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Abstract

We study single-electron quantum dots on a helium surface created by electrodes submerged into the helium. The parameters
of the dots are electrostatically controlled. We -nd the electron energy spectrum and identify relaxation mechanisms. The
in-plane con-nement signi-cantly slows down electron relaxation. The energy relaxation is due primarily to coupling to
phonons in helium. The dephasing is determined by thermally excited ripplons and by the noise from underlying electrodes.
The decay rate can be further suppressed by a magnetic -eld normal to the helium surface. Slow relaxation in combination
with control over the energy spectrum make localized electrons appealing as potential qubits of a quantum computer.
? 2003 Elsevier B.V. All rights reserved.
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The system of electrons on the surface of su-
per8uid 4He is attractive from the point of view
of making a scalable quantum computer (QC)
[1]. The electrons have an extremely long re-
laxation time and display the highest mobility
known in a condensed-matter system [2]. A QC
can be made by submerging a system of individ-
ually addressed micro-electrodes beneath the he-
lium surface. The typical interelectron distance is
comparatively large, ∼ 1 �m, which simpli-es
fabrication of an electrode array [3]. The elec-
trode potential, the high barrier that prevents elec-
trons from penetrating into the helium, and the
helium image potential together create a single-electron
quantum dot above each electrode. The parameters of
the dot can be controlled by the electrode potential.

Here we study the energy spectrum and dissipation
processes for electrons in quantum dots on helium
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surface. We discuss mechanisms of coupling to helium
excitations, phonons and ripplons, and the dependence
of the electron relaxation rate on the quantum dot
parameters. We investigate the role of a magnetic -eld
normal to the surface and of the electron–electron in-
teraction. Decay and decoherence of the electron states
result also from classical and quantum electrode noise.
We relate the corresponding relaxation rates to the
power spectrum of the 8uctuating electric -eld on the
electron and analyze their dependence on the param-
eters of the electrodes and external leads.

The geometry of a quantum dot can be understood
from Fig. 1. The potential is a sum of the out-of-plane
and in-plane parts. The out-of-plane potential is sim-
ilar to that in the absence of the electrode. It leads to
quantization of motion normal to the surface. In the
absence of the -eld E⊥ the energy levels are En =
−R=n2 (n = 1; 2; : : :), where the e@ective Rydberg en-
ergy R ≈ 8 K [4]. The in-plane potential U‖(r) ≈
m!2

‖r2=2 [r=(x; y)] is parabolic, for typical parameter
values.
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Fig. 1. Geometry of a single-electron quantum dot on helium
surface. A micro-electrode is submerged by the depth h ∼ 0:5 �m
beneath the helium surface. The electron is driven by a -eld E⊥
normal to the surface. This -eld is a sum of the electrode -eld E⊥
and the -eld of the parallel-plate capacitor (only the lower plate
of the capacitor is shown). The con-ning in-plane potential U‖(r)
[r=(x; y)] is determined by the electrode potential and geometry.

In the absence of a magnetic -eld, electron states
in a dot |n; �; m�〉 are characterized by the quantum
number n of motion normal to the surface, the principal
quantum number � of vibrations about an equilibrium
in-plane position, and the number m� that enumerates
degenerate vibrational states.

A con-ned electron can serve as a qubit [1]. The
working states of the qubit are |1; 0; 0〉 and |2; 0; 0〉.
The energy di@erence between these states E2−E1 can
be Stark-shifted by the electric -eld from the electrode
E⊥. The shift of 1 GHz occurs if E⊥ is changed by
∼ 1 V=cm. The -eld E⊥ also determines the in-plane
vibrational frequency !‖. A simple estimate ofE⊥ can
be made by assuming that the electrodes are spheres
of radius rel. In this case !‖ =(eE⊥=mh)1=2. Typically
!‖=2� ∼ 20 GHz, whereas the transition frequency
�tr = (E2 − E1)=˝ is 6–10 times larger.

