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The separation of the absorption of linearly polarized resonant radiation by anharmonic local vibrations of 
cubic symmetry is analyzed by the method of the quantum kinetic equation. It is shown that as a result of 
the symmetry-induced degeneracy of the energy levels the absorption saturation is accompanied by 
rotation of the radiation polarization towards one of the symmetry axes of the crystal. The direction and 
rate of rotation are determined by the ratio of the relaxation parameters of the local vibration. An 
analogous rotation is investigated in the case of tunnel centers. The extreme direction of the polarization 
is determined in this case by orientation of the centers. 

PACS numbers: 63.90. + t 

I. INTRODUCTION 

Absorption of resonant radiation by a two-level sys- 
tem decreases with increasing intensity of the radiation, 
owing to equalization of the level populations. "I Inas- 
much as the absorption saturation in the absence of lev- 
el degeneracy is determined by the level lifetime, this 
saturation is frequently used to find the relaxation pa- 
rameters of the impurity state in the crystals. Lee and 
~aust" '  have attempted to measure by this method the 
lifetime of the local vibration (LV) in the CaF2: H' sys- 
tem. This LV has cubic symmetryc3] and the crystal is 
isotropic in weak fields. However, owing to the level 
degeneracy of the LV, the observed absorption satura- 
tion, a s  will be shown below, should be accompanied 
generally speaking by rotation of the plane of polariza- 
tion of the strong" resonant radiation. 

Self -induced resonant polarization rotation (SRPR) is 
due to the specifics of the relaxation of systems with a 
degenerate energy spectrum. We analyze the SRPR 
using as an example a local vibration of cubic symmetry 
(LVCS). The first LVCS excited level is triply degen- 
erate, and its wave functions transform like x, y, z (Fig. 
1). Assume that the radiation propagates in the z direc- 
tion, E, = 0. If the states I x) and I y) were to relax in- 
dependently of each other, then their occupation would 
be determined by the E, and E, components of the field, 
respectively. Since in this case the weaker of the com- 
ponents would be more strongly absorbed, the field in- 
tensity vector would rotate, in the course of propagation 
in the crystal, towards the closer of the directions x or 
y. Actually the probability of field-induced transitions 
in the presence of degeneracy depends not only on the 
occupation numbers but also on the ratio of the phases 
of the wave functions (cf. the harmonic-oscillator "par- 
adox"). L 4 * 5 '  Therefore the velocity and the direction of 
the SRPR are determined by the ratio of the relaxation 
times of the occupation numbers of the states and their 
mutual coherence. 

The interaction of LVCS with radiation can be treated 
within the framework of a two-level system if the an- 
harmonicity of the LM i s  relatively large, so that the 
associated non-equidistance of the levels is A w  >> Y (y i s  

the characteristic level width). The field frequency wf 
should be close to the frequency wo of the transition 
from the ground to the first excited level, I wf - wol - y ,  
and the field must not be too strong, so a s  to be able to 
neglect the occupation of the higher levels. 

To describe the relaxation we use in the present study 
the model of a weakly-coupled local (quasilocal) vibra- 
tionC6, 71 (see alsocs1). The impurity concentration is 
assiuned small, and their interaction is disregarded. 
In Sec. 2 we obtain and analyze the quantum kinetic equa- 
tion at T <<Rwo. We consider the saturation of the ab- 
sorption and the interference of the states of the LVCS. 
In Sec. 3 we investigate the .rotation of the polarization 
of strongly resonant radiation in cubic crystals contain- 
ing LVCS or tunnel centers. In Sec. 4 is analyzed an 
experiment on absorption saturationc2] It is shown that 
the parameters of the LVCS and the orientation of the 
tunnel centers can be determined with the aid of SRPR. 

