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Strong many-particle localization and quantum computing with perpetually coupled qubits
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We demonstrate the onset of strong on-site localization in a many-particle system, with effective localization
length smaller than the intersite distance. The localization is obtained by constructing a bounded one-parameter
sequence of on-site energies that eliminates resonant hopping between both nearest and remote sites. This
sequence leads to quasiexponential decay of the single-particle transition amplitude. It also leads to on-site
localization of stationary many-particle states in a finite-length chain. Forfenite many-particle system, we
study the time during whichll states remain on-site localized. We show that, for any number of particles, this
time scales as a high power of the ratio of the bandwidth of on-site energies to the hopping integral. The
proposed energy sequence is robust with respect to small errors. The formulation applies to fermions as well as
perpetually coupled qubits. The results show viability of quantum computing with time-independent qubit
coupling.
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I. INTRODUCTION In this paper we study on-site many-particle localization.
It implies that each particléor excitation is nearly com-
Disorder-induced localization has been one of the centrabletely confined to one site, i.e., the effective localization
problems of condensed-matter physics, starting with théength is small compared to the intersite distance. This is a
Anderson papefl]. It has also attracted much attention in stronger condition than just exponential decay of the wave
other physical contexts, quantum chaos being an exampleinction, and it is this condition that must be met in a QC.
[2,3]. Recent interest in quantum computing has further em- A well-known argument suggests that it is hard to strongly
phasized its importance and allowed looking at it from alocalize a disordered many-particle system where the on-site
somewhat different perspective. energies are random and uniformly distributed within a
In many proposed physical implementations of a quantunfinite-width band[15]. Indeed, consider a state where par-
computer(QC) the qubit-qubit interaction is not turned off ticles are fully localized on their sites, which we call an
[4-10]. The interaction may lead to excitation hopping from On-Site statea quantum register For short-range hopping,

one qubit to another. However, control and measuremern N-particle on-site state is directly coupled N other

should be presumably performed on individual qubits. ThereOn-Site states. With probabilityN one of them will be in

fore it is essential to prevent excitation transfer between ope>onance with the initial state. For laijehis leads to state

S . ) X . i i
erations. This makes localization a prerequisite for quanturﬁ'yb”d'zat'on over time~J™, whereJ is the intersite hop

computing with perpetually coupled qubits. Several ap—plng integral(we seth=1).

hes t A " ith wall | In a QC, the quantity is determined by the qubit-qubit
proaches 1o quantum computing with perpetually coup eqnteraction and usually characterizes the rate of two-qubit
gubits have been proposed recerjtlyt,12].

o ) . . operations. At the same time, the qubit energies are not ran-
In a multiexcitation system like a system of interacting

X ; . : = dom and often can be individually controlled. This makes
electrons or a QC, intersitéor interqubi} transitions are a s agvantageous for studying many-particle localization,
many-body effect, they involve several excitations. In SPite,< it becomes possible to construct a “disordered” energy
of the broad interest in the problem of many-particle Iocal—Sequence site by site.
ization[13], only a limited number of analytical results has

! . I Localization can be considered from two points of view.
been obtainedl14]. Numerical results are also limited: clas- One is based on the analysissi&tionarystates of a many-
sical computers do not allow studying a large number of

. . . ) article system. The other is based on studying the system
particles, because the many-particle Hilbert space is exp

. . namics. Here, of interest is the time it takes for an on-site
nentially large. On the other hand, QC’s with perpetuallysy

led aubi id i for i ating | tate to hybridize with another resonant state and thus be-
coupled qubits provide a unique means for investigating 10¢,me delocalized. We call this time the localization lifetime
calization in a controllable setting.

tIoc-

In a QC all states have a finite coherence time due to
coupling to the environment and external noise. For success-
*Email address: dykman@pa.msu.edu ful QC operation, delocalization should not occur during this
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time. For most of the proposed models of a QC, the coherergies affect localization and show that our sequence is stable
ence time iss10°J"1. Therefore it is sufficient to have the with respect to small errors. We also demonstrate that, in
localization lifetime=10°J"%. Such lifetime-based formula- terms of strong on-site localization, even for a small chain
tion of the many-particle localization problem is relevant tothe constructed energy sequence is much better than fully
condensed-matter systems as well, because of finite decajindom on-site energies with the same overall bandwidth.
and decoherence times of quasiparticles for nonzero tem- The paper is organized as follows. In Sec. Il we discuss
peratures. ) _the Hamiltonian of coupled qubits and introduce a physically
_Here we construct a bounded sequence of on-site energigsotivated one-parameter sequence of on-site energies. In
in a one-dimensionalD) chain and show that it leads 10 @ ggc || one-particle localization of stationary states is stud-

long localization lifetime ofall many-particle states in an ied and quasiexponential decay of the transition amplitude is

infini_te ISySt?.m' We ]E)rovide evi(_jei‘nce t_hat it also Ieads todemonstrated A rigorous proof of such decay is provided
on-site localization of many-particle stationary states in sec- : . . . )
tions of the chain with length up to 12 sites, even where thé'de the decay length is obtained in Appendix A. The relevant

energy-level separation is much less tlam a sense, this is §callng properties are a”?"yzed N Appendix B. In Sec. IV the
an explicit construction of an efficiently localizing site dis- inverse part|C|_pat|0n r‘f’dePR) IS calpulated for many-
order. particle states in a section of_ a 1D chain. Over a broad range

Of significant interest is the dependence of the localiza®f the parameter of the on-site energy sequence the IPR can
tion lifetime on the bandwidth of on-site energies. In a QC,Peé made very close to 1, which is a signature of on-site
the on-site energies are interlevel distances of the qubitdocalization, but it also displays sharp resonant peaks as a
Even though they can often be controlled, the qubit tuningfunction of the sequence parameter. These peaks are dis-
range is limited. A smaller bandwidth leads to a higher speegussed in Appendix C. The lifetime of localized states is
of quantum gate operations, particularly if they involve considered in Sec. V. A minor modification of the energy
changing qubit energielsl6]. Of course, condensed-matter sequence allows one to open a gap in the spectrum of com-
systems always have bounded bandwidth as well. bined many-excitation transitions up to fifth order, which is

In condensed-matter physics, localization by “controlled”sufficient for extremely long localization lifetime. The role
disorder has been studied in depth and many interesting ref errors in the on-site energies is studied, and robustness of
sults have been obtained in the context of incommensuratge results with respect to these errors is demonstrated in
periodic potentials, see Ref$17-19 and papers cited Sec. VI. In Sec. VIl a highly symmetric period-doubling se-
therein. In contrast to this work, we are interested in strongyuence of on-site energies is analyzed along with a sequence
on-site localization, and not only for single-, but in the first of yncorrelated on-site energies. Both are by far inferior, in
place, for many-particle states. The “potential” that we pro-grmg of localization, to the sequence discussed in Secs. II-V.
pose is not quasiperiodic, and our analytical techniques, iNgaction VI contains concluding remarks.
cluding the time-dependent formulation for many-body sys-
tems, are different from the methods developed for
quasiperiodic potentials.

To strongly localize one particle, the difference between
excitation energies on neighboring sites should be much The problem of localization can be formulated in a similar
larger than the hopping integral. However, even for way for one-dimensional systems of interacting fermions and
nearest-neighbor coupling, the energies of remote sitegpins. The formulation also applies to qubits during the time
should also differ. The further away the sites are, the smallefyhen no gate operations and measurements are performed,
their energy difference can be, because the effective hopping | there are no time-dependent fields that would modulate
integral is determined by virtual transitions via nonresonant,e qubits(as is the case for a simple quantum memory de-
states and rapidly decays with the distance. This idea i§ice, for examplg
implemented in our energy sequence. As a consequence, the The relation between spin and qubit systems is simple:
single-particle transition amplitude displays nearly exponengpits are two-level systems, and therefore can be described
tial decay with distance. We show that the decay exponenty s-1/2 spins in a magnetic field. Then the excitation en-
weakly depends on site and find rigorous bounds on 't%rgy of a qubit becomes the Zeeman energy of a spin,
value. ) o whereas the qubit-qubit interaction becomes the exchange

For many-particle localization one has to suppress noknin coupling. Note that the physical interaction itself may
only single-particle, but also combined resonances, whiclye of 4 totally different nature, e.g., electric dipolar or qua-
involve simultaneous transitions of several interacting eXCigrupolar.
tations. This is a formiqlable problem_. The role_of the dis-  gqf many proposed realizations of QC’s the qubit excita-
tance between resonating states, which determines the hogsp, energies are large compared to the interaction. Then the

ping integral, is played by the “order” of the transition, i.e., qybit-qubit interaction is described by the spin-coupling
number x of intermediate nonresonant configurations thatyamiitonian of the form

differ by the displacement of one particle by one site. To
obtain a desired lifetime of a localized state it is sufficient to 10w 2
eliminate resonances up to a certain order. We explicitly HS_E% [T &S+ SiS) + TSl @)
show how to do it up to fifth order, for our sequence. ’

In a real system it will be possible to tune the energiesHere, n, m enumerate sites in the 1D spin chainijs the
only with certain precision. We study how errors in the en-direction of the effective magnetic field, adf are the in-

Il. MODEL
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teraction parametergt=x,y,2). In mapping the qubit inter- Iw—1<<1, ON\. (4)
action on the exchange coupling we kept only those term
which, in the Heisenberg representation, do not oscillate
qubit transition frequencies. This is why we have set () =CIS |

Jx =3 In the case of qubits, the termSiSi+S.S, NN T

=(1/2(S;S,+S.S,) lead to excitation transfer between the _

qubits n, m provided their energies are close. We note thaNd Iy max=max Iy, are close to 1. HereCy is the total
the spin interaction of the forr(ll) conserves the number of humber of N-particle states; for anL-site chain Cy

this case both the average IPR

excitations in the system. :LI/N|(L—N)| Smallness OKIN>_1 is a weaker condition,
It is convenient to map the spin system onto a system oft is an indication of strong localization of most of the states.
spinless fermions via the Jordan-Wigner transformati. In the opposite limit of extended states we haig)
For nearest-neighbor coupling, the Hamiltonian of the fer-~Cy>1. A simple example is the case of one particle in an
mion system becomes open chain(a chain with free boundarigsvith &,=const.
The wave functions of the particle are sinusoidal, and for an
H=Hq+H;, L-site chain(l;)=2(L+1)/3. For e,=const, the mean IPR
sharply increases with the number of particls for N
<L/2.

