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We demonstrate the onset of strong on-site localization in a many-particle system, with effective localization
length smaller than the intersite distance. The localization is obtained by constructing a bounded one-parameter
sequence of on-site energies that eliminates resonant hopping between both nearest and remote sites. This
sequence leads to quasiexponential decay of the single-particle transition amplitude. It also leads to on-site
localization of stationary many-particle states in a finite-length chain. For aninfinite many-particle system, we
study the time during whichall states remain on-site localized. We show that, for any number of particles, this
time scales as a high power of the ratio of the bandwidth of on-site energies to the hopping integral. The
proposed energy sequence is robust with respect to small errors. The formulation applies to fermions as well as
perpetually coupled qubits. The results show viability of quantum computing with time-independent qubit
coupling.
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I. INTRODUCTION

Disorder-induced localization has been one of the central
problems of condensed-matter physics, starting with the
Anderson paperf1g. It has also attracted much attention in
other physical contexts, quantum chaos being an example
f2,3g. Recent interest in quantum computing has further em-
phasized its importance and allowed looking at it from a
somewhat different perspective.

In many proposed physical implementations of a quantum
computersQCd the qubit-qubit interaction is not turned off
f4–10g. The interaction may lead to excitation hopping from
one qubit to another. However, control and measurement
should be presumably performed on individual qubits. There-
fore it is essential to prevent excitation transfer between op-
erations. This makes localization a prerequisite for quantum
computing with perpetually coupled qubits. Several ap-
proaches to quantum computing with perpetually coupled
qubits have been proposed recentlyf11,12g.

In a multiexcitation system like a system of interacting
electrons or a QC, intersitesor interqubitd transitions are a
many-body effect, they involve several excitations. In spite
of the broad interest in the problem of many-particle local-
ization f13g, only a limited number of analytical results has
been obtainedf14g. Numerical results are also limited: clas-
sical computers do not allow studying a large number of
particles, because the many-particle Hilbert space is expo-
nentially large. On the other hand, QC’s with perpetually
coupled qubits provide a unique means for investigating lo-
calization in a controllable setting.

In this paper we study on-site many-particle localization.
It implies that each particlesor excitationd is nearly com-
pletely confined to one site, i.e., the effective localization
length is small compared to the intersite distance. This is a
stronger condition than just exponential decay of the wave
function, and it is this condition that must be met in a QC.

A well-known argument suggests that it is hard to strongly
localize a disordered many-particle system where the on-site
energies are random and uniformly distributed within a
finite-width bandf15g. Indeed, consider a state where par-
ticles are fully localized on their sites, which we call an
on-site statesa quantum registerd. For short-range hopping,
an N-particle on-site state is directly coupled to~N other
on-site states. With probability~N one of them will be in
resonance with the initial state. For largeN this leads to state
hybridization over time,J−1, whereJ is the intersite hop-
ping integralswe set"=1d.

In a QC, the quantityJ is determined by the qubit-qubit
interaction and usually characterizes the rate of two-qubit
operations. At the same time, the qubit energies are not ran-
dom and often can be individually controlled. This makes
QC’s advantageous for studying many-particle localization,
as it becomes possible to construct a “disordered” energy
sequence site by site.

Localization can be considered from two points of view.
One is based on the analysis ofstationarystates of a many-
particle system. The other is based on studying the system
dynamics. Here, of interest is the time it takes for an on-site
state to hybridize with another resonant state and thus be-
come delocalized. We call this time the localization lifetime
tloc.

In a QC all states have a finite coherence time due to
coupling to the environment and external noise. For success-
ful QC operation, delocalization should not occur during this*Email address: dykman@pa.msu.edu
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time. For most of the proposed models of a QC, the coher-
ence time is&105J−1. Therefore it is sufficient to have the
localization lifetime*105J−1. Such lifetime-based formula-
tion of the many-particle localization problem is relevant to
condensed-matter systems as well, because of finite decay
and decoherence times of quasiparticles for nonzero tem-
peratures.

Here we construct a bounded sequence of on-site energies
in a one-dimensionals1Dd chain and show that it leads to a
long localization lifetime ofall many-particle states in an
infinite system. We provide evidence that it also leads to
on-site localization of many-particle stationary states in sec-
tions of the chain with length up to 12 sites, even where the
energy-level separation is much less thanJ. In a sense, this is
an explicit construction of an efficiently localizing site dis-
order.

Of significant interest is the dependence of the localiza-
tion lifetime on the bandwidth of on-site energies. In a QC,
the on-site energies are interlevel distances of the qubits.
Even though they can often be controlled, the qubit tuning
range is limited. A smaller bandwidth leads to a higher speed
of quantum gate operations, particularly if they involve
changing qubit energiesf16g. Of course, condensed-matter
systems always have bounded bandwidth as well.

In condensed-matter physics, localization by “controlled”
disorder has been studied in depth and many interesting re-
sults have been obtained in the context of incommensurate
periodic potentials, see Refs.f17–19g and papers cited
therein. In contrast to this work, we are interested in strong
on-site localization, and not only for single-, but in the first
place, for many-particle states. The “potential” that we pro-
pose is not quasiperiodic, and our analytical techniques, in-
cluding the time-dependent formulation for many-body sys-
tems, are different from the methods developed for
quasiperiodic potentials.

To strongly localize one particle, the difference between
excitation energies on neighboring sites should be much
larger than the hopping integralJ. However, even for
nearest-neighbor coupling, the energies of remote sites
should also differ. The further away the sites are, the smaller
their energy difference can be, because the effective hopping
integral is determined by virtual transitions via nonresonant
states and rapidly decays with the distance. This idea is
implemented in our energy sequence. As a consequence, the
single-particle transition amplitude displays nearly exponen-
tial decay with distance. We show that the decay exponent
weakly depends on site and find rigorous bounds on its
value.

For many-particle localization one has to suppress not
only single-particle, but also combined resonances, which
involve simultaneous transitions of several interacting exci-
tations. This is a formidable problem. The role of the dis-
tance between resonating states, which determines the hop-
ping integral, is played by the “order” of the transition, i.e.,
number û of intermediate nonresonant configurations that
differ by the displacement of one particle by one site. To
obtain a desired lifetime of a localized state it is sufficient to
eliminate resonances up to a certain order. We explicitly
show how to do it up to fifth order, for our sequence.

In a real system it will be possible to tune the energies
only with certain precision. We study how errors in the en-

ergies affect localization and show that our sequence is stable
with respect to small errors. We also demonstrate that, in
terms of strong on-site localization, even for a small chain
the constructed energy sequence is much better than fully
random on-site energies with the same overall bandwidth.

The paper is organized as follows. In Sec. II we discuss
the Hamiltonian of coupled qubits and introduce a physically
motivated one-parameter sequence of on-site energies. In
Sec. III one-particle localization of stationary states is stud-
ied and quasiexponential decay of the transition amplitude is
demonstrated. A rigorous proof of such decay is provided
and the decay length is obtained in Appendix A. The relevant
scaling properties are analyzed in Appendix B. In Sec. IV the
inverse participation ratiosIPRd is calculated for many-
particle states in a section of a 1D chain. Over a broad range
of the parameter of the on-site energy sequence the IPR can
be made very close to 1, which is a signature of on-site
localization, but it also displays sharp resonant peaks as a
function of the sequence parameter. These peaks are dis-
cussed in Appendix C. The lifetime of localized states is
considered in Sec. V. A minor modification of the energy
sequence allows one to open a gap in the spectrum of com-
bined many-excitation transitions up to fifth order, which is
sufficient for extremely long localization lifetime. The role
of errors in the on-site energies is studied, and robustness of
the results with respect to these errors is demonstrated in
Sec. VI. In Sec. VII a highly symmetric period-doubling se-
quence of on-site energies is analyzed along with a sequence
of uncorrelated on-site energies. Both are by far inferior, in
terms of localization, to the sequence discussed in Secs. II–V.
Section VIII contains concluding remarks.

II. MODEL

The problem of localization can be formulated in a similar
way for one-dimensional systems of interacting fermions and
spins. The formulation also applies to qubits during the time
when no gate operations and measurements are performed,
i.e., there are no time-dependent fields that would modulate
the qubitssas is the case for a simple quantum memory de-
vice, for exampled.

The relation between spin and qubit systems is simple:
qubits are two-level systems, and therefore can be described
by S=1/2 spins in a magnetic field. Then the excitation en-
ergy of a qubit becomes the Zeeman energy of a spin,
whereas the qubit-qubit interaction becomes the exchange
spin coupling. Note that the physical interaction itself may
be of a totally different nature, e.g., electric dipolar or qua-
drupolar.

For many proposed realizations of QC’s the qubit excita-
tion energies are large compared to the interaction. Then the
qubit-qubit interaction is described by the spin-coupling
Hamiltonian of the form

HS=
1

2o
n,m

8fJnm
xx sSn

xSm
x + Sn

ySm
y d + Jnm

zz Sn
zSm

z g. s1d

Here, n, m enumerate sites in the 1D spin chain,z is the
direction of the effective magnetic field, andJnm

mm are the in-
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teraction parameterssm=x,y,zd. In mapping the qubit inter-
action on the exchange coupling we kept only those terms
which, in the Heisenberg representation, do not oscillate at
qubit transition frequencies. This is why we have set
Jnm

xx =Jnm
yy . In the case of qubits, the termsSn

xSm
x +Sn

ySm
y

;s1/2dsSn
+Sm

− +Sn
−Sm

+ d lead to excitation transfer between the
qubits n, m provided their energies are close. We note that
the spin interaction of the forms1d conserves the number of
excitations in the system.

It is convenient to map the spin system onto a system of
spinless fermions via the Jordan-Wigner transformationf21g.
For nearest-neighbor coupling, the Hamiltonian of the fer-
mion system becomes

H = H0 + Hi ,

H0 = o
n

«nan
†an +

1

2
Jo

n

san
†an+1 + an+1

† and,

Hi = JDo
n

an
†an+1

† an+1an. s2d

Here,an
†,an are the fermion creation and annihilation opera-

tors; the presence of a fermion on siten corresponds to the
nth spin being excited. The parameterJ=Jn n+1

xx is the fer-
mion hopping integral. The parameterJD=Jn n+1

zz gives the
interaction energy of fermions on neighboring sites. If the
coupling of the underlying spins is isotropic, we haveD=1.
The on-site fermion energies«n are the Zeeman energies of
the spinssthe excitation energies of the qubitsd counted off
from the characteristic central energy which is the same for
all spins inside the chain. For concreteness we setJ, D.0.

