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The results of recent experimental and theoretical investigations of the spectral densities of fluctuations (SDFs) o 
noise-driven nonlinear dynamical systems are reviewed. Emphasis is placed on the analysis of the shapes and intensities o 
peaks in the SDFs. Three different types of phenomena are considered. First, the SDFs of a class of monostabh 
underdamped nonlinear systems, in which the variation of eigenfrequency with energy is nonmonotonic,  are investigated 
It is shown that they exhibit zero-dispersion peaks and noise-induced spectral narrowing, as well as zero-frequency peaks 
Secondly, it is demonstrated that systems bistable in an external periodic field can exhibit supernarrow spectral peak: 
within the range of a kinetic phase transition. Finally, recent results in stochastic resonance (SR) arc reviewed, includin l 
phase shifts, giant nonlinearities for weak noise, SR for periodically modulated noise intensity, and high-frequency SR fo 
periodic attractors. 

1. Introduction 

Spectral densities of fluctuations (SDFs) pro- 
vide an important  means of characterising phys- 
ical systems, because they can be measured di- 
rectly in a variety of experiments: in particular, 
the optical and neutron spectra of systems in 
thermal equilibrium (or quasiequil ibr ium)- one 
of the main sources of information about the 
microscopic characteristics of many such sys- 
t e m s -  are immediately related to SDFs. The 
investigation of SDFs also makes possible to 
observe and analyse the interplay between the 
fluctuations, relaxation and nonlinearity that are 
inherent to real macroscopic physical systems. 
This interplay provides one of the most challeng- 
ing problems of modern nonlinear physics. 

In many cases of interest, the physical system 
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to be investigated can be modelled by a more ol 
less complicated damped dynamical system tha 
is subject to noise. If the noise and the relaxatior 
are both due to coupling to a thermal bath, ther 
they will satisfy the fluctuation-dissipation rela- 
tions [1] and the characteristic intensity of the 
noise will be equal to the temperature T of the 
bath. In the general case, a nonthermal noise i~ 
also present. Certain properties of the systems 
and of their SDFs in particular, are highly sensi. 
tive to the characteristics of the noise, whik 
others are universal and depend only weakly or 
these characteristics. Both types of property arc 
clearly of importance in different contexts. Ir 
what follows, our main aim will be to consideJ 
phenomena exhibited by noise-driven archetypa 
models. Similar phenomena may of course ther 
be predicted for real systems, over a very wide 
range of contexts in science and technology 
whenever  they are described by equations of the 
same general form as those we will discuss. 
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In the present paper we outline recent results 
on the SDFs of relatively simple, although non- 
trivial, nonlinear systems. Emphasis is placed on 
the shapes and intensities of the peaks of the 
SDF. Three sorts of effects are considered. In 
section 2 we analyse the shapes of the peaks for 
monostable underdamped nonlinear systems and 
investigate effects related to nonmonotony of the 
dependence of the frequency of eigenvibrations 
w ( E )  on the energy E of a system. Such non- 
monotony is inherent in a number of vibrational 
systems. Examples include the localised vibra- 
tions in solids, where nonmonotony will arise 
provide d that the "stiffness" of the system in- 
creases with energy for small E (see [2] for a 
review) and where it can be controlled by exter- 
nal electric field and/or pressure. For systems of 
this kind, the widths of the SDF peaks at first 
increase in the usual way with increasing noise 
intensity, relative to their low noise values 
(which are determined by damping). Surprising- 
ly, however, they can sometimes decrease again, 
by a large factor, as the noise intensity continues 
to rise. Moreover, for very small damping, a 
specific zero-dispersion peak can arise at the 
frequency of the extremum [3]. 

In section 3 the SDF is investigated for bist- 
able systems, with the emphasis on bistability 
arising in an external periodic field where the 
coexisting stable states correspond to forced 
periodic vibrations with different amplitudes and 
phases. Bistable systems driven by a sufficiently 
weak noise have a very large characteristic relax- 
ation time that is given by the reciprocal prob- 
abilities of fluctuational transitions between the 
stable states. Associated with this time is an 
extremely small spectral width of the peaks of 
the SDF (supernarrow peaks) that arise at the 
frequency of the driving field and its overtones, 
and also at zero frequency. The peaks exhibit a 
critical-type behaviour for the parameters of the 
system lying in the vicinity of a kinetic "phase 
transition" where the stationary populations of 
the coexisting stable states are of the same order 
of magnitude. 

In section 4 a phenomenon directly related to 
the aforementioned super-narrow peaks is inves- 
tigated, namely, the onset of a strong response 
of a bistable noise-driven system to a compara- 
tively weak (trial) periodic field [4] and the 
dome-like (bell-shaped) dependence of the re- 
sponse on the noise intensity called stochast ic  

re sonance  by Benzi et al. [5] (see also [6]). This 
phenomenon has attracted considerable interest 
recently and has been observed in both active [7] 
and passive [8] optically bistable systems and 
also in analogue electronic experiments [9-12]. 

2. Noise-induced narrowing of the spectral 
peaks of monostable underdamped systems 

In view of its importance and a wide variety of 
applications, the problem of the power spectra of 
nonlinear vibrational systems has been consid- 
ered by many authors, both numerically and 
analytically (see refs. [13-24] and the reviews 
[4b, 25]). Underdamped systems, in particular, 
are of the utmost interest, because of their as- 
sociation with resonant phenomena, including, 
e.g. resonant light absorption and neutron scat- 
tering in condensed matter that is directly de- 
scribed just by the SDFs. It is generally accepted 
that the peaks of the SDF usually become sub- 
stantially broader as the external noise intensity 
increases. This is due to the growth of fluctua- 
tions in the system. However, as is shown below, 
in some systems the broadening is followed, 
remarkably, by a narrowing of the peaks with 
further increase of the noise intensity. 

We shall investigate evolution of the peaks for 
the simplest model of a fluctuating nonlinear 
system, a nonlinear oscillator performing Brow- 
nian motion. It is described by the equation 

i~ + 2 F (  I + U ' (  q) = f ( t )  , 

{f(t) f ( t ' ) )  = 4 F T 6 ( t  - t ' )  (1) 

If its fluctuations correspond to thermal equilib- 
rium, then T in (1) is the temperature, whereas 
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in the more general case it simply characterises 
the intensity of the driving noise which, in the 
present section, is supposed to be white and 
Gaussian. The damping F is assumed small, 

F ~ % ,  %=-o~(0) " 1,,2 = [ U  (qcq)] , (2) 

where w(E) is the eigenfrequency of conserva- 
tive vibrations with a given energy E, 

E = 1 (t= + U(q) (3) 

(the energy is measured from the value of the 
potential U(q) in the equilibrium position qe~: 
U( qcq) : U'( G , )  : 0). 

In what follows (see, however, section 4) we 
shall consider the SDF of the coordinate defined 
a s  

Q(w) = lim (4'rrt()) ' 

l(l 

f exp(i~ot) ~- x d t [ q ( t ) -  ( q( t ) ) ]  . (4) 
t o 

Here, ( . . . )  implies the ensemble average 
(which is well known [1, 4b] to differ from the 
time average for the periodically driven systems 
considered below; for such systems the time axis 
is evidently "inhomogeneous") .  

2.1. Peak of  the SDF for "small" noise 
intensities 

For very weak noise (small T) the oscillator 
(1) can be assumed effectively harmonic, with an 
eigenfrequency % and damping parameter F. 
The SDF Q(~o) for such an oscillator is well 
known (cf. [1]) to have a Lorentzian peak at the 
frequency %,  with a halfwidth at halfmaximum 
just equal to F. With increasing noise intensity 
the shape of the peak changes, and this change 
can be strong even for relatively small noise 
intensities (which was probably noticed for the 
first time in ref. [26] where the quantum theory 
of the spectra of localised vibrations was con- 
sidered). 

The origin of the strong noise-induced 
broadening of the spectral peak can easily be 
understood from fig. 1. Because of fluctuations, 
a distribution of the oscillator is formed over the 
energy E. Its characteristic width is given by the 
driving-noise intensity T. In its turn, because of 
nonlinearity, this distribution gives rise to a dis- 
tribution of the oscillator over the corresponding 
range of vibrational eigenfrequencies ~o(E) i.e., 
there arises a noise-induced frequency straggling 
8wf~ which for small noise intensities is equal to 

am,, = TloJ.;I, ~o.',~ [d~o(E)/dE],~=., 

(5) 

The frequency straggling (5) "competes" with 
the frequency "uncertainty" F arising from 
damping. The shape of the peak in the SDF 
depends just on the ratio of these two quantities: 

a = ½ (&of]F) sgn ~o,;. 