1
Ho= 2 8nalan + E\]E (a;rnaml + al+1an)y
n n
On-site energy sequence

H;=JAY a'al. a...a,. (2) Localization requires that the on-site energigde tuned
n away from each other. The strategy for choosing the se-
" ) ) o quence ofge, while keeping the overall bandwidth of the
Here, a,a, are the fermion creation and annihilation opera-energy spectrum bounded can be as follows. First, we sepa-
tors; the presence of a fermion on siteorresponds to the ate the energies of nearest neighbors by splittinato two
nth spin being excited. The parametdrJi",,, is the fer-  sypbands, with even and odd respectively. The distande
mion hopping integral. The parametd\=J7 ., gives the between the subbands should significantly exceed the hop-
interaction energy of fermions on neighboring sites. If theping integrald. Then each subband is further split into two
coupling of the underlying spins is isotropic, we havel.  subbands in order to detune next-nearest neighbors. The
The on-site fermion energies, are the Zeeman energies of splitting between these subbands can be less hdihis is
the spins(the excitation energies of the qubitsounted off because next-nearest-neighbor hopping occurs via virtual
from the characteristic central energy which is the same fotransitions to a nonresonant nearest-neighbor site, and there-
all spins inside the chain. For concreteness welsat> 0. fore the effective hopping integral isJ?/h. The procedure
Localization is often described in terms of the decay ofof band splitting should be continued, and higher-order split-
the wave functions of stationary states at large distances. lting can be smaller and smaller.
contrast, here we are interested in strong on-site localization. We now introduce a simple sequence &f that imple-
It is determined by the short-range behavior of stationaryments the structure described above. Except for the energy
states and corresponds to the effective localization lengtscaling factom, this sequence is characterized by one dimen-
being smaller than the intersite distance. Then the localizasionless parameter. As we show, it can already be efficient
tion length, which characterizes the long-distance behavioiin terms of strong localization. For a semi-infinite chain with
is not of primary interest. n=1 we set
On-site localization can be instead conveniently charac-
terized by the inverse participation ratii’R), which shows
over how many sites the wave function spreads. For an
N-particle wave functiony,) (A enumerates the stationary
state$ the IPR is given by the expression (l] is the integer pajt
Sequencd5) does not have any simple symmetry. For
(3) example, it is not self-similar: the subband widths do not
scale with the distance between the sites that belong to the
same subban(¢tf. Sec. VII). Nor is sequencé5) quasiperi-
where|0) is the vacuum state. In what follows we will use ggic. However, the coefficients at any given power are
the notation|®(ky, k;, ...)>:al1af£2---|0> for the on-site wave repeated with period (g+1). This important property is es-
function (quantum registerin which sitesk; ,k, ... are occu-  sential for obtaining analytical results, see Appendix A.
pied and other sites are empty. The quart®yis sometimes The energy spectrur(®) is illustrated in Fig. 1. The left
called the number of participating components, it shows howanel gives the energies of the first 50 sites. It is seen that the
many matrix elementé®(k,k,,...)| ,) are substantial. sites with closee,, are spatially separated, whereas the sites
For fully localized statesy, =1. Strong on-site localiza- with closen are separated energetically. The multisubband
tion of all states of arN-particle system means thay, is  structure of the spectrum is clearly seen in the right panel.
close to 1 for all, For small«, the two major subbands have widthah and

n+l

on= g (2= 3 (- 2f s ®
=2

l( > |<0|anNanN_l---an1|m>|4)‘1,

np<---<ny
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FIG. 1. (Color onling The energies,/h for «=0.3. The left
panel shows:,/h for the sitesn=1,2....,50. Sites with close on- FIG. 2. (Color onling. The exponent of the a dependence of
site energies are spatially separated. The right panel shgthfor ~ the transition amplitude<,(m) for the efficient distancem=200
a much |0nger array]:]_,_” ,2000. The energy spectrum disp|ays a (crosse}:and m= 1000(Circles) as a function of site number. The
multisubband structure, with clearly identifiable 16 subbands in thiglashed lines show the analytical limits en
case.

Spatial decay of single-particle stationary states can be
are separated byeh. The splitting of higher-order subbands characterized by the amplitude of a particle transition from
is proportional to higher powers af. As a increases the siten to siten+m. To the lowest order id/h it has the form
subbands start overlapping, and fer 0.4 separation be-
tween the subbands disappears. n

As a result of the low symmetry, different subbands in the Kn(m) =TT J|2(eq = ennd - (6)
right panel of Fig. 1 have different numbers of points, isg., k=t
are not evenly distributed among the subbands. This turns For sequencés) in the limit of smalla the energy differ-
out to be important for strong many-particle localization. Theence|e,.»— &, can be approximated by its leading term, so it
case of a symmetric sequence is discussed in Sec. VII.  is ~h for oddm and~ «h for oddm/2. In general, the larger
An important advantageous feature of sequef@efor  is mthe higher may be the order i of the leading term in
quantum computing is that it is convenient for performing|e,.—e,|.
gate operations. For single-qubit gates, a single radiation fre- The asymptotic behavior of the functid€,(m) for small
quency can be used to resonantly excite different qubits. Ity and largem can be studied rigorously. The analysis is
has to be chosen close to the center of the band of singléyased on some results of number theory. It is given in Ap-
qubit transition frequencieswhich corresponds te=0).  pendix A. It shows thai,(m) decays with the distance
Then qubits can be selectively excited by tuning them to thigyuasiexponentially,
frequency or by sweeping their frequency through the radia-
tion frequency and having a Landau-Zener-type interstate K(m) = oMM (32n)m, (7)
transition. The transition frequency of the qubit depends on
whether neighboring qubits are excited. This can be used tPhe exponenty is determined by lim IfiK,(m)]/mfor m
implement a controlledtoT gate. Alternatively, neighboring — o and depends om. The values ofy are bound to a
qubits can be tuned in resonance with each other by movingarrow region centered at1, with 0.89< »<<1.19. For es-
their energies into the middle of the gap in Fig(rbte that timates one can use=1, i.e.,
other qubits are not in resonance, in this ¢a$his will lead

to a two-qubit Landau-Zener-type excitation swap). K,(m) =~ K™, K=J2ah.
The decay length of the transition amplitude is thefirli|.
1. SINGLE-PARTICLE LOCALIZATION: The numerical values af for differentn andm are shown
STATIONARY STATES in Fig. 2. They were obtained by keeping the leading term

with respect tow in each energy difference,— e, with 1
<k=m. The data are in excellent agreement with the
In a 1D system with random on-site energies all single-asymptotic theory.
particle stationary states are localized, even for weak disor- We have also studied decay in the “opposite” direction,
der, and exponentially decay at large distances. Although sé:e., for negativen. Here the multiplication index in Eq6)
guence(5) is not random, the transition amplitudes alsoruns fromk=-1 to m; m+n=1. The asymptotic expression
display quasiexponential decay at large distances provide) applies in this case, providey |m|> 1.
J<<ah, as follows from the results of Appendix A. In this Equation(7) gives the tail of the transition amplitude for
paper we are primarily interested in the short-range behaviod/2ha<1. It does not immediately describe strong single-
It turns out that a particle is confined much stronger in theparticle localization, which is determined by the short-range
case of sequeng®) than in the case of random on-site en- behavior of the wave function. However, one may expect
ergies distributed within the same energy band, see Sec. Vithat strong localization should occur wharbecomes much
The confinement quickly strengthens with the increasing palarger than a typical threshold valug,=J/2h. In fact, Eq.
rametera oncea exceeds a certain threshold valug. (7) describes the transition amplitude only whep<a<<1.

A. Transition amplitude
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' ' ' split, and more and more subbands are resolved in the energy
U spectrum. Respectively);) decreases. It sharply drops to
L=300 | ~1 in a narrow region, which can be conditionally associ-
L=500 ated with a transition to strong localization. The center of the
transition region gives the threshold valug of the param-
eter a. It appears to be independent of the chain lerigth
The estimateny,=J/2h from Eq. (7) is in good agreement
with the numerical data for differert/J.

1 When oy, < @ <1, all stationary states are strongly local-
r T ized. Tails of the wave functions are small and limited mostly
<l;> ; to nearest neighbors, which leads to

L=I30I0 4
100 Iy — 1~ J32/n? (8

<l>
100

10 0.1 02 0.3 4
o

I\l [\L=500 T
A to lowest order inJ/h,a.
0.1 0-208-3 1 For «=0.4 the IPR increases above its minimal value.
This happens because the major bands,afentered at k/2
start overlapping.
— The minimum of the IPR ovew is broad for largen/J.
10 10 0y, 10 o 1 Near the minimum the numerical data in Fig. 3 are in good
agreement with the estimai@). The agreement becomes
better with increasindp/J.
The insets in Fig. 3 show that the IPR as a functiorwof

10

FIG. 3. (Color onling. The mean single-particle inverse partici-
pation ratio(l) vs a for h/J=20 (upper panglandh/J=10 (lower

pane). The data refer to three values of the chain lengtirhe gan have narrow resonant peaks. In the presented data they

vertical dashed lines show the analytical estimate for the thresholOccur for the chain of lenath=300. The peaks are seen onl
of strong localization. The insets show the maximal IPR over all. gth= ' P Y

eigenstated,; ma=max, lq,. It sharply decreases with the increas- N 11 ma Wheregs(ll> remains closg t.o 1. Th's indicates that
ing «. The peak ofl; na for L=300 neara=0.1 is due to the ©ONly & few on-site states are hybridized with each other.

boundary. Near the minimum over, we havel; nae~1.01 for The underlying resonance results from a different
h/J=10, andl; ma~1.003 forh/J=20. This demonstrates strong hopping-induced shift of the energy levels at the chain edges
on-site single-particle localization. compared to the bulk. The analysis of the wave functions

shows that the peak corresponds to a resonance between sites
300 and 296. Because of the hopping, the energy of site 300
is shifted by=(J/2)?/h, whereas for site 296 this shift is
~J?/2h. The difference ok, for these sites is-ha® for a

<1. Then the peak should occur at=(J/2h)?3, in good
agreement with the data. The effective hopping integral be-
tween the two sites is determined by virtual transitions via
intermediate sites, it is-J*/16ah®. Therefore the width of

the peak with respect ta should bex(J/h)?, also in agree-
ment with the data.