Localization is often described in terms of the decay of
the wave functions of stationary states at large distances. In
contrast, here we are interested in strong on-site localization.
It is determined by the short-range behavior of stationary
states and corresponds to the effective localization length
being smaller than the intersite distance. Then the localiza-
tion length, which characterizes the long-distance behavior,
is not of primary interest.

On-site localization can be instead conveniently charac-
terized by the inverse participation ratiosIPRd, which shows
over how many sites the wave function spreads. For an
N-particle wave functionucNll sl enumerates the stationary
statesd the IPR is given by the expression

INl = S o
n1,¯,nN

uk0uanN
anN−1

¯an1
ucNllu4D−1

, s3d

where u0l is the vacuum state. In what follows we will use
the notationuFsk1,k2, ...dl=ak1

† ak2

†
¯u0l for the on-site wave

function squantum registerd in which sitesk1,k2, ... are occu-
pied and other sites are empty. The quantitys3d is sometimes
called the number of participating components, it shows how
many matrix elementskFsk1,k2, ...d ucNll are substantial.

For fully localized statesINl=1. Strong on-site localiza-
tion of all states of anN-particle system means thatINl is
close to 1 for alll,

INl − 1 ! 1, ∀ l. s4d

In this case both the average IPR

kINl = CN
−1o

l

INl

and IN max=maxl INl are close to 1. Here,CN is the total
number of N-particle states; for anL-site chain CN
=L! / N!sL−Nd!. Smallness ofkINl−1 is a weaker condition,
it is an indication of strong localization of most of the states.

In the opposite limit of extended states we havekINl
,CN@1. A simple example is the case of one particle in an
open chainsa chain with free boundariesd with «n=const.
The wave functions of the particle are sinusoidal, and for an
L-site chainkI1l=2sL+1d /3. For «n=const, the mean IPR
sharply increases with the number of particlesN, for N
øL /2.

On-site energy sequence

Localization requires that the on-site energies«n be tuned
away from each other. The strategy for choosing the se-
quence of«n while keeping the overall bandwidth of the
energy spectrum bounded can be as follows. First, we sepa-
rate the energies of nearest neighbors by splitting«n into two
subbands, with even and oddn, respectively. The distanceh
between the subbands should significantly exceed the hop-
ping integralJ. Then each subband is further split into two
subbands in order to detune next-nearest neighbors. The
splitting between these subbands can be less thanh. This is
because next-nearest-neighbor hopping occurs via virtual
transitions to a nonresonant nearest-neighbor site, and there-
fore the effective hopping integral is,J2/h. The procedure
of band splitting should be continued, and higher-order split-
ting can be smaller and smaller.

We now introduce a simple sequence of«n that imple-
ments the structure described above. Except for the energy
scaling factorh, this sequence is characterized by one dimen-
sionless parametera. As we show, it can already be efficient
in terms of strong localization. For a semi-infinite chain with
nù1 we set

«n =
1

2
hFs− 1dn − o

k=2

n+1

s− 1dbn/kcak−1G s5d

sb·c is the integer partd.
Sequences5d does not have any simple symmetry. For

example, it is not self-similar: the subband widths do not
scale with the distance between the sites that belong to the
same subbandscf. Sec. VIId. Nor is sequences5d quasiperi-
odic. However, the coefficients at any given poweraq are
repeated with period 2sq+1d. This important property is es-
sential for obtaining analytical results, see Appendix A.

The energy spectrums5d is illustrated in Fig. 1. The left
panel gives the energies of the first 50 sites. It is seen that the
sites with close«n are spatially separated, whereas the sites
with close n are separated energetically. The multisubband
structure of the spectrum is clearly seen in the right panel.
For smalla, the two major subbands have width<ah and
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are separated by<h. The splitting of higher-order subbands
is proportional to higher powers ofa. As a increases the
subbands start overlapping, and fora*0.4 separation be-
tween the subbands disappears.

As a result of the low symmetry, different subbands in the
right panel of Fig. 1 have different numbers of points, i.e.,«n
are not evenly distributed among the subbands. This turns
out to be important for strong many-particle localization. The
case of a symmetric sequence is discussed in Sec. VII.

An important advantageous feature of sequences5d for
quantum computing is that it is convenient for performing
gate operations. For single-qubit gates, a single radiation fre-
quency can be used to resonantly excite different qubits. It
has to be chosen close to the center of the band of single-
qubit transition frequenciesswhich corresponds to«=0d.
Then qubits can be selectively excited by tuning them to this
frequency or by sweeping their frequency through the radia-
tion frequency and having a Landau-Zener-type interstate
transition. The transition frequency of the qubit depends on
whether neighboring qubits are excited. This can be used to
implement a controlled-NOT gate. Alternatively, neighboring
qubits can be tuned in resonance with each other by moving
their energies into the middle of the gap in Fig. 1snote that
other qubits are not in resonance, in this cased. This will lead
to a two-qubit Landau-Zener-type excitation swapf16g.

III. SINGLE-PARTICLE LOCALIZATION:
STATIONARY STATES

A. Transition amplitude

In a 1D system with random on-site energies all single-
particle stationary states are localized, even for weak disor-
der, and exponentially decay at large distances. Although se-
quences5d is not random, the transition amplitudes also
display quasiexponential decay at large distances provided
J!ah, as follows from the results of Appendix A. In this
paper we are primarily interested in the short-range behavior.
It turns out that a particle is confined much stronger in the
case of sequences5d than in the case of random on-site en-
ergies distributed within the same energy band, see Sec. VII.
The confinement quickly strengthens with the increasing pa-
rametera oncea exceeds a certain threshold valueath.

Spatial decay of single-particle stationary states can be
characterized by the amplitude of a particle transition from
siten to siten+m. To the lowest order inJ/h it has the form

Knsmd = p
k=1

m

J/u2s«n − «n+kdu. s6d

For sequences5d in the limit of smalla the energy differ-
enceu«n+m−«nu can be approximated by its leading term, so it
is ,h for oddm and,ah for oddm/2. In general, the larger
is m the higher may be the order ina of the leading term in
u«n+m−«nu.

The asymptotic behavior of the functionKnsmd for small
a and largem can be studied rigorously. The analysis is
based on some results of number theory. It is given in Ap-
pendix A. It shows thatKnsmd decays with the distancem
quasiexponentially,

Knsmd = a−numu sJ/2hdumu. s7d

The exponentn is determined by lim lnfKnsmdg /mfor m
→` and depends onn. The values ofn are bound to a
narrow region centered atn=1, with 0.89,n,1.19. For es-
timates one can usen=1, i.e.,

Knsmd < Kumu, K = J/2ah.

The decay length of the transition amplitude is then 1/uln Ku.
The numerical values ofn for differentn andm are shown

in Fig. 2. They were obtained by keeping the leading term
with respect toa in each energy difference«n−«n+k with 1
økøm. The data are in excellent agreement with the
asymptotic theory.

We have also studied decay in the “opposite” direction,
i.e., for negativem. Here the multiplication index in Eq.s6d
runs fromk= -1 to m; m+nù1. The asymptotic expression
s7d applies in this case, providedn, umu@1.

Equations7d gives the tail of the transition amplitude for
J/2ha!1. It does not immediately describe strong single-
particle localization, which is determined by the short-range
behavior of the wave function. However, one may expect
that strong localization should occur whena becomes much
larger than a typical threshold valueath=J/2h. In fact, Eq.
s7d describes the transition amplitude only whenath!a!1.

FIG. 1. sColor onlined The energies«n/h for a=0.3. The left
panel shows«n/h for the sitesn=1,2,… ,50. Sites with close on-
site energies are spatially separated. The right panel shows«n/h for
a much longer array,n=1,… ,2000. The energy spectrum displays a
multisubband structure, with clearly identifiable 16 subbands in this
case.

FIG. 2. sColor onlined. The exponentn of the a dependence of
the transition amplitudeKnsmd for the efficient distancem=200
scrossesd andm=1000scirclesd as a function of site numbern. The
dashed lines show the analytical limits onn.
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B. Inverse participation ratio

A quantitative indication of on-site localization of single-
particle stationary states is thatI1l−1!1 for all statesl, cf.
Eq. s4d. Numerical results onkI1l andI1max=maxlI1l as func-
tions of the energy spectrum parametera for two values of
the scaled bandwidthh/J are shown in Fig. 3. They were
obtained by diagonalizing the Hamiltonians2d numerically.
The data refer to open chains of three different lengthsL,
with the first site being alwaysn=1 in Eqs.s2d ands5d. The
sum overn in the terms~J,JD in Eq. s2d ran from n=1 to
n=L−1.

In the fermion Hamiltonians2d, the energies«n differ
from the Zeeman energies of spins by −JD inside the chain.
On the boundaries this shift is −JD /2. To make the Zeeman
energies equal to«n+const, with the constant being the same
for all spins, we added the term-sJD/2 )sS1

z+SL
zd to the spin

Hamiltonian s1d. Then the numerical results for a finite-
length open chain equally apply to both spin and fermion
systems.

In the limit a→0, the energies of single-particle station-
ary states form two bands centered ath/2 for evenn and
−h/2 for odd n. For h@J the widths of these bands are
,J2/h. The system is equivalent to two weakly coupled
translationally symmetric open chains; the band wave func-
tions are sinusoidal, which giveskI1l=sL+2d /3. This agrees
with the value ofkI1l for a→0 in Fig. 3.

For nonzeroa the on-site level detunings5d breaks trans-
lational symmetry. Asa increases, the bands at ±h/2 are

split, and more and more subbands are resolved in the energy
spectrum. Respectively,kI1l decreases. It sharply drops to
<1 in a narrow region, which can be conditionally associ-
ated with a transition to strong localization. The center of the
transition region gives the threshold valueath of the param-
eter a. It appears to be independent of the chain lengthL.
The estimateath=J/2h from Eq. s7d is in good agreement
with the numerical data for differenth/J.

Whenath!a!1, all stationary states are strongly local-
ized. Tails of the wave functions are small and limited mostly
to nearest neighbors, which leads to

I1l − 1 < J2/h2 s8d

to lowest order inJ/h,a.
For a*0.4 the IPR increases above its minimal value.

