Multiple-period states naturally occur if the number
of states of the system N → ∞. For such systems, the
quasienergy spectrum is generally dense; cf. Ref. [19]. Then
one can find states ψε and ψε′ with the difference of the
quasienergies |ε − ε′| infinitesimally close to h̄ωF /K with in-
teger K > 1 (or to h̄ωF k/K with k < K); here ωF = 2π/tF is
the driving frequency. A linear combination αψε(t) + α′ψε′ (t)
is a period-K state. The expectation values of dynamical
variables in such a state oscillate with period KtF . However,
generally the functions ψε and ψε′ will be of a very different
form, making the oscillation amplitude exponentially small.

The situation is different for an oscillator driven close to
an overtone of its eigenfrequency ω0, i.e., for ωF ≈ Kω0.
Classically, such an oscillator in the presence of dissipation can
have coexisting states of subharmonic vibrations with period
2πK/ωF , which differ in phase by 2π/K; cf. Ref. [20]. In the
quantum coherent regime, the oscillator has sets of quasienergy
states where the quasienergy differences within a set are very
close to h̄ωF /K in a broad parameter range. These states result
from tunnel splitting of the states symmetrically positioned in
phase space and localized near the minima (or maxima) of the
Hamiltonian function of the oscillator in the frame rotating at
frequency ωF /K; see Figs. 1(c) and 1(d).

As we show below, for some interrelations between the
parameters, for pairs of the localized symmetric states in phase
space the tunnel splitting becomes exactly zero. Respectively,
in the laboratory frame the quasienergy difference between
such states is exactly equal to h̄ωF /K . Off-diagonal matrix
elements of the dynamical variables calculated for the cor-
responding states are large, making a linear combination of
the states a directly observable coherent period-K state of the
oscillator.

In a way, for a parametric oscillator (K = 2) the occurrence
of a coherent period-two state could be inferred from the
results [21] where vanishing of the tunnel splitting was
found. However, this state was not identified there and the
time-symmetry breaking was not addressed. Sets of states
separated by ≈h̄ωF /K were found numerically for K � 1 for
a special model of an oscillator in the interesting paper [22];
the considered states did not break time symmetry. Tunnel
splitting in phase space was carefully studied for modulated
cold-atom systems; cf. Refs. [23,24] and references therein.
Recently it was also found numerically for such systems
for states with period π/ωF [25]; in contrast to the work
reported in Refs. [3–10], the results of Ref. [25] do not describe
quantum-coherent breaking of time-translation symmetry.

The rotating wave approximation and the
rotation operators in phase space

We study a most commonly used model of a nonlinear
oscillator, the Duffing model, which describes a broad range
of the systems mentioned in the Introduction [14,15,26]. Its
Hamiltonian reads

H = H0 + HF , H0 = 1
2p2 + 1

2ω2
0q

2 + 1
4γ q4, (1)

where q and p are the oscillator coordinate and momentum.
The term HF ≡ HF (t) describes the driving. In the analysis
of parametric resonance, one chooses HF = − 1

2q2F cos ωF t
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with ωF ≈ 2ω0. Here we consider

HF = − 1
3q3F cos ωF t, ωF ≈ 3ω0.

Our results apply also for additive driving HF =
−qF ′ cos ωF t , if one replaces F → 3γF ′/8ω2

0; this relation
may be useful for an experimental implementation of period
tripling.

If the driving is not too strong, so that the expectation
values of HF , γ q4, and ωF (ωF − Kω0)q2 are small compared
with the expectation value of ω2

0q
2, the oscillator dynamics

can be described in the rotating wave approximation (RWA)
[27]. For an oscillator driven close to the Kth overtone of
its eigenfrequency, one makes a canonical transformation
U (t) = exp(−ia†aωF t/K), where a and a† are the ladder
operators, [a,a†] = 1. The RWA Hamiltonian HRWA is ob-
tained by time averaging the transformed Hamiltonian H̃ (t) =
U †(t)H (t)U (t) − ih̄U †(t)U̇ (t),

HRWA = (KtF )−1
∫ KtF

0
dtH̃ (t). (2)

Clearly, HRWA is independent of time.

1. Relating quasienergies to the eigenvalues of HRWA

If φ(t) is an eigenfunction of HRWA, i.e., HRWAφ = Eφ,
then the corresponding wave function in the laboratory frame
is ψ(t) = U (t)φ(t), and

TtF ψ(t) = e−iEtF /h̄U (t + tF )φ(t) = e−iEtF /h̄NKψ(t). (3)

We call E the RWA energy. The operator NK introduced in
Eq. (3) is

NK = exp(−2πia†a/K), [NK,HRWA] = 0. (4)

The relation [NK,HRWA] = 0 follows from the expression
H̃ (t + tF ) ≡ N

†
KH̃ (t)NK for the transformed (but not period-

averaged) Hamiltonian combined with Eq. (2). It was obtained
in Ref. [22] for a specific form of HRWA.