In Appendix B we outline another way of looking at the
effect of the parametew on localization. Specifically, we
study the scaling relations betweenand J/h that follow
from the condition that the IPR takes on a given value.

B. Inverse participation ratio

A guantitative indication of on-site localization of single-
particle stationary states is thigt —1<1 for all states\, cf.
Eq. (4). Numerical results ofl ;) andl ;.= maxl4, as func-
tions of the energy spectrum paramedefor two values of
the scaled bandwidth/J are shown in Fig. 3. They were
obtained by diagonalizing the Hamiltonid®) numerically.
The data refer to open chains of three different lendths
with the first site being always=1 in Egs.(2) and(5). The
sum overn in the terms=J,JA in Eq. (2) ran fromn=1 to
n=L-1.

In the fermion Hamiltonian(2), the energiese, differ
from the Zeeman energies of spins byA-inside the chain.
On the boundaries this shift isJA/2. To make the Zeeman IV. MANY PARTICLE LOCALIZATION:
energies equal te,+const, with the constant being the same STATIONARY STATES
for all spins, we added the ter(dA/2)(S{+S) to the spin
Hamiltonian (1). Then the numerical results for a finite-
length open chain equally apply to both spin and fermion The many-particle localization problem is more compli-
systems. cated than the single-particle one. When the parameter of the

In the limit «— 0, the energies of single-particle station- interparticle interactiomA #0, (i) the energy levels;, are
ary states form two bands centeredhd® for evenn and  shifted depending on the occupation of neighboring states,
—h/2 for odd n. For h>J the widths of these bands are ¢,—%,, (ii) there occur combinational many-particle reso-
~J/h. The system is equivalent to two weakly coupled nance&, +:--+&, ~ey + -+en, and as a resulijii) there
translationally symmetric open chains; the band wave funcoccur interaction-induced many-particle transitions that may
tions are sinusoidal, which gives;)=(L+2)/3. This agrees pe resonant even though single-particle resonances have
with the value ofl,) for «— 0 in Fig. 3. been suppressed. Such transitions may lead to delocalization.

For nonzerax the on-site level detuningb) breaks trans- In contrast, the cas#=0 corresponds to th&Y-type cou-
lational symmetry. Asa increases, the bands ah/2 are pling between the underlying spins. In this case the single-

A. Many-particle hopping
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particle results apply to the many-particle system. final stategn,n+2) and(n-1,n+3) one of the sequences is
To analyze many-particle effects, it is convenient to(n,n+2)—(n,n+1)—(n-1,n+1)—(n-1,n+2)—(n-1,n
change frorraﬂ,an to new creation and annihilation operators +3).

bl.b, that diagonalize the single-particle part, of the If all single-particle stationary states are strongly local-
Hamiltonian (2), a,=3,U.b,. The unitary matrixU is the ized, the off-diagonal matrix elements,, are small. From
solution of the equation Eq. (7), Up~ KK for |k—=n|> 1. Therefore fora> oy,
(UTHU)im = &) dnm Vigioig, ~ K* for 2> 1. (15)
1 Two-particle transitions of the renormalized fermions are
(Ho)nm= €n6am+ ZI(Snmer + Snerm) - 9 not limited to nearest neighbors. However, from Ed), the
2 amplitudes of transitions over many sites are small and rap-
Here,Sr’_l are the exact Sing|e-partic|e energies1 |d|y decrease W|th the numbel’ Of inVOlVed Virtual Steps. In
higher orders in/JA, the interactior{12) leads also to many-
Ho= > gébgbn. (10) particle transitions. The overall transition amplitude is deter-
n mined by the total number of involved virtual single-particle
steps.

For a> oy, andJ<<h, when single-particle states are on-
site localized, the energieg are close to the on-site energies
e, To leading order inl/h,a we have

The matrix elementy) ik «, With =0 are=1. They lead

to an energy shiftcJA of the states depending on the number
of particles on neighboring sites.

1 In order to localize many-particle excitations, one has to
D"+ 5(— 2 | (1) suppress combinational many-particle resonances keeping in

mind that, for localization, the effective hopping integral

The major term in the right-hand side corresponds simply tanust be smaller than the energy detuning of the initial and
renormalization of the characteristic bandwidth of on-site enfinal on-site states. Because of the large number of possible

JZ
2h

,_ P~
En—En=

ergiesh— h+J2/2h. resonances, we do not have an analytical proof of many-
In terms of the operatoris,,b] the interaction part of the particle localization for our energy sequeri&. Instead we
Hamiltonian is used numerical analysis, as described in the next section,
which enabled us to demonstrate strong localization of sta-
Hi = JA 2 Vi, bl bicbi (12)  tionary states in a chain of a limited size.

where the sum runs ovéq , 53, and L L .
e B. Many-particle inverse participation ratio
Vigkgis = 2 UpigUprt i Upr1 1Upie- (13 A good indicator of many-particle on-site localization is
P closeness of the IPR to onEq. (4)]. The problem of
The Hamiltonian(12) describes the interaction of the exact Whether it is possible to obtain on-site localization aif
single-particle excitations, i.e., renormalized fermions. Themany-particle states is interesting even for finite-size sys-
parameterV, , . determines the amplitude of the two- tems, because the size of the states is much less than the size
172734 . . .
particle intersite transitioriscatteringy (k,,ks) < (ky,k,) for ~ ©Of the system. It becomes particularly interesting where the
the renormalized fermions. The minimal number of virtual SEParation of the many-particle energy levels is much less

steps in such a transition that have to be made by the origind@n the hopping integral. ,
fermions is given by the parameter In this section we present numerical data on the IPR ob-

tained by diagonalizing the Hamiltonig®) in the presence
x=min(lk,—p|+|ky—p-1 +|ks—p-1 +|ks—p|). of several excitations. The Hamiltonian is a sparse matrix,
p which is separated into uncoupled blocks with different num-
(14)  bers of excitations. We focused on the block in the middle of
the energy spectrum. For a given chain lengtht hasL/2
The steps are counted off from the configuration where twaxcitations and therefore the largest number of states. This is
original fermions occupy neighboring sites, and each step ighe worst case, in terms of localization. Chains with10,
a transition by one of them to a nearest site. In other words}2 and 14 were studied. The results were similar. We present
they first move from sitegk,, k) to sites(p,p+1) and then  the data folL=12, in which case the total number of states is
to (k;,ko) (we assume for concreteness that-k, andk, 924, The interlevel separation in this case~i$xh/924
>ky); the value ofp is chosen so as to minimize the number < J for the values oh that we used.
of steps. The IPR as a function of the dimensionless parametefr
To make the meaning ot even more intuitive we give the on-site energy sequen¢® is shown in Fig. 4. The re-
examples of some=4 transitions. For the initial and final sults refer to two values of the dimensionless ratio of the
stategn,n+1) and(n—-2,n+3) one of the sequences of steps hopping integral to the interband distandth and several
of the original fermions is(n,n+1)—(n,n+2)—(n-1,n  values of the dimensionless parameter of the particle inter-
+2)—(n-1,n+3)— (n-2,n+3), whereas for the initial and actionA.

012317-6



STRONG MANY-PARTICLE LOCALIZATION AND ...

100
<I6>

10

100
<I6>

10

4 2

15 =
10 10 10

FIG. 4. (Color) The IPR for six excitations on the first 12 sites

of the chain(5). The reduced bandwidth of the energy spectrum is

h/J=20 (top panel and h/J=10 (lower pane). The purple, red,
green, and blue curves refer to the coupling paramgte®, 0.3, 1,
and 3, respectively. The peaks @§) for A=0 are a single-patrticle
boundary effect. The insets show the maxirmgafor A+ 0. Sharp
isolated peaks ofg may VS « result from the hybridization of reso-
nating on-site many-patrticle states, see Appendix C.

We start the analysis with the regian— 0, where the
on-site energiegb) alternate betweenht2. For largeh/J

PHYSICAL REVIEW A 71, 012317(2005

In the region 0.2 «=<0.4, except for narrow peaks, we
havelg ma=1.09 forh/J=10 andlg 2= 1.02 forh/J=20,
for A<1. The values oflg) are even smaller, 1.04 and 1.01,
respectively. This indicates that, in this parameter range, all
states are strongly on-site localized. Por3 andh/J=20
we also haveég .= 1.02 away from the peaks; however, for
h/J=10 the IPR becomes larger due to the many-particle
resonances, which are discussed belsee also Appendix
C).

A distinctive feature of the many-particle IPR as function
of « is the onset of multiple resonant peaks, which can be
seen in Fig. 4. They indicate that at least some of the station-
ary states are no longer on-site localized. The peaks are due
to hybridization of resonating on-site states. It occurs when
the matrix elements of intersite transitions in E¢k2) and
(13) exceed the energy difference of the states.

For 0.2<a=0.4, i.e., in the region of strong localization,
and forh/J=20 and chose <3 we found that only two
on-site states could become strongly hybridized in the sec-
tion of the chain with Ikn=12. Hybridization of a larger
number of states was weaker. A consequence of hybridiza-
tion of utmost two states is tha§ ,.,=2. Forh/J=10 and
A=3 the interstate couplin¢l3) is stronger, and as a result
three states can be strongly hybridized and a few more can
be weakly admixed, leading 1@ .~ 3 at resonant.

Because the interaction is two-particle, the strongest
peaks ofl ,,,, come from resonances between on-site energies
of two particles. They occur when the energy difference

the single-particle energies form bands of wid&h2h. In the 08 = [ei + oy, = 81, ™ 8| (16)

neglect of mixing of these bands, the many-particle waveg cjose toMJA with M=0,1,2. Strictly speaking, we should
functions can be found using the Be’_[he ansatz.ke0 the | ca ayact single-particle energig’s(10) instead ofe,, in Eq.
many-pamcle energy spectrum CO.nS'StS. of bands that are d?l6), but the difference between these energies is small, see
tgrmlmed byl the number of partk:cles in each Off trt‘e t;NOEq. (11), and it leads to a small shift of the positions of the
single-particle bands. Because t e states are of the planfssonances as functions @f An explanation of the positions
wave type, the IPR is large, witfle)~78 for h/J=20 and 54 widths of the narrow peaks ) andlg yaS€en in Fig.