This happens because the major bands of«n centered at ±h/2
start overlapping.

The minimum of the IPR overa is broad for largeh/J.
Near the minimum the numerical data in Fig. 3 are in good
agreement with the estimates8d. The agreement becomes
better with increasingh/J.

The insets in Fig. 3 show that the IPR as a function ofa
can have narrow resonant peaks. In the presented data they
occur for the chain of lengthL=300. The peaks are seen only
in I1 max, whereaskI1l remains close to 1. This indicates that
only a few on-site states are hybridized with each other.

The underlying resonance results from a different
hopping-induced shift of the energy levels at the chain edges
compared to the bulk. The analysis of the wave functions
shows that the peak corresponds to a resonance between sites
300 and 296. Because of the hopping, the energy of site 300
is shifted by<sJ/2d2/h, whereas for site 296 this shift is
<J2/2h. The difference of«n for these sites is,ha3 for a
!1. Then the peak should occur ata<sJ/2hd2/3, in good
agreement with the data. The effective hopping integral be-
tween the two sites is determined by virtual transitions via
intermediate sites, it is,J4/16ah3. Therefore the width of
the peak with respect toa should be~sJ/hd2, also in agree-
ment with the data.

In Appendix B we outline another way of looking at the
effect of the parametera on localization. Specifically, we
study the scaling relations betweena and J/h that follow
from the condition that the IPR takes on a given value.

IV. MANY PARTICLE LOCALIZATION:
STATIONARY STATES

A. Many-particle hopping

The many-particle localization problem is more compli-
cated than the single-particle one. When the parameter of the
interparticle interactionDÞ0, sid the energy levels«n are
shifted depending on the occupation of neighboring states,
«n→ «̃n, sii d there occur combinational many-particle reso-
nances«̃n1

+¯+ «̃nk
< «̃m1

+¯+ «̃mk
, and as a result,siii d there

occur interaction-induced many-particle transitions that may
be resonant even though single-particle resonances have
been suppressed. Such transitions may lead to delocalization.

In contrast, the caseD=0 corresponds to theXY-type cou-
pling between the underlying spins. In this case the single-

FIG. 3. sColor onlined. The mean single-particle inverse partici-
pation ratiokI1l vs a for h/J=20 supper paneld andh/J=10 slower
paneld. The data refer to three values of the chain lengthL. The
vertical dashed lines show the analytical estimate for the threshold
of strong localization. The insets show the maximal IPR over all
eigenstates,I1 max;maxl I1l. It sharply decreases with the increas-
ing a. The peak ofI1 max for L=300 neara=0.1 is due to the
boundary. Near the minimum overa, we haveI1 max<1.01 for
h/J=10, andI1 max<1.003 for h/J=20. This demonstrates strong
on-site single-particle localization.
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particle results apply to the many-particle system.
To analyze many-particle effects, it is convenient to

change froman
†,an to new creation and annihilation operators

bn
†,bn that diagonalize the single-particle partH0 of the

Hamiltonian s2d, an=okUnkbk. The unitary matrixÛ is the
solution of the equation

sU†H0Udnm= «n8dnm,

sH0dnm= «ndnm+
1

2
Jsdn,m+1 + dn+1,md. s9d

Here,«n8 are the exact single-particle energies,

H0 = o
n

«n8bn
†bn. s10d

For a@ath andJ!h, when single-particle states are on-
site localized, the energies«n8 are close to the on-site energies
«n. To leading order inJ/h,a we have

«n8 − «n <
J2

2h
Fs− 1dn +

1

2
s− 1dbn/2caG . s11d

The major term in the right-hand side corresponds simply to
renormalization of the characteristic bandwidth of on-site en-
ergiesh→h+J2/2h.

In terms of the operatorsbn,bn
† the interaction part of the

Hamiltonian is

Hi = JD o Vk1k2k3k4
bk1

† bk2

† bk3
bk4

, s12d

where the sum runs overk1,2,3,4, and

Vk1k2k3k4
= o

p

Upk1

* Up+1 k2

* Up+1 k3
Upk4

. s13d

The Hamiltonians12d describes the interaction of the exact
single-particle excitations, i.e., renormalized fermions. The
parameterVk1k2k3k4

determines the amplitude of the two-
particle intersite transitionsscatteringd sk4,k3d↔ sk1,k2d for
the renormalized fermions. The minimal number of virtual
steps in such a transition that have to be made by the original
fermions is given by the parameter

û = min
p

suk1 − pu + uk2 − p − 1u + uk3 − p − 1u + uk4 − pud.

s14d

The steps are counted off from the configuration where two
original fermions occupy neighboring sites, and each step is
a transition by one of them to a nearest site. In other words,
they first move from sitessk4,k3d to sitessp,p+1d and then
to sk1,k2d swe assume for concreteness thatk3.k4 and k2

.k1d; the value ofp is chosen so as to minimize the number
of steps.

To make the meaning ofû even more intuitive we give
examples of someû=4 transitions. For the initial and final
statessn,n+1d andsn−2,n+3d one of the sequences of steps
of the original fermions issn,n+1d→ sn,n+2d→ sn−1,n
+2d→ sn−1,n+3d→ sn−2,n+3d, whereas for the initial and

final statessn,n+2d andsn−1,n+3d one of the sequences is
sn,n+2d→ sn,n+1d→ sn−1,n+1d→ sn−1,n+2d→ sn−1,n
+3d.

If all single-particle stationary states are strongly local-
ized, the off-diagonal matrix elementsUnk are small. From
Eq. s7d, Unk,Kuk−nu for uk−nu@1. Therefore fora@ath,

Vk1k2k3k4
, Kû for û @ 1. s15d

Two-particle transitions of the renormalized fermions are
not limited to nearest neighbors. However, from Eq.s15d, the
amplitudes of transitions over many sites are small and rap-
idly decrease with the number of involved virtual steps. In
higher orders inVJD, the interactions12d leads also to many-
particle transitions. The overall transition amplitude is deter-
mined by the total number of involved virtual single-particle
steps.

The matrix elementsVk1k2k3k4
with û=0 are<1. They lead

to an energy shift~JD of the states depending on the number
of particles on neighboring sites.

In order to localize many-particle excitations, one has to
suppress combinational many-particle resonances keeping in
mind that, for localization, the effective hopping integral
must be smaller than the energy detuning of the initial and
final on-site states. Because of the large number of possible
resonances, we do not have an analytical proof of many-
particle localization for our energy sequences5d. Instead we
used numerical analysis, as described in the next section,
which enabled us to demonstrate strong localization of sta-
tionary states in a chain of a limited size.

B. Many-particle inverse participation ratio

A good indicator of many-particle on-site localization is
closeness of the IPR to onefEq. s4dg. The problem of
whether it is possible to obtain on-site localization ofall
many-particle states is interesting even for finite-size sys-
tems, because the size of the states is much less than the size
of the system. It becomes particularly interesting where the
separation of the many-particle energy levels is much less
than the hopping integralJ.

In this section we present numerical data on the IPR ob-
tained by diagonalizing the Hamiltonians2d in the presence
of several excitations. The Hamiltonian is a sparse matrix,
which is separated into uncoupled blocks with different num-
bers of excitations. We focused on the block in the middle of
the energy spectrum. For a given chain lengthL, it hasL /2
excitations and therefore the largest number of states. This is
the worst case, in terms of localization. Chains withL=10,
12, and 14 were studied. The results were similar. We present
the data forL=12, in which case the total number of states is
924. The interlevel separation in this case is,63h/924
!J for the values ofh that we used.

The IPR as a function of the dimensionless parametera of
the on-site energy sequences5d is shown in Fig. 4. The re-
sults refer to two values of the dimensionless ratio of the
hopping integral to the interband distanceJ/h and several
values of the dimensionless parameter of the particle inter-
actionD.
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We start the analysis with the regiona→0, where the
on-site energiess5d alternate between ±h/2. For largeh/J
the single-particle energies form bands of widthJ2/2h. In the
neglect of mixing of these bands, the many-particle wave
functions can be found using the Bethe ansatz. ForD=0 the
many-particle energy spectrum consists of bands that are de-
termined by the number of particles in each of the two
single-particle bands. Because the states are of the plane-
wave type, the IPR is large, withkI6l<78 for h/J=20 and
L=12, see Fig. 4.

For a→0 the IPR decreases with the increasing param-
eter of the particle interactionD. This happens because, for
large D@J/h sbut D!h/Jd, the energy bands at ±h/2 split
into subbands depending on the number of particle pairs,
triples, etc., on neighboring sites: for example, the energy of
a pair on neighboring sites differs from the energy of a dis-
sociated pair byJD. Since the number of states in a subband
is smaller than in the whole band, such splitting reduces the
average IPR.

The decrease of the average IPR with increasingD for
a→0 andD!h/J is seen in Fig. 4. We note that the mere
separationsby hd of the single-particle energies of neighbor-
ing states is not sufficient for strong localization. Inside each
subband, the number of resonating states in a long chain is
still very large.

Localization requires that not only nearest-neighbor
single-particle energies, but also energies of remote sites be
tuned away from each other. This happens for sufficiently
large values of the parametera in Eq. s5d, as seen from Fig.
4. For givenD, the IPR decreases as a whole with increasing
a in the region where the single-particle bands are well sepa-
rated,a&0.4.

In the region 0.2&a&0.4, except for narrow peaks, we
haveI6 max<1.09 for h/J=10 andI6 max<1.02 for h/J=20,
for Dø1. The values ofkI6l are even smaller, 1.04 and 1.01,
respectively. This indicates that, in this parameter range, all
states are strongly on-site localized. ForD=3 andh/J=20
we also haveI6 max<1.02 away from the peaks; however, for
h/J=10 the IPR becomes larger due to the many-particle
resonances, which are discussed belowssee also Appendix
Cd.

A distinctive feature of the many-particle IPR as function
of a is the onset of multiple resonant peaks, which can be
seen in Fig. 4. They indicate that at least some of the station-
ary states are no longer on-site localized. The peaks are due
to hybridization of resonating on-site states. It occurs when
the matrix elements of intersite transitions in Eqs.s12d and
s13d exceed the energy difference of the states.