Operators Nk
K with k = 0,1, . . . ,K − 1 form a cyclic

group. Then the eigenfunctions φ(k) of NK are

NKφ(k) = exp(−2πik/K)φ(k), 0 � k � K − 1. (5)

Functions φ(k) are also eigenfunctions of HRWA. From Eqs. (3)
and (5), a wave function φ(k) with RWA energy E(k) corre-
sponds to a Floquet state with quasienergy

ε(k) = (E(k) + h̄ωF k/K)mod(h̄ωF ). (6)

As we will see, for sufficiently strong drive the eigenstates
of HRWA form multiplets with close eigenvalues E(k). The
quasienergies of different states in the multiplets differ by
≈h̄ωF /K .

Equation (5) allows one to write the functions φ(k) in
terms of the Fock states of the oscillator |n〉. These states are
eigenstates of the operator a†a, a†a|n〉 = n|n〉. From Eq. (5),
only one out of each K Fock states contributes to φ(k),

φ(k) =
∑

n

C(k)
n |Kn + k〉.

This relation significantly simplifies numerical diagonalization
of HRWA, as the coefficients C(k)

n with different k are uncoupled.
Most importantly, it shows that the RWA energy levels of states

with different k can cross when the parameters of the system
vary. This crossing is seen in Fig. 1. In contrast, the RWA
energies of states with the same k avoid crossing.

2. Rotating-wave-approximation Hamiltonian for period tripling

We now consider the explicit form of HRWA for our system.
The oscillator motion in the rotating frame is conveniently
described by the coordinate Q and momentum P , which are
related to q and p as

U †(t)[q + i(K/ωF )p]U (t) = C(Q + iP )e−iωF t/K . (7)

The parameter C is the scaling factor that makes Q and P

dimensionless,

[Q,P ] = iλ, λ = h̄K

ωF C2
, a = Q + iP√

2λ
. (8)

The dimensionless Planck constant λ and the parameter C for
K = 2 are given in Ref. [28]. For period tripling (K = 3),
C = (8ωF δω/9γ )1/2, where δω = 1

3ωF − ω0 is the frequency
detuning from the resonance, |δω| 
 ωF . This scaling is
convenient for γ δω > 0; the opposite case will be considered
elsewhere. In what follows, for convenience we assume
δω,γ > 0.

It is immediately seen from Eqs. (4) and (8) that NK are
rotation operators in the (Q,P ) plane:

N
†
KQNK = Q cos (2π/K) + P sin (2π/K),

(9)
N

†
KPNK = −Q sin (2π/K) + P cos (2π/K).

For the chosen scaling, the Hamiltonian HRWA has the form
HRWA = [8ω2

F (δω)2/27γ )]ĝ(Q, − iλ∂Q) with

g(Q,P ) = 1
4 (Q2 + P 2 − 1)2 − 1

3f (Q3 − 3PQP ), (10)

where f = F/(8ωF γ δω)1/2 is the scaled amplitude of the
driving. Function g(Q,P ) is shown in Fig. 1(c). This function
is the dimensionless Hamiltonian function in the rotating
frame. It has three minima, three saddle points, and a local
maximum at Q = P = 0.

III. MULTIWELL TUNNELING IN PHASE SPACE

Period tripling provides a platform for studying generic
features of tunneling between degenerate states centered at
points located in phase space. As seen from Fig. 1(c), function
g(Q,P ) has a threefold rotational symmetry in the (Q,P )
plane. This symmetry follows from Eqs. (4) and (9), since N3

is an operator of rotation by the angle −2π/3 in phase plane.
The minima of g(Q,P ) lie at the vertices (Qm,Pm) of an

equilateral triangle; we count m = 0,1,2 counterclockwise and
set m = 0 for the vertex with P0 = 0; the enumeration implies
that the states m = −1 and m = 2 are the same. The values of
Qm,Pm are given in Appendix A. For not too weak driving,
the three lowest eigenstates of the operator ĝ ≡ g(Q, − iλ∂Q)
are tunnel-split superpositions of the three lowest degenerate
intrawell states in Fig. 1(d). We denote these intrawell states
by �m (m = 0,1,2).

One can think of a function �m as an eigenfunction of the
operator ĝm, which approximates operator ĝ for Q close to
Qm and P close to Pm. In particular, in its central part �m is
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an eigenfunction of the operator ĝ expanded to second order
in Q − Qm, P − Pm. Then ĝm�m = g0�m; the eigenvalue g0

is the same for all wells by symmetry. In the explicit form
g0 is given by Eq. (A3). From Eq. (9), N

†
3 ĝmN3 = ĝm+1.