2. KINETIC EQUATION. ABSORPTION SATURATION 

There are several known mechanisms of broadening 
of the spectral distribution of local vibrations. For 
high-frequency vibrations (wo > om, where w, is the 
maximal oscillation frequency of the continuous spec- 
trum of the crystal), the most important roleC3'6'91 is 
played by the decay of the LV with phonon emission and 
by broadening due to elastic or quasi-elastic scattering 
of the phonons by the LV (the modulation mechanism). 
The kinetic equation for the density matrix, F(t) of the 
anharmonic LVCS, can be determined in second order in 
the interaction with the phonons by using the method of 
integral operator equations, C1ol a s  was done previously 
for LV that are not degenerate in frequency. Ci18121 At 
T <<Roo this equation i s  of the form 

FIG. 1. Ground and first ex- 
cited levels of local mode of 
cubic symmetry. The wavy 
lines show the types of relaxa- 
tion processes. 
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Here x = 1,2,3(x, y, z )  number the local vibrations of the 
LVCS; f,, = q ~ , ( 2 m  w oti)'1'2 (q is the effective charge of 
the LVCS). The field will henceforth be regarded as 
linearly polarized: Im(f, f :.) = 0. 

The meaning of the parameters of the decay and mod- 
ulation broadenings, r and rm respectively, is clear 
from Fig. 1 (an explicit expression for the operator 
f m p  is given in the Appendix). rml describes the phonon 
scattering at which the initial and final states of the 
LVCS coincide; rd describes the transfer of the exci- 
tation from one state to the other (with the same energy); 
the term I?,, in (A. 2) is of interference origin. 

Accurate to the terms V1,2,s and pmp, Eq. (1) coin- 
cides with the equation of a relaxing harmonic oscillator 
in an external field. When LV are considered, how- 
ever, the fourth-order anharmonicity must be taken in- 
to a c c o ~ d ~ ' ~ - ~ ~  (renormalization of Vl12,, and wo as  a 
result of the interaction with the phonons and of the 
terms (a, +a:)' in the Hamiltonian of the isolated LV is 
assumed). In the derivation of the kinetic equation we 
have discarded small corrections of the type I VI /wo 
and (I? + rm)/wo as  well as  If ,  l /wo (at I wf - w,l - r + rm, 
I VI ). Equation (1) enables us to calculate both the ab- 
sorption by the local vibrations of a strong field f,, and 
the absorption (or enhancement) of an additional weak 
fieldC in a stationary or  nonstationary regime and at 
arbitrary 

Consider a monochromatic field f. (t) = f,, exp(- iwft). 
We assume the non-equidistance of the LV levels to be 
relatively large, I Vl >> r and V>> (but I Vl << wo), 
and the field to be resonant, 1 Cl1 << I VI , 51 = wf - wO. 
Then only the first excited level is occupied at l f, 1 
+ r m ) / r  v2 << 1 and T << Ww,. In the stationary regime, 
the nonzero matrix elements of the operator p 

do not depend on the time ( 1  0) i s  the ground state of the 
LVCS). From (1) and (2) we obtain for these elements 
the system of 10 linear equations 

The system (3) greatly simplifies in the case when the 
field is oriented along one of the symmetrical directions. 
In particular, iff, = f 6, then 

At f, - b N l  the field induces transitions only into one of 
the three degenerate excited LV states. This interac- 
tion with the phonons makes it possible for the excita- 
tions to go over from one degree of freedom to another 
(see Fig. 1); therefore k2 = A, + 0 at r, * 0. 

In the strong-field limit we have 

The populations of the states between which the field 
produces transitions are  equal to each other, po=pll. 
If rd << r, then po = pll = $ (nondegenerate two-level 
system). On the other hand, if I'd >> r, then PO = pll 

1 2) =&z=&s=a. 