For 0.2&a&0.4, i.e., in the region of strong localization,
and for h/J=20 and chosenDø3 we found that only two
on-site states could become strongly hybridized in the sec-
tion of the chain with 1ønø12. Hybridization of a larger
number of states was weaker. A consequence of hybridiza-
tion of utmost two states is thatI6 max&2. For h/J=10 and
D=3 the interstate couplings13d is stronger, and as a result
three states can be strongly hybridized and a few more can
be weakly admixed, leading toI6 max,3 at resonanta.

Because the interaction is two-particle, the strongest
peaks ofImax come from resonances between on-site energies
of two particles. They occur when the energy difference

d« = u«k1
+ «k2

− «k3
− «k4

u s16d

is close toMJD with M =0,1,2. Strictly speaking, we should
use exact single-particle energies«n8 s10d instead of«n in Eq.
s16d, but the difference between these energies is small, see
Eq. s11d, and it leads to a small shift of the positions of the
resonances as functions ofa. An explanation of the positions
and widths of the narrow peaks ofkI6l andI6 max seen in Fig.
4 is given in Appendix C.

C. Broadband two-particle resonances

A special role in the problem of many-body localization is
played by two-particle resonances that are not selective ina,
i.e., exist in a broad range ofa. For these broadband reso-
nances, the total energy difference between the initial and
final on-site states is small,d«!J even for smallJ/h. They
emerge already in the second order inJ/h, when only two
single-particle steps to neighboring sites are required,û=2.
The resonating on-site states are pairssn,n+1d and sn
−1,n+2d, i.e.,

«n + «n+1 < «n−1 + «n+2. s17d

If n and n+2 are prime numbers, the energy differenced«
= u«n+«n+1−«n−1−«n+2u,an−1h is extremely small for
largen.

More generally, the resonances17d occurs for alln=6k
−1 with integerk. In this cased« /h~aj with jù4. Suchd«
is “anomalously small” forû=2. For D,1 the hopping in-
tegral J3D /h2 becomes larger thand« even when we are

FIG. 4. sColord The IPR for six excitations on the first 12 sites
of the chains5d. The reduced bandwidth of the energy spectrum is
h/J=20 stop paneld and h/J=10 slower paneld. The purple, red,
green, and blue curves refer to the coupling parameterD=0, 0.3, 1,
and 3, respectively. The peaks ofkI6l for D=0 are a single-particle
boundary effect. The insets show the maximalI6 for DÞ0. Sharp
isolated peaks ofI6 max vs a result from the hybridization of reso-
nating on-site many-particle states, see Appendix C.
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already deep in the single-particle localization region,a
@ath.

For n=6k−1, to leading-order inJ/h the renormalization
«n→«n8 leads to a change ofd« that does not exceed
,a3sJ2/hd or ,a4sJ2/hd for odd and evenk, respectivelysit
may also be proportional to higher power ofad. The renor-
malizedd« can still be much smaller thanJ3D /h2, and then
the broadband resonance persists. More many-particle broad-
band resonances emerge for largerû.

For the section of the chain with sites 1ønø12 the IPR
is not much affected by the broadband resonances, because
even wheren and n+2 are prime numberss5 and 7d, the
energy differences17d is not exceedingly small.

The situation changes if we consider other sections of the
chain s5d of the same length,n0ønøn0+11 with different
n0. Here we found that, depending onn0, the resonances
increasekI6l up to 1.15 between the peaks, forh/J=20, D

=1, and for alla in the interval 0.2,a,0.4.
For a finite chain, the resonances can be eliminated order

by order in û by shifting the energies of the appropriate
qubits. Simple systematic modifications of the energies that
work for ûø5 are discussed in the next section, see Eqs.
s20d and s23d. Both modifications bring the IPR back to
smaller values. For example, in all sections of the chain that
we studied they madekI6l and I6max equal to <1.01 and
<1.02, respectively, which are the values we had for the
section 1ønø12. This means that on-site localization of
stationary states for the modified energy sequences is indeed
very strong.

V. LIFETIME OF STRONGLY LOCALIZED STATES

The problem of strong localization can be viewed also
from a different perspective. In the context of quantum com-
puting, it suggests a more appropriate formulation then the
one based on the analysis of stationary states. It is also rel-
evant for condensed-matter systems at nonzero temperatures.

First we note that excitations in quantum computers and
in condensed-matter systems have a finite coherence time
tcoh. For QC’s, this time has to be compared with the duration
of a single- or two-qubit operation and measurement. The
duration of a two-qubit operation is of order of the time it
takes to resonantly transfer an excitation between the qubits,
which is ,J−1. A single-qubit operation is often faster; how-
ever, the measurement can sometimes be slower. In most
proposed realizations of a QC the coherence time exceeds
the gate operation time by a factor&105.

The localization lifetimetloc of an N-particle system can
be defined as the minimalsover configurationsd characteristic
decay time of the squared matrix element
ukFsn1¯nN; tduFsn1¯nN;0dlu2, whereuFsn1¯nNdl is the on-
site wave function. We note that, from the point of view of
strong on-site localization, hybridization with a reson-
ating state is decay. It leads to oscillations of
ukFsn1¯nN; td uFsn1¯nN;0dlu2 with amplitude,1, and then
tloc is given by the oscillation period, cf. Fig. 5 below.

Localization is only relevant on times,tcoh. To have
strong localization it suffices thattloc* tcoh. From the esti-

mate fortcoh, for quantum computing the latter condition is
met, if

tloc * 105J−1. s18d

The condition of largetlocJ must be satisfied forall on-site
many-excitation states, with differentN. It is this condition
that imposes a constraint on the form of the energy sequence
«n in an infinite many-particle system. Of primary interest is
to understand whethertlocJ can be large, in the first place,
and if so how it scales with the reduced bandwidthh/J.

The timetloc is determined by hopping between resonant
on-site states. It occurs through virtual transitions via non-
resonant sites. We will consider the regime of strong single-
particle on-site localization,K=J/2ha!1. In this case the
problem of many-particle localization for the original fermi-
ons essentially coincides with that for the exact single-
particle excitations.

For a two-particle resonant transition, the minimal num-
ber of the needed virtual steps is given by the parameterû
s14d. Then from Eqs.s12d ands15d the hopping integral for a
resonant transitionsk4,k3d↔ sk1,k2d of the exact single-
particle excitations is

JDVk1k2k3k4
, JDKû

for û@1.
In the case of an energy sequence of the types5d, with a

relatively large energy gaph between neighboring sites, up
to a fairly high number of virtual stepssø5d of interest are
resonancesonly between two-particle on-site states. This ap-
plies to systems with anarbitrary number of particles. Tran-
sitions where three particles change sites emerge in the sec-
ond order in the two-particle Hamiltonians12d ands13d, and
simple counting shows that they involve at least five virtual
steps and are in this case nonresonant for largeh/J.

For resonant two-particle transitionstloc,minfJDKûg−1

strongly depends on the minimal value ofû for all pairs of
resonating initial and final on-site states,û=ûmin. To have a
largetlocJ we must maximizeûmin, i.e., maximize the number
of intermediate virtual transitions.

FIG. 5. sColor onlined Time evolution of the squared amplitude
uAu2 of the on-site stateuFs416,419,420,422,423,424dl in a 12-
site section of the chain betweenn=415 andn=426. The oscillating
line refers to the original sequences5d with a=0.25. The nearly
constant line refers to the modified sequences20d with a=0.25,
a8=0.22. In both casesh/J=20 andD=1.
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In a two-particle transition with oddû=1,3,5,… the on-
site energy changed« is at least,h for a!1. The change of
the particle-particle interaction energy, on the other hand, is
&2JD. It is small compared tod« for h@J andD&1. As a
result, resonant two-particle transitions may occur only for
evenû.

We will modify the sequences5d to eliminate resonances
with û=2 and û=4. In these casesûmin=4 and 6, respec-
tively, leading to the localization timetloc,J−1K−4 and
.J−1K−6.

A. Eliminating second-order many-particle resonances

The potentially resonant transitions withû=2 are

sn,n + 1d ↔ sn,n + 1 ± 2d, sn − 2,n + 1d,

sn,n + 1d ↔ sn − 1,n + 2d. s19d

In the transitions listed in the first line of this equation, one
of the particles in the pair moves by two sites in one or the
other direction, whereas for the transition shown on the sec-
ond line both particles move by one site.

The number of occupied nearest sites in the transitions
s19d can change by one or remain unchanged. Therefore the
maximal change of the interaction energy isJD. Second-
order resonances will be eliminated if the detuning of the
on-site energy differencesd« for the transitionss19d is

d« . JD.

This means that we need a zero-energy gap of an appropriate
width in d«. We note that this is a sufficient, not the neces-
sary, condition; an alternative approach will be discussed
elsewhere.

To create the zero-energy gap, sequences5d has to be
modified. The modification has to eliminate, in the first
place, the “anomalous” broadband resonances for transitions
sn,n+1d↔ sn−1,n+2d with n=6k−1 discussed before. This
will, of course, also eliminate resonances wheren andn+2
are prime numbers. A simple and sufficient modification is a
constant shift of«n for each sixth site,

«n
md = «n + sh/2da8 for n = 6k, s20d

while «n
md=«n for nÞ6k.

For the modified sequences20d, the gap in the on-site
energies for the second-order transitionss19d is d«
,a2h,a8h/2 to leading order ina. A more accurate estimate
is mind« /h<a2−a3,a8 /2. We assume thata2&a8!a, in
which case no new resonances are created for the transitions
s19d as a result of the modifications20d.

It follows from the above estimate that, for an infinite
chain and an arbitrary number of particles, all resonant tran-
sitions with û,4 will be eliminated providedJD /h,a2

−a3,a8 /2. Then the localization time scales withh/J as
tlocJ,s2ha /Jd4D−1, and we obtaintloc,105J−1 already for
h/J=30, a=0.3, a8<0.1–0.2, andD&1.

The effect of the on-site energy modifications20d on lo-
calization of a many-particle state is seen from Fig. 5. This
figure shows the dynamics of the system prepared initially in

the stateuFs416,419,420,422,423,424dl. In the case of the
original sequences5d, this state strongly hybridizes with the
state uFs416,418,421,422,423,424dl for all a of physical
interest,a,0.4. This happens because the difference of on-
site energies«419+«420 and«418+«421 is d«,a418h. The hy-
bridization results in oscillations of the amplitude of the
state, as seen from Fig. 5. For the modified sequences20d the
resonance is eliminated, and the amplitude remains constant
over a time.106J−1. This illustrates the onset of strong lo-
calization. We note that the localization time of this particu-
lar state turns out to be longer for the modified sequences20d
than the worst-case estimate given above.