This is because rotation of Q, P by the angle −2π/3 in
Eq. (9) is equivalent to rotation of Qm, Pm by the angle
2π/3. Then ĝm−1N3�m = N3(N †

3 ĝm−1N3)�m = N3ĝm�m =
g0N3�m, and thus N3�m is the eigenfunction of the operator
ĝm−1, which shows that N3�m = �m−1.

If our system is in a state �m and the tunneling can
be disregarded, the time symmetry is broken. Indeed, from
Eqs. (3), (7), and (9), time translation by tF transforms

�m → N3�m = �m−1. (11)

From Eq. (11), to come back to state �m, one has to increment
time by 3tF . The relation �m+1 = N

†
3�m gives the phase

shift between functions �m+1 and �m. Since N3 is a rotation
operator, this phase shift is geometric in nature (see below).

Since (i) the minima of the effective Hamiltonian ĝ are
located in phase space, not in the coordinate space, and
(ii) there are three equal-depth minima, resonant tunneling
between states �m differs from the familiar tunneling in
a symmetric double-well potential [17]. To find the tunnel
splitting of the lowest eigenvalues of ĝ, we write the wave
functions �m in the coordinate representation, �m ≡ �m(Q).
The three normalized eigenstates φ(k) of ĝ with the smallest
eigenvalues g(k) (k = 0,1,2) have the standard form of the
tight-binding theory

φ(k)(Q) = 1√
3
(
1 + δ(k)

)
∑

m=0,1,2

�m(Q)e−2mkπi/3, (12)

where δ(k) = 2Re[〈�0|�1〉 exp(−2πik/3)] 
 1. We choose
�0(Q) to be real and normalized. Since �m+1 = N

†
3�m, we

have �2(Q) = �∗
1 (Q). Due to the symmetry, the functions φ(k)

can be shown to be orthogonal.
The wave functions �m are Gaussian near the correspond-

ing extrema of g(Q,P ) in phase space; see Appendix A
and Eqs. (A4) and (A15) below. However, to find the tunnel
splitting it is necessary to find the tails of �m in the classically
inaccessible regions. In solving this problem one has to take
into account that the effective Hamiltonian ĝ is not quadratic
in the momentum P .

We calculate the eigenvalues g(k) by using the relation∫ Q∗

∞
dQ[φ(k)(Q)(ĝ − g0)�0(Q)

−�0(Q)(ĝ − g(k))φ(k)(Q)] = 0, (13)

with g0 being the value of ĝ in the lowest intrawell state in
the neglect of tunneling [cf. Fig. 1(d)], g0 ≈ min g(Q,P ) +
λωmin/2, where ωmin is the eigenfrequency of vibrations about
a minimum of g(Q,P ), which is determined by the curvature of
g(Q,P ) near the minimum; the explicit values of g0, Qm, Pm,
and ωmin are given by Eqs. (A1) and (A2). The difference g(k) −
g0 is exponentially small for a small dimensionless Planck
constant λ.

An important distinction from the standard analysis of
resonant tunneling [17] is that the upper limit Q∗ of the integral
(13) is not known in advance. This is because the Hamiltonian

ĝ does not have the symmetry Q → −Q of the standard
symmetric double-well potential [17]. To choose Q∗ we note
that the functions �m(Q) fall off exponentially away from
their respective maxima Qm. Thus, �0 and �1,2 fall off in the
opposite directions in the classically forbidden region between
Q0 and Q1. We choose Q∗ within this region in such a way
that �0,1,2(Q∗) are all of the same order of magnitude. The
integral (13) should be independent of Q∗.

The Wenzel–Kramers–Brillouin (WKB) expressions for the
wave functions �0,1(Q) in the region between Q1 and Q0 are
given in Appendix A,

�m(Q) = Cm(i∂P g)−1/2eiSm(Q)/λ (m = 0,1),

∂QSm = (−1)mP̃ (Q), g(Q,P̃ ) = g0. (14)

Here, Sm(Q) is the classical action and P̃ (Q) is the classical
momentum given by equation g(Q,P̃ ) = g0; we choose the
branch ImP̃ < 0 with the smallest |ImP̃ |. It is critical that,
because the Hamiltonian function g(Q,P ) is quartic in P ,
P̃ (Q) has a branch point QB given by Eq. (A8), which lies deep
in the interval (Q1,Q0) where ImP̃ 
= 0. For Q1 < Q < QB ,
P̃ (Q) has both imaginary and real parts. The positions of the
minima and QB are shown in Appendix A in Fig. 3.

The real part of the action Sm(Q) in the classically
inaccessible region leads to oscillations of the wave functions
in this region. These oscillations lie behind the crossing of the
levels g(k) calculated with the account taken of the interwell
tunneling.