L=12, see Fig. 4. 4 is given in Appendix C
For «— 0 the IPR decreases with the increasing param- g PP '

eter of the particle interactioA. This happens because, for
large A>J/h (but A<h/J), the energy bands ath#2 split
into subbands depending on the number of particle pairs,

triples, etc., on neighboring sites: for example, the energy of A SPecial role in the problem of many-body localization is
a pair on neighboring sites differs from the energy of a disPlayed by two-particle resonances that are not selective in

sociated pair bylA. Since the number of states in a subband!-€- €Xist in a broad range af. For these broadband reso-
is smaller than in the whole band, such splitting reduces th8ances, the total energy difference between the initial and
average IPR. inal on-site state_s is smalbe <J even for smalll/h. They

The decrease of the average IPR with increagingpr ~ €Merge already in the second orderJith, when only two
a—0 andA<h/J is seen in Fig. 4. We note that the mere Single-particle steps to neighboring sites are requirset.
separatior(by h) of the single-particle energies of neighbor- 1€ resonating on-site states are pairsn+1) and (n
ing states is not sufficient for strong localization. Inside eact 1:N*+2), i.e.,
subband, the number of resonating states in a long chain is (17)
still very large.

Localization requires that not only nearest-neighborlf n andn+2 are prime numbers, the energy differenke
single-particle energies, but also energies of remote sites bele,+eni1—en-1—ensol ~a"th is  extremely small for
tuned away from each other. This happens for sufficientljargen.
large values of the parameterin Eq. (5), as seen from Fig. More generally, the resonan¢&7) occurs for alln=6k
4. For givenA, the IPR decreases as a whole with increasing-1 with integerk. In this casese/he o with ¢=4. Suchde
« in the region where the single-particle bands are well sepas “anomalously small” forx=2. For A~ 1 the hopping in-
rated, < 0.4. tegral J°A/h? becomes larger thade even when we are

C. Broadband two-particle resonances

enten1 = en1t ensp
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already deep in the single-particle localization regien, 1 ‘ ‘ T -
> Q.
Forn=6k-1, to leading-order id/h the renormalization |A|2

en—e¢, leads to a change obe that does not exceed

~a®(J?/h) or ~a*(J?/h) for odd and evelk, respectivelyit

may also be proportional to higher power ®f. The renor- 0.5
malized e can still be much smaller thaifA/h?, and then

the broadband resonance persists. More many-particle broad-

band resonances emerge for larger

For the section of the chain with sitessh=<12 the IPR 0 — .
is not much affected by the broadband resonances, because 0 5x10 Jt 10
even wheren and n+2 are prime number¢s and 7, the
energy differencé17) is not exceedingly small. FIG. 5. (Color online Time evolution of the squared amplitude

The situation changes if we consider other sections of théAl” of the on-site stat¢®(416,419,420,422,423,4p4in a 12-
chain (5) of the same lengthn,<n<=ny+11 with different s_,ite section of the ch_ai_n betwear 415 an_oh:426. The oscillating
no. Here we found that, depending om, the resonances line refers_ to the original seque_n_oﬁé) with a=0.25: The nearly
increase(lg) up to 1.15 between the peaks, fofJ=20, A C(,)nstant line refers to the modified sequeli2é) with a=0.25,
=1, and for alle in the interval 0.2 o< 0.4. '=0.22. In both cases/J=20 andA=1.

For a finite chain, the resonances can be eliminated order ) S
by order in » by shifting the energies of the appropriate Mate forte,y, for quantum computing the latter condition is
qubits. Simple systematic modifications of the energies thaf"et, if
work for x<5 are discussed in the next section, see Egs. b= 1071 (18)
(20) and (23). Both modifications bring the IPR back to loc =~ :
smaller values. For example, in all sections of the chain that The condition of largé,,.J must be satisfied faall on-site
we studied they madélg) and Iy, equal to~1.01 and many-excitation states, with differeht. It is this condition
~1.02, respectively, which are the values we had for thehat imposes a constraint on the form of the energy sequence
section k=n=<12. This means that on-site localization of &, in an infinite many-particle system. Of primary interest is
stationary states for the modified energy sequences is inde¢d understand whethdy,.JJ can be large, in the first place,
very strong. and if so how it scales with the reduced bandwitfid.

The timet,, is determined by hopping between resonant
on-site states. It occurs through virtual transitions via non-

V. LIFETIME OF STRONGLY LOCALIZED STATES resonant sites. We will consider the regime of strong single-

L ) particle on-site localizationK=J/2ha<1. In this case the

The problem of strong localization can be viewed alsoyohiem of many-particle localization for the original fermi-
from a different perspective. In the context of quantum com-g essentially coincides with that for the exact single-
puting, it suggests a more appropriate formulation then the  icle excitations.
one based on the analysis of stationary states. It is also rel- £, 4 two-particle resonant transition, the minimal num-
evant for condensed-mat;er_syste'ms at nonzero temperaturegy, of the needed virtual steps is given by the parameter

First we note that excitations in quantum computers anq14). Then from Eqs(12) and(15) the hopping integral for a

in condensed-matter systems have a finite coherence timeg,nant transition(k,, ks) < (k;,k,) of the exact single-
teon FOr QC's, this time has to be compared with the duration, . i1 excitations is e ’

of a single- or two-qubit operation and measurement. Th

duration of a two-qubit operation is of order of the time it JAV, k. ~ JAK”

takes to resonantly transfer an excitation between the qubits, v

which is ~J™1. A single-qubit operation is often faster; how- for »> 1.

ever, the measurement can sometimes be slower. In most In the case of an energy sequence of the ffewith a

proposed realizations of a QC the coherence time exceedelatively large energy gap between neighboring sites, up

the gate operation time by a facter10P. to a fairly high number of virtual steps<5) of interest are
The localization lifetimet,,. of an N-particle system can resonancesnly between two-particle on-site states. This ap-

be defined as the minimébver configurationscharacteristic  plies to systems with aarbitrary number of particles. Tran-

decay time of the squared matrix elementsitions where three particles change sites emerge in the sec-

(D (ny- - ;)| D(ny- - Ny ; 0))[%, where|®(ny--ny)) is the on-  ond order in the two-particle Hamiltoniga2) and(13), and

site wave function. We note that, from the point of view of simple counting shows that they involve at least five virtual

strong on-site localization, hybridization with a reson-steps and are in this case nonresonant for large

ating state is decay. It leads to oscillations of For resonant two-particle transitiorig,~ min[JAK*]™

KD (ny - ny; 1) [P (ny: - -ny; 0))]? with amplitude~1, and then  strongly depends on the minimal value offor all pairs of

tioc IS given by the oscillation period, cf. Fig. 5 below. resonating initial and final on-site states; x.,,,. To have a
Localization is only relevant on times-t,,, To have larget,.J we must maximizeey,,, i.e., maximize the number

strong localization it suffices thdj,.=t.,, From the esti- of intermediate virtual transitions.

012317-8



STRONG MANY-PARTICLE LOCALIZATION AND ... PHYSICAL REVIEW A 71, 012317(2005

In a two-particle transition with odet=1,3,5,.. the on-  the statg®(416,419,420,422,423,4p4 In the case of the
site energy changée is at least~h for «<<1. The change of original sequencé5), this state strongly hybridizes with the
the particle-particle interaction energy, on the other hand, istate|®(416,418,421,422,423,4p4for all « of physical
=<2JA. Itis small compared tée for h>JandA=<1.Asa interest,a<0.4. This happens because the difference of on-
result, resonant two-particle transitions may occur only forsite energies g+ 400 and e415+ €421 iS e ~ a8, The hy-
evenz. bridization results in oscillations of the amplitude of the

We will modify the sequencés) to eliminate resonances state, as seen from Fig. 5. For the modified sequé2@ethe
with x=2 and x=4. In these cases.;,=4 and 6, respec- resonance is eliminated, and the amplitude remains constant
tively, leading to the localization time,,~J'K™ and  over a time>10°J"L. This illustrates the onset of strong lo-
>J1KS, calization. We note that the localization time of this particu-

lar state turns out to be longer for the modified sequéate
than the worst-case estimate given above.
A. Eliminating second-order many-particle resonances

The potentially resonant transitions wighe2 are B. Eliminating fourth-order resonances

The localization time is further dramatically increased if
x=4 resonances are eliminated. The potentially resonant
fourth-order transitions are

(n,n+1) <~ (nN-2,n+3),

(n,n+1)«~ (nn+1%2), (n-2,n+1),

(n,n+1) «~ (n=-1,n+2). (19

In the transitions listed in the first line of this equation, one

of the particles in the pair moves by two sites in one or the
other direction, whereas for the transition shown on the sec-
ond line both particles move by one site.

(n,n+1) <~ (n+2,n+3),

The number of occupied nearest sites in the transitions (nn+3) < (n=-1,n+2),
(19 can change by one or remain unchanged. Therefore the
maximal change of the interaction energyJA. Second- (n,n+3) <~ (n-2,n+1), (22)

order resonances will be eliminated if the detuning of thea d
on-site energy differencede for the transitiong19) is

(n,n+1) <~ (n=-1,n+4),

oe > JA.
This means that we need a zero-energy gap of an appropriate (n,n+1) < (n=-3,n+2),
width in de. We note that this is a sufficient, not the neces-
sary, condition; an alternative approach will be discussed (n+1) < (nn+1+4), (nN+4n+1). (22)

elsewhere.