For arbitrary a,  but for both weak damping, 
F ~ ~oo, and "weak"  noise, ~O)fl ~ 600, the peak is 

co (E) 

Fig. 1. Variation of eigenfrequency w(E)  with the energy E 
for a general  nonlinear oscillator. If the oscillator is driven by 
noise of intensity T, its energy will be described by a 
distribution whose width is approximately equal to T, so that 
the frequencies of the thermally excited vibrations are mostly 
those on the thickened portion of the curve. 
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described by a comparatively simple expression 
[15] 

Q ( w ) -  2"rrw~ Re dt exp[i(w - ~Oo)t ] Q * ( t ) ,  
0 

60 - -  0){}1 ~ 60{} , 

Q(t) = exp(Ft)  

x (cosh(at)  + 

a = F(1 - 4io0 I/2 

F (1 - 2ia)  sinh(at)) a 
(6) 

It follows from (6) that for [a[>>l,  i.e. for 
8wf~>>F it is fluctuational broadening that 
determines the shape of the peak in the SDF 
near its maximum. It also follows that, in con- 
trast to the case [ a [ ~ l  where Q(w)o~FT/  

[F  2 + (w - w{,) 2] is symmetrical near the maxi- 
mum, for [a[ >> 1 the peak is strongly asymmet- 
ric. The shape of the peak in the latter case can 
readily be understood by noting that the am- 
plitude of the eigenvibrations increases with in- 
creasing energy (as E I/2 for small E) ,  while the 
probability of the system having an energy E 
decreases exponentially, according to the Gibbs 
law. The product  of the squared amplitude times 
e x p ( - E / T )  is "mapped"  onto the spectral dis- 
tribution Q(to) via the relation ~o = os(E) = w o + 

w[}E, so that Q(w) near the maximum is pro- 
portional to [(~o - oJ0)/w{'}] e x p [ - ( w  - oJ0) IwoT ]. 
The position of the maximum itself is given by 
w o + Tw[~ = w ( T )  and the peak increases rapidly 
in width with the noise intensity, being much 
steeper on the side of the sharp low-energy 
threshold (cf. fig. 1). 

The above picture has been completely con- 
firmed by analogue electronic experiments 
[24, 27]. The evolution of the SDF with increas- 
ing noise intensity for an oscillator (1) with the 
potential 

1 q2 q4 U( q) = ~ + ¼ + Aq (7) 

at A = 0 ,  when the eigenfrequency w ( E )  in- 

0.6 ' ' ' ' I . . . .  I, . . . .  I . . . .  I . . . .  1/ 

0.4 ~ ~ , / , , J c )  

q(co)  

o . o  X . _ _ ,  I , , , " , ~ .  ~ , I ,"z--~"---- / 
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Fig. 2. Spectral density Q(~o) of the fluctuations of the 
oscillator described by (1) and (7) for damping F= 0.0143 
and the asymmetry parameter A = 0, as measured (histo- 
grams) in an analogue experiment [27] for comparison with 
theoretical predictions (curves), for noise intensities: (a) T = 
(}.078; (b) 0.687; (c) 3.04. 

creases monotonically with E, as observed in 
[27], is shown in fig. 2. The stronger the noise 
the broader  the peak, and its width for the 
values of T in fig. 2 substantially exceeds the 
relaxational broadening F. 

Strikingly similar behaviour has been observed 
[28] in the optical absorption spectra of localised 
and resonant vibrations in solids as shown, for 
example,  by the results of fig. 3. Just as in the 
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Fig. 3. Temperature dependence of the far-infrared absorp- 
tion in an NaI crystal doped with 0.4% NaCI [28]. 
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case of the Duffing oscillator SDFs of fig. 2, the 
absorption spectrum of the resonant mode in fig. 
3 broadens rapidly and becomes noticeably 
asymmetric with increasing temperature.  (The 
dependences of the intensity on temperature in 
the two graphs differ because the optical absorp- 
tion cross-section in the experiment of fig. 3 
varies approximately as the SDF divided by tem- 
perature.)  We note that, in many physical sys- 
tems, effects arising from quantum statistics (i.e. 
related to the discreteness of the energy levels) 
of the localised modes are important: such ef- 
fects are beyond the scope of the present review. 

2.2. Noise-induced narrowing and onset of the 
zero-dispersion peak 

A peculiar situation of particular interest ar- 
ises when the dependence of the eigenfrequency 
w(E) on the vibration energy E is nonmonotonic 
and for some energy E the derivative w'(E) 
passes through zero, 

[doJ(E)/dE]E=~. = 0 ,  w(Ee) ~ w~ (8) 

(cf. fig. 4; for convenience in understanding the 
experimental  data in figs. 2, 5 we have chosen in 
fig. 4 an initial slope w,'~ = [dw(E)/dE]E~ o that is 
opposite in sign to that in fig. 1, but which 
corresponds to the particular system considered 
below). If (8) is fulfilled there are two "cutoff"  
frequencies,  w 0 and w e. For small noise inten- 
sities, T ~  E e, when the vibrations with the 
eigenfrequencies close to ~oe do not come into 
play, the behaviour of Q(w) with increasing T is 
described by the results of the preceding sub- 
section. 

However ,  for T approaching E e and the posi- 
tion of the maximum of Q(w) approaching w c, 
respectively, the "flattening" of w(E) becomes 
more and more marked. In essence, as is obvious 
from the above arguments, the peak of Q(co) is 
"pressed"  against the frequency ~oe: vibrations 
with higher and higher amplitudes are being 
excited, and their eigenfrequencies approach w c. 

3 ' ' ' ' I ' ' ' 

~(E) 

I I I I I l i [ i 

0 5 I0 

E 
Fig. 4. Variation of eigenfrequency w(E)  with energy E for 
the particular oscillator described by (1), (7), with A = 2. It is 
the existence of an extremum in w(E)  that is responsible for 
the noise-induced spectral narrowing and zero-dispcrsion 
spectral peaks discussed in the text. 

But there are no eigenfrequencies beyond this 
cutoff. As a result the peak becomes narrower 
with increasing T and also becomes steeper on 
the we-side, i.e. the exact opposite of the situa- 
tion for small T. 

Spectral narrowing was first observed in an 
analogue experiment and then described in detail 
theoretically [27]. The theory reduced the prob- 
lem of calculating the peak of the SDF to a 
boundary-value problem for an ordinary dif- 
ferential equation related to the Fokker-Planck 
equation for a noise-driven oscillator: the former 
equation was a Fourier-transformed (over time) 
equation for diffusion in energy, but, in contrast 
to Kramer 's  paper [29], it was the equation not 
for the phase-independent,  but for the phase- 
dependent  (as exp(in4~), with In[ = 1 in the pres- 
ent case) part of the distribution function. 

The experimental  and theoretical results for 
the model (1), (7), demonstrating the noise- 
induced narrowing of the spectral peak, are 
shown in fig. 5. We would note that the model 
(7) is extremely simple in that it contains only 
one control parameter  A which might be associ- 
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Fig. 5. Spectral densities Q(w) of the fluctuations of the 
oscillator described by (1), (7) for F = 0.0143 and the asym- 
metry  pa ramete r  Z = 2, as measured  (histograms) in an ana- 
logue electronic exper iment  [27] for comparison with 
theoretical predictions (curves) for noise intensities: (a) T = 
0.078; (b) 0.687; (c) 3.04. Note the narrowing of the width at 
the half-height as the noise intensity is increased between (b) 
and (c). 

ated, e.g., with an electric field for an oscillating 
charged particle, or a static pressure. For A = 0 
the eigenffequency to(E) increases monotonical- 
ly with E and there is no spectral narrowing (cf. 
fig. 2). The nonmonotony of to(E) arises for 
]A]>8/73/2~0.43 ,  and starting with slightly 
higher ]A[ (because of finite damping; the data 
refers to F ~ 0 . 0 1 5 )  the nonmonotony of the 
peak width vs T was observed. The theory is 
evidently in excellent agreement with the experi- 
ment,  and we would stress that it does not 
contain any adjustable parameter• 

A very interesting phenomenon arises in sys- 
tems with nonmonotonic to(E) for still smaller 
damping F/to~ [3]: the onset of an additional 
narrow peak in the SDF at the extreme fre- 
quency w e for sufficiently high noise intensities. 
Qualitatively, such a zero-dispersion peak arises 
because the system spends a relatively long time 
oscillating at frequencies close to %: for E ~ E e 
fluctuations over energy have little effect on the 
frequency or phase of the eigenvibrations. The 
characteristic width 8tozO of the peak can be 
readily obtained by noting that 5tOzo is due to the 

frequency diffusion over the time St-(Stozd ) J; 
in its turn, the frequency diffusion is due to 
energy diffusion over the time St; ~E 
( 4 [ ' T l ~ t o  e ~t) I/2 (cf. [29]), where I e is the action 
for the vibrations with the energy E~. Therefore, 

a%d = (2FIo~I T~e toe) 1/2 , 

~,~ =-- [ de to (E ) /dE2 ]E ,  

Ec 

1~ = ~ to- l (E)  d E .  (9) 
0 

We note that the change in frequency to(E) ovei 
a time (5%a) ~ due to the drift in energy is ot 
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Fig. 6. Spectral densities Q(to) of the fluctuations of an 
electronic model  [30] of the oscillator described by (1), (7) 
for very small damping 21" = 1.70 × 10 3 and the asymmetry 
pa ramete r  A = 2, for several noise intensities: (a) T -  0.100; 
(b) 0.203; (c) 0.320; (d) 0.409; (e) 0.485; (f) 0.742. The 
zero-dispersion peak is the sharp "spike"  that first appears in 
(d); it rapidly grows, overwhelming the usual spectral peak as 
T increases,  in (f). 
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order o)"(Pto le/5~Oza)2~5O)zd, and can thus be 
neglected, i.e. the broadening of the peak is 
purely diffusional. The shape of the zero-disper- 
sion peak is described by the expression [3] 

5Qzd(~O) = const, x e x p ( - E j  T) 

× Is[(o  - o e) sgn(o)")/~o,~]l, 

S(x)  = Re [ dt e x p ( - i x t )  

0 

× [(1 - i) sinh((1 - i)t)] ,.2. (10) 

Analogue simulations of the model (1), (7) have 
made it possible to reveal the zero-dispersion 
peak [30]. The evolution of the SDF with in- 
creasing temperature for very small damping, 
F = 8 . 5 x 1 0  4, is shown in fig. 6. It is obvious 
from this figure that the zero-dispersion peak 
emerges very suddenly with increasing tempera- 
ture, and then grows rapidly to dominate the 
spectrum. The sharp "outburst"  of the peak (due 
to the competition of the exponentially small 
occupation of the energies E ~  E~ for small T 
and the sharpness of the peak itself) has recently 
been described analytically [31], and the theory 
has been demonstrated [30] to be in good agree- 
ment with the experiment. 