IV. THE GEOMETRIC PHASE

The normalization constants Cm in Eq. (14) are determined
by the wave functions inside the wells, where the functions
are large. If we choose �0 real, the parameter C0 is fixed. The
rotation symmetry (11) shows that �1 = N

†
3�0, and therefore

the parameters C0 and C1 are not independent. The relation
between them is determined by a phase θ1. This phase can be
found using the explicit Gaussian form of the intrawell wave
functions obtained in Appendix A. To make the reading easier,
we give them here, too, and include the explicit expression for
the prefactor of �1,

�0(Q) = (
√

πlq)−1/2 exp
[−(Q − Q0)2/2l2

q

]
, (15)

[lq = [λωmin/(Q2
0 + 1)]1/2], and

�1(Q) = C1,intra exp
[(

iP1(Q − Q1) − 1
2�1(Q − Q1)2

)/
λ
]
,

C1,intra = [Re�1/πλ]1/4 exp (iθ1). (16)

We note that the Gaussian-width parameter in �1 is complex
valued, �1 = [2ωmin + i

√
3(f Q0 − 1)]/3Q2

0. The prefactor
C1,intra contains the geometric phase θ1. This prefactor is
written in the form which is consistent with the form of the
Gaussian distribution (A15), except for the unknown at this
time phase θ1. The “intrawell” normalization factor C1,intra

differs from the coefficient C1 that determines the behavior of
the function �1 on its tail in the classically inaccessible region.

To calculate θ1, we introduce an auxiliary coherent
state |α〉 and consider the overlap integral of this state
with the wave functions �0,1. By construction a|α〉 =
α|α〉, and thus N3|α〉 = |α exp(−2πi/3)〉 [we recall that
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N3 = exp(−2πia†a/3)]. By using that �0 = N3�1, we obtain
a formal relation 〈α|�0〉 = 〈α exp(2πi/3)|�1〉. If we now
choose the state |α〉 in such a way that it strongly overlaps
with �0, whereas |α exp(2πi/3)〉 strongly overlaps with �1,
this relation will allow us to find θ1 by calculating the
corresponding overlap integrals using the explicit expressions
(15) and (16). Writing |α〉 in the coordinate representation as

|α〉 = 1

(πλ)1/4
exp

{
−1

2
(|α|2 − α2) − [Q − (2λ)1/2α]2

2λ

}

and setting α = Q0/
√

2λ, we obtain

θ1 = 1
2 arg (�1 + 1) + P1Q1/2λ. (17)

The geometric phase θ1 has a large term ∝λ−1. It also contains
a term independent of λ, which must be kept, because it
determines the phase of the oscillations of the wave function
in the classically forbidden region.

V. LEVEL SPLITTING

The explicit expressions for the wave functions �m(Q)
allow us to calculate the level splitting by using Eq. (13). For
Q∗ well inside the interval (Q1,Q0), we have

∫ Q∗
∞ �2

0 (Q)dQ =
−1. Taking into account that overlapping of the functions
�1,2(Q) with �0(Q) is exponentially small, we rewrite
Eq. (13) as

g(k) − g0 ≈
[∫ Q∗

∞
dQ�1(Q)ĝ�0 −

∫ Q∗

∞
dQ�0ĝ�1(Q)

]

× exp (−2kπi/3) + c.c. (18)

It is important that the product �0(Q)�1(Q) has two terms.
One of them is ∝ exp{i[S0(Q) + S1(Q)]/λ}. It depends
smoothly on Q, because S0(Q) + S1(Q) = const. for Q1 <

Q < Q0; cf. Eq. (14). The other term is ∝ exp{−i[S∗
0 (Q) −

S1(Q)]/λ}, it is a fast oscillating function of Q. The contri-
bution of this term to the integrals (18) is exponentially small
and exponentially sensitive to the change of Q∗ on the scale
∝λ. Therefore this term should be disregarded.

Calculating the integrals in Eq. (18) by parts, carefully
accounting for the branching of P̃ (Q), and using Eq. (14) we
find that Q∗ indeed drops out from the expression for the level
splitting. The result is Eq. (B1). It gives the splitting in terms
of the complex classical momentum P̃ (Q) calculated for the
scaled energy g(Q,P̃ ) = min g + λωmin/2. It is convenient to
express the splitting in terms of the momentum that does not
contain the effective Planck constant λ. The corresponding
transformation is discussed in Appendix B. The result reads

g(k) − g0 = Ctune
−Stun/λ cos(λ−1�tun − 2πk/3). (19)

In contrast to the tunnel splitting in a symmetric double-well
potential [17], the splitting (19) has not only an exponential,
but also an oscillating factor. The tunneling exponent Stun and
the tunneling phase �tun are given by the expression

�tun + iStun =
∫ Q1

Q0

dQ′Pcl(Q
′) + λKtun + λθ1. (20)

Here, Pcl is the momentum on the instanton trajectory
that goes from the m = 0 to the m = 2 minimum of
g(Q,P ); g(Q,Pcl) = min g, RePcl < 0, and ImPcl < 0.