To create the zero-energy gap, sequefehas to be In the last line of Eq(22) we list transitions where one of the
modified. The modification has to eliminate, in the first particles in the pair moves by four sites, whereas in all other
place, the “anomalous” broadband resonances for transitiorigansitions both particles move away from their sites.
(n,n+1)«<(n-1,n+2) with n=6k-1 discussed before. This For the modified sequenc€0), the minimal energy
will, of course, also eliminate resonances wherandn+2  change in the transition®1),(22) is minde ~ a°h, to leading
are prime numbers. A simple and sufficient modification is aorder ina. The value ofa’ has to be in such a range that the

constant shift of,, for each sixth site, modification(20) does not lead to extra resonances between
nd , the on-site energies for the statgd) and (22). The “dan-
ey =ent(h2)a’  for n=6k, (200 gerous” combinations inse/h are |a-a’/2|, |2a-a’l2),
while sM=g, for n+ 6k, |o?—a'l2|, |2a?—a’'l2|, to leading order ina. We will

choosea,a’ so that all of them exceed mda/h= a?.
Figure 6 shows how the modificatig@0) leads to a zero-
energy gap inbe. We plot

For the modified sequenc®0), the gap in the on-site
energies for the second-order transitiorf$9) is dJe
~ a?h,a’h/2 to leading order inv. A more accurate estimate

is min Se/h=a?-a®,a’/2. We assume that’<a’ <a, in 5= |4 A gmd _ omd
which case no new resonances are created for the transitions 1 2 3
(19) as a result of the modificatiof20). for all transitions(19), (21), and(22) in which involved par-

It follows from the above estimate that, for an infinite ticles are on sites betweer=3 andn=100.
chain and an arbitrary number of particles, all resonant tran- The left panel in Fig. 6 shows that, for the initial sequence
smons with <4 will be eliminated providedJA/h<a?  (5), there is practically no gap in the values & at low
-a®a’'/2. Then the localization time scales with'J as  energies. The right panel demonstrates that the correction
t.OCJ~(2ha/J)4A‘1, and we obtairt,,.~10°J"* already for  (20) leads to a zero-energy gap. The gap depends on the
h/J=30, @=0.3,a’ =0.1-0.2, andA < 1. values ofa anda’. For the specific parameter values in Fig.
The effect of the on-site energy modificatié®20) on lo- 6 we havede/h=0.01.
calization of a many-particle state is seen from Fig. 5. This We have checked numerically that the gap persists for a
figure shows the dynamics of the system prepared initially imuch longer chain than shown in Fig. 6, withfrom 3 to
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0.04 o T

T creating new resonances, similar to the modificati2e).
= e L ° = . -0 It is straightforward to show that the modificatid@3)
Ew: ° oo SR s " leads to a zero-energy gap #a. For «=0.25,38=0.1725 the
%<} 1 L o i gap exceeds 0.01for the transitiong19) and (21) with en-
0.02 :2 .“"":.‘ ::.‘."u o "':“ - L™ ergy changesJA, whereas for the transition®2) with en-
PeP™ N W [ = oF ergy change up toJA it exceeds 0.02 This indicates that
S SiaaE B B the results on the localization tintgJ=10'" for h/J=50
0 Leeo o oo 0 oo o t now apply forA=<0.5.
0 0 pn 1000 8 p 100 As in the previous section, the extremely large localiza-

tion time characterizes an infinite chain and an arbitrary
number of interacting particles. We note that both modifica-
tions of the original energy sequence, E@)) and(23), are
obtained analytically, by finding the leading-order terms in
the energy differences for the transitioid®), (21), and(22).
The specific values of the parametersa’, and 8 are used
just to illustrate the order of magnitude of the localization

FIG. 6. (Color onling The low-energy part of the two-particle
energy differencese,/h (16) for all transitions withx<5; n is the
smallest site number involved in the transitior 2. The data refer
to @=0.25. The left panel corresponds to the sequéBrceélhe right
panel refers to the modified sequeri26) with o’ =0.22 and shows
the zero-energy gap ife.

10 000. This is more than enough to prove that the resultgme

apply to an infinite chain. Indeed, ifﬂ‘d the termsx o with VI. STABILITY WITH RESPECT TO ERRORS
different g are repeated periodically with perioddg1). IN ON-SITE ENERGIES
Therefore a sequence of terms with for <6 is repeated
periodically with period equal to twice the least common
multiple of all g+1<7, which is 2x(3X4X5X7)=840

i - 6 4

(cf. Appendix A)n.quer)l’ ?‘3'25 we r;ar\:ec:] ~2x10" The 14 precision to which the energies can be set and/or mea-
contribution toe,"/h of all terms of higher degree i is  greq is limited. Therefore it is necessary to study localiza-
then =2 10°™. This means that, to accuracy better thani, iy the presence of errors iy, and to find how large
2x10°%, the results on the gap for an infinite chain will \heqe errors can be before they cause delocalization.
com_CIde with the .results for a chain of 849 sites. .~ We will address this problem by looking at the gap in the

Smce the maximum change of the par'tlcle-pgrtlcle mter-energy differences in the presence of errors -and (20).
action energy is 2, it f°”°V_V5 from_ the d'S.CUSS'OF‘ above As long as this gap remains larger thai\2for all resonant
that, for 24=0.01h, all particles will remain localized on yjtions withx< 5, the localization lifetimet;; will re-

their sites for the timey,, ~ (JA)™(2n/J)°® [we have taken iy the same. The analysis can be immediately extended to
into account here that the hopping integral for transitionsne modified sequend@3) as well.

. N 6

with »=6 has an extra factow compared toJAK®]. For The effect of errors on the gap can be modeled by adding
h/J=50 and«=0.25 this gives an extremely long localiza- 5 random term to on-site energies, i.e., repla@iﬁﬂjwith

tion time, t,,.J=10'"%. However, this estimate requires that

the coupling be weakA <0.25 for the used parameter val-
ues.

In a real system, it will be impossible to implement se-
guence of on-site energi€s) precisely. This is because these
energies contain high powers of the small parametavhile

1
M= gMd+ EDhrn. (24)

Extension to stronger coupling Here, r, are random numbers uniformly distributed in the
interval (—1, 1), andD characterizes the error amplitude. It
should be compared with® with different exponents=1.
When D ~ o it means that the energies, are well con-
trolled up to terms~«a®%, to leading order in.

From the above arguments it follows that, fa> o’
= o? the gap should remain unchangedDf< o*. This is

The previous result can be easily extended to ladyer
without increasinch. To do this we note that the change of
the interaction energy in transitiof2l) is actually limited to
JA rather than 2A, which is the case for the transitiof22).
Therefore the gap for the transitiof?2) should be twice as

large as for the transition&1). Two first transitions(22) . - md 4
have a gap=«a?h to leading order in, but for the last one because, for the modified energiee’, the terms—a drog
out from the energy differences that we discuss. Ber «

minde =a°h. This latter gap may be increased by choosing 3
somewhat different modification of the on-site energy spe(ﬁhe gap should be somewhat reduced. Be o” it should

trum. In contrast to Eq(20), we will shift the energy of each be_come S|gn|f|cantly s_mqller thqn f@=0, and it should
third site, ultimately disappear with increasirg,.

Numerical results on the gags as a function of lod are
gnmd: en— (W4)B[1+3(-1)¥ forn=3k, (23) shown in Fig. 7. The gap is calculated for two-particle tran-
sitions withx=<5, as in Fig. 6. In the lower panel the gap is

= md_

while 8rr1n_—Sn for n#3k. . scaled by its value in the absence of errors,
Equation(23) corresponds to shiftings, up by gh/2 or e d

down by sh depending on whethdris odd or even, respec- R= min e, /mn|n Oep - (25)

tively. The parametegB should be much larger thas®, to
open a gap~min(a?h,h/2) in §&™ for the transitions The data refer to the samea’ as in Fig. 6. They are in full
(22). At the same time, it should be chosen so as to avoicgreement with the above estimate.
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:{ FIG. 8. (Color onling The on-site energies|,°/h (26) for a
0.5 1 =0.3. The left panel shows the energies for the sites
=1,2,...,50. States with close on-site energies are spatially sepa-
0 - . . rated. The right panel shows, /h for a much longer arrayn

=1,...,2000. The energy spectrum displays a multisubband struc-
ture. Because of the symmetry of sequeri2é), the number of

. ) points in each subband is approximately the same.
FIG. 7. (Color online Upper panels: all energy differences

Se"Ih=]e"+£8"— "~ £ /h for the transitions(19), (21), and ) )
) N el T2 - - arameter energy sequence; in what folldwis the ener
(22) that correspond to the number of intermediate stegs. The p - gy seq » I aqy

data refer tow=0.25,a’=0.22, and to a specific realization of the SCale andx is the parameter, as in E¢p).

random numbers, in Eq. (24). The boxes from left to right corre- In the PDC, the on-site energies are first split into two
spond to the values of the noise intensidya® in Eq. (24) with ~ Subbands, with nearest neighbors being in different sub-

s=5,4, and 3. Lower panel: the scaled minimal qaf25) as a  bands, but next-nearest neighbors being in the same subband.

function of the exponerg=In D/In « averaged over 10 realizations The subbands differ in energy tPh, to leading order inv

of noise. Error bars show the standard deviatiofRof [this is also the case in E¢p)]. Each of the subbands is then
further split into two subbands of fourth neighbors. The lead-

The results of Fig. 7 demonstrate that, even though thdd term in the energy difference of these subbands'is
energy spectrum of the many-body system is dense, errors ﬁa_ch subband is thgn split again mto two sut_)bands of eighth
the on-site energies do not destroy localization. For the chgl€ighbors. The leading term in their energy difference’ts
sena anda’, one can have errors i}, up to ~a* (in which This period-doubling process is then continued indefinitely,

caseD ~0.4%), and, nevertheless, the width of the energyfr an infinite chain.

gap will be changed only by-50%. The expresgiDoCn that describes the on-site energy sequence
The observed dependence on the noise strength sugges the PDC,e, ™, can be conveniently written in terms of

that, in the presence of noise, sequefeand (20) can be thg coefficientg,(n)=0,1 of the expansions of site numbers
cut so that the terms oS with s> s, are disregarded. The N in base 2,
value of s.,;of depends on the noisg,=IND/In a. As a

result of the cutoff, the energieg become polyn0m|als v n= S im2k,
of power <s. s From Eq.(5), these polynomials are peri- = J

odic inn, with the period determined by twice the least com- -

mon multiple of (2,3, ... St 1). For example, forseuort  Here,M(n)=1+|log,n] is the number of integer digits afin
=5 the period im is 120(see also Appendix AFor such a paqe 2.

long period and short-range hopping, excitations will stay on  \ye set

their sites for a long time compared Jo.