2.3. Zero- f requency  peaks  in SDFs o f  

monos table  system 

A well-known feature of nonlinear vibrations 
is that they are not strictly sinusoidal: in addition 
to the fundamental frequency ~o(E) there also 
exist overtones too(E)  (n = 2 , 3 , . . . )  in their 
Fourier spectrum. It is to be expected, therefore, 
that in addition to the peak in the SDF corre- 
sponding to the main tone (see above) there will 
also be peaks corresponding to the overtones. 
Peaks of this sort have indeed been observed, 
e.g., in the absorption spectra of localized vibra- 
tions in solids [32] (see [21 for a review). Their 
width increases with the number n of the over- 
tone (cf. [33]) and exceeds that for the main 
tone. 

For an underdamped oscillator fluctuating in 
an asymmetric potential well there arises, in 
addition, a well-resolved comparatively narrow 
peak in the SDF at zero frequency [24, 341 (we 
note that for overdamped oscillators the peak at 
zero frequency is the only one in the spectrum). 
The quantum theory of a corresponding peak in 
the absorption spectra of weakly nonlinear local- 
ized vibrations was given in ref. [35]. 

The zero-frequency peak in the SDF of the 
coordinate q is related to the fact that, in asym- 
metric potential wells, the fluctuations of the 
oscillator energy E give rise to fluctuations of the 
centre of the vibrations with a given energy, 
% ( E ) .  These fluctuations are "slow", with a 
characteristic time scale equal to the relaxation 
time F i. They are purely relaxational and are 
not associated with any finite frequency, and 
thus the corresponding SDF peak should be 
positioned at zero frequency and have a half- 
width of order F. A simple theory shows that, 
for small noise intensities, the shape of the zero- 
frequency peak is given by the expression [34] 

1 ,2 ~ 2F 
Q°(~°)= ~r % T 4 F  z + o) ~ 

x 1 + 4 T  % 4(w 0/to~,)_F_- 
p qo 4 F  2 + w ~ ' 

q ; - [ d q o ( E ) / d E ] t  ,,, 

q',',==- [d2q , , (E) /dE2lE ,, (11) 

An important feature of the zero-frequency 
peak is that it is not affected by the straggling of 
the frequencies of eigenvibrations induced by the 
combined effects of noise and nonlinearity (see 
above). Therefore it does not broaden rapidly 
with increasing noise intensity. It is because of 
this that the zero-frequency peak in the SDF is 
resolved much better than the peaks at the over- 
tones: peaks of both types are due to nonlineari- 
ty of the vibrations, and therefore their inten- 
sities increase with noise strength, but the width 
of the zero-frequency peak becomes much smal- 
ler for noise strengths beyond T- -FI Io )~  [ and, 
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correspondingly, it is much higher. In addition, 
for relatively small noise, the intensity of the 
peak at the second overtone (the "main"  over- 
tone for weak noise) contains an extra numerical 
factor ~ [33] compared to that of the zero- 
frequency peak. An overall view of the SDF for 
the oscillator (1), (7) as obtained for the relevant 
electronic model and described theoretically, 
with a clearly visible zero-frequency peak, is 
shown in fig. 7. The insert demonstrates that the 
broadening of this peak with increasing noise is 
indeed small and that sometimes, rather than 
broadening, noise-induced narrowing may occur; 
this follows from eq. (11). 

In concluding this section, we note that the 
shape of the fundamental peak for not very weak 
noise, when the main broadening mechanism is 
the fluctuational one, reflects the stationary dis- 
tribution of the system over its energy (the peak 

1.0 . . . .  I . . . .  J . . . .  [ 

0.8 

Q(w) 

0.6 
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1 
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2 3 

Fig. 7, Spectral density Q(w) of the fluctuations of the 
oscillator described by (1), (7) for damping F = 0.0143 and 
with the asymmetry  parameter  A = 2.0, for a noise intensity 
T =  0.814. The full spect rum (except for the overtones) is 
plotted,  with the zero-frequency peak on the left-hand side 
and the peak corresponding to eigenvibrations at the fun- 
damenta l  frequency on the r ight-hand side. The histogram 
represents  data from an electronic model,  and the full curve 
represents  the theory [34]. Inset: thc variation of the width 
(defined as the half-width at ha l f -maximum) of the zero- 
f requency peak,  as a function of noise intensity T for three 
values of the asymmetry  parameter :  (a) A = 0.2; (b) 0.43; (c) 
2.0. The data points represent  measurements  on the elec- 
tronic model,  and the full curves represent  the theory. 

gives the "projection" of this distribution on the 
distribution over the frequencies w(E)). There- 
fore it is quite sensitive to the characteristics of 
the driving noise, whereas the shape of the zero- 
frequency peak is much less sensitive to these 
characteristics. 

3. Super-narrow spectral peaks in the SDFs of 
bistable systems 

Many physical systems of particular interest 
have not one, but two or more coexisting attrac- 
tors. These may be potential minima for a diffus- 
ing particle (e.g., for an impurity in a solid, or a 
reorientating molecule) or coexisting regimes of 
laser generation, passive optical transmission, or 
forced oscillations of an electron in a Penning 
trap [36], etc. A quite general feature of fluctua- 
tions in bistable (or multistable) systems is that, 
in addition to the relaxation time (times) rre ~ 
characterising the dynamics in close vicinity to 
one of the attractors, the fluctuations are also 
characterised by much larger times associated 
with the noise-induced transitions between the 
attractors. These are equal to the reciprocal 

-i (i, j enumerate the transition probabilities Wij 
attractors, i, j =  1, 2). For a broad class of 
systems driven by Gaussian noise the depen- 
dence of Wij on the characteristic noise intensity 
D is of the activation type (see [4, 37-41] and 
references therein), 

W# = const, x exp(-RJD). (12) 

Here, R i can be associated with the activation 
energy of the transition from the state i (in 
Kramers'  model [29] of the activation of a Brow- 
nian particle over a potential barrier, R~ is the 
height of the barrier and D is the temperature). 
It is obvious from (12) that for sufficiently weak 
noise 

-1 (13) Wi] <~ Tre I 
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It is the inequality (13) that makes the concept 
of transition probabilities sensible. 

Fluctuational transitions give rise to fluctua- 
tions of the instantaneous populations v~(t), 
v~2(t ) of coexisting attractors. The kinetics of the 
populations is described by the balance equation. 

~, , ( t )  = - w , = ~ , ( 0  + w~_ ,~ : ( t ) ,  

ff=(t) = 1 - 14~l( t  ) (14) 

The interwell fluctuations become pronounced in 
the range of parameters where the stationary 
values of the populations, w~ and w 2, are of the 
same order  of magnitude (obviously, because 
otherwise a system spends practically all its time 
near one of the attractors). This parameter  range 
is quite narrow for weak noise, since according 
to (14) the ratio of the stationary populations, 

W l / W  2 = W 2 1 / W 1 2  = const, x exp[(R~ - R : ) / D ]  , 

(15) 

is either exponentially large or small: for most 

parameter  values, [R~ - R21 >> D at small D (cf. 
(13)). The region where R~ = R 2 can reasonably 
be called the range of a kinetic phase transition, 
by analogy with first-order phase transitions in 
thermal equilibrium systems where the popula- 
tions of the phases (e.g. molar volumes, for a 
l iquid-vapour  transition) are of the same order 
of magnitude. 

The fluctuations of the populations cause large 
(of the order  of the distance between the attrac- 
tors) fluctuations of the coordinate,  momentum, 
amplitude of forced vibrations, etc. It would be 
expected therefore that, in the region of a kinetic 
phase transition, there will arise very intense and 
very narrow (with a width of the order of the 
transition probability) peaks in the SDFs of bi- 
stable systems [42] (similar peaks in suscep- 
tibilities were considered in [4]; cf. also [43]). In 
the case of bistability displayed in a periodic field 
with frequency w v, such supernarrow fluctua- 
tional-transition-induced peaks are positioned at 

% and its overtones no~v, including n = 0; those 
in the SDF of the coordinate of the bistable 
system are described by the expression [42] 

1 w , w 2 t q , ( n  ) - q=(n)12W 
QCT~(w ) = _ 

"rr W= + ( oJ - m o v  ) 2 

1o, 

W = W 1 2  +W2~. (16) 

Here,  % ( n )  is the value of the nth Fourier 
component  of the coordinate for the attractor j: 
because of the periodicity of the forced vibra- 
tions, the coordinate q ( t )  for the j th attractor can 
be expanded as 

[q(t)] ,  = 2 q i ( n )  e x p ( i n c o v t )  . (16a) 
ii -/ 

(in practice, for finite noise intensities, q i ( n )  

differ slightly from their zero-noise values; this 
difference is neglected in what follows). We note 
that, for the particular case of an overdamped 
system performing Brownian motion in a static 
bistable potential, an expression of the type (16) 
(with n -  0) was given in [44]; the supernarrow 
zero-frequency peak was considered also in [24, 
25,451. 