2.0 2.5 3.0 3.5 4.0

10−10

10−8

10−6

10−4

f
2.0 2.5 3.0 3.5 4.0
0
1
2
3
4
5
6

f

FIG. 2. (left panel) The amplitude of the tunnel splitting of the
scaled RWA energy levels, which is given by Eq. (19) without the
oscillating factor. (right panel) The phase of the tunnel splitting. Black
solid lines show the results of the numerical solution of the eigenvalue
problem for the Hamiltonian g(Q, − iλ∂Q). Red dotted lines show
Eq. (19). The results refer to λ = 0.3.

Parameter Ktun gives terms O(λ) in the arguments of
the exponent and the cosine in Eq. (19). The calculation in
Appendix B shows that

Ktun =
∫ QB

Q0

dQk(Q,Q0) +
∫ Q1

QB

dQk(Q,Q1), (21)

where k(Q,Qm) = [ωmin(∂P g)−1
cl − i|Q − Qm|−1]/2 [the sub-

script “cl” indicates that the derivative is calculated for P =
Pcl; the explicit expression for k(Q,Qm) is given in Eq. (B2)].
Equation (21) is free from divergences. We note that ImKtun

can be considered as a part of the prefactor, but ReKtun gives
a shift of the phase of the level splitting and therefore is
very important for determining the parameter values where
the quasienergies of different states differ exactly by h̄ωF /3;
see below.

Because of the branching of the momentum on the instanton
trajectory, the prefactor in Eq. (19) has a more complicated
form than for tunneling in a double-well potential [29]. How-
ever, it is also ∝h̄1/2; explicitly, Ctun = −2λ3/4ωmin[(QB −
Q1)(Q0 − QB)

√
Re�1/πlq]1/2.

The explicit expression (19) is in extremely good agreement
with the numerical results obtained by solving the Schrödinger
equation g(Q, − iλ∂Q)φ(k) = g(k)φ(k). This can be seen from
Fig. 1(e). Both the numerical values of the amplitude of the
splitting and the phase agree with the analytical results; see
Fig. 2. Equation (19) simplifies in the limit of comparatively
strong drive, f � 1. The leading-order terms in Stun and in
�tun are quadratic in f . Numerically, the asymptotic regime
is reached for comparatively large f , where the tunneling
amplitude becomes very small.

VI. PERIOD TRIPLING

Equation (19) is the central result of this paper. It shows
that the splitting of the eigenvalues of HRWA oscillates as
the system parameters vary. Two eigenvalues cross each time
λ−1�tun = (n + n′/3)π with integer n and n′ = 0,1,2. Such
crossings are seen in Figs. 1(b) and 1(e). Given that the RWA
energy E(k) ∝ g(k), it follows from Eqs. (3) and (5) that an
oscillator in a superposition of states with equal g(k) displays
period tripling. Similarly, when in the case of a parametric
oscillator the quasienergy difference is exactly h̄ωF /2 [21,30],
a superposition of the corresponding states is a period-two
state.
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From the explicit expression (19), period tripling occurs
in a broad range of the field amplitudes and frequencies.
Importantly, the level crossing is robust with respect to the
terms disregarded in the RWA. Such terms can only lead to a
small shift of the crossing points.

Where the eigenvalues g(k) do not cross, they stay expo-
nentially close to each other. Respectively, the quasienergy
difference is exponentially close to h̄ωF /3 on the scale h̄δω or
h̄F 2/ωF

√|γ |. Similar triples of states result from the tunnel
splitting of the excited intrawell states in Fig. 1(d).

For the oscillator in a superposition of states φ(k) and
φ(k′) with g(k) 
= g(k′), the expectation values of the variables
still have period 3tF , if measured over time smaller than the
exponentially long time |�kk′ |−1, where �kk′ = λ−1[g(k) −
g(k′)]δω, |�kk′/δω| 
 1. The Fourier spectra of the expectation
values have components at frequencies |(k − k′)ωF /3 + �kk′ |.
If the driven oscillator has charge, it can radiate; the radiation
spectrum displays a peak shifted from ωF /3 by |�kk′ |.

As seen from Fig. 1(b), a superposition of states φ(k) and
φ(k′) with close g(k) and g(k′) can be prepared by ramping up
the driving field, if initially the oscillator is in a superposition
of Fock states |n〉 and |n′〉 with |n − n′|(mod3) 
= 0. There is
no threshold in the field amplitude F for preparing a multiple-
period state: by varying the frequency detuning of the field δω

one can obtain such a state for an arbitrarily small F . Moreover,
starting from a judiciously prepared linear combination of the
three lowest Fock states of the oscillator, one can prepare
the system in any of the lowest intrawell states. Similarly, it
actually follows from the results of Ref. [30] that there should
be no threshold for preparing period-two states of an oscillator
parametrically driven at close to twice its eigenfrequency.