0 2 4 6 8 g 10

M(n)-1

M(n)-1

1 )
epPC=Chl (C)M+ X (DMK (26)
VIl. ALTERNATIVE ENERGY SEQUENCES k=1

Neither the original sequence of on-site enerdl8snor  The energies:"°C are shown in Fig. 8. It is instructive to

its_ modified version$20) qnd(_23) were optimized to 'm_ax'i— compare this figure with Fig. 1 for the energiés). The
mize the IPR or the localization lifetime. Therefore it is im- 4yerall band structure is similar, but the energy distribution
portant to compare them with other sufficiently simple se<is much more regular for the PDC. For example, it is seen
quences. This will be done in this section for two naturalfyom the panels for 2000 sites that the minibands for the
choices ofe;,. PDC sequence have approximately equal numbers of states,
in contrast to Fig. 1. However, as we show later, the symme-
try of the PDC is actually bad from the viewpoint of many-
particle localization.

A simple way to move sites with close energies far away Spatial separation of sites with close energies in the PDC
from each other is to make the energies form a “period{eads to effective localization of single-particle stationary
doubling cascade(PDO). It can be described by a one- states. As in the case of sequeribg the values ofl;)—1

A. Period-doubling cascade
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are~3x 1072 for h/J=20 near the minimum ofl ;) over a, 1 e 2 T

in agreement with the estima(8). The minimum of(l,) is P 102k ' '_ or e

located ata=0.1. 10k 1 ol ]
The situation is different for many-particle localization. 0.5 | 10 L i 1F jotley .

Here the high symmetry of the PDC leads to multiple many- 4 13 = 6 3 10 18

particle resonances. For example, two-particle staétes ,LL

+1) and (n-1,n+2), which are coupled in second order in 0 )

J/h, have equal energies whenewveris odd. The states 0 6 s 12 0 6 s 12

(n,n+1) and(n-2,n+3), that are coupled in the fourth order 6 . 12 ‘

in J/h, have the same energies when7 + 4k with integerk. 10 —T 10 T

We note that there were no exactly degenerate states for s¢ P 107 \\ 10” \N

quence(5), and the portion of two-particle states with close

energies was much smaller. Therefore it is more complicatec 3 | 6T 10’31 5 3]

to find a correction to sequendg6) that would eliminate

many-particle resonances. As a result, unexpectedly, this

symmetric sequence is less convenient from the point of 0 l‘n.__‘

view of strong localization. 0 4 0 2 I, 4

B. Random on-site energies FIG. 9. (Color online The normalized distributions of the IPR

. . . P(1) for the random energy sequen(®7). The upper and lower
The case opposite to the highly symmetric seque@ée panels refer to the many- and single-particle IPR’s: six excitations

is when the on-site energieg are completely random. It is with A=1 in the chain of length.=12 and one excitation in the

well _knO_W” that S_UCh randomn_ess leads tq Single-partic_l%hain of L=300, with 2000 and 80 realizations, respectively. The
localization of stationary states in a 1D chain. However, ifieft and right panels refer to the overall bandwidth of the on-site

does not lead to strong on-site localization of all states, beéne,rgy spectrumW/J=13 and 26. The narrow columns &1
cause there is always a nonzero probability to have neighbognowed with dotted lines refer to sequeiisg with h/J=10 and 20

ing sites with energies that differ by less thaand therefore  for the left and right panels, respectively. The values:df Eq. (5)

are hybridized. As explained in the Introduction, hybridiza-were chosen so as to have the same bandwidths of on-site energies
tion is even more likely to happen in the case of many-as the corresponding random sequences: in the lower panels
particle states, because it is more likely to have neighboring= (W-h)/W=0.231(as in an infinite chain whereas in the upper

nearly resonant sites. panelsa=0.274 to allow for a comparatively small number of sites.
A simple random sequence of on-site energies has théhe insets show IR vs 1.
form

e = Wi’ 27) smaller than for the single-particle IPR¥he lower panens
n n The IPR distributions for the random sequeli2@ differ
wherer/, with different n are independent random numbers dramatically from the distributions for the regular sequence
uniformly distributed in the interval,1), andW is the band-  (5). The latter are narrow and concentrate in a small region
width. The results on the inverse participation ratio for se-of I close tol=1, for the chosen bandwidths, both for the
guence(27) are shown in Fig. 9. single- and many-particle states, cf. Figs. 3 and 4. This is
Localization of stationary states for the random sequencanother indication of strong single- and many-particle on-site
(27) can be characterized by the probability distribution oflocalization for sequenceb).
the IPRP(1). This distribution was obtained by numerically
diagonalizing the Hamiltoniait2) for different realizations
of the on-site energie@7). In this paper we have explored two aspects of the problem
As seen from Fig. 9, both single- and many-particle IPRof strong many-particle localization. One is localization of
distributions display peaks neé 1 for random on-site en- stationary states. For one-particle states, it has been studied
ergies. This indicates that, for the wide energy bandwidthsinalytically. We found that the wave functions decay
used in the calculations, with large probability the stationaryquasiexponentially and obtained the bounds on the decay
states of the system are strongly localized. However, the didength. The numerical results on strong localization are in
tributions are broad and slowly decay on the tails. Thisagreement with the theory.
means that many on-site states are strongly hybridized, that For many-particle stationary states, the localization has
is the stationary wave functions spread over several sitepeen analyzed numerically. Such analysis is unavoidably
This is a consequence of multiple resonances. The insets limited to small chains. Nevertheless, the question about on-
Fig. 9 show that, at least for not too largethe tails ofP(1)  site localization of all stationary states is physically mean-
are nonexponential. ingful even for a finite-length chain, because the effective
The typical width of the distribution decreases with thelocalization length can be much less than the size of the
increasing bandwidtklV of on-site energies. As expected, the chain, and the separation of the many-particle energy levels
distributions of many-particle IPR&he upper panels in Fig. can be much less than the hopping integral. This question is
9) are much broader and their peaks néarl are much also important for quantum computing.

VIIl. CONCLUSIONS

012317-12



STRONG MANY-PARTICLE LOCALIZATION AND ... PHYSICAL REVIEW A 71, 012317(2005

For a 12-site chain we have found that, for sequg@€¢  zation of the energy sequence, so that maximal localization
with the ratio of the single-site energy bandwidth to the hopifetime could be obtained for a minimal bandwidth of on-
ping integralh/J=20 and witha=0.25,a’'=0.22, the inverse site energies. For a finite-length chain the optimization prob-
participation ratio differs from its value for fully localized lem can be approached using E5). as an initial approxima-
states by<2%. This deviation is due to a small nonresonanttion and adjusting energies of several Speciﬁc sites.
admixture Of the wave funCtionS Of nelghborlngSIteS The In Conc|usion’ we have proposed a Sequence of on-site
typical separation of the energy levelss®.2] in this case.  energie5) and its modification§20) and(23) that resuits in

A different approach is based on studying the lifetime ofgirong on-site localization of all stationary many-particle
on-site states. It is sufficient to have a localization lifetimeg;atas in chains with up to 12 sites. It also leads to a very

toc that exceeds the coherence time of the excitations. W

; ; ; ﬁ)ng lifetime ofall on-site many-particle states in afinite
hav_e shown that IargE?C‘J can be; achieved in a chalr_1 Of an chain. The results apply to interacting spins or fermions. The
arbitrary length and with an arbitrary number of excitations.

2" ; e . ~ “'sequenceg5) is constructed so as to eliminate resonances
For the explicit construction of on-site energigs)), reso etween the states to a high order in the hopping integral,

nant transitions that lead to delocalization require at Ieas\li;\/h d 4 fourth-ord liminated
four virtual nonresonant steps, and thigpJ~ 10° already én second- and fourth-order resonances are eliminated,

for the decay length of the single-particle transition ampli-the localization lifetime scales as the fourth and sixth power

tude ~0.35. of the ratio of the single-particle energy bandwidth to the
The results on localization can be tested with artificialNOPPIng integral, respectively. The proposed energy se-

condensed-matter structures, as it was done in the studies @#ence is stable with respect to errors. The results apply to

the effects of quasiperiodicif20] (see also Ref§18,19). A  scalable quantum computers with perpetually coupled qubits.

discussion of experimental implementations is beyond thdhey show that, by tuning qubit energies, excitations can be

scope of this paper. Good examples are the proposed modgigevented from delocalizing between gate operations.

of a quantum computer; we note, however, that studying lo-

calization does not require operations on qubits, and there- ACKNOWLEDGMENTS

fore does not require a fully operational quantum computer. We are grateful to D. A. Lidar, P. M. Platzman, L. P.

In terms of quantum computing, an advantageous featur ) . : .
of sequences) and its modification20) is that one radiation Eryadko, and M. E. Raikh for helpful discussions. This work

frequency can be used to resonantly excite different qubitdVaS partly supported by the Institute for Quantum Sciences
As explained in Sec. II, this can be achieved by selectiveh@t Michigan State University and by the NSF through Grant
tuning targeted qubits to this frequency. A selective two-NO- ITR-0085922.

qubit gate can be conveniently done using a Landau-Zener

excitation swap between neighboring qubits as their frequen- ~ APPENDIX A EXPONENTIAL DECAY OF THE

cies are varied so that they cross each offiét. TRANSITION AMPLITUDE

Many-particle Iocalization_ is a prerequisite for_ operation In this Appendix we give a rigorous proof of the quasiex-
of a quantum memory device. In many cases it is also

o e : onential decay of the amplitudg,(m) [Eq. (6)] of the tran-
prerequisite for a projective measurement. This happens... ; . .
when the measured quantity is the probability for each qubi?‘Itlon from siten to siten+m and estabhsh. bound_s on the
to be in the excited state. Often a measurement is mucHecaY length. We show that, for sequei in the limit of
slower than the timé™! of resonant hopping to a nearest site; SMall @ and form—cc,
then t,. should exceed the measurement time. In our ap- -y m — m— _—yym
proaclﬁ? localization does not require refocugiag which is P @< Ka(M)2W)T < a7, (A1)
not always easy to implement and which is sometimes inWe find thaty =0.89 andy,<1.19.
compatible with slow measurement. It also does not require In order to simplify notations we introduce dimensionless
turning the interaction off for some time, as in the approachenergiese,(«) =2¢,/h. From Eq.(5),
[11].