Because of the discreteness of the electron energy
spectrum in a dot, the mechanisms of electron decay
and dephasing are qualitatively di@erent from those
studied for a 2D electron system on helium in the ab-
sence of in-plane con-nement [5]. In particular, the
major known scattering mechanism, quasi-elastic scat-
tering by ripplons, does not work. Decay of the excited
state |2; 0; 0〉 is most likely to occur via a ripplon- or
phonon-induced transition to the closest in energy ex-
cited vibrational state of the electron |1; �c; m�〉, with
�c = int[(E2 − E1)=˝!‖]. The energy transfer in the
transition is �E=E2−E1−�c˝!‖ ∼ ˝!‖. It largely ex-
ceeds the energy of ripplons with wave numbers q .
1=a‖, where a‖ = (˝=m!‖)1=2 is the in-plane electron

localization length in the dot. This makes one-ripplon
decay exponentially improbable and strongly reduces
the decay rate compared to the case of electrons that
are free to move along the helium surface.

An electron in a dot can decay by emitting two
ripplons that will propagate in opposite directions
with nearly same wave numbers q1;2, which are de-
termined by the condition that the ripplon frequency
is !r(q1;2) ≈ �E=2˝ [|q1 + q2| . 1=a‖�q1;2]. Alter-
natively, and even with higher probability, decay may
occur through an electron transition accompanied by
emission of a phonon. The appropriate phonons prop-
agate nearly normal to the helium surface: their wave
vectors make an angle with the normal to the surface
∼ (mv2

s =˝!‖)1=2�1, where vs is the sound velocity
in helium. We propose two mechanisms of coupling
to phonons [6]. One is phonon-induced deformation
of the helium surface. The second is phonon-induced
modulation of the dielectric constant of helium and
thus of the electrostatic energy of the electron above
helium.

Relatively simple expressions for the electron decay
rate for di@erent coupling mechanisms are obtained
by approximating the electron potential at the helium
surface by a sharp in-nitely high potential wall. Such
an approximation applies only if the wavelength of
helium vibrations is much bigger than the width Kd
of the di@use surface layer, which is of the order of a
few angstroms [7]. When we estimate the decay rate
numerically, we make an assumption that helium vi-
brations are essentially decoupled from the electrons
when their wave numbers exceed K−1

d . Then, for typ-
ical in-plane electron frequencies !‖=2� ∼ 20 GHz,
both the two-ripplon and phonon decay rates are deter-
mined primarily by electron transitions with the small-
est energy transfer �E ∼ ˝!‖. Transitions over sev-
eral electron vibrational levels, with energy transfer
n˝!‖ with n�1, can be disregarded. This gives the
decay rate . 104 s−1, which is presumably an over-
estimate.

Electron dephasing due to coupling to excitations
in helium comes primarily from quasi-elastic scatter-
ing of ripplons o@ the electron. Scattering amplitudes
are di@erent in di@erent electron states, and therefore
scattering leads to di@usion of the phase di@erence
between the wave functions |2; 0; 0〉 and |1; 0; 0〉. The
typical wave numbers q� of the ripplons that con-
tribute to dephasing are determined by the condition
that the ripplon frequency !r(q�) . kBT=˝. They are
much smaller than 1=Kd, and the coupling is well
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described by the approximation of a sharp helium sur-
face. For di@erent mechanisms of coupling to ripplons
the dephasing rate �(�) displays same temperature de-
pendence �(�) ˙ T 3, which is much slower than the
standard T 7 law for defects in solids. Numerically,
�(�) . 102 s−1 for T = 10 mK.

The electron decay rate may be further reduced by
applying a magnetic -eld normal to the helium sur-
face. As we will show, this is equivalent to further in-
creasing !‖ and should require helium vibrations with
even shorter wavelengths in order to meet the condi-
tion of energy conservation in decay. The theory will
also describe the case of many quantum dots. In this
case, the energy spectrum of in-plane electron exci-
tations consists of plasmon bands and is continuous.
Still, as we show, the relaxation rate remains strongly
suppressed compared to the case of uncon-ned elec-
trons.