B. Eliminating fourth-order resonances

The localization time is further dramatically increased if
û=4 resonances are eliminated. The potentially resonant
fourth-order transitions are

sn,n + 1d ↔ sn − 2,n + 3d,

sn,n + 1d ↔ sn + 2,n + 3d,

sn,n + 3d ↔ sn − 1,n + 2d,

sn,n + 3d ↔ sn − 2,n + 1d, s21d

and

sn,n + 1d ↔ sn − 1,n + 4d,

sn,n + 1d ↔ sn − 3,n + 2d,

sn,n + 1d ↔ sn,n + 1 ± 4d, sn ± 4,n + 1d. s22d

In the last line of Eq.s22d we list transitions where one of the
particles in the pair moves by four sites, whereas in all other
transitions both particles move away from their sites.

For the modified sequences20d, the minimal energy
change in the transitionss21d,s22d is mind«,a3h, to leading
order ina. The value ofa8 has to be in such a range that the
modifications20d does not lead to extra resonances between
the on-site energies for the statess21d and s22d. The “dan-
gerous” combinations ind« /h are ua−a8 /2u, u2a−a8 /2u,
ua2−a8 /2u, u2a2−a8 /2u, to leading order ina. We will
choosea,a8 so that all of them exceed mind« /h<a3.

Figure 6 shows how the modifications20d leads to a zero-
energy gap ind«. We plot

d«md = u«k1

md + «k2

md − «k3

md − «k4

mdu

for all transitionss19d, s21d, ands22d in which involved par-
ticles are on sites betweenn=3 andn=100.

The left panel in Fig. 6 shows that, for the initial sequence
s5d, there is practically no gap in the values ofd« at low
energies. The right panel demonstrates that the correction
s20d leads to a zero-energy gap. The gap depends on the
values ofa anda8. For the specific parameter values in Fig.
6 we haved« /hù0.01.

We have checked numerically that the gap persists for a
much longer chain than shown in Fig. 6, withn from 3 to

STRONG MANY-PARTICLE LOCALIZATION AND … PHYSICAL REVIEW A 71, 012317s2005d

012317-9



10 000. This is more than enough to prove that the results
apply to an infinite chain. Indeed, in«n

md the terms~ aq with
different q are repeated periodically with period 2sq+1d.
Therefore a sequence of terms withaq for qø6 is repeated
periodically with period equal to twice the least common
multiple of all q+1ø7, which is 23 s3343537d=840
scf. Appendix Ad. For a=0.25 we havea6<2310−4. The
contribution to«n

md/h of all terms of higher degree ina is
then &2310−4. This means that, to accuracy better than
2310−4, the results on the gap for an infinite chain will
coincide with the results for a chain of 840 sites.

Since the maximum change of the particle-particle inter-
action energy is 2JD, it follows from the discussion above
that, for 2JD&0.01h, all particles will remain localized on
their sites for the timetloc,sJDd−1s2h/Jd6a5 fwe have taken
into account here that the hopping integral for transitions
with û=6 has an extra factora compared toJDK6g. For
h/J=50 anda=0.25 this gives an extremely long localiza-
tion time, tlocJ*1010. However, this estimate requires that
the coupling be weak,D&0.25 for the used parameter val-
ues.

Extension to stronger coupling

The previous result can be easily extended to largerD
without increasingh. To do this we note that the change of
the interaction energy in transitionss21d is actually limited to
JD rather than 2JD, which is the case for the transitionss22d.
Therefore the gap for the transitionss22d should be twice as
large as for the transitionss21d. Two first transitionss22d
have a gap*a2h to leading order ina, but for the last one
mind«=a3h. This latter gap may be increased by choosing a
somewhat different modification of the on-site energy spec-
trum. In contrast to Eq.s20d, we will shift the energy of each
third site,

«̃ n
md = «n − sh/4dbf1 + 3s− 1dkg for n = 3k, s23d

while «̃ n
md=«n for nÞ3k.

Equations23d corresponds to shifting«3k up by bh/2 or
down bybh depending on whetherk is odd or even, respec-
tively. The parameterb should be much larger thana3, to
open a gap,minsa2h,bh/2d in d«̃ md for the transitions
s22d. At the same time, it should be chosen so as to avoid

creating new resonances, similar to the modifications20d.
It is straightforward to show that the modifications23d

leads to a zero-energy gap ind«. For a=0.25,b=0.1725 the
gap exceeds 0.01h for the transitionss19d and s21d with en-
ergy change&JD, whereas for the transitionss22d with en-
ergy change up to 2JD it exceeds 0.02h. This indicates that
the results on the localization timetlocJ*1010 for h/J=50
now apply forD&0.5.

As in the previous section, the extremely large localiza-
tion time characterizes an infinite chain and an arbitrary
number of interacting particles. We note that both modifica-
tions of the original energy sequence, Eqs.s20d ands23d, are
obtained analytically, by finding the leading-order terms in
the energy differences for the transitionss19d, s21d, ands22d.
The specific values of the parametersa, a8, andb are used
just to illustrate the order of magnitude of the localization
time.

VI. STABILITY WITH RESPECT TO ERRORS
IN ON-SITE ENERGIES

In a real system, it will be impossible to implement se-
quence of on-site energiess5d precisely. This is because these
energies contain high powers of the small parametera, while
the precision to which the energies can be set and/or mea-
sured is limited. Therefore it is necessary to study localiza-
tion in the presence of errors in«n and to find how large
these errors can be before they cause delocalization.

We will address this problem by looking at the gap in the
energy differencesd« in the presence of errors in«n

md s20d.
As long as this gap remains larger than 2JD for all resonant
transitions withûø5, the localization lifetimetloc will re-
main the same. The analysis can be immediately extended to
the modified sequences23d as well.

The effect of errors on the gap can be modeled by adding
a random term to on-site energies, i.e., replacing«n

md with

«n
err = «n

md +
1

2
Dhrn. s24d

Here, rn are random numbers uniformly distributed in the
interval s21, 1d, andD characterizes the error amplitude. It
should be compared withas with different exponentssù1.
When D,as it means that the energies«n are well con-
trolled up to terms,as−1, to leading order ina.

From the above arguments it follows that, fora@a8
*a2 the gap should remain unchanged ifD!a4. This is
because, for the modified energies«n

md, the terms,a4 drop
out from the energy differences that we discuss. ForD,a4

the gap should be somewhat reduced. ForD,a3 it should
become significantly smaller than forD=0, and it should
ultimately disappear with increasingD.

Numerical results on the gapd« as a function of logD are
shown in Fig. 7. The gap is calculated for two-particle tran-
sitions withûø5, as in Fig. 6. In the lower panel the gap is
scaled by its value in the absence of errors,

R= min
n

d«n
err/min

n
d«n

md. s25d

The data refer to the samea,a8 as in Fig. 6. They are in full
agreement with the above estimate.

FIG. 6. sColor onlined The low-energy part of the two-particle
energy differencesd«n/h s16d for all transitions withûø5; n is the
smallest site number involved in the transition,n.2. The data refer
to a=0.25. The left panel corresponds to the sequences5d. The right
panel refers to the modified sequences20d with a8=0.22 and shows
the zero-energy gap ind«.
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The results of Fig. 7 demonstrate that, even though the
energy spectrum of the many-body system is dense, errors in
the on-site energies do not destroy localization. For the cho-
sena anda8, one can have errors in«n up to,a4 sin which
caseD,0.4%d, and, nevertheless, the width of the energy
gap will be changed only by,50%.

The observed dependence on the noise strength suggests
that, in the presence of noise, sequences5d and s20d can be
cut so that the terms~as with s.scutoff are disregarded. The
value ofscutoff depends on the noise,scutoff= ln D / ln a. As a
result of the cutoff, the energies«n become polynomials ina
of powerøscutoff. From Eq.s5d, these polynomials are peri-
odic in n, with the period determined by twice the least com-
mon multiple of s2,3, ... ,scutoff+1d. For example, forscutoff

=5 the period inn is 120ssee also Appendix Ad. For such a
long period and short-range hopping, excitations will stay on
their sites for a long time compared toJ−1.

VII. ALTERNATIVE ENERGY SEQUENCES

Neither the original sequence of on-site energiess5d nor
its modified versionss20d and s23d were optimized to maxi-
mize the IPR or the localization lifetime. Therefore it is im-
portant to compare them with other sufficiently simple se-
quences. This will be done in this section for two natural
choices of«n.

A. Period-doubling cascade

A simple way to move sites with close energies far away
from each other is to make the energies form a “period-
doubling cascade”sPDCd. It can be described by a one-

parameter energy sequence; in what followsh is the energy
scale anda is the parameter, as in Eq.s5d.

In the PDC, the on-site energies are first split into two
subbands, with nearest neighbors being in different sub-
bands, but next-nearest neighbors being in the same subband.
The subbands differ in energy bya0h, to leading order ina
fthis is also the case in Eq.s5dg. Each of the subbands is then
further split into two subbands of fourth neighbors. The lead-
ing term in the energy difference of these subbands isa1h.
Each subband is then split again into two subbands of eighth
neighbors. The leading term in their energy difference isa2h.
This period-doubling process is then continued indefinitely,
for an infinite chain.

The expression that describes the on-site energy sequence
for the PDC,«n

PDC, can be conveniently written in terms of
the coefficientsjksnd=0,1 of the expansions of site numbers
n in base 2,

n = o
k=0

Msnd−1

jksnd2k.

Here,Msnd=1+blog2nc is the number of integer digits ofn in
base 2.

We set

«n
PDC=

1

2
hFs− 1dn + o

k=1

Msnd−1

s− 1d jksndakG . s26d

The energies«n
PDC are shown in Fig. 8. It is instructive to

compare this figure with Fig. 1 for the energiess5d. The
overall band structure is similar, but the energy distribution
is much more regular for the PDC. For example, it is seen
from the panels for 2000 sites that the minibands for the
PDC sequence have approximately equal numbers of states,
in contrast to Fig. 1. However, as we show later, the symme-
try of the PDC is actually bad from the viewpoint of many-
particle localization.