The presented scheme can be extended to systems with
long-range coupling. For several proposed QC's the interqu-
bit coupling is dipolar for a few near neighbors and becomes
quadrupolar or falls down even faster for remote neighbordVe also setl/2h=1. ThenK,(m)=1/|Q,(m)|, where
[5,6,9. Long-range interaction makes transitions over sev- m
eral sites more probable. We leave the analysis of the many- _ _
particle problem for a separate paper. Here we note that, for Qn(m) = 5[8”+3(a) en(@)]- (A3)
sequenceg23) and for single-particle transitions, not only
hopping over two or four sites is nonresonant and does ndtrom Eq.(A2), Q,(m) is a polynomial ine.
lead to delocalization, but even hopping over 6, 8, or 10 sites For a polynomialP(«) we define byD,,P(a) the multi-
is nonresonant as well. For all these transitions, the energglicity of the roota=0, i.e., the lowest power of in the
difference is at least-a®h or ~gh/4 [for sites separated by polynomial. The exponent that characterizes the decay of
an odd number of positions, the energy difference is alway&n(m) [Eq. (7)] is given by v=Dy,,,Qn(m)/m for m— .
large, ~h]. The data of the numerical experiments presented in Fig. 2

Our results provide proof of principle of strong on-site show that 0.894 D,,,,Q,(m)/m<1.12 independent af for
localization. We have not addressed the question of optimilargem.

n+1

en(a) = (= 1)"= ) (- DIMHgkL, (A2)
k=2
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To obtain an analytical estimate we rewrite E43) as We computeh(0), h(1), etc., using that the coefficients
m [en(a)]; are periodic inn with period Zi+1). Indeed, from
DyonQn(m) = E 7-)Iow[sn+s(a‘) - 8n(a)]- (A4) Eq. (A2),
s=1

[en(@)]; = (= DIMEDI = (- w2 DI DI = [ o (@]

Therefore the sets of coefficients {[e,(a)]y,
len(@)]1,...,[en(@) ]} are also periodic im, but with the
period T;=2LCM{2,3,...,i+1}. This is illustrated by the

Each termDy,[ens(@) —en(@)] is an integer between 0 and
n+1.

In order to find bounds foD,,,Q,(m) we will estimate
how many termsD,,[ens(@) —£,(a)] exceed a given for

0<i=<n+1. For each we have a subs&,(i) of the values table
s that satisfy this condition, gla)=-1-a,
Swnli) ={sll=s=m,  Difena) - sn(@)]>1}. so@=1+a-a
(A5) g3(a)=—1+a+a?-a®,
-1 _ 2 3_ 4
The number of elements i8,(i) is denoted byh,(i). This @) =1-ata za 3“ .
is the number of polynomials,,s(@)—&,(a) whose expan- es(@)=-l-a+a"+a’+a"-a,
sion ina starts witha® with k>i. In what follows for brevity ggla)=1+a-a?+a+a*+a®-ab,
Wed(;l]ro?)the subscripts,m and useS(i) andh(i) for S,(i) e@)=—1+a—-a?+ad+a*+ad+a-dl.
an i).
It fr(])nﬁows from the definition that In order to estimateh(i) we need two technical state-
ments.
h(0) = h(1) = h(2) = --- = h(n). Lemma A.2Let a,,k T be any integers such thak 2loes
By construction not divide T. Consider any B/ GCD{T, 2k} consecutive ele-
ments of an arithmetic progressi@=ay+jT, and setb;
" " =|a;/k| mod 2
=N iTh(i — 1) — h(i - : j .
DiowQn(m) = ;1 iLh(i = 1) = h()] + (n+ 1)h(n) ‘g h(i). Then, at leastk/ GCD{T, 2k} integersb; are equal to 0,
B B and at least the same numberbpfare equal tol.
(A6) Proof. Since X does not divideT, sequence; mod X is

From Eq.(A6) we see that the upper and lower bounds oncyclic in the interval[()'q(— 1]. This sequence contains ex-
DiowQn(M) are given by the sums of the upper and loweractly 2/ GCD{T, 2k} distinct elements. On average, half of
bounds ofh(i). them (at least p/ GCD(T, 2k}]) are less tham, and another

In what follows we will use the standard notations: lim inf half (the same numbgrare larger than or equal to. This
(im sup means the loweruppe) limit of a sequence, Means that there are at lefistGCD{T, 2k}| integersb; that

LCM({iy, ...,i,} is the least common multiple of integers @re equal to 0 and at least the same numbel; dhat are
iy,....i, and GCDiy, ...,i,} is the greatest common divisor €qual to 1. Q.E.D. _
ofiy,...,i,. We will also denote bys(a)], the coefficient of The next statement is a corollary of lemma A.2 and we

skip the proof.
Corollary A.3.Let 2k does not divideT. Considerp con-
" secutive elements of the arithmetic progressgrag+jT
en(@) = 2 [en(@) ]ka®. (A7) and setb;=|a;/k| mod 2.
k=0 Then at leasik/GCD{T,2k}|x|p GCD{T, 2k}/2k| inte-
gersb; are equal to 0, and at least the same numbéx afe

1. Lower bound equal to 1.

We are now in a position to finish the proof of Lemma
A.1. We notice first that, fon=a; in the expressiolA2), the
coefficientb; for givenk determines the sign of the teraf !
in (), that is(-1)%=[e,(a)],_,. The numbeh(i) gives the
probability that, for allk<i, the polynomiale,,{(a) has the
sameb; asep(a).

) i . We will now estimateh(i) with i=1,...,4 and start with

Proof. Consider first the constant terfiz,(a)]y in Eq. h(1). We note thats€S(1) if and only if s€S0) and
(A7). By definition, [en(@)Jo=[&n+2(@) o, and [eneli=[en];. The second condition means this/2]
0 forodds, mod 2=0. By constructiottA5), for m—« the setS0) is
formed by all numbers of the same parity as. This means
that S(0) is an arithmetic progression with peridg=2. We
Hence we immediately obtain a simple lower boundtakep consecutive elements, ...s, of it and use Corollary
DyowQn(m) =|m/2] for large m (in what follows we always A.3 with k=2, because we are interested in the coefficients
imply m— o). [enss J1=(-1)™9"@ in Eq. (A2). By Corollary A.3, sinceT,

o in the polynomiale(a), i.e.,

In this section we obtain the lower bound Bf,,Q,(m).
The main statement is the following lemma.
Lemma A.1The lower bound has the form
. DIoan(m)
liminf———
m

m—o

= 0.89.

=1 forevens.

Digulenss(a) —en(@)] = {
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is not divisible by X, for at least|p/2] subscriptss; the
coefficients[sm%(a)]l:l, and[sm%(a)]l:—l for at least the
same amount of subscripss i.e., approximately half of the
coefficients[sm%(a)]l coincide with[e,(a)];. Henceh(1)
=h(0)/2 asm—co. Substitutingh(0)=m/2 we obtainh(1)
=m/4.

Similar arguments can be applied to estimh(2). This
requires finding a portion of the s&1) which formsS(2).
The setS(1) is a nonempty disjoint union of arithmetic pro-
gressions with period’;=4. We will apply Corollary A.3
with k=3 to each of these progressions and pisé(1). This
gives h(2)=13/2|1(1/3)(m/4)|=|m/12], or h(2)/m=1/12
for m— oo,

In the same way we obtaih(3)/m=1/24 andh(4)/m
=1/60 asm— . Therefore

D Q(m)/m>}+}+i+i+i>089
low™<n T2 4 12 24 60

which finishes the proof of the lower bound.

2. Upper bound

We start with the proof of the following rough estimate:
Lemma A.4An upper bound has the form

Dloan(m) 22
p——

lim su = —<1.47.
15

n—oe
Proof. Taking in the right-hand side of EGA6) the sum
from O to o we obtain

DionQu(m) < X h(i). (A8)
i=0

To find an upper bound on(i) we will use the following
consequence of Lemma A.2:

Corollary A.5 Let 2 does not divideT. Considerp con-
secutive elements of the arithmetic progressgrag+jT

and setb;=|a;/k] mod 2.
Then at most,

( 2k _{ K J)QpGCD{T,Zk}J+1>
GCD{T,2k} LGCD{T, 2k} 2k '

integersb; are equal to 0, and at most the same numbés; of
are equal to 1.

Using the same arguments as before, by Corollary A.5 we

obtain form— o the following upper bounds fan(i):

h(0) = m/2,
h(1) < nv4,
h(2) < n/6,
h(3) < m/12,
h(4) < m/20.

Recall thath(4) =h(5)=h(6)=h(7). Similarly, for q=2
we have

(A9)

PHYSICAL REVIEW A 71, 012317(2005

h(29 = h(29+ 1) = - --h(29*1 - 1).

Therefore we can replace the terim@94+1), ...,h(24"1-1)
in the right-hand side of Eq/A8) by h(29), which leads to
the following upper bound fob,,,Q,(M):

DiowQn(M) < h(0) + h(1) + h(2) + h(3) + >, 29(29).
=2
(A10)

This reduces the calculation to finding upper bounds on
h(29).

We will now obtain a recurrence relation fof29). First
we notice that, fok +1 being a prime number, we have from
Corollary A.5

2
h(K).
2(K+1)
For all primesK+1=7 we have (K+2)/2(K+1)<4/7.
Thereforeh(K+1) < %‘h(K) for K=6. We also note that, for
all positive integralq,

h(K + 1) < (A11)

h(29) < %h(Zq -1).

Now we recall the distribution law for primes in the in-
tervals. The following statement is called Bertrand’s postu-
late (or Tchebychev’ theorein(see Ref[22)):

Theorem A.6There is at least one prime betwegnand
2M for any positive integeM. If M >3, there is always at
least one prime betwedd and 2V -2.