A supernarrow peak at the frequency of a 
driving periodic field was observed and the vari- 
ation of its intensity with the parameters of the 
system was investigated in [46]. The system ana- 
lysed was an analogue electronic model of an 
underdamped single-well Duffing oscillator de- 
scribed by (1), (7) with A = 0, and the driving 
field F cos(%t)  was nearly resonant, I~0v - 6%1 <~ 
~o F. This system is closely related in particular to 
the case of a relativistic electron in a Penning 
trap: the motion of such an electron displays 
bistability in a sufficiently strong field with a 
frequency close to the cyclotron frequency [361 . 
The sharp onset of the supernarrow peak with 
variation of the dimensionless field intensity /3, 

¢3 = 3F'/32~Ovl~O v o9ol 3 (17) 
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Fig. 8. Spectral densities Q((o) of the fluctuations of the oscillator (1), (7) with a = 0 driven by a strong, nearly resonant ,  periodic 
force F cos (%t ) ,  plotted as a function of 5w = ((o~: - o~o)/F for three values of  the dimensionless field intensity: (a)/3 = 0.048; (b) 
0.078; (c) 0.150. The histograms are measurements  from the electronic model,  and the full curves are theoretical predictions [46]. 
The supernarrow spectral peak appears at 8~o = 0 in (b). 

is shown in fig. 8. The width of the peak could 
not be resolved. The critical dependence of the 
intensity of the peak on the distance (in parame- 
ter space) to the phase-transition point is clearly 
evident in fig. 9. The full curves correspond to 
the expression 
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Fig. 9. Variation of the intensity I of  the supernarrow peak 
with distance from the kinetic phase transition [46]. The 
square  data points  represent  direct measurements .  The  cross- 
es are theoretical values calculated from measured transition 
rates,  and the full lines represent  (18). 

ln(w,w2) ~ - ] R ; -  R~I [/3 - &I/D, (18) 

which gives the logarithm of the intensity of the 
peak (16) with account taken of (15). The quan- 
tities R[, R~ in (18) are the derivatives of the 
transition activation energies (cf. (12)) with re- 
spect to the controlling parameter fl, evaluated 
at the phase-transition point tic; they were de- 
termined quite independently from measure- 
ments of the transition probabilities. The data 
clearly demonstrate that the experimental results 
are self-consistent and also provide some insight 
into the origin of the supernarrow peak. 

A related problem of considerable interest is 
that of the influence of the characteristics of the 
noise on the supernarrow peaks. The only such 
characteristics entering the expression for the 
peak shape (16) are the transition probabilities 
that, from (12), seem to depend on the noise 
only in terms of its intensity (for Gaussian 
noise). However, the values of the activation 
energies are highly sensitive to the shape of the 
power spectrum of the noise [37-41] and, by 
varying this shape, one can not only produce 
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marked changes in R 1, R2, but also shift the 
position of the phase-transition point. 

We note in conclusion of this section that the 
supernarrow peaks in the SDF's and the suscep- 
tibilities of bistable systems, in particular systems 
displaying bistability in a strong periodic field, 
are not only of interest as a means of studying 
kinetic critical phenomena e.g. in revealing the 
phase transition itself; they also provide a basis 
for the tunable filtering and detection of weak 
periodic signals. 

4. Stochastic resonance in bistable systems: 
linear and nonlinear effects 

An important  phenomenon inherent to fluc- 
tuating bistable systems, one that occurs in the 
range of the kinetic phase transition, is stochastic 
resonance (SR). In fact, there are two distinct 
groups of phenomena both called SR. Originally 
[5], the term was used of periodically driven 
bistable systems to describe the dome-like (bell- 
shaped),  seemingly resonant,  dependence on 
noise intensity of the depth of the periodic mod- 
ulation [4] of the instantaneous populations 
~t (t), ~ 2 ( t ) o f  the stable states. The other,  more 
general,  perception of SR [7] (which includes the 
first type of SR as a subset) is simply as the 
increase and subsequent decrease with increasing 
noise intensity of the response to a periodic field, 
i.e. of the susceptibility of the system. Viewed in 
the latter way, SR is no longer restricted to 
bistable systems, but can arise in monostable 
ones as well, as has been demonstrated very 
recently [47]. 

In what follows, however, we concentrate on 
SR in bistable systems and we consider the phe- 
nomena associated with the modulation of the 
instantaneous populations of the stable states. It 
is clear that this modulation will give rise, in 
turn, to a strong modulation of the coordinates, 
momenta ,  and other dynamic characteristics, i.e. 
it represents a strong overall response of the 
system to the field. Of course, the effect will only 

come into play when the noise intensity is large 
enough for transitions to occur between the sta- 
ble states: thus, the effect can be promoted by 
noise and, consequently, in a certain interval of 
noise intensity, the coherent periodic response of 
the system increases with increasing noise. It is 
also evident that, being associated with the redis- 
tribution over the wells, SR is closely related to 
the onset of the supernarrow peaks considered in 
the preceding section. 

There  are several physical observables display- 
ing an SR-type dependence on noise (cf. refs. 
[4-7, 11, 12, 48]). We shall analyse first a (slight- 
ly modified compared to (4)) SDF of a bistable 
system driven by trial field. It follows from the 
general concepts of statistical physics [1] that the 
average value of the coordinate of a system 
driven by a periodic force A cos(~Ot) oscillates 
with the period 2~r/,O: 

{ q(t)) = ~ a(n) cos(nf / t  + qS(n)) (19) 
n 0 

(if the system is driven by two fields there are 
terms in (19) with both frequencies, and also 
with their combinations: see below). It is clear 
from (19) that if we define the SDF of the 
coordinate as 

S(w) = ,~,-lim-~ (4nvt0) I f dt q(t)exp(iwt) -~ 
t 0 

(4a) 

it will contain 6-shaped peaks at the frequency ,(2 
and its overtones. The intensity S,, (total area) of 
the peak at the frequency n~(2 is 

S,, = ¼a2(n). (20) 

It was suggested in [7] that SR could conveni- 
ently be characterized by the ratio p of the 
trial-field-induced spike in S(~o) at the frequency 
£/ to the value QU2) = S(g/) of the SDF in the 
absence of trial field, 
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p = S , / Q ( g 2 )  (21) 

(the so-called signal-to-noise-ratio). It is quite 
straightforward to determine this ratio ex- 
perimental ly and it provides an important  mea- 
sure of the system's response to a trial field. 

dissipation relations: 

2 i 2 2 Re X(w) = ~ do) 1 Q(w,)  o),(w, - 0 9 2 )  - 

o 

"/To) 
Im x(o) )  = Q ( o ) ) ,  

1 

(23) 

4. i. Linear response approximation 

The easiest way to gain insight into SR and to 
find p is based on the fact that, for sufficiently 
weak trial fields (see below), the amplitudes of 
the harmonics a(n) in (19) decrease very rapidly 
with increasing n so that, to a good approxi- 
mat ion,  it suffices to allow for the forced oscilla- 
tions at the frequency S2 only, i.e., to retain in 
(19) only the terms with n = 0, 1. The term with 
n = 0  describes the t ime-independent  part  of 
( q ( t ) ) ,  and it remains unchanged to first order 
in the field amplitude; the main effect of the 
weak field is the onset of the term with n = 1. 
Taking account only of these two terms consti- 
tutes the linear response approximation [1]. The 
linear response is fully characterised by a suscep- 
tibility X(w) [1, 49]: 

where the bar on the integral implies that we 
should take the Cauchy principal part.  Some 
exper imenta l  data demonstrating,  on one hand, 
the onset of SR in the signal-to-noise ratio p, 
and, on the other  hand, the applicability of the 
relations (23) are shown in fig. 10. They refer to 
a Brownian "part ic le"  (1) fluctuating in a sym- 
metric double-well potential 

U ( q ) = - ½  q 2 +  ¼q4. (24) 

The two sets of data were obtained from an 
analogue electronic circuit [51] simulating (1), 
(24) in two different ways: first (squares) by 
measuring p directly for the periodically driven 
system; and secondly (pluses) by making use of 
the measured Q(w) obtained in the absence of 
periodic driving and of eqs. (22), (23). It is 

a(1)  = A I x ( s 2 ) I ,  p = ¼A2Ix(s2)IgQ(g2), 
(22) 

~b(1) ~ 6 = - a r c t a n [ I m  x G Q ) / R e  X(~) ]  • 

The  susceptibility X(o)) can be calculated 
analytically for some simple model systems [4, 8, 
10, 50]. It should be noted,  however,  that there 
is a broad class of systems of interest where X(w) 
can be obtained from experimental  measure-  
ments  of the SDF in the absence of periodic 
driving, while a simple-minded analytical theory 
works only for a narrow range of parameters .  
This is the class of systems which are in thermal 
equilibrium (or quasiequilibrium). If  a perturbing 
field is potential ,  i.e., its effect on a system can 
be determined by an extra term - A q  cos (~ t )  in 
the Hamil tonian  of the system, g(w)  can be 
expressed in terms of Q(o)) via the fluctuation- 
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Fig. 10. Stochastic resonance [10]: the signal/noise ratio 
t7 = 1.54 x 10~p, defined by (21), measured for an electronic 
model of the oscillator (1), (24) driven by a weak periodic 
field, is plotted as a function of reduced noise intensity 
T/AU. The square data points are direct measurements; the 
crosses are derived from (22), (23), based on measurements 
of the SDF in the absence of the periodic force. There are no 
adjustable parameters. 
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immediately evident from fig. 10 that p has a 
distinct maximum as a function of the noise 
intensity T thus demonstrating stochastic reso- 
nance, and also that the two ways of obtaining p 
give identical results. 