From coherent to dissipative period tripling

Even weak dissipation of the oscillator can qualitatively
change its dynamics. It breaks the coherence of the in-
trawell states �m. If the dissipation rate � exceeds the
exponentially small frequencies |�kk′ |, instead of coherent
resonant tunneling between the wells of g(Q,P ), the oscillator
performs incoherent interwell hopping, the process analogous
to the well-known quantum diffusion. Phenomenologically, by
symmetry arguments, the hopping is described by the balance
equation for the state populations ρmm,

ρ̇mm = W
∑
m′ 
=m

ρm′m′ − 2Wρmm.

Since the intrawell states are the broken-symmetry states
of period-three vibrations that differ only in phase, hopping
corresponds to a slip of the vibration phase by 2π/3. On times
small compared with the reciprocal hopping rate W−1 the
oscillator stays in an intrawell state. This is the exact analog of
the classical behavior where, as is well known for a parametric
oscillator, the multiple-period state is seen on times short
compared with the reciprocal rate of interstate switching. We
emphasize that, for a longer observation time, all coexisting
states are seen and there is no time-symmetry breaking.

The rate W is exponentially sensitive to the system
parameters. In the standard quantum diffusion theory ρmm

is the diagonal matrix element of the density matrix ρ on
functions �m and W ∝ �2

kk′/�, where one should use the

maximum value of |�kk′ |; clearly, W 
 |�kk′ | 
 � [31,32].
However, the actual situation for a driven oscillator is more
complicated.

The full analysis of interwell hopping should take into
account dissipation-induced transitions to the excited intrawell
states, which occur even for T = 0 [15]. The rate of interwell
transitions in highly excited states is high. However, their
population is exponentially small. As a result, the condition
W 
 � holds. The balance equation in this case describes the
evolution of the well populations rather than the populations
of the lowest states in the wells and should be modified to
include transitions to the zero-amplitude state. The analysis of
this process is beyond the scope of this paper.

For a small decay rate �, a quantum oscillator initially in
the ground state can be brought into the intrawell states by adi-
abatically ramping up the field to reach small |�kk′ | 
 � and
then waiting for a time longer than �−1. The intrawell states
will be equally populated. However, repeated measurements
separated by δt 
 W−1 will show the oscillator in the same
state, a signature of the broken time symmetry. In contrast,
and this is an important feature of period tripling, a classical
oscillator would stay in the zero-amplitude state when the field
is ramped up, because the classical driving force is ∝q2F ; the
zero-amplitude state does not merge with broken-symmetry
states for K > 2, in contrast to the parametric oscillator.

VII. CONCLUDING REMARKS

A promising type of oscillators for observing period
tripling is modes of microwave cavities coupled to Josephson
junctions. Recently there have been studied systems where
inelastic Cooper pair tunneling leads to an effective driving of
a cavity mode that depends nonlinearly on the mode coordinate
and has a tunable frequency 2eV/h̄ determined by the voltage
V across the Josephson junction [33–35]. There are also other
possibilities to resonantly excite multiple-period modes in
microwave cavities [36].

In conclusion, we studied a quantum oscillator driven
close to an overtone of its eigenfrequency and showed that
such a small quantum system can display coherent multiple-
period dynamics. Relaxation with the rate exceeding the
exponentially small tunnel splitting breaks the coherence. The
system can then be observed in one of the broken-symmetry
states, which are localized in phase space and have a lifetime
exponentially longer than the relaxation time. Studying the
previously unexplored case of period tripling allowed us to
develop a general approach to finding the tunnel splitting for
systems with multiple degenerate states and to revealing and
evaluating the geometric phase between multiple degenerate
states in phase space. It also demonstrated the qualitative
difference between the transitions to multiple-period states
in the coherent and dissipative regimes. The results fill in
the gap between the topologically protected broken-symmetry
Floquet states in extended systems and multiple-period states
in dissipative systems.
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APPENDIX A: THE INTRAWELL WAVE FUNCTIONS OF
THE ROTATING-WAVE-APPROXIMATION HAMILTONIAN

The scaled Hamiltonian function g(Q,P ) of the driven os-
cillator in the rotating wave approximation (RWA) is given by
Eq. (10) and is plotted in Fig. 1(c). It has three symmetrically
located minima at points (Qm,Pm) with m = 0,1,2 (see Fig. 3),

Q0 = 1
2 [f + (f 2 + 4)1/2], Q1 = Q2 = −Q0/2,

P0 = 0, P1 = −P2 =
√

3Q0/2. (A1)

From the explicit form of the function g(Q,P ) we find the
minimal value of this function gmin and the dimensionless
frequency of classical vibrations about a minimum ωmin =
{det[∂2

xixj
g(x1,x2)]}1/2 (the derivatives are calculated at a

minimum of g),

gmin = − 1
12f Q0

(
Q2

0 + 3
)
, ωmin = [

3f Q0
(
Q2

0 + 1
)]1/2

.