In particular, there is at least one prime betweé&ragd
29*1—1 for any positive integeq=2. With this statement,
taking into account the previous estimates, we obtain

h(29%?) < (Ef‘)qm
27) 20

for all positive integralq, or
9m

h(2q+2) = (;) 2—0

Substituting inequalitie$A9) and (A12) into Eq. (A10),
we obtain

2 (A12)

D ms<—+—+—+—+—22+28=+2% =
QM <5+ 4+ e+ 15 %0 7 7

k_
+...+2k<g) 2+...:|
7

:m[1+2—2§ (4—1)]] for m— oo,

205 \7

e

This gives
22
DiowQn(m) < l—5m < 1.47m. (A13)

The last inequality is an explicit asymptotic upper bound.
Q.E.D.
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We now provide a sharper upper bound. We will use the ~ APPENDIX B: INTERRELATION BETWEEN THE
same method, but instead of Tchebyshev’ theorem we will ~ ENERGY SPECTRUM PARAMETERS a AND J/h
apply Erdés theorem. FOR FIXED IPR

Lemma A.7 (sharper bourd) In this Appendix we outline another way of looking at the

Doy Qn(M) effect of the band structure of sequeribgon localization. It
lim sup—2~"— < 1.19. applies to single-particle stationary states and is based on
m-—oe m varying h/J and finding such energy spectrum parameier
Proof. Following the same pattern as in Lemma A.4 abovethat would keep the IPR constant, i.e.,
WeAextend the explicit list of inequalitig#\9). (1) = {I,(e, J/N)) = const. (B1)
S M— o,

The average IPR is largesL/3, when the spread of the
h(5)/m= 1/20, on-site energiesah is small compared to the hopping-
h(6)/m= 1/35 induced bandwidthl?/2h of the bands at B/2. When ah

' becomes comparable ti/h, a part of the states become
h(7)/m=1/70, localized with localization length smaller than the chain size,
h(8)/m= 1/126, but still there remain states of sizeL. For such states;,
h(9)/m = 1/126 « L. Their portion depends oah/(J?/h). Therefore one may

expect that, for largdl,) and for a given chain lengthy

h(10)/m= 1/231, (A14)  should vary withJ/h as (J/h)2

h(11)/m= 1/231, Another scaling region ok(J/h) as given by Eq(B1)
h(12/m= 1/429, may be expected to emerge far close to the threshold
h(13)/m<= 1/429 value, oy, < @<<1, but far away from the strong-localization

range ofa, where(l,)-1~J?/h? [cf. Eq. (8)].
h(14)/m < 1/429, For « close toay,, the wave functions have comparatively
h(15/m = 1/858, small-amplitude tails that spread over a long distance and are
h(16)/m < 3/4862. nearly exponential at large distances, as given by(Bq.If
i _ the decay were purely exponential, i.e., the tail of the wave
To obtain a sharper upper bound we recall the followingsnction centered on sita were of the formufi.m=K My,
result by Erdog23]. _ _ we would have(l;)-1~4|K|? for K=J/2ah<1. From Eq.
Theorem A.&Erdos. There exist at least one prime of the (B1), this condition gives scaling=J/h. The nonexponen-
form 4k+1 and at least one prime of the forrk43 between  y) decay of the wave functions at small to moderate dis-
M and M for all m=>6. , tances(numerically, for|m|~4—-8) leads to deviations from
For all primes that exceed 16 we have in Hé&ll) this simple scaling.
(K+2)/2(K+1) <7/13. Therefore, by reproducing the argu-  \ymerical results on the dependencexain J/h as given
ments that led to the inequalit§A12), but using now the by Eq. (B1) are shown in Fig. 10. The data fét,)~ L/3
relation(A11) twice based on the theorem A.8, we obtain show the expected scaling (J/h)2. On the other hand, in

1/ 7\2]a the range(l;)—1~0.1-1 the value ofr scales asl/h. This
h(29*4) < {—(—) } h(16). (A15)  scaling applies only fora> ay, i.e., for ah/J>1/2. The

2113 value ofah/J as given by Eq(B1) increases with decreasing
Substituting inequalitie$A9), (A14), and(A15) into Eq. (I

(A10) [where now the terms up t(15) are taken into ac- We note that, for largér/J~ 100 and smalkl;)-1, the
count explicitly, and the sum runs frogqr4] we obtain IPR (l;) as a function ofx displays small oscillations. This
leads to multivaluedness of the roatsof the equatior(l,)

1,2 1. 1 2 =const. The roots are numerically very close to each other.
12 20 35 70 126 We showed the multivaluedness schematically by plotting
vs h/J in Fig. 10 with jagged lines.

. D , 1 11
IlmsupT<§+Z+é+

m—oe

i+i+i In the intermediate range dfi;), the function a(J/h)
231 429 858 crosses over from one type of the limiting behavior to the
3% 16 7\2 [ 7\4 other. The numerical data does not seem to suggestlthat
— |1+ = +| =] +- i i i

1862 { (13) (13> } Zaile;]inllversal scaling form of a function@f/(J/h) for all

Evaluating the right-hand side, we obtain
APPENDIX C: NARROW RESONANCES OF THE

. DIoan(m) MANY-PARTICLE IPR AS FUNCTION OF THE
lim su - <

m—oe

1.19. (A16) PARAMETER a

In this appendix we discuss the positions and widths of
Q.E.D. the narrow peaks of the IPR seen in Fig. 4.
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107 ] da ~ (J/h)2,
The positions of the peaks~ JA/shand their widths are in
o agreement with the data in both upper and lower main panels
of Fig. 4.
102 For largera, resonances with respect dooccur when
sa™h = MJA
» with integers, m, M, andm=2, M=1,2. They may happen,
10 for example, between pai®,n+1) and (n-1,n+2) with
o odd n such thatn# 3k—1, in which casan=2 andx=2. A
" 1 specific example for our chain is the resonance between the
107 ey ] on-site stated®(1,3,4,6,9,1) and |®(1,2,5,6,9,1D
/ ) ‘ , for A=1, h/J=20, and @=0.246. Here the excitations on
10° | a=J’/16h’ \ sites(3,4) move to S|te$2,5)_, andaz'h~JA .(m fact, h|gher7
—3 order terms ina are essential for fine tuning the states into
resonance In other cases resonances witl=2 require

10 h/J 100 more intermediate virtual steps, with=4.
The m=2 resonances are extremely narrow fgf<a
FIG. 10. (Color onlind. The dependence af on h/J as given <1, as seen in the insets in Fig. 4. For example,rfer2
by the condition(l;)=const for differenl,) in the chain withL  their widths are
=300. The lines in the lower panel listed from down upwétdn
solid, dotted, dashed, long-dashed, and dot-d3sbedespond to da =< (Ih)®2AY2 for x=2,
(11)=95, 50, 10, 2, and 1.2, respectively. The lines in the upper Sa< PIRA for x=4.
panel listed from down upward$ong-dashed, dotted, dashed, and
dot-dasheficorrespond to comparatively smél})=2, 1.6, 1.4, and  |n these estimates we used that, from E@®. and (13
1.2, respectively. The bold lines=J?/16h? anda=J/h display the Vo1 o n et = J2/02 for the x=2 transition(n,n+1) < (n
asymptotic behavior ofx for large and smalkl;); the line « -1,n+2). For them=2 and x=4 transitions, on the other
=J/2h corresponds tar=ay, hand, |V k| < 3% o®h* [for example, this estimate applies
_ _ to a transition(n,n+1) < (n,n+5)]. We note that, from the
As we increaser starting froma=0, pronounced peaks of ' o gition ay,< & and the resonance conditisn?h=MJA, it
(Ie) appear for the difference in the combination two-particlefq)ioys that A > J/h, which guarantees the smaliness of the
on-site energie§s=|sk1+sk2—sk3—ak4 [Eq. (16)] equal to peak widths.
Each high-order resonance gives rise to a narrow band of
resonanta values. All of them refer to a resonant transition
de =~ sah =~ JA between the same sites. However, the energy difference of
these sites is slightly different depending on the occupation
of remote sites, for example, next-nearest neighbors. In this

with s=1,2. They are due to resonant hybridization of pair5|atter case, from qulZ) and (13), the Corresponding shift
on neighboring sitegn,n+1) with dissociated pairs located of o is <(J/h)52A%2,

on sites(n,n+3) for s=1, and(n-1,n+2) with evenn for A specific example for the studied chain is provided by
s=2, for example. Such hybridization corresponds to twothe resonances between two pairs of on-site states,
single-particle steps by one site, i.e52. |#(2,3,6,7,8,1 and [#(2,3,6,8,11,1P, on the one

A specific example for the studied chain witt1, h/J hand, and®(5,6,7,8,9,1® and|®(5,6,8,9,11,19, on
=20, anda=0.05 is the resonance between the on-site statefie other hand. In both cases the resonant transition is fer-
|©(3,4,6,7,8,9), [©(4,5,6,7,8,9), [(3,4,6,7,8,11),  mion hopping from site 7 to site 11. Both resonances occur
and|®(4,5,6,7,8,1)) (we remind that the arguments &  for A=1, h/J=20, but the first corresponds te~0.2778,
indicate the positions of the excitations; we have six excitawhereas the second correspondsats 0.2782. The differ-
tions, and the available sites are 1,212). All these states ence ina comes primarily from the different occupation of
can be obtained from each other by moving one excitation byhe next-nearest neighbors of sites 7 and 11.
two positions. For example, in the first pair the excitation  The most pronounced peaks in Fig. 4 correspond to com-
goes from site 3, where it has one nearest neighbor, to site paratively smallx<4. However, there are resonances for
where it has two neighbors. higher » as well. The resonating energies have to be ex-

The width of the above peaksx can be estimated from tremely close to each other for such states to be hybridized.
the condition that the frequency detunifgxh+JA| is of  The corresponding peaks are very narrow, and very high pre-
order of the effective hopping integrdVy .« Fors=1  cision is needed to find them numericallgometimes the
[an(n,n+1) < (n,n+3)-type transitior} the hopping integral  hybridization appears to be an artifact of not sufficiently pre-
is ~J°A/ ah? from Egs.(12) and(13). This gives the width  cise calculations
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As mentioned above, in the region 8e2r<0.4 the posi- separated for sufficiently large/J and not too largéd. On
tions of the IPR peaks are determined not only by thethe other hand, foln/J=10 andA =3 the bands of resonances
leading-order terms iny, but also by higher-order terms. are broadened and overlap with each other. Whaeds not
Therefore there are several resonant bands for gatM as  very small there emerge also narrow resonances wbere
given by the conditiorsa™h =~ MJA. This explains why there <J. They are responsible for some of the peaks in the insets
are several bands in the insets in Fig. 4. These bands are well Fig. 4.
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