The in-plane electron coordinate rn in an nth dot can
be expanded in the creation and annihilation opera-
tors of the in-plane vibrational modes of the electrons
akj; a+

kj,

rn = Rn +
∑

kj

[A(n)
kj akj + h:c]: (1)

Here, Rn is the equilibrium in-plane position, and
j = 1; 2 enumerates vibrational modes. The quantum
number k can be set equal to zero in the case of one
dot, whereas for a periodic array of dots it becomes a
plasmon wave vector k.

For one dot (n = 1) in a strong magnetic -eld B
antiparallel to ẑ

!01 ≈ !c = |eB|=mc; !02 ≈ �0 ≡ !2
‖=!c;

A1 ≈ iA2 ≈ 2−1=2l(x̂ + iŷ) [Aj ≡ A(1)
0j ]; (2)

where l = (˝=m!c)1=2 is the magnetic length, and we
assumed that !‖ is small compared to the cyclotron
frequency !c. For a multi-dot system, the vibrational
frequencies form two bands. The bandwidths are .
!2

p=!c, where !p=(2�e2=md3)1=2 is the typical plasma
frequency (!p�!c) and d is the interelectron dis-
tance. They are further reduced if !p�!‖. The min-
imal frequency of the upper band is ≈ !c, whereas
that of the lower band is ∼ �0.

The Hamiltonian that describes |2〉 → |1〉 transi-
tions induced by excitations in helium has the form

H (d)
i =

∑
n

|2〉n n〈1|
∑
q

V̂ qeiqrn + h:c: (3)

Here, |1〉n and |2〉n are the states of an nth electron
normal to the surface, and V̂ q is the operator that de-
pends on the coordinates of helium vibrations, i.e.,
phonons and ripplons. The wavelengths of the vibra-
tions involved in electron scattering are much smaller
than the interelectron distance. Therefore each elec-
tron has its “own” thermal bath of helium excitations.
In the Born approximation, the decay rate of the state
|2〉n for an nth electron is

�(d)
n = ˝−2Re

∫ ∞

0
dtei�tr t

∑
q

S̃n(q; t)

× 〈V̂ q(t)V̂ −q(0)〉;
S̃n(q; t) = 〈eiqrn(t)e−iqrn(0)〉: (4)

Here, the averaging 〈·〉 is performed assuming that
the electron and helium vibrations are uncoupled. We
have also disregarded the di@erence between the tran-
sition frequencies �tr = (E2 −E1)=˝ for di@erent elec-
trons.

From Eq. (1), for kBT�˝�0 the structure factor
S̃n(q; t) (4) has the form

S̃n(q; t) = exp[ − q2Wn(t)=2];

Wn(t) =
∑

kj

|A(n)
kj |2[1 − exp(−i!kjt)]: (5)

The e@ective Debye–Waller factor Wn(t) is indepen-
dent of the electron number n if the coeQcients A(n)

kj
for di@erent electrons di@er only by a phase factor, as
in the case of a periodic set of dots.

In what follows we will assume that the level spac-
ing E2 − E1 is of the same order as the distance be-
tween the Landau levels ˝!c and that the energy de-cit
�Ẽ = E2 − E1 − �̃c˝!c largely exceeds ˝�0 [here,
�̃c = int(E2 − E1)=˝!c]. Then many vibrations of the
lower vibrational branch j = 2 are excited in a transi-
tion. This means that the structure factor S̃n(q; t) can
be evaluated assuming that �0t�1. In doing this we
will take into account the relations

∑
k |A(n)

k1 |2 ≈ l2

and∑
k

|A(n)
k2 |2!k2 ≈ l2�n; �n = [@2U‖=@r2n]=2m!c; (6)

where U‖ is the overall in-plane potential of an nth
electron that includes the Coulomb energy of the
electron-electron interaction, and the Laplacian is cal-
culated at the equilibrium position. It is seen from Eq.
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(2) that Eq. (6) applies in the case of one dot. A proof
for a multi-dot system will be discussed elsewhere.