(A2)

The frequency ωmin is the same for all minima, and so is the
lowest eigenvalue g0 of the Hamiltonian ĝ(Q, − iλ∂Q) in the
neglect of tunneling. To the lowest order in the dimensionless
Planck constant λ it corresponds to the lowest eigenvalue of a
harmonic oscillator with frequency ωmin,

g0 = gmin + 1
2λωmin. (A3)

1. The wave function �0( Q)

Near the minimum (Q0,P0) we have g(Q,P ) ≈ gmin +
1
2 (Q2

0 + 1)(Q − Q0)2 + 3
2f Q0P

2. The wave function �0(Q)
is Gaussian for |Q − Q0| 
 |Q1 − Q0| and can be chosen to
be real,

�0(Q) = (
√

πlq)−1/2 exp
[ − (Q − Q0)2/2l2

q

]
, (A4)

with lq = [λωmin/(Q2
0 + 1)]1/2 being the localization length.

We are interested in the tail of �0 for Q between the minima
of g(Q,P ), i.e., for Q1 < Q < Q0 − lq . The WKB form of
�0(Q) is given by Eq. (14) of the main text, which we here
write explicitly,

�0(Q) = C0(i∂P g)−1/2 exp [iS0(Q)/λ],
(A5)

S0(Q) =
∫ Q

Q0−lq

dQ′P̃
(
Q′),

with P̃ (Q) given by equation g(Q,P̃ ) = g0 and ∂P g calculated
for P = P̃ (Q).

For the branch of P̃ that we are interested in,

P̃ (Q)2 = A(Q) + B1/2(Q), A(Q) = 1 − Q2 − 2f Q,

B(Q) = A2(Q) − 4[g(Q,0) − g0], (A6)

FIG. 3. Positions of the minima (Qm,Pm) (m = 0,1,2) of the
function g(Q,P ) and of the branching point QB . The wave function
�0(Q) monotonically decays away from Q0 in the region Q > QB ,
whereas in the region Q1 < Q < QB the decay is accompanied by
oscillations.

with ImP̃ < 0 for Q < Q0; we keep the correction ∝ λ to
secure matching to Eq. (A4).

For Q close to Q0 and Q < Q0 − lq , we have A(Q) <

0, B(Q) > 0, and A(Q) + B1/2(Q) < 0. Therefore P̃ (Q) is
purely imaginary and the same is true for the function

∂P g = P̃ (Q)B1/2(Q), (A7)

with i∂P g > 0. Accordingly, �0(Q) exponentially decays
with increasing Q0 − Q. The prefactor C0 is determined
by matching Eqs. (A4) and (A5) for Q close to Q0 but
Q0 − Q � lq ,

C0 = (
ωmin/2

√
πe

)1/2
.

As Q decreases, first B(Q) becomes equal to zero at point
QB ; see Fig. 3. To leading order in λ 
 1

QB ≈ Q0 − 3
4f. (A8)

For still smaller Q, A(Q) changes sign to positive. This
happens for QB > Q > Q1 ≡ −Q0/2. Importantly,

A(Q1) = P 2
1 > 0, B(Q1) = 2λωmin. (A9)

In the explicit form, the imaginary part of the momentum
in the classically forbidden region is

ImP̃ (Q) = −[ − A(Q) − B1/2(Q)
]1/2

(QB < Q < Q0),

ImP̃ (Q) = −[
(A2 + |B|)1/2 − A

]1/2/√
2 (Q < QB).

(A10)

As discussed in the main text, the level splitting crucially
depends on the oscillations of the wave function under
the barrier. These oscillations start with the decreasing Q

at Q = QB . Near QB we have B(Q) ≈ ∂QB(QB)(Q −
QB), whereas A(QB) < 0. Therefore P̃ ≈ −i|A(QB)|1/2 +
(i/2)|∂QB(QB)/A(QB)|1/2(Q − QB)1/2 for small Q − QB >

0, i.e., QB is a branching point of P̃ (Q). Going around this
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point in the complex plane [17], we find that, for Q < QB ,

�0(Q) ≈ 2C0|∂P g|−1/2 exp [−ImS0(Q)/λ] cos �0(Q),

�0(Q) = �′
0(Q) + �′′

0(Q). (A11)

Here, the phase �′
0(Q) comes from the real part of the action,

�′
0(Q) = λ−1

∫ Q

QB

dQ′ReP̃
(
Q′),

(A12)
ReP̃ (Q) = −[(A2 + |B|)1/2 + A]1/2/

√
2,

whereas �′′
0(Q) comes from the prefactor, with account taken

of going around QB in the complex plane,

�′′
0(Q) = −1

2
arcsin[ReP̃ (Q)/|P̃ (Q)|] − π

4
. (A13)

The choice of ReP̃ and ImP̃ in Eqs. (A10) and (A12)
corresponds to writing B1/2 = i|B|1/2 in Eq. (A6) for P̃ 2 in
the region where B(Q) < 0.