Explicit expressions for Q(w) and X(w) for a 
Brownian particle ( l )  fluctuating in a bistable 
potential  U(q)  can be obtained in the range of 
relatively small noise intensities, 

T < AU~, AU2 , 

A U , = U ( q , ) - U ( q i )  ( i = 1 , 2 ) ,  (25) 

where q~,2 are the positions of the minima of the 
potential U(q)  and q~ is that of the local maxi- 

mum, so that U'(q~,2) = U ' ( q ~ ) = O ,  q ~ < q ~ <  
q2. In this range, Q(~0) and X(w) are given [42] 
by the sums of the "part ial"  contributions from 
fluctuations about the equilibrium positions q~,2 
and those from interwell transitions: 

Q ( w )  = ~2 
i 1,2 

= Z 
i -1,2 

wiQ,(w) + Q ( t l / ) ( w )  , 

w,x,(o,) + • (26) 

(a more detailed expression that allows for the 
corrections ~ T/AUi is given in [50]). The expres- 
sion for the interwell-transition-induced contri- 
bution Q~,~(o)) in (26) is given by eq. (16); on b 
the term with n = 0 in (16) contributes to (26) ie 
the particular case under consideration. The val- 
ues of the "part ial"  susceptibilities Xi(~o) and ol 
the interwell-transition-induced term X(~)(co) ir 
the susceptibility are expressed in terms ol 
Qi(o)), Q(/,))(w) by the relations (23). 

The expressions (16), (26), (27), (27a) explai~ 
(cf. also [52]) the dependence of p on T plotter 
in fig. 10: for very small noise intensities the 
inequality W ~ £2 holds, and the interwell transi. 
tions contribute neither to the SDF nor to the 
susceptibility so that, according to (23), (27). 
(27a) p decreases roughly as T ~ with increasin~ 
T. This is because the partial spectra Q~(o)) arc 
proport ional  to T, whereas the susceptibilities 
X~(O>) are seen from (23) to be T-independent.  
The increase of p starts for those T where W 
becomes of order of £L In the range where the 
interwell-transition-induced terms are dominanl 
both in the SDF and susceptibility, one arrives al 
the simple expression 

In eq. (26) w~ are the stationary populations of 
the stable states 1, 2 (cf. eqs. (14), (15)). The 
partial spectra Qi(w) in the low-noise range (25) 
for underdamped systems at w close to 
(U"(qi))  1/2 are given by eq. (6), while in the 
range of interest for SR, o) ~< (U"(q~)) 1/2, 

Qi(w)  = 2FT/~rU'; 2 + Q~o(w), U'; =- U"(qg),  

F, o~ ~ (U'~)'/~" . (27) 

Here ,  Q.~(w) is the zero-frequency peak due to 
the local asymmetry of the potential about the 
bot tom of the ith well; it is described by the 
expression (11) for Q0(~o), with q0, q'[~ calculated 
for the corresponding well. Alternatively, for 
overdamped systems, 

O ~ ( w )  = 2 F T / ' r r ( U ' ;  2 + 4F2~o2), F >> (U' ; )  ~/2 
(27a) 

p = ¼.rrA2wlw2W(ql - q2)2/T 2 , 

W =  WI: + W~l , 

,~ tw;>> O, ,2(w) , x , ~ ,  , >> 
( 2 s )  

It is seen from (12), (18), (28) that the de- 
pendence of the signal-to-noise ratio on the 
noise intensity is of the activation type, 
p ~ exp(-AUmax/T)  where AU ...... is the depth ot 
the deeper  well. 

Because the onset of SR is related to the 
supernarrow interwell-transition-induced peak, a 
strong amplification of the response to a weak 
trial periodic field would be expected to occur 
(for the present case of motion in a static poten- 
tial) at comparatively small frequencies where 
the supernarrow peak at zero frequency can 
dominate the SDF: 
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. 1/2 
~'~ <~ / ' ,  (UI ,2)  (29)  

The dependence of p on T for the range of the 
parameters  outside the restrictions in (28) is still 
greatly simplified (compared to that given by 
(23), (27a)) for the particular situation of over- 
damped motion in a symmetric double-well 
potential,  

of  14~1 with T starts, however,  for quite small 7- 
where p is still decreasing; ]~b I reaches its maxi- 
mum value when T = Tma x is still small compared 
with A U: 

( -  (]))max = arctan( ½ [(q2 - q, )2U"/4Tma×]'/2),  

W(Tmax) = g2[4Tmax/(q 2 - q,)2U"l'/2. (33) 

U( q) = U ( -  q) , 2 / ' > ( U " )  '/2 

( U " =  U"(q,,2)) • (30) 

In this case, for sufficiently small frequencies, 

p = ( w A 2 / 4 T ) ( f 2 U " 2  + ~ 2 2 ) / ( f U  ''2 + 2Fg22) ,  

f =  (q2 - q i )  2W/4  T , 

n ,  w, [T/2V(q2 - q,)2] ~ U"/2V,  (31) 

For the same model,  and in the same range of 
parameters ,  the phase shift between the signal 
( q ( t ) )  and the driving force 

~b = - a r c t a n [ ( $ 2  / U " )  

x ( f U  "2 + 2 £ / 2 2 ) / ( f W U "  + 0 2 ) ] .  ( 3 2 )  

According to (31) the signal-to-noise ratio is 
minimal for the value of T given by the expres- 
sion f U "  ~ 1-2, and it increases rapidly for higher 
T(cf. (28)). The  maximum of p vs. T is reached 
in the region T - A U ,  which is not described by 
the above analytic expressions for Q(w), x(w),  
but is still described by the fluctuation-dissipa- 
tion relations. 

It is evident from (32) that the phase shift also 
displays an SR-type behaviour [50]. From phys- 
ical intuition, we may expect ~b to provide a 
measure of the extent to which the external field 
is absorbed by the system. For very small noise, 
where the interwell transitions do not come into 
play, it follows from (32) that ]~b] = 2Fg2/U" is 
also very small: intrawell absorption of a low- 
frequency field is weak (the absorption band is 
broad,  with the width U " / 2 F  >>/2). The increase 

It can be seen from (33) t ha t  ](])[max is quite 
large, i.e., there then is a strong absorption of 
the periodic field. This absorption is due primari- 
ly to the interwell transitions. We note that the 
absorption coefficient itself, which is propor- 
tional to Im X($2), also displays an SR-type be- 
haviour. Both I~h[ and Im X(O) are much steeper 
on the small- T side of their maxima, because it is 
the activation dependence of the transition prob- 
abilities on T that determines the behaviour of 
X(S2) in this range. 

The stochastic-resonance-like dependence of 
the phase shift upon noise intensity has been 
clearly demonstrated in analogue electronic ex- 
periments [50]. Some data for an overdamped 
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Fig. 11. The phase shift -4~ (degrees) between the weak 
periodic force A cos ~2t and the averaged coordinate (q(t)), 
measured for an electronic model of the overdamped oscil- 
lator described by (1), (24), (3) with ~O =0.1 for A/2F 
=0.04 (circle data points) and A/2F=0.2 (squares). The 
dashed curve represents the simple linear response prediction 
(31); the full curve takes account of nonlinear corrections for 
A/21" = 0.04 [50]. 
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oscillator with the potential (24) are shown in 
fig. 11. The simple expression (31) is evidently in 
excellent agreement with the experimental data 
(the prefactor in the expression (12) for the 
transition probability of an overdamped system 
was taken to be of the standard form [29]); the 
comparison of theory with experiment does not 
involve any adjustable parameters. 

4.2. Nonlinear effects" 

One of the more intriguing features of the 
response of a bistable system to a low-frequency 
field (the effects for high-frequency fields will be 
considered below) is the possibility of observing 
strongly nonlinear effects, even for small field 
amplitudes A. Such a possibility arises because 
the field-induced modulation of the populations 
of the attractors comes about primarily through a 
modulation of the activation energies of fluctua- 
tional transitions; and the effect of the latter 
modulation is enhanced exponentially, because it 
is with the small noise intensity that this modula- 
tion should be compared (cf. (12)). It is seen 
from the expressions (15) that the parameter g 
describing the redistribution over the attractors 
is of the form 

A Z a " (34) g =  ~ [ R ~ ( A ) -  RE(A)] =,) 

Here,  Ri(A ) is the activation energy of the tran- 
sition from the state i for the initial system 
driven additionally by a weak force A, and the 
derivatives are calculated for A = 0 (see [10a]; 
the importance of a parameter of this kind was 
also recognised recently in [ l l  D. The variation of 
R~, R E under the weak force A is assumed small: 
accordingly, only terms of the first order in A 
will be taken into account in Ri(A). 