Spatial separation of sites with close energies in the PDC
leads to effective localization of single-particle stationary
states. As in the case of sequences5d, the values ofkI1l−1

FIG. 7. sColor onlined Upper panels: all energy differences
d«n

err/h= u«n
err+«n1

err−«n2

err−«n3

erru /h for the transitionss19d, s21d, and
s22d that correspond to the number of intermediate stepsûø5. The
data refer toa=0.25,a8=0.22, and to a specific realization of the
random numbersrn in Eq. s24d. The boxes from left to right corre-
spond to the values of the noise intensityD=as in Eq. s24d with
s=5,4, and 3. Lower panel: the scaled minimal gapR s25d as a
function of the exponents=ln D / ln a averaged over 10 realizations
of noise. Error bars show the standard deviation ofR.

FIG. 8. sColor onlined The on-site energies«n
PDC/h s26d for a

=0.3. The left panel shows the energies for the sitesn
=1,2,… ,50. States with close on-site energies are spatially sepa-
rated. The right panel shows«n

PDC/h for a much longer array,n
=1,… ,2000. The energy spectrum displays a multisubband struc-
ture. Because of the symmetry of sequences26d, the number of
points in each subband is approximately the same.
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are,3310−3 for h/J=20 near the minimum ofkI1l over a,
in agreement with the estimates8d. The minimum ofkI1l is
located ata<0.1.

The situation is different for many-particle localization.
Here the high symmetry of the PDC leads to multiple many-
particle resonances. For example, two-particle statessn,n
+1d and sn−1,n+2d, which are coupled in second order in
J/h, have equal energies whenevern is odd. The states
sn,n+1d andsn−2,n+3d, that are coupled in the fourth order
in J/h, have the same energies whenn=7+4k with integerk.
We note that there were no exactly degenerate states for se-
quences5d, and the portion of two-particle states with close
energies was much smaller. Therefore it is more complicated
to find a correction to sequences26d that would eliminate
many-particle resonances. As a result, unexpectedly, this
symmetric sequence is less convenient from the point of
view of strong localization.

B. Random on-site energies

The case opposite to the highly symmetric sequences26d
is when the on-site energies«n are completely random. It is
well known that such randomness leads to single-particle
localization of stationary states in a 1D chain. However, it
does not lead to strong on-site localization of all states, be-
cause there is always a nonzero probability to have neighbor-
ing sites with energies that differ by less thanJ and therefore
are hybridized. As explained in the Introduction, hybridiza-
tion is even more likely to happen in the case of many-
particle states, because it is more likely to have neighboring
nearly resonant sites.

A simple random sequence of on-site energies has the
form

«n
r = Wrn8, s27d

wherern8 with different n are independent random numbers
uniformly distributed in the intervals0,1d, andW is the band-
width. The results on the inverse participation ratio for se-
quences27d are shown in Fig. 9.

Localization of stationary states for the random sequence
s27d can be characterized by the probability distribution of
the IPRPsId. This distribution was obtained by numerically
diagonalizing the Hamiltonians2d for different realizations
of the on-site energiess27d.

As seen from Fig. 9, both single- and many-particle IPR
distributions display peaks nearI =1 for random on-site en-
ergies. This indicates that, for the wide energy bandwidths
used in the calculations, with large probability the stationary
states of the system are strongly localized. However, the dis-
tributions are broad and slowly decay on the tails. This
means that many on-site states are strongly hybridized, that
is the stationary wave functions spread over several sites.
This is a consequence of multiple resonances. The insets in
Fig. 9 show that, at least for not too largeI, the tails ofPsId
are nonexponential.

The typical width of the distribution decreases with the
increasing bandwidthW of on-site energies. As expected, the
distributions of many-particle IPR’ssthe upper panels in Fig.
9d are much broader and their peaks nearI =1 are much

smaller than for the single-particle IPR’ssthe lower panelsd.
The IPR distributions for the random sequences27d differ

dramatically from the distributions for the regular sequence
s5d. The latter are narrow and concentrate in a small region
of I close toI =1, for the chosen bandwidths, both for the
single- and many-particle states, cf. Figs. 3 and 4. This is
another indication of strong single- and many-particle on-site
localization for sequences5d.

VIII. CONCLUSIONS

In this paper we have explored two aspects of the problem
of strong many-particle localization. One is localization of
stationary states. For one-particle states, it has been studied
analytically. We found that the wave functions decay
quasiexponentially and obtained the bounds on the decay
length. The numerical results on strong localization are in
agreement with the theory.

For many-particle stationary states, the localization has
been analyzed numerically. Such analysis is unavoidably
limited to small chains. Nevertheless, the question about on-
site localization of all stationary states is physically mean-
ingful even for a finite-length chain, because the effective
localization length can be much less than the size of the
chain, and the separation of the many-particle energy levels
can be much less than the hopping integral. This question is
also important for quantum computing.

FIG. 9. sColor onlined The normalized distributions of the IPR
PsId for the random energy sequences27d. The upper and lower
panels refer to the many- and single-particle IPR’s: six excitations
with D=1 in the chain of lengthL=12 and one excitation in the
chain of L=300, with 2000 and 80 realizations, respectively. The
left and right panels refer to the overall bandwidth of the on-site
energy spectrumW/J=13 and 26. The narrow columns atI =1
showed with dotted lines refer to sequences5d, with h/J=10 and 20
for the left and right panels, respectively. The values ofa in Eq. s5d
were chosen so as to have the same bandwidths of on-site energies
as the corresponding random sequences: in the lower panelsa
<sW−hd /W<0.231sas in an infinite chaind, whereas in the upper
panelsa=0.274 to allow for a comparatively small number of sites.
The insets show lnP vs I.
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For a 12-site chain we have found that, for sequences20d
with the ratio of the single-site energy bandwidth to the hop-
ping integralh/J=20 and witha=0.25,a8=0.22, the inverse
participation ratio differs from its value for fully localized
states by,2%. This deviation is due to a small nonresonant
admixture of the wave functions of neighboring sites. The
typical separation of the energy levels is&0.2J in this case.

A different approach is based on studying the lifetime of
on-site states. It is sufficient to have a localization lifetime
tloc that exceeds the coherence time of the excitations. We
have shown that largetlocJ can be achieved in a chain of an
arbitrary length and with an arbitrary number of excitations.
For the explicit construction of on-site energiess20d, reso-
nant transitions that lead to delocalization require at least
four virtual nonresonant steps, and thentlocJ,105 already
for the decay length of the single-particle transition ampli-
tude,0.35.

The results on localization can be tested with artificial
condensed-matter structures, as it was done in the studies of
the effects of quasiperiodicityf20g ssee also Refs.f18,19gd. A
discussion of experimental implementations is beyond the
scope of this paper. Good examples are the proposed models
of a quantum computer; we note, however, that studying lo-
calization does not require operations on qubits, and there-
fore does not require a fully operational quantum computer.

In terms of quantum computing, an advantageous feature
of sequences5d and its modifications20d is that one radiation
frequency can be used to resonantly excite different qubits.
As explained in Sec. II, this can be achieved by selectively
tuning targeted qubits to this frequency. A selective two-
qubit gate can be conveniently done using a Landau-Zener
excitation swap between neighboring qubits as their frequen-
cies are varied so that they cross each otherf16g.

Many-particle localization is a prerequisite for operation
of a quantum memory device. In many cases it is also a
prerequisite for a projective measurement. This happens
when the measured quantity is the probability for each qubit
to be in the excited state. Often a measurement is much
slower than the timeJ−1 of resonant hopping to a nearest site;
then tloc should exceed the measurement time. In our ap-
proach, localization does not require refocusingf4g, which is
not always easy to implement and which is sometimes in-
compatible with slow measurement. It also does not require
turning the interaction off for some time, as in the approach
f11g.

The presented scheme can be extended to systems with
long-range coupling. For several proposed QC’s the interqu-
bit coupling is dipolar for a few near neighbors and becomes
quadrupolar or falls down even faster for remote neighbors
f5,6,9g. Long-range interaction makes transitions over sev-
eral sites more probable. We leave the analysis of the many-
particle problem for a separate paper. Here we note that, for
sequences23d and for single-particle transitions, not only
hopping over two or four sites is nonresonant and does not
lead to delocalization, but even hopping over 6, 8, or 10 sites
is nonresonant as well. For all these transitions, the energy
difference is at least,a2h or ,bh/4 ffor sites separated by
an odd number of positions, the energy difference is always
large,,hg.

Our results provide proof of principle of strong on-site
localization. We have not addressed the question of optimi-

zation of the energy sequence, so that maximal localization
lifetime could be obtained for a minimal bandwidth of on-
site energies. For a finite-length chain the optimization prob-
lem can be approached using Eq.s5d as an initial approxima-
tion and adjusting energies of several specific sites.

In conclusion, we have proposed a sequence of on-site
energiess5d and its modificationss20d ands23d that results in
strong on-site localization of all stationary many-particle
states in chains with up to 12 sites. It also leads to a very
long lifetime of all on-site many-particle states in aninfinite
chain. The results apply to interacting spins or fermions. The
sequences5d is constructed so as to eliminate resonances
between the states to a high order in the hopping integral.
When second- and fourth-order resonances are eliminated,
the localization lifetime scales as the fourth and sixth power
of the ratio of the single-particle energy bandwidth to the
hopping integral, respectively. The proposed energy se-
quence is stable with respect to errors. The results apply to
scalable quantum computers with perpetually coupled qubits.
They show that, by tuning qubit energies, excitations can be
prevented from delocalizing between gate operations.
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APPENDIX A: EXPONENTIAL DECAY OF THE
TRANSITION AMPLITUDE

In this Appendix we give a rigorous proof of the quasiex-
ponential decay of the amplitudeKnsmd fEq. s6dg of the tran-
sition from siten to site n+m and establish bounds on the
decay length. We show that, for sequences5d, in the limit of
small a and form→`,

a−nLm ø Knsmds2h/Jdm ø a−nUm. sA1d

We find thatnLù0.89 andnUø1.19.
In order to simplify notations we introduce dimensionless

energies«nsad=2«n/h. From Eq.s5d,

«nsad = s− 1dn − o
k=2

n+1

s− 1dbn/kcak−1. sA2d

We also setJ/2h=1. ThenKnsmd=1/uQnsmdu, where

Qnsmd = p
s=1

m

f«n+ssad − «nsadg. sA3d

From Eq.sA2d, Qnsmd is a polynomial ina.
For a polynomialPsad we define byDlowPsad the multi-

plicity of the root a=0, i.e., the lowest power ofa in the
polynomial. The exponentn that characterizes the decay of
Knsmd fEq. s7dg is given byn=DlowQnsmd /m for m→`.