The WKB approximation (A5) breaks down near Q1, as
B(Q) becomes ∼λ and |∂P g| becomes small. However, we do
not need to calculate the wave function �0(Q) in this region,
as seen from Eq. (13).

2. The wave function �1( Q)

The minimum of g(Q,P ) at (Q1,P1) corresponds to a
nonzero momentum P1 > 0. Therefore the wave function �1

centered at Q1 is complex valued even near its maximum.
Calculating �1 involves three steps: finding it inside the well of
g(Q,P ) near Q1,P1; finding the geometric phase, that relates
�1 and �0 given that �0 is chosen in the form (A4), and then
finding the tail of �1 in the classically forbidden range.

a. The intrawell wave function

Using the explicit form (A1) of Q1,P1, to the second order
in δQ = Q − Q1, δP = P − P1 we write the Hamiltonian
near (Q1,P1) as

g(Q,P ) ≈ gmin + 3
4 (1 + f Q0)δP 2 + 1

4 (1 + 5f Q0)δQ2

+ (
√

3/4)(f Q0 − 1)[δQδP + H.c.]. (A14)

The expression for �1 for |δQ| 
 Q0 − Q1 then reads

�1(Q) = C1,intra exp
[(

iP1δQ − 1
2�1δQ

2
)
/λ

]
,

�1 = [2ωmin + i
√

3(f Q0 − 1)]/3Q2
0. (A15)

The Gaussian-width parameter �1 is now complex valued, and
so is the prefactor C1,intra, which has a phase factor exp(iθ1).
This phase is calculated in the main text.

b. The wave function �1 in the classically forbidden region

In the case of the wave function �1, Eq. (14) for the wave
function in the classically forbidden region reads

�1(Q) = C1(i∂P g)−1/2 exp [iS1(Q)/λ], (A16)

S1(Q) = −
∫ Q

Q1+l′q
dQ′P̃

(
Q′),

where P̃ (Q) is given by Eqs. (A10) and (A12), l′q =
[λ/Re�1]1/2. Equation (A16) corresponds to choosing
B1/2(Q) = i|B(Q)|1/2 for B(Q) < 0 and to ∂P g calculated
for P (Q) = P̃ (Q), i.e., ∂P g = P̃ B1/2. For QB − Q � Q −
Q1 � l′q we have −P̃ (Q) ≈ P1 + i�1(Q − Q1), as expected
from Eq. (A15). By matching Eqs. (A15) and (A16), we find

C1 = (ωmin/2
√

πe)1/2 exp(iθ ′
1),

(A17)
θ ′

1 = θ1 − λ−1
[(

l′2q /2
)
Im�1 − P1l

′
q

]
.

Because we count the action S1 off from Q1 + l′q , there
emerges an extra phase factor in C1 due to the oscillations
of the wave function inside the “potential well” centered at
(Q1,P1).

APPENDIX B: TUNNEL SPLITTING OF THE SCALED
ROTATING-WAVE-APPROXIMATION ENERGY LEVELS

Using the explicit form of the operator g(Q, − iλ∂Q) we
obtain from Eq. (18)

g(k) − g0 = −2λC0|C1| exp(−Sλ/λ) cos

(
�λ

λ
− 2kπ

3

)
,

Sλ = −
∫ Q0−lq

Q1+l′q
dQImP̃ (Q),

�
(k)
λ = −

∫ QB

Q1+l′q
dQReP̃ (Q) + λθ ′

1. (B1)

This expression is somewhat inconvenient, because P̃ is
calculated with account taken of the term ∝ λ. It is easy to see
that P̃ (Q) ≈ Pcl(Q) + 1

2λωmin/∂P g, where Pcl is given by the
value of the classical momentum calculated for λ = 0. This
approximation breaks down near Q0, QB , and Q1 where ∂P g

goes to zero. Similar to Ref. [29], for Q0 > Q > QB one can
write

∫ Q

Q0−lq

dQ′P̃ (Q′) ≈
∫ Q

Q0

dQ′[Pcl(Q
′) + λk(Q′,Q0)]

− iλ

2
ln

|Q − Q0|
lq

− iλ

4
− iλ

2
ln 2,

k(Q,Qm) = ωmin

2Pcl(Q)B1/2
cl (Q)

− i

2|Q − Qm| . (B2)

Here, Bcl(Q) = (16f/3)(Q − Q1)2(Q − QB) is the value of
B(Q) calculated for λ = 0. A similar transformation can be
made for

∫ Q

Q1+l′q
dQ′P̃ (Q′) in the region Q1 < Q < QB .

We now have to consider the vicinity of QB . Formally, the
quantum correction to Pcl(Q) diverges at QB . However, the di-
vergence is integrable. Therefore Eq. (B2) applies all the way
until Q = QB , and one can use the value of QB given by
Eq. (A8).

The final result for the difference of the scaled RWA
energies is Eq. (19) of the main text.
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