From Eq. (6) we obtain

S̃n(q; t) ≈ exp[ − (q2l2=2)(1 + i�nt)]

×
∑

�

1
�!

(q2l2=2)� e−i�!ct : (7)

This equation shows that, in an electron |2〉 → |1〉
transition, the energy transferred to the lower-branch
vibrational modes is ∼ q2l2�n˝. The typical values
of the factor q2l2 are . 1, otherwise the transition
probability becomes exponentially small. This means
that, even though the energy spectrum of a set of dots is
band-like, the typical energy that has to be transferred
to helium excitations is ∼ �Ẽ ∼ ˝!c. For !‖�!c
this is a much bigger energy than in the absence of a
magnetic -eld. Therefore we expect that a magnetic
-eld can signi-cantly reduce the decay rate, because
decay requires helium excitations with wavelengths
smaller than the width of the surface di@use layer.

The occurrence of a mode with frequency �0�!‖
in a magnetic -eld leads to an increase of the
ripplon-induced dephasing rate. This can be seen
in the higher order in the electron–ripplon coupling
where account is taken of virtual ripplon-induced
transitions between the electron vibrational levels,
cf. Refs. [1,6]. The amplitude of such transitions in-
creases with the decreasing �0, i.e., with the increas-
ing magnetic -eld. The e@ect imposes a limitation on
the -eld magnitude. One concludes that there exists
an optimal range of magnetic -elds where both decay
and dephasing rates are small and of the same order
of magnitude.

An important source of dephasing of electron states
in a single-electron dot is noise from the underlying
electrode, see Fig. 1. We will discuss it for one dot, as
the role of inter-dot interaction is minor in this case.
Coupling to the electrode noise is dipolar, with the
Hamiltonian

Hdip = e�Ê⊥z; (8)

where �Ê⊥ is the normal to the surface component
of the -eld from quantum or classical charge density
8uctuations in the electrode.

The rates �(�)
el and �(d)

el of the electron dephasing
and decay can be expressed [6] in terms of the -eld
correlation function

Q(!) =
∫ ∞

0
dt ei!t〈�Ê⊥(t)�Ê⊥(0)〉 (9)

as

�(�)
el = e2(z22 − z11)2Re Q(0)=˝2;

�(d)
el = e2|z12|2Re Q(�tr)=˝2: (10)

Here, zij = 〈i|z|j〉, with i; j = 1; 2.
A major contribution to the dephasing rate comes

from Johnson’s noise in the external leads. A simple
estimate can be made by assuming that the con-ning
electrode is a sphere of radius rel. It gives

�(�)
el = 2kBTextRexte2(z22 − z11)2r2

el=˝2h4; (11)

where Text and Rext are the lead temperature and re-
sistance. ForRext =25 U, Text =1 K, rel=0:1 �m, and
h = 0:5 �m we obtain �(�)

el ≈ 1 × 104 s−1. Eq. (11)
suggests how to reduce the rate �(�)

el . The decay rate
�(d)

el is much less than the phonon-induced decay rate.
Eq. (10) allows one also to estimate the e@ect of

noise from reorienting defects in the electrode. For
electrodes submerged into helium this noise should
be weaker than in semiconductor-based systems pro-
posed for quantum computing, in particular because
it scales with the distance to the electrode as h−4, cf.
Eq. (11).

In this paper we have calculated the relaxation rate
for electrons in quantum dots on the helium surface.
We proposed new relaxation mechanisms and found
the dependence of the relaxation rate on the potential
of the con-ning electrodes and the magnetic -eld. It
follows from the results that the ratio of the relaxation
rate to the clock frequency of the QC based on elec-
trons on helium, which is determined by the electron–
electron interaction, can be as small as 10−4–10−5,
for typical interdot spacing . 1 �m.
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