The data of the numerical experiments presented in Fig. 2
show that 0.894,DlowQnsmd /m,1.12 independent ofn for
largem.
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To obtain an analytical estimate we rewrite Eq.sA3d as

DlowQnsmd = o
s=1

m

Dlowf«n+ssad − «nsadg. sA4d

Each termDlowf«n+ssad−«nsadg is an integer between 0 and
n+1.

In order to find bounds forDlowQnsmd we will estimate
how many termsDlowf«n+ssad−«nsadg exceed a giveni for
0ø i øn+1. For eachi we have a subsetSnmsid of the values
s that satisfy this condition,

Snmsid = hsu1 ø sø m, Dlowf«n+ssad − «nsadg . ij.

sA5d

The number of elements inSnmsid is denoted byhnmsid. This
is the number of polynomials«n+ssad−«nsad whose expan-
sion ina starts withak with k. i. In what follows for brevity
we drop the subscriptsn,m and useSsid and hsid for Snmsid
andhnmsid.

It follows from the definition that

hs0d ù hs1d ù hs2d ù ¯ ù hsnd.

By construction

DlowQnsmd = o
i=1

n

ifhsi − 1d − hsidg + sn + 1dhsnd = o
i=0

n

hsid.

sA6d

From Eq.sA6d we see that the upper and lower bounds on
DlowQnsmd are given by the sums of the upper and lower
bounds ofhsid.

In what follows we will use the standard notations: lim inf
slim supd means the lowersupperd limit of a sequence,
LCMhi1,… , i rj is the least common multiple of integers
i1,… , i r, and GCDhi1,… , i rj is the greatest common divisor
of i1,… , i r. We will also denote byf«sadgk the coefficient of
ak in the polynomial«sad, i.e.,

«nsad = o
k=0

n

f«nsadgka
k. sA7d

1. Lower bound

In this section we obtain the lower bound ofDlowQnsmd.
The main statement is the following lemma.

Lemma A.1.The lower bound has the form

lim inf
m→`

DlowQnsmd
m

ù 0.89.

Proof. Consider first the constant termf«nsadg0 in Eq.
sA7d. By definition, f«nsadg0=f«n+2sadg0, and

Dlowf«n+ssad − «nsadg = H0 for odd s,

ù1 for evens.

Hence we immediately obtain a simple lower bound
DlowQnsmdù bm/2c for large m sin what follows we always
imply m→`d.

We computehs0d, hs1d, etc., using that the coefficients
f«nsadgi are periodic inn with period 2si +1d. Indeed, from
Eq. sA2d,

f«nsadgi = s− 1dbn/si+1dc = s− 1dbfn+2si+1dg/si+1dc = f«n+2si+1dsadgi .

Therefore the sets of coefficients hf«nsadg0,
f«nsadg1,… ,f«nsadgij are also periodic inn, but with the
period Ti =2LCMh2,3,… , i +1j. This is illustrated by the
table

«1sad = − 1 −a,

«2sad = 1 +a − a2,

«3sad = − 1 +a + a2 − a3,

«4sad = 1 −a + a2 + a3 − a4,

«5sad = − 1 −a + a2 + a3 + a4 − a5,

«6sad = 1 +a − a2 + a3 + a4 + a5 − a6,

«7sad = − 1 +a − a2 + a3 + a4 + a5 + a6 − a7.

In order to estimatehsid we need two technical state-
ments.

Lemma A.2.Let a0,k,T be any integers such that 2k does
not divideT. Consider any 2k/GCDhT,2kj consecutive ele-
ments of an arithmetic progressionaj =a0+ jT, and setbj
= baj /kc mod 2.

Then, at leastbk/GCDhT,2kjc integersbj are equal to 0,
and at least the same number ofbj are equal to1.

Proof. Since 2k does not divideT, sequenceaj mod 2k is
cyclic in the intervalf0,2k−1g. This sequence contains ex-
actly 2k/GCDhT,2kj distinct elements. On average, half of
them sat leastbp/GCDhT,2kjcd are less thanp, and another
half sthe same numberd are larger than or equal top. This
means that there are at leastbk/GCDhT,2kjc integersbj that
are equal to 0 and at least the same number ofbj that are
equal to 1. Q.E.D.

The next statement is a corollary of lemma A.2 and we
skip the proof.

Corollary A.3.Let 2k does not divideT. Considerp con-
secutive elements of the arithmetic progressionaj =a0+ jT
and setbj = baj /kc mod 2.

Then at leastbk/GCDhT,2kjc3 bp GCDhT,2kj /2kc inte-
gersbj are equal to 0, and at least the same number ofbj are
equal to 1.

We are now in a position to finish the proof of Lemma
A.1. We notice first that, forn=aj in the expressionsA2d, the
coefficientbj for givenk determines the sign of the termak−1

in «nsad, that iss−1dbj =f«nsadgk−1. The numberhsid gives the
probability that, for allkø i, the polynomial«n+ssad has the
samebj as«nsad.

We will now estimatehsid with i =1,… ,4 and start with
hs1d. We note thats[Ss1d if and only if s[Ss0d and
f«n+sg1=f«ng1. The second condition means thatbs/2c
mod 2=0. By constructionsA5d, for m→` the setSs0d is
formed by all numberss of the same parity asn. This means
that Ss0d is an arithmetic progression with periodT0=2. We
take p consecutive elementss1,…sp of it and use Corollary
A.3 with k=2, because we are interested in the coefficients
f«n+si

g1=s−1dbsn+sid/2c in Eq. sA2d. By Corollary A.3, sinceT0
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is not divisible by 2k, for at least bp/2c subscriptssi the
coefficientsf«n+si

sadg1=1, andf«n+si
sadg1=−1 for at least the

same amount of subscriptssi, i.e., approximately half of the
coefficientsf«n+si

sadg1 coincide with f«nsadg1. Hencehs1d
ùhs0d /2 asm→`. Substitutinghs0d=m/2 we obtainhs1d
=m/4.

Similar arguments can be applied to estimatehs2d. This
requires finding a portion of the setSs1d which formsSs2d.
The setSs1d is a nonempty disjoint union of arithmetic pro-
gressions with periodT1=4. We will apply Corollary A.3
with k=3 to each of these progressions and usep=hs1d. This
gives hs2dù b3/2c bs1/3dsm/4dc= bm/12c, or hs2d /mù1/12
for m→`.

In the same way we obtainhs3d /mù1/24 andhs4d /m
ù1/60 asm→`. Therefore

DlowQnsmd/mù
1

2
+

1

4
+

1

12
+

1

24
+

1

60
ù 0.89,

which finishes the proof of the lower bound.

2. Upper bound

We start with the proof of the following rough estimate:
Lemma A.4.An upper bound has the form

lim sup
n→`

DlowQnsmd
m

ø
22

15
, 1.47.

Proof. Taking in the right-hand side of Eq.sA6d the sum
from 0 to ` we obtain

DlowQnsmd ø o
i=0

`

hsid. sA8d

To find an upper bound onhsid we will use the following
consequence of Lemma A.2:

Corollary A.5. Let 2k does not divideT. Considerp con-
secutive elements of the arithmetic progressionaj =a0+ jT
and setbj = baj /kc mod 2.

Then at most,

S 2k

GCDhT,2kj
− b k

GCDhT,2kj cDSbpGCDhT,2kj
2k

c + 1D ,

integersbj are equal to 0, and at most the same number ofbj
are equal to 1.

Using the same arguments as before, by Corollary A.5 we
obtain form→` the following upper bounds forhsid:

hs0d ø m/2,

hs1d ø m/4,

hs2d ø m/6,

hs3d ø m/12,

hs4d ø m/20.

sA9d

Recall thaths4dùhs5dùhs6dùhs7d. Similarly, for qù2
we have

hs2qd ù hs2q + 1d ù ¯hs2q+1 − 1d.

Therefore we can replace the termshs2q+1d ,… ,hs2q+1−1d
in the right-hand side of Eq.sA8d by hs2qd, which leads to
the following upper bound forDlowQnsmd:

DlowQnsmd ø hs0d + hs1d + hs2d + hs3d + o
q=2

`

2qhs2qd.

sA10d

This reduces the calculation to finding upper bounds on
hs2qd.

We will now obtain a recurrence relation forhs2qd. First
we notice that, forK+1 being a prime number, we have from
Corollary A.5

hsK + 1d ø
K + 2

2sK + 1d
hsKd. sA11d

For all primes K+1ù7 we have sK+2d /2sK+1dø4/7.
ThereforehsK+1dø

4
7hsKd for Kù6. We also note that, for

all positive integralq,

hs2qd ø
1

2
hs2q − 1d.

Now we recall the distribution law for primes in the in-
tervals. The following statement is called Bertrand’s postu-
late sor Tchebychev’ theoremd ssee Ref.f22gd:

Theorem A.6. There is at least one prime betweenM and
2M for any positive integerM. If M .3, there is always at
least one prime betweenM and 2M −2.

In particular, there is at least one prime between 2q and
2q+1−1 for any positive integerqù2. With this statement,
taking into account the previous estimates, we obtain

hs2q+2d ø S1

2

4

7
Dq m

20

for all positive integralq, or

hs2q+2d ø S2

7
Dq m

20
. sA12d

Substituting inequalitiessA9d and sA12d into Eq. sA10d,
we obtain

DlowQnsmd ø
m

2
+

m

4
+

m

6
+

m

12
+

m

20
F22 + 232

7
+ 24S2

7
D2

+ ¯ + 2kS2

7
Dk−2

+ ¯G
= mF1 +

22

20oj=0

` S4

7
D jG for m→ `.

This gives

DlowQnsmd ø
22

15
m, 1.47m. sA13d

The last inequality is an explicit asymptotic upper bound.
Q.E.D.
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We now provide a sharper upper bound. We will use the
same method, but instead of Tchebyshev’ theorem we will
apply Erdös theorem.