If the orientation is not symmetrical, the field in- 
duces directly the occupation of all the states of the ex- 
cited LVCS levels. In the case of a strong field, the 
detailed-balance equations without allowance for the in- 
terference of the degenerate states take the form po= p,,. 
In the case of a more rigorous analysis of the transi- 
tion probability, which are  determined by the matrix 
elements pow in (3), depends not only on the populations 
p, and p,,but also on the off-diagonal matrix elements 
p,,,. The distinguishing feature of the decay broaden- 
ing is that, as seen from (I), in the absence of external 
fields the phase differences of the degenerate LVCS 
states do not relax at rm = 0. If the system is actedupon 
by linearly polarized radiation, then one of the normal 
coordinates of the LVCS can be directed along the field 
by a canonical coordinate transformation. Since the 
operator of the decay broadening transforms like 2 + y2 
+z2, its form does not change and formulas (4) and (5) 
are valid also in the new coordinates. It i s  clear there- 
fore that at rm = 0 all the degenerate LVCS states are  
coherent and the system is isotropic. In view of the 
coherence, the detailed-balance equations for the states 
are not satisfied and in strong fields we have po =C,p,, 
(this follows from the unitarity of the indicated coordi- 
nate transformation). Modulation broadening leads to 
a phase mismatch, and at rm >> r in a strong field we 
have po= p,, for all x . At arbitrary rm/r, the expres- 
sions for the populations are  complicated, for example, 
at fl=f,=f/fi and ol f12>>r we have 

The parameter r, in (6) determines the damping of the 
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off-diagonal elements p,, ,. 
In the case of a weak field, the power absorbed by the 

LV is equal to ol f 1 '. The parameter rO, which enters 
in the cross section u, i s  the half-width of the weak- 
field IR absorption line. The saturation of the absorp- 
tion at f, -6,i is described by a relation of the same 
type a s  for a nondegenerate two-level system, but the 
longitudinal relaxation time (2r)" is replaced in (4) by 
(2r)-I ( r  + 2rd)/(r + 3rd). 

If fi =fa = f /a or  fi =fa =fJ = f / C  (polarization along 
the [I101 and [111] axes), the nonlinear susceptibility of 
the LVCS has also only a diagonal component with imag- 
inary parts o/[l + 201 f 1 '8/r], where 

Both at r << r,and I' >> r, the saturation of the absorp- 
tion for different symmetrical polarizations is the same, 
Bloo= Bllo = fiill. More sensitive to the relation between 
the parameters is the polarization rotation considered 
in the next section. 

3. SELF-INDUCED ROTATION OF POLARIZATION OF 
RESONANT RAD IATlON 

If the propagation direction of a plane transverse elec- 
tromagnetic wave Z is normal to the symmetry plane of 
the crystal, then no longitudinal field component is pro- 
duced. Assuming that E,(Z, t) = ES(Z) exp(ikE - iwf t) and 
regarding the contribution P of the impurities to the 
crystal polarization as  small, we obtain in the stationary 
regime 

where n is the impurity concentration, s, i s  the cosine 
of the angle between the directions of E, and x, and H 
is the permittivity of the host crystal. 

In weak fields the LVCS polarizability tensor has only 
a diagonal component, P,- E,, and the light propagates 
in the same manner as  in an isotropic medium. On the 
other hand if the field i s  strong, the direction of the 
vector P does not coincide generally speaking with the 
field direction, and it is seen from (8) that a s  the radi- 
ation propagates the vector E will rotate. Let us ex- 
amine this rotation in the simplest case, when E lies in 
the xy plane and 1 C21 $2 = wf - wo (exact resonance). 

If $2=0 and the radiation is linearly polarized, 
Im(E,E ;) = 0, then, a s  seen from (3), Re( flpm) = Re(fapm) 
=O. From this, with allowance for (8) it follows that 
the ratio of the phases Ex and E, remains unchanged, 
i. e., the linear polarization is preserved. The change 
of the intensity of the H components of the field with 
changing distance, according to (8), is equal to 
.- - 

Solving the system (3) at E, = 0 and $2 = 0, we obtain 

Im(f.po.) =-{r(r+3rmz) If.12[ lfl'+alf.rlz 
+2ror,]}( ( 1 fI2+2r,r,) [2 (r+2rmz) I f  l z  . - 

+rro(r+3rm,)l+a] f1 lz]f2]z(3r+8rm2))-1; (10) 
x, x'=1,2; xfx'; Ifl2='lfrl'+lf2l2; 

a=2(r,l-2r,2-rms)/(r+3r,s). 