In considering nonlinear effects we shall as- 
sume the field A cos(~t)  to be slowly varying, 
gl ~ U"/2F, F (cf. (31)), so that the transition 
probabilities can be considered in the adiabatic 
approximation. In this case their values depend 

on the instantaneous value of the field as they 
would if it were a fixed parameter. Then accord- 
ing to (12) the instantaneous transition probabili- 
ty Wij(t) is given by the expression 

W i j ( t ) =  Wij ~ Ik(gi)exp(ikf2t), 

g i =  -D O A / A=(I ' 
(35) 

where Wii are the values of the transition prob- 
abilities in the absence of the field, i.e., for 
A = 0; 1 k are modified Bessel functions [53]. The 
periodic dependence of the transition prob- 
abilities on time, which is strongly nonsinusoidal 
for I gil > 1, gives rise to the nonsinusoidal time 
dependence of the instantaneous state popula- 
tions W l . 2 ( t ) .  Eqs. (14), (35) result in the follow- 
ing set of linear algebraic equations for the 
Fourier components ~3~k: 

ff~(t) = ~ fflk exp(ikY/t), 

[ikg2 + W~:Io( g, ) + W2,1,, ( g~_)l~,k 

+ ~ [W~EI,(g,) + WE,I,(gE)]V?~k 

= WE,Ik(gz). (36) 

It is straightforward to express the amplitudes 
a(k) and phases &(k) of the forced vibrations of 
the system (cf. eq. (19)) in terms of w~k. For 
k > l ,  

a(k) = 21(q, - q 2 ) l ~ l k [  , 

& ( k ) = a r g [ ( q , - q 2 ) f f , k ]  ( k > l ) ,  (37) 

while the expressions for a(1), &(1) are of the 
form (22) with the susceptibility X(O) having 
been replaced by )~(g2): 

+ 2 A  IwTj(ql-q2 ). (38) 

Eqs. (35)-(38) make it straightforward to com- 
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pute the response to a slowly varying field for 
arbitrary nonlinearity. They obviously go over 
into the results of linear-response theory in the 
limit of weak field where ]gi.21 ~ 1. 

The extreme nonlinear c a s e  ]g~,2] ~ 1 can be 
also analysed analytically, by application of a 
quite different approach [10a]. In this case inter- 
well transitions from the state i, for example, 
happen, with an overwhelming probability dur- 
ing that part of the period of the driving field 
2w/S2 where the activation energy Ri(A ) is mini- 
mal, i.e., the field works as a shutter (we stress 
that the field itself is weak; this is not a de- 
terministic, but a probabilistic shutter). As a 
result, the average signal at the output will be 
rectangular. In particular, in the case of Brown- 
ian motion in a symmetric double-well potential 
(30) in the neglect of intrawell contributions, 

,= ~ ,Q ! 

= - q :  tanh ~ ,  

( 2"rrT ~I/2 Wl 9 
g'= \ IAq:[] ~ exp(IAq']/T)' (39) 

where ~9(t) is the unit step-function. We note 
that the "ampli tude" ~ of the rectangular wave 
(39) saturates quite quickly as a function of 
(starting with ~ ~> 1.5), and therefore the inten- 
sities of the spectral peaks in the SDF S(o~) as 
defined by (4a) depend only weakly on the field 
amplitude A. 

Fig. 12. The  averaged coordinate (q(t)) measured  for an 
electronic model  [50] of the overdamped  oscillator (1), (24), 
(30), driven by a periodic force A cos Ot  with A / 2 F -  0.1, 
T/2F = 0.0644, for a very low frequency ,O = 1.9 × 10 2. As 
predicted theoretically (39); the result approximates  a square 
wave. Its tops and bot toms are curved due to intra-well 
vibrations,  and tilted due to the phase shift between the latter 
and the inter-well transitions. 

The nearly rectangular signal under sinusoidal 
driving by a slowly varying field has been ob- 
served in an analogue electronic experiment [50]. 
The result is shown in fig. 12. The distortion of 
the signal is related to the contribution of the 
forced intrawell vibrations. We stress that the 
periodic driving force was itself comparatively 
weak, so that the nonlinearity of this effect is 
indeed quite remarkably strong. 

4.3. "Nonconventional" stochastic resonance 

Until recently, stochastic resonance was 
considered purely as an effect that arises for 
Brownian motion in a static bistable potential 
with a superimposed slowly varying field (cf. 
[5-12, 50, 52]). It follows from the above formu- 
lation, however, that it is actually a quite general 
phenomenon for fluctuating bistable systems in 
the range of a kinetic phase transition. Conse- 
quently, it may also be expected to occur for 
systems displaying bistability under strong 
periodic driving [46] (the onset of a large suscep- 
tibility with respect to an additional weak trial 
field was predicted for systems of just this kind in 
[4]). In this latter case SR will be inherent to the 
response, not only to a low-frequency, but also 
to a high-frequency field [54]. Also, since bist- 
able systems are strongly nonlinear, periodic 
driving of various parameters (not only of their 
coordinates or momenta) can also give rise to 
periodic signal (i.e. to periodic variation of the 
coordinate), and in some cases this signal can 
display a dome-like dependence on the noise 
intensity. One such parameter could be the noise 
intensity itself [55]. The results for these two ne,~ 
types of SR are described briefly below. 

First, we consider high frequency stochastic 
resonance for periodic attractors. As pointed oul 
above, the onset of SR is related to a compara. 
tively strong noise-enhanced modulation of the 
populations of the attractors ~31(t ), l~2(t  ) by 
trial field. Since the characteristic time-scale foJ 
the variation of the populations is given by th~ 
reciprocal transition probabilities, the modula- 
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tion can be effective provided it is slow. A 
feature of nonlinear systems is that they perform 
mixing of the frequencies of external fields. 
Therefore ,  if a system is driven by a (strong) 
field F c o s ( w v t +  chF) and a (weak) trial field 
A cos(g2t) then the variables of the system will 
oscillate at combination frequencies I+-nOJv + ~1 

(n = 0, 1 ,2  . . . .  ) and thus if one of these is small 
the corresponding oscillations can give rise to 
effective redistribution over the attractors. 

The simplest case is just [w v - ~2[ ~ Troll . The 
dynamics of the system in this case can be con- 
sidered as that in the strong field 
Re[F( t )  exp(iwvt + i~v)], but with the complex 
amplitude F(t)  slowly varying in time, 

F(t)  = F + A exp[i(g2 - ~ov) t -  id~vl • (40) 

The activation energies R1,  2 of the transitions 
between the attractors depend on F (strictly, on 
F 2, since they are determined by the intensity 
rather  than by the fast oscillating phase of the 
field). For  small I~Q - wvl, they get modulated at 
f requency Ig2-  WF[ and, for a sufficiently weak 
trial field, R~ in the expression (12) should be 
replaced by /~i(t),  

c3 R i 
Ri( t )  = R,  + - ~ 5  2 A F  cos[(g2 - ¢ov)t - chv] . 

(41) 

The further analysis of the redistribution over 
the attractors is closely similar to that in the 
preceding subsection. It should be stressed, how- 
ever,  that the modulation of the populations of 
the attractors at frequency iS2 - wvJ gives rise to 
periodic oscillations, not only at the trial-field 
f requency ~Q, but also at the mirror-reflected 
frequency [2oJ v -  g~]. For small A, where the 
linear-response approximation holds, the trial- 
field-induced addition to the average value of the 
coordinate is of the form 

6 ( q ( t ) )  = A Re{x(S2) e x p ( - i a t )  + ,~(~2) 

x exp [ - i (2w  v - ~) t ]}  . (42) 

In the case of weak noise, the susceptibilities 
h ' (~ ) ,  )~(g2) can be written in the form (26), and 
the transition-induced contributions are of the 
form 

2F  
Xtr(~'~) z ~ -  w~w2[q*~(1) - q~(1)] 

a(R I - R2) W 
x 

O F  2 W -  i(~Q - m F )  ' 

~t~(g2) = %t~(2~o~. - ~1) exp(-2id~v).  (43) 

Both of them display SR. 
High-frequency stochastic resonance (HFSR) 

of this type has been observed for periodic at- 
tractors in analogue electronic experiments [54]. 
The system simulated was the one already dis- 
cussed above in section 3: an underdamped non- 
linear oscillator with a single-well potential given 
by eq. (7) with A = 0, which has two types of 
coexisting vibrational states under a sufficiently 
strong nearly resonant field. When the oscillator 
was driven, in addition, by a trial field of fre- 
quency g~ ~ ~o v there occurred two clearly re- 
solved extra ~-shaped spikes in the SDF of the 
coordinate S(o~). The dependence of the intensi- 
ty of these spikes on the noise intensity can be 
seen from fig. 13 to be just of the SR-type. The 
theoretical curves are based on measured values 
of the activation energies of the transitions (cf. 
fig. 9); the experimental uncertainty arising from 
the latter data is shown by the bars. Given the 
large systematic errors inherent in these mea- 
s u r e m e n t s -  arising e.g. from /3 (17) which con- 
tains the small difference between two large 
quantities I w v - o ~ ]  raised to its third p o w e r -  
the agreement can be regarded as very satisfac- 
tory; in particular, the theoretical and ex- 
perimental  curves are of a similar shape, and 
their maxima lie at nearly the same T. Fig. 14 
demonstrates that high-frequency SR is a purely 
critical phenomenon:  the intensities of the spikes 
decrease exponentially as the control parameter  
/3 (17) moves away from its critical value. We 
note that these experiments are quite delicate, 
since an extremely high resolution is necessary to 
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Fig. 13. High frequency stochastic resonance for periodic 
attractors, measured for an electronic model of the oscillator 
described by (1), (7) with A = 0, driven by a strong periodic 
field F COS(WFt + CV) and a weak trial force A cos g2t [54]. 
The logarithms of the intensities S of the g-shaped spikes in 
the spectral density of the fluctuations (a) at frequency J2 and 
(b) at 2w F - ,(2 are plotted (data points) as a function of the 
noise intensity T. The curves are theoretical predictions 
based on measured values of the activation energies; they are 
subject to the systematic uncertainties indicated by the bars. 
There are no adjustable parameters. 

o b s e r v e  and  inves t iga te  the  peaks ,  given tha t  

t hey  mus t  be  s e p a r a t e d  by  a f r equency  d i f fe rence  

much  sma l l e r  than  the  r ec ip roca l  r e l axa t ion  t ime  

which ,  in its tu rn ,  is much  smal l e r  than  the  

f r equenc i e s  ~o F, ~ themse lves .  