Lemma A.7 (sharper bound):

lim sup
m→`

DlowQnsmd
m

ø 1.19.

Proof. Following the same pattern as in Lemma A.4 above
we extend the explicit list of inequalitiessA9d.

As m→`,

hs5d/mø 1/20,

hs6d/mø 1/35,

hs7d/mø 1/70,

hs8d/mø 1/126,

hs9d/mø 1/126,

hs10d/mø 1/231,

hs11d/mø 1/231,

hs12d/mø 1/429,

hs13d/mø 1/429,

hs14d/mø 1/429,

hs15d/mø 1/858,

hs16d/mø 3/4862.

sA14d

To obtain a sharper upper bound we recall the following
result by Erdösf23g.

Theorem A.8sErdösd. There exist at least one prime of the
form 4k+1 and at least one prime of the form 4k+3 between
M and 2M for all m.6.

For all primes that exceed 16 we have in Eq.sA11d
sK+2d /2sK+1d,7/13. Therefore, by reproducing the argu-
ments that led to the inequalitysA12d, but using now the
relation sA11d twice based on the theorem A.8, we obtain

hs2q+4d ø F1

2
S 7

13
D2Gq

hs16d. sA15d

Substituting inequalitiessA9d, sA14d, andsA15d into Eq.
sA10d fwhere now the terms up tohs15d are taken into ac-
count explicitly, and the sum runs fromq=4g we obtain

lim sup
m→`

DlowQn,m

m
ø

1

2
+

1

4
+

1

6
+

1

12
+

2

20
+

1

35
+

1

70
+

2

126

+
2

231
+

3

429
+

1

858

+
3 3 16

4862
F1 +S 7

13
D2

+ S 7

13
D4

+ ¯G .

Evaluating the right-hand side, we obtain

lim sup
m→`

DlowQnsmd
m

, 1.19. sA16d

Q.E.D.

APPENDIX B: INTERRELATION BETWEEN THE
ENERGY SPECTRUM PARAMETERS a AND J /h

FOR FIXED IPR

In this Appendix we outline another way of looking at the
effect of the band structure of sequences5d on localization. It
applies to single-particle stationary states and is based on
varying h/J and finding such energy spectrum parametera
that would keep the IPR constant, i.e.,

kI1l ; kI1sa,J/hdl = const. sB1d

The average IPR is large,<L /3, when the spread of the
on-site energiesah is small compared to the hopping-
induced bandwidthJ2/2h of the bands at ±h/2. Whenah
becomes comparable toJ2/h, a part of the states become
localized with localization length smaller than the chain size,
but still there remain states of size,L. For such statesI1l

~L. Their portion depends onah/ sJ2/hd. Therefore one may
expect that, for largekI1l and for a given chain length,a
should vary withJ/h as sJ/hd2.

Another scaling region ofasJ/hd as given by Eq.sB1d
may be expected to emerge fora close to the threshold
value,ath&a!1, but far away from the strong-localization
range ofa, wherekI1l−1,J2/h2 fcf. Eq. s8dg.

For a close toath, the wave functions have comparatively
small-amplitude tails that spread over a long distance and are
nearly exponential at large distances, as given by Eq.s7d. If
the decay were purely exponential, i.e., the tail of the wave
function centered on siten were of the formcn+m=Kumucn,
we would havekI1l−1<4uKu2 for K<J/2ah!1. From Eq.
sB1d, this condition gives scalinga~J/h. The nonexponen-
tial decay of the wave functions at small to moderate dis-
tancessnumerically, forumu,4–8d leads to deviations from
this simple scaling.

Numerical results on the dependence ofa on J/h as given
by Eq. sB1d are shown in Fig. 10. The data forkI1l,L /3
show the expected scalinga~ sJ/hd2. On the other hand, in
the rangekI1l−1<0.1–1 the value ofa scales asJ/h. This
scaling applies only fora.ath, i.e., for ah/J.1/2. The
value ofah/J as given by Eq.sB1d increases with decreasing
kI1l.

We note that, for largeh/J,100 and smallkI1l−1, the
IPR kI1l as a function ofa displays small oscillations. This
leads to multivaluedness of the rootsa of the equationkI1l
=const. The roots are numerically very close to each other.
We showed the multivaluedness schematically by plottinga
vs h/J in Fig. 10 with jagged lines.

In the intermediate range ofkI1l, the function asJ/hd
crosses over from one type of the limiting behavior to the
other. The numerical data does not seem to suggest thatkI1l
has a universal scaling form of a function ofan / sJ/hd for all
a, J/h!1.

APPENDIX C: NARROW RESONANCES OF THE
MANY-PARTICLE IPR AS FUNCTION OF THE

PARAMETER a

In this appendix we discuss the positions and widths of
the narrow peaks of the IPR seen in Fig. 4.
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As we increasea starting froma=0, pronounced peaks of
kI6l appear for the difference in the combination two-particle
on-site energiesd«= u«k1

+«k2
−«k3

−«k4
fEq. s16dg equal to

d« < sah < JD

with s=1,2. They are due to resonant hybridization of pairs
on neighboring sitessn,n+1d with dissociated pairs located
on sitessn,n+3d for s=1, andsn−1,n+2d with evenn for
s=2, for example. Such hybridization corresponds to two
single-particle steps by one site, i.e.,û=2.

A specific example for the studied chain withD=1, h/J
=20, anda=0.05 is the resonance between the on-site states
uFs3,4,6,7,8,9dl, uFs4,5,6,7,8,9dl, uFs3,4,6,7,8,11dl,
and uFs4,5,6,7,8,11dl swe remind that the arguments ofF
indicate the positions of the excitations; we have six excita-
tions, and the available sites are 1,2,…,12d. All these states
can be obtained from each other by moving one excitation by
two positions. For example, in the first pair the excitation
goes from site 3, where it has one nearest neighbor, to site 5,
where it has two neighbors.

The width of the above peaksda can be estimated from
the condition that the frequency detuningusah±JDu is of
order of the effective hopping integralJDVk1k2k3k4

. For s=1
fan sn,n+1d↔ sn,n+3d-type transitiong the hopping integral
is ,J3D /ah2 from Eqs.s12d and s13d. This gives the width

da , sJ/hd2.

The positions of the peaksa<JD /sh and their widths are in
agreement with the data in both upper and lower main panels
of Fig. 4.

For largera, resonances with respect toa occur when

samh < MJD

with integers, m, M, andmù2, M =1,2. They may happen,
for example, between pairssn,n+1d and sn−1,n+2d with
odd n such thatnÞ3k−1, in which casem=2 andû=2. A
specific example for our chain is the resonance between the
on-site statesuFs1,3,4,6,9,11dl and uFs1,2,5,6,9,11dl
for D=1, h/J=20, anda=0.246. Here the excitations on
sitess3,4d move to sitess2,5d, anda2h,JD sin fact, higher-
order terms ina are essential for fine tuning the states into
resonanced. In other cases resonances withmù2 require
more intermediate virtual steps, withûù4.

The mù2 resonances are extremely narrow forath!a
!1, as seen in the insets in Fig. 4. For example, form=2
their widths are

da & sJ/hd5/2D1/2 for û = 2,

da & J3/h3D for û = 4.

In these estimates we used that, from Eqs.s5d and s13d
uVn−1 n+2 n n+1u&J2/h2 for the û=2 transitionsn,n+1d↔ sn
−1,n+2d. For them=2 and û=4 transitions, on the other
hand,uVk1k2k3k4

u&J4/a3h4 ffor example, this estimate applies
to a transitionsn,n+1d↔ sn,n+5dg. We note that, from the
conditionath!a and the resonance conditionsa2h=MJD, it
follows thatD@J/h, which guarantees the smallness of the
peak widths.

Each high-order resonance gives rise to a narrow band of
resonanta values. All of them refer to a resonant transition
between the same sites. However, the energy difference of
these sites is slightly different depending on the occupation
of remote sites, for example, next-nearest neighbors. In this
latter case, from Eqs.s12d and s13d, the corresponding shift
of a is ~sJ/hd5/2D1/2.

A specific example for the studied chain is provided by
the resonances between two pairs of on-site states,
uFs2,3,6,7,8,12dl and uFs2,3,6,8,11,12dl, on the one
hand, anduFs5,6,7,8,9,12dl and uFs5,6,8,9,11,12dl, on
the other hand. In both cases the resonant transition is fer-
mion hopping from site 7 to site 11. Both resonances occur
for D=1, h/J=20, but the first corresponds toa<0.2778,
whereas the second corresponds toa<0.2782. The differ-
ence ina comes primarily from the different occupation of
the next-nearest neighbors of sites 7 and 11.

The most pronounced peaks in Fig. 4 correspond to com-
paratively smallûø4. However, there are resonances for
higher û as well. The resonating energies have to be ex-
tremely close to each other for such states to be hybridized.
The corresponding peaks are very narrow, and very high pre-
cision is needed to find them numericallyssometimes the
hybridization appears to be an artifact of not sufficiently pre-
cise calculationsd.

FIG. 10. sColor onlined. The dependence ofa on h/J as given
by the conditionkI1l=const for differentkI1l in the chain withL
=300. The lines in the lower panel listed from down upwardsthin
solid, dotted, dashed, long-dashed, and dot-dashedd correspond to
kI1l=95, 50, 10, 2, and 1.2, respectively. The lines in the upper
panel listed from down upwardsslong-dashed, dotted, dashed, and
dot-dashedd correspond to comparatively smallkI1l=2, 1.6, 1.4, and
1.2, respectively. The bold linesa=J2/16h2 anda=J/h display the
asymptotic behavior ofa for large and smallkI1l; the line a
=J/2h corresponds toa=ath.
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As mentioned above, in the region 0.2&a&0.4 the posi-
tions of the IPR peaks are determined not only by the
leading-order terms ina, but also by higher-order terms.
Therefore there are several resonant bands for eachs,m,M as
given by the conditionsamh<MJD. This explains why there
are several bands in the insets in Fig. 4. These bands are well

separated for sufficiently largeh/J and not too largeD. On
the other hand, forh/J=10 andD=3 the bands of resonances
are broadened and overlap with each other. Whena is not
very small there emerge also narrow resonances whered«
!J. They are responsible for some of the peaks in the insets
of Fig. 4.
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