Equations (9) and (10) make it possible to calculate 
with a computer the propagation of resonant radiation 
in a crystal for arbitrary values of the LVCS param- 
eters. The rotation of the polarization can be investi- 
gated, however, analytically by the phase-trajectory 
method. Dividing the equations (9) by each other, we 
obtain 

I& - u,[~,+u,(a+i)+2ror.l . -- 
du, 'u,[u,(a+i) + ~ , + ~ r ~ r . ]  ' 

At a = 0 we have uz/ui = const and the polarization plane 
does not rotate. The solution of (11) at a #  0 is 

The variation of the parameter v = I E,(z)/E,(z)l deter- 
mines the rotation of the polarization plane a s  the radi- 
ation propagates in the crystal. In the derivationof (11) 
and (12) it was assumed that vo < 1, and the condition a 
> - b was used (the latter follows from the inequality 
rml b l rm31, see the Appendix). Then, a s  seen from 
(12), v < 1 and ul + %(a+ 1) + 2rOr ,  > 0, so that the transi- 
tion from (9) to (11) is possible (at vor 1 it is necessary 
to interchange the positions of % and ul in (11) and (12)). 

The polarization rotation is fastest in a strong field: 

If a < 0, then v - 1 as ul - 0, i. e., the polarization ro- 
tates to the nearest [I101 axis as  the light propagates 
in the crystal. On the other hand if a>O, then v- 0 a s  
ul - 0, i. e., the polarization rotates to the nearest [loo] 
axis. The rate of rotation depends essentially on the 
parameter a and on the initial angle between the polar- 
ization vector and the [I001 axis (see Fig. 2). 

It is seen from (10) and (12) that the rotation of the 
polarization is due to modulation processes (as already 
noted, if r, = 0 then the LVCS is isotropic at arbitrary 
$2). The rotation direction is determined by the ratio 
of the parameters rml - rd and I',. At rd > rllll(a< 0) 
the transfer of excitation between degenerate states is 
faster than the relaxation of their phases. Consequently, 
an energy flux is produced from the state excited by the 
larger of the components Ex or  E, to the state excited 
by the smaller component. Accordingly, the smaller 
component of the field is less strongly absorbed than 
the larger component and the field intensity vector is 
rotated towards the nearest direction [I101 (at a c - 1, 

1183 Sov. Phys: JETP 45 (6), June 1977 M. I. Dykman and G. G. Tarasov 1183 



FIG. 2. Dependence of the angle of rotation of the polarization 
m the parameter a = 2 (rmi - 2rm2 - rms)/(r + 3r,). Curves 1 
and 2 correspond to a decrease of the larger of the field compo- 
nents E, or E, by a factor of 2, while curve 3 corresponds to a 
cecrease by a factor 6. The direction of the polarization of 
the incident radiation is  determined by the value of a! at a = 0. 

the intensity of the smaller component in a definite angle 
interval increases, although on the whole the field en- 
ergy is always absorbed according to (10)). If rml >> I', 
and the transfer of excitation can be neglected, then an 
anharmonic LVCS i s  equivalent to an aggregate of three 
non-interacting two-level systems. As noted in the In- 
troduction, in this case the field intensity rotates to- 
wards the nearest direction [loo]. 