T h e  s e c o n d  n o n c o n v e n t i o n a l  fo rm of  S R  refers  

to  phys ica l  s i tua t ions  where  the  noise  and signal 

- 8  

los(S) 

- X x 
x 

x 

- 5  x 

x 

x 

- 7  i i i I , 
0 .06 0.10 

X 

X 

X 

X 

X 
X 

X X 

I I I I I 

0.14 0.18 

Fig. 14. The logarithm of the intensity S of the g-shaped 
spike at frequency g2 in the spectral density of the fluctua- 
tions for high-frequency stochastic resonance [54], plotted as 
a function of the dimensionless field intensity /3 (17) which 
gives a measure of the distance from the kinetic phase 
transition line. 

ac t ing  u p o n  a sys tem are  not  addi t ive ,  but  mul-  

t ip l ica t ive :  it is noise  (or  noise  in tens i ty)  that  is 

m o d u l a t e d  d i rec t ly  by  the s ignal ,  and  it m a y  be 

such a pe r iod ica l ly  m o d u l a t e d  noise  tha t  dr ives  

the  sys tem itself.  If  the  ini t ial  noise  is of  ze ro  

m e a n ,  the  dr iv ing  field .will a lso be of  ze ro  mean .  

N o n e t h e l e s s ,  a n o n l i n e a r  sys tem can still de t ec t  

the  m o d u l a t i n g  signal  via non l inea r  t r ans fo rma-  

t ions .  I t  is d e m o n s t r a t e d  be low that ,  for  b i s tab le  

sys tems ,  the  qua l i ty  of  de t ec t ion  m a y  increase  

wi th  inc reas ing  noise  in tens i ty  and d i sp lay  an 

S R - t y p e  behav iou r .  

W e  shall  cons ide r  S R  in the  r e sponse  to mod-  

u l a t e d  no ise  for  the  s imples t  b i s t ab le  sys tem:  an 

o v e r d a m p e d  par t i c le  osci l la t ing in a b i s tab le  

p o t e n t i a l  and  de sc r ibed  by the equa t ion  

2P4 + U ' (q)=  ~:(t), 

~:(t) = [~A cos(Ot) + 1 ] f ( t ) ,  

U ( q )  = _½q2 + l q4 + Aq, 

( f ( t )  f i t ' ) )  = 4 F T g ( t  - t ' ) .  (44) 

In c o n t r a s t  to the  f o r m e r  analysis  it is the  am- 

p l i t ude  of  the  noise  tha t  is a s sume d  to be 
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periodically modulated here; the potential is as- 
sumed to be asymmetric, with the asymmetry 
parameter A (the asymmetry turns out to be 
crucial for obtaining a well-pronounced SR). 

If the amplitude A is sufficiently weak, we can 
characterise the response of the system to the 
corresponding modulation in terms of a general- 
ised susceptibility R(o)) and write the signal- 
induced term in the average value of the coordi- 
nate as 

~( q(t))  = A Re[bl(f/) exp(- ig}t)] .  (45) 

For weak noise intensities and for,a slowly vary- 
ing field, g/<~ U"/2F, the function bl(g/) (just as 
for the "normal"  susceptibility X(g/)) is a sum of 
contributions from the vibrations in the vicinities 
of the stable states q~, q2 and from the interwell 
transitions (cf. (26)): 

N ( n )  = 2 w N.(,.(2) + N.( . f2) .  (46) 
i 1 , 2  

The contribution from the interwell transitions, 
which is the one of primary interest, originates 
from the fact that the transition probabilities 
depend on the instantaneous value of the noise 
intensity (it varies slowly because of the modula- 
tion) and, provided that the potential is asym- 
metric so that W12 ¢ W21, the periodic variation 
of Wij gives rise to a periodic change of the state 
populations; for a symmetric potential, the vari- 
ation of the noise intensity does not break the 
symmetry,  and so the populations remain equal. 
The resulting expression for Rtr(g~ ) is of the form 

1551 

1 ( q l -  q2)(AU1 -AU2)w,w2W 
T ( w - i a )  

(47) 

Thus, a periodic signal will indeed occur under 
driving by a zero-mean periodically modulated 
noise for an asymmetric potential (AU 1 ¢ AU2); 
furthermore,  the amplitude of the signal [Ntr(g~)l 

is seen from (47) to increase sharply with the 
increasing noise intensity T. 

The dependence of the signal-to-noise ratio, 
defined by analogy to (21) as the ratio of the 
6-shaped spike in the SDF S(w) at frequency ~(2 
to the value of S(S2)= Q(~Q) in the absence of 
modulation, is shown in fig. 15: the theoretical 
prediction is compared with the results from an 
analogue electronic experiment (the lower full 
curve and square data points, respectively). The 
phenomenon of stochastic resonance is clearly 
evident in this situation, although slightly less 
pronounced than for "conventional" periodic 
driving (upper curve and circle data), i.e. driving 
the system rather than the noise. It is evident 
from the lower curve and data of fig. 16 that this 
type of SR is intimately connected with the 
asymmetry of the potential (44), i.e. with the 
finiteness of the parameter A; for A = 0 the signal 
could not be detected. At the opposite extreme 
for very strong asymmetry, there will again be no 
SR because in practice only one well will be 
populated for weak noise and the interwell tran- 
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Fig. 15. Stochastic resonance for periodically modulated 
noise [55]. Measurements  (× 15) of the signal/noise ratio p 
defined by (21) for an electronic circuit model of (44) with 
A = 0 . 1 4 ,  A - 0 . 2 ,  f / = 0 . 0 2 9  are plotted (data points) as a 
funct ion of the reduced noise intensity AU = 1/4; the full 
curve represents  the theoretical prediction. The upper curve 
and circle data show the theory and measurements  using the 
same circuit with additive periodic forcing (conventional sto- 
chastic resonance) under  similar conditions (theoretical re- 
suits are valid for T ~ AU~ 2, strictly speaking).  
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Fig. 16. Effect of the asymmetry parameter A on stochastic 
resonance [55]. Measurements (x15) of the signal/noise 
ratio p defined by (21) for an electronic circuit model of (44) 
with A=0.15, (T/AU)~_o=0.303, ~Q=0.029 are plotted 
(square data points) as a function of A; the full curve repre- 
sents the theoretical prediction. The upper curve and circle 
data show the theory and measurements using the same 
circuit with additive periodic forcing (conventional stochastic 
resonance) under similar conditions. 

i sed in Penn ing  t raps ,  to neu rons  and  neura l  

n e t w o r k s ,  as m e n t i o n e d  above .  T h e r e  still re- 

m a i n  a n u m b e r  of  s ignif icant  p r o b l e m s  tha t  have 

no t  b e e n  so lved ,  or  even  addressed .  M a n y  of  

these  a re  r e l a t ed  to the  in t e rp lay  of  dynamica l  

chaos  and  noise .  W e  h o p e ,  t he re fo re ,  tha t  these  

inves t iga t ions  will con t inue ,  and  that  ou r  unde r -  

s t and ing  o f  no i se -d r iven  non l inea r  dynamics  will 

t h e r e b y  be  subs tan t i a l ly  enr iched .  
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s i t ions  will  be  " f rozen  ou t " .  T h e r e f o r e ,  in o r d e r  

to  inves t iga te  S R  u n d e r  these  cond i t ions ,  it is 

neces sa ry  to  op t imi se  the  a s y m m e t r y  of  the  

sys tem.  

5. Conclusions 

It  fo l lows f rom the  a b o v e  resul ts  tha t  the  

t r a d i t i o n a l  field of  no i se -d r iven  dynamics  and,  in 

pa r t i cu l a r ,  inves t iga t ions  of  the  spec t ra l  dens i t ies  

of  f luc tua t ions  of  no i se -d r iven  sys tems,  is far  

f r om be ing  exhaus t ed .  T h e r e  still  ar ise new and 

u n e x p e c t e d  p h e n o m e n a  l ike the  no i s e - i nduced  

n a r r o w i n g  of  spec t ra l  peaks ,  the  onse t  of  ex t ra  

p e a k s  such as the  ze ro -d i spe r s i on  and  supe rna r -  

row ones ,  and  also s tochas t ic  r e sonance .  A l l  of  

t he se  p h e n o m e n a  are  very  genera l .  T h e y  are  not  

" p i n n e d "  to  pa r t i cu l a r  mode l s ,  and  thus they  are  

of  f u n d a m e n t a l  in te res t .  A t  the  s ame  t ime ,  they  

a re  also rich in po t en t i a l  app l i ca t ions ,  ranging  

f rom sol id  s ta te  physics ,  t h rough  e lec t rons  local-  

References 

[1] L.D. Landau and E.M. Lifshitz, Statistical Physics, 3rd 
ed. (Pergamon, New York, 1980), Part 1, revised by 
E.M. Lifshitz and L.P. Pitaevskii. 