The SRPR considered here differs qualitatively from 
the self-induced polarization rotation in liquids. c131 The 
latter takes place only for elliptically polarized light, 
is not a resonance effect, and i s  observed in the trans- 
parency region. SRPR takes place for linearly polar- 
ized radiation and is not a rotation but a turning of the 
polarization toward a definite direction in the crystal. 
It is interesting to note that a s  the radiation propagates 
the degree of polarization of the radiation at SZ = 0 in- 
creases (it remains practically unchanged if r >> rm or 
I' << I',), and at 51 - r0 depolarization takes place. 

In concluding this section we point out that self-in- 
duced polarization rotation takes place also when radi- 
ation interacts with local (quasi-local) vibrations of 
tunnel centers (impurity molecules or noncentral ions). 
Since the anharmonicity of such LV is relatively large, 
it follows that, if tunneling i s  neglected, the interaction 
with the resonant radiation can be described within the 
framework of the two-level model (the time of tunneling 
of the transition in the ground ,and in the excited states 
is assumed to be large in comparison with the energy 
relaxation time (2I')" and the laser-pulse duration). We 
consider the case when the orientation of the center coin- 
cides with the direction of the dipole moment j of its 
LM (for example, non-central ions or linear molecules). 
To calculate the contribution P of the impurities to the 
crystal polarization it is necessary to average over the 
equivalent directions of j 

where ff i s  the polarizability of one LM, and Y is 'the 
number of equivalent orientations of j. 

In the case of exact resonance Re ff = 0 and the turning 
of the plane of polarization of the radiation can be ana- 
lyzed by the phase-trajectory method, as  was done above 
for the LVCS. The extreme di.rections to which the po- 

larization of the strong field (I El 2 f i r / ~ m a )  turns are  
listed in Table I for different orientations of the centers 
and for different radiation propagation directions. 

4. CONCLUSION 

The determination of the decay and modulation broad- 
ening parameters r and rml,2,3 for high-frequency LVCS 
in a wide temperature interval is of considerable inter- 
est, inasmuch as  a large number of such impurity vi- 
brations are  presently known. '15' The methods of IR 
absorption and Raman scattering of light do not make it 
possible to obtain r and r,, since the line half-width at 
the fundamental frequency is ro = + rml + 2r,, and cer- 
tain other relaxation mechanisms can contribute to the 
half-width of the  overtone^.'^*'^ To measure the pa- 
rameters I' and r, we can use resonant effects that are  
nonlinear in the field-separation of the absorption and 
SRPR, which require relatively low intensities (I El - r n ~ w , , r ~ ~ ~ ) ,  which do not influence the host crystal 
and do not change the energy of the interaction of the 
local vibrations with the continuous-spectrum vibra- 
tions. 

The saturation of LVCS absorption was observed by 
Lee and Faust. C21 To describe the propagation of the 
resonant radiation of the crystal they used the expres- 
sion for nondegenerate two-level systems 

dlE12 4noj 
-=-- 

nu" 2a" 

d2 cl'e l+wlEI2 
(14) 

where 4 and a" are the imaginary parts of the suscep- 
tibilities of the host crystal and the LM (nd' >> a;). 
Formula (14) i s  valid for LVCS, strictly speaking, either 
in the case when the field i s  oriented along one of the 
symmetrical directions of the crystal (this must be a 
stable direction, i. e., the ones to which the polariza- 
tion turns), or in the absence of modulation broadening. 
Lee and ~ a u s t ~ ~ ]  had rm> r at T = 90 K. However, (14) 
describes fairly well the experimental dependence of the 
crystal transformation on the intensity of the incident 
radiation, corresponding to two neighboring frequencies 
of a high-power laser. Assuming the maximum power 
to be the same at both frequencies, we obtained ~ " ( q ) /  
d'(w2)=w(w,)/w(~2) with an error  less than 10% (for 
the resonance curve I w1 - wol < ro/2, we have zu(wl) 1 E 1 
e3.9, which is approximately 11 times larger than the 

TABLE I. Self-induced radiation-polarization 
rotation due to tunnel centers. 