[2] A.S. Barker Jr. and A.J. Sievers, Rev. Mod. Phys. 47 
Suppl. No. 2 (1975) $1. 

[3] S.M. Soskin, Physica A 155 (1989) 401. 
[4] (a) M.I. Dykman and M.A. Krivoglaz, Zh. Eksp. Teor. 

Phys. 77 (1979) 60 [Sov. Phys. JETP 50 (1979) 30]; (b) 
in: Soviet Physics Reviews, ed. I.M. Khalatnikov (Har- 
wood, New York, 1984) Vol. 5, p. 265. 

[5] R. Benzi, A. Sutera and A. Vulpiani, J. Phys. A 14 
(1981) L453; R. Benzi, G. Parisi, A. Sutera and A. 
Vulpiani, Tellus 34 (1982) 10. 

[6] C. Nicolis, Tellus 34 (1982) 1. 
[7] B. McNamara, K. Wiesenfeld and R. Roy, Phys. Rev. 

Lett. 60 (1988) 2626. 
[8] M.I. Dykman, A.L. Velikovich, G.E Golubev, D.G. 

Luchinsky and S.V. Tsuprikov, JETP Lett. 53 (1991) 
193. 

[9] S. Fauve and F. Heslot, Phys. Lett. A 97 (1983) 5; L. 
Gammaitoni, F. Marchesoni, E. Menichella-Saetta and 
S. Santucci, Phys. Rev. Lett. 62 (1989) 349; G. Deb- 
nath, T. Zhou and F. Moss, Phys. Rev. A 39 (1989) 
4323. 



30 M.I. Dykman, P.V,E. McClintock / Spectra of  noise-driven nonlinear systems 

[10] (a) M.I. Dykman, P.V.E. McClintock, R. Mannella and 
N.G. Stocks, JETP Lett. 52 (1990) 141; (b) M.I. Dyk- 
man, R. Manella, P.V.E. McClintock and N.G. Stocks, 
Phys. Rev. Lett. 65 (1990) 2606. 

[11] T. Zhou, F. Moss and P. Jung, Phys. Rev. A 42 (1990) 
3161. 

[12] A. Longtin, A. Bulsara and F. Moss, Phys. Rev. Lett. 
67 (1991) 656. 

[13] J.B. Morton and S. Corssin, J. Stat. Phys. 2 (1970) 153. 
[14] M.A. Krivoglaz and I.P. Pinkevich, Ukr. Fiz. Zh. 15 

(1970) 2039; Y. Onodera, Prog. Theor. Phys. 44 (1970) 
1477. 

[15] M.I. Dykman and M.A. Krivoglaz, Phys. Star. Sol. (b) 
48 (1971) 497. 

[16] K. Sture, J. Nordholm and R. Zwanzig, J. Star. Phys. 11 
(1974) 143. 

[17] R.F. Rodriguez and N.G. van Kampen, Physica A 85 
(1976) 347. 

[18] S.H. Crandall, in: Random Vibrations, ed. S,H. Cran- 
dall (MIT Press, Cambridge, MA, 1963), Vol. 2, p. 85. 

[19] A.B. Budgor, K. Lindenberg and K.E. Shuler, J. Stat. 
Phys. 15 (1976) 375; A.R. Bulsara, K. Lindenberg and 
K.E. Shuler, J. Stat. Phys. 27 (1982) 787. 

[20] M.I. Dykman and M.A. Krivoglaz, Physica A 104 
(1980) 495. 

[21] B. Carmeli and A. Nitzan, Phys. Rev. A 32 (1985) 
2439. 

[22] W. Renz, Z. Phys. B 59 (1985) 91; L. Fronzoni, P. 
Grigolini, R. Mannella and B. Zambon, J. Stat. Phys. 
41 (1985) 553; Phys. Rev. A 34 (1986) 3293; W. Renz 
and F. Marchesoni, Phys. Lett. A 112 (1985) 124. 

[23] J.J. Brey~ J.M. Casado and M. Morillo, Physica A 123 
(1989) 481. 

[24] M.I. Dykman, R. Mannella, P.V.E. McClintock, F. 
Moss and S.M. Soskin, Phys. Rev. A 37 (1988) 1303. 

[25] H. Risken, The Fokker-Planck Equation, 2nd ed. 
(Springer, Berlin, 1989). 

[26] M.A. Ivanov, L.B. Kvashnina and M.A. Krivoglaz, Fiz. 
Tverd. Tela 7 (1965) 2047 [Soviet Phys . -  Solid State 7 
(19651 16521. 

[271 M.I. Dykman, R. Mannella, P.V.E. McClintock, S.M. 
Soskin and N.G. Stocks, Phys. Rev. A 42 (1990) 7041. 

[28] B.P. Clayman, Phys. Rev. B 3 (1971) 2813. 
[29] H.A. Kramers, Physica 7 (194(I) 284. 
[30] N.G. Stocks, P.V.E. McClintock and S.M. Soskin, Phys. 

Rev. A (1992). 
[31] S.M. Soskin, Physica A 180 (1992) 386. 
[32] R.J. Elliott, W. Hayes. G.D. Jones, H.F. McDonald 

and C.T. Sennett, Proc. R. Soc. A 289 (1965) 1. 
[33] M.I. Dykman and M.A. Krivoglaz, Ukr. Fiz. Zh. 17 

(1972) 1971. 
[34] M.I. Dykman, R. Mannella, P.V.E. McClintock, S.M. 

Soskin and N,G. Stocks, Phys. Rev. A 43 (1991) 1701. 
[35] M.A. Krivoglaz and I.P. Pinkevich, Zh. Eksp. Teor. 

Fiz. 51 (1966) 1151 [Soy. Phys. JETP 24 (1966) 772]. 

[36] G. Gabrielse, H. Dehmelt and W. Kells, Phys. Rev. 
Lett. 54 (1985) 537. 

[37] J.F. Luciani and A.D. Verga, Europhys. Lett. 4 (1987) 
255; J. Stat. Phys. 50 (1988) 567. 

[38] A.,I. Bray and A.J. McKane, Phys. Rev. Lett. 62 (1989) 
493: A.J. McKane, Phys. Rev. A 40 (1989) 4(/50; A.J. 
McKane, H.C. Luckock and A.J. Bray, Phys. Rev. A 
4l (1990) 644. 

[39] M.M. Klosek-Dygas, B.J. Matkowsky and Z. Schuss, 
SIAM J. Appl. Math. 48 (1988) 425; J. Stat. Phys. 54 
(1989) 1309. 

[40] H.S. Wio, P. Colet, M. San Miguel, L. Pesquera and 
M.A. Rodriguez, Phys. Rev. A 40 (1989) 7312. 

[41] M.I. Dykman, Phys. Rev. A 42 (199(I) 2020: M.I. 
Dykman, P.V.E. McClintock, N.D. Stein and N.G. 
Stocks, Phys. Rev. Lett. 67 (1991) 933. 

[42] M.I. Dykman, M.A. Krivoglaz and S.M. Soskin, in: 
Noise in Nonlinear Dynamical Systems, eds. F. Moss 
and P.V.E. McClintock (Cambridge Univ. Press, Cam- 
bridge, 1989) Vol. 2, p. 347. 

[43] M.R. Beasley, D. D'Humieres and B.A. Huberman, 
Phys. Rev. Lett. 50 (1983) 1328. 

[44] P. Hanggi and H. Thomas, Phys. Rep. 88 (1982) 207. 
[45] F.T. Arecchi and F. Lisi, Phys. Rev. Lett. 49 (1982) 94; 

50 (1983) 1330; R.F. Voss, Phys. Rev. Lett. 50 (1983) 
1329; F.T. Arecchi, R. Badii and A. Politi, Phys. Rev. 
A 32 (1985) 402; F.T. Arecchi and A. Califano, Euro- 
phys. LetL 3 (1987) 5. 

[46] M.I. Dykman, R. Mannella, P.V.E. McClintock and 
N.G. Stocks, Phys. Rev. Lett. 65 (1990) 48. 

[47] N.G. Stocks, N.D. Stein and P.V.E. McClintock, Sto- 
chastic resonance in monostable systems, submitted to 
Phys. Rev, Lett. 

[48] Hu Gang, G. Nicolis and C. Nicolis, Phys. Rev. A 42 
(1990) 2(t30. 

[49] R. Kubo, 5. Phys. Soc. Jpn. 12 (1957) 570. 
[5(/] M.I. Dykman, R. Mannella, P.V.E. McClintock and 

N.G. Stocks, Phys. Rev. Lett. 68 (1992) 2985; and to be 
published. 

[51] P.V.E. McClintock and F. Moss, in: Noise in Nonlinear 
Dynamical Systems, eds. F. Moss and P.V.E. McClin- 
tock, (Cambridge, Univ. Press, Cambridge, 1989), w)l. 
3, p. 243. 

[52] B. McNamara and K. Wiesenfeld, Phys. Rev. A 39 
(1989) 4854. 

[53] M. Abramovitz and I. Stegun, eds., Handbook of 
Mathematical Functions (Dover, New York, 1970). 

[54] M.I. Dykman, R. Mannella, P.V.E. McClintock, N.D. 
Stein and N.G. Stocks, High-frequency stochastic reso- 
nance for periodic attractors, to be published. 

[55] M.I. Dykman, D.G. Luchinsky, P.V.E. McClintock, 
N,D. Stein and N.G. Stocks, Stochastic resonance for 
periodically modulated noise intensity, submitted to 
Phys. Rev. A. 