Direction of Limits of the interval 
containing the direction Extremal 
of the incident.Iadiation direction of the 
polarization polarizarion 
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value given by Lee and Faust, ['I and we therefore do not 
regard their value of r as  reliable). The applicability 
of formula (14) to transmission curves is due apparently 
to the following: at resonance (wl = wo) is so strong 
(> 98%) that in a greater part of the crystal the polariza- 
tion is oriented in the symmetrical direction; on the 
nonresonant curve we have I + - wol = 3ro  and wl El ' < & 
since rm2 > r in this case, it can be shown on the basis 
of (3) that the polarization dependence is weak. 

The rotation of the polarization of strong resonant 
radiation at r,#O, as  seen from Fig. 2, should occur 
over the absorption length. The SRPR method is very 
sensitive to the relation between the parameters of the 
modulation broadening of the LVCS. By measuring the 
dependence of the turning angle on the field and on the 
direction of polarization of the incident radiation, it is 
possible to obtain from formulas (12) and (12a) the val- 
ues of r,(r+r,,+r,,-r,) and a=2(rm1-2r,-r,)/ 
( r  + 3r,). The quantities r/B and r0 (see (4) and (7)) 
can be determined from the frequency dependence of 
weak-field IR absorption and the field dependence of the 
saturation of the absorption in the symmetrical configu- 
ration. Thus, the aggregate of the methods listed above 
makes it possible to measure all four relaxation param- 
eters of LVCS. 

The SRPR method can be used also to determine the 
orientation of tunnel centers in cubic crystals. As seen 
from the table, the limiting direction of the polarization 
in the case of slow tunneling is uniquely determined by 
the orientation of the centers. To observe the polariza- 
tion direction it i s  necessary to have T < Boo, whereas 
to observe the lowering of the symmetry of the center 
as a result of application of a static field, the tempera- 
ture must be lower than the level splitting in the field. 

The integrated (with respect to frequency) intensity 
of the lines of IR absorption by the local vibrations 
changes somewhat with temperature because of the in- 
teraction with the continuous-spectrum vibrations. C31'61 

In the case of a one-dimensional high-frequency LV one 
can predict that inclusion of the temperature dependence 
in the effective charge describes the dynamics of the 
LV in both a strong and a weak field. For LVCS this 
does not take place because of the scrambling of the de- 
generate states upon relaxation. 

The self-induced resonant turning of the polarization 
by degenerate two-level impurities in cubic crystals, 
considered in this article, can be observed not only in 
the case of local vibrations, but also in the case of elec- 
tronic centers. To this end it i s  necessary that the ratio 
p/By(p is the dipole moment of the electronic transition, 
y is the width of the weak-field absorption line) be as 
large as possible and that the saturating field ( I  El - Ey/p) 
not be strong enough to damage the crystal. 

The authors thank M. A. Krivoglaz for a discussion 
of the work. 

APPENDIX 

Modulation broadening in second order in the interac- 
tion is due to the terms 

(A. 1) 

in the LVCS Hamiltonian, which is weakly connected 
with the vibrations of the continuous spectrum (the latter 
are  labeled by the subscript k). "I When the symmetry 
is taken into account, the corresponding operator in the 
kinetic equation (1) is of the form 

-~ax+ax .p (R;ca .~+a .~+~) )+r ,~  { [n.n.., I,]+-~&P&'), (A. 2) 
W' 

[ A ,  B]+=AB+BA, 

where 

Different r, are due to the interaction with the vibra- 
tions of the continuous spectrum, which transform in 
accordance with the different irreducible representa- 
tions of the symmetry groups. By virtue of the Cauchy 
inequality we have rml 3 I rmSI . 
 he field is resonant and strong only for the impurity; the 

nonlinear polarizability of host crystals can be neglected. 
 his seems to explain the experimentally observedc2] absence 

of a polarization dependence of the occupation of the excited 
LVCS states (the experiment of l2I was carried out at tempera- 
tures at which I?,>> r according to the estimates oft8]). 
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