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Tunneling from a correlated two-dimensional electron system transverse to a magnetic field
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We show that in a magnetic field parallel to a two-dimensional~2D! electron layer, strong electron correla-
tions can change the rate of tunneling from the layer to the 3D continuum exponentially. It leads to a specific
density dependence of the escape rate. The mechanism is a dynamical Mo¨ssbauer-type recoil, in which the Hall
momentum of the tunneling electron is partly transferred to the whole electron system, depending on the
interrelation between the rate of interelectron momentum exchange and the tunneling duration. We show that,
in a certain temperature range, the parallel magnetic field canenhancerather than suppress the tunneling rate.
The effect is due to the field induced energy exchange between the in-plane and out-of-plane motion. A parallel
magnetic field can also lead to switchings between tunneling from different intra-well states, and between
tunneling and thermal activation. Explicit results are obtained for a Wigner crystal. They are in qualitative and
quantitative agreement with the relevant experimental data for electrons on helium, with no adjustable param-
eters. The theoretical results also suggest new experiments in semiconductor systems which will reveal electron
correlations and their dynamical aspects.

DOI: 10.1103/PhysRevB.64.245309 PACS number~s!: 73.40.Gk, 73.21.2b, 73.50.Jt
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I. INTRODUCTION

Many properties of low density two-dimensional electr
systems ~2DESs! are strongly influenced by electro
correlations.1–3 Tunneling is one of the most direct tools fo
revealing these correlations, as has been recently dem
strated in experiments on systems which display the quan
Hall effect.4 In these experiments~see also Ref. 3! tunneling
occurs between two 2D electron layers in a semicondu
heterostructure, which are separated by a high and na
barrier. The tunneling current is then quite accurately de
mined by a constant~unknown! tunneling matrix elemen
and the electron and hole propagators in the different lay
and is used to extract infromation about these propagato

In this paper we consider a very different situation. T
tunneling occurs from an interacting strongly correlat
2DES into a 3D continuum. The two are separated b
shallow and wide barrier. A magnetic fieldB is parallel to the
electron layer~the results are readily generalized to the ca
of a tilted field!. In this case the effect of the field on tunne
ing may not be described in terms of a phenomenolog
tunneling Hamiltonian: it is the tunneling matrix element
self that is sensitive to the electron correlations. As we sh
it depends strongly, and very specifically, on electron dens
and also on temperature and the magnetic field. This de
dence tells us about the electron correlations and in-p
dynamics with frequencies comparable to the recipro
imaginary tunneling time that an electron spends under
barrier. An exponentially strong deviation of the tunneli
exponent in a magnetic field from the predictions of t
single-electron theory have been observed for a 2DES
helium,5 where the parameters are in the right range. Ho
ever, the observations5 until now have been unexplained.
theoretical framework for analysis of the problem at ze
temperature was outlined in our recent communications.6,7

The physics of the effects we discuss relies on the
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that a magnetic fieldB parallel to a 2DES couples the ou
of-plane tunneling motion of an electron to the in-plane m
tion. For an isolated electron, which is separated from
continuum by a 1D potential barrierU(z), see Fig. 1, and is
free to move in the plane (x,y), this results in an exponentia
suppression of the rate of tunneling decay. Indeed, when
electron moves by a distancez away from the layer, it ac-
quires the in-plane Hall velocityvH5(e/mc)B3z. The cor-
responding kinetic energymvH

2 /2[mvc
2z2/2 is subtracted

from the energy of the out-of-plane tunneling motion (vc
5ueBu/mc is the cyclotron frequency!, or equivalently, there
emerges a ‘‘magnetic barrier’’mvc

2z2/2. This leads to a
sharp decrease of the decay rate.

The electron-electron interaction can totally change
above picture. If the electron system is spatially correlat
forming for example a Wigner crystal~WC!, see Fig. 1, the
tunneling electron transfers a part of its in-plane Hall m
mentum to other electrons.7 This decreases the loss of th
energy for out-of-plane tunneling motion.8 The mechanism is
similar to that of the Mo¨ssbauer effect where the momentu
of a gamma quantum is given to the crystal as a who

FIG. 1. The geometry of tunneling from a correlated 2DE
transverse to a magnetic field.
©2001 The American Physical Society09-1
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However, in the present case thedynamicsof the interelec-
tron momentum exchange is very substantial. The chara
istic momentum exchange rate is given by the zo
boundary plasma frequencyvp , which is related to the
electron densityn by vp5(2pe2n3/2/m)1/2. If vp exceeds
the reciprocal duration of underbarrier motion in imagina
time t f

21 andvc , the WC momentum adiabatically follow
that of the tunneling electron. As a result, the Hall velocity
nearly the same for all electrons, andvH}1/N→0 (N is the
number of electrons!. The effect of the magnetic field o
tunneling is then compensated. Forvpt f;1 only partial
compensation occurs. One can say that tunneling is acc
panied by creation of phonons of the WC, and the associ
energy goes towards the magnetic barrier. However, the
rier turns out to be smaller than for a free electron, and
tunneling rate is then exponentially larger. Still, forT50 it is
much smaller than theB50 rate.

We show in this paper, that unexpectedly, in a cert
temperature range theB-induced suppression of the rate
tunneling from a 2DES may be reversed, and then the de
rate exponentially increases withB. This happens becaus
thermal energy of the in-plane electron motion is transfer
by the magnetic field into the energy of tunneling motio
One can say that the in-plane motion with a velocityv
changes the tunneling barrier by adding an effective out
plane electric fieldc21v3B, as illustrated in Fig. 2. For an
appropriate direction ofv the field pulls an electron from th
layer, and only these velocity directions contribute to t
thermal-averaged tunneling rate.

The crossover from suppression to enhancement of
neling by the field occurs for a certain temperatureTcr . It
can be estimated by noticing that, forB50, the tunneling
rate from the ground stateW0}exp@22S0# exponentially de-
pends on the energyEg of the intrawell electron motion
transverse to the layer@S0 is the mechanical action for un
derbarrier motion; in what follows we use units where\
5kB51]. The derivativet05]S0 /]Eg gives the imaginary
duration of the underbarrier motion. The magnetic field
fectively transfers the in plane electron energyEplane into the
out-of-plane energyEg , at least in part. The probability to
have an energyEplane is }exp(2Eplane/T). Therefore the
overall probability, which is determined by the product of t
two exponentials, depends on the interrelation betweenT and
t0, and one may expect thatTcr;t0

21.
The timet0 also often determines the temperatureTa for

which there occurs a crossover from tunneling decay to

FIG. 2. Magnetic field induced lowering of the tunneling barr
by thermal in-plane motion~schematically; the lowering is supe
imposed on the magnetic barrier forT50). The effective electric
field E is determined by theT-dependent optimal in-plane velocity
E5vopt3B/c.
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cay via activated overbarrier transitions forB50.9,10 There-
fore Ta and Tcr are of the same order of magnitude. Th
interrelation between these temperatures is determined by
parameters of the system, and various interesting situat
may occur depending on these parameters, as we dis
below. For example, the logarithm of the escape rate m
increase withB even for T.Ta , because in a certainB
range, the rate of tunneling from the ground state exceeds
activation rate, even though it is smaller than the activat
rate forB50. Similarly, with increasingB there may occur
switching from tunneling from the excited intrawell stat
~see Fig. 2! to tunneling from the ground state.

For T,Tcr , on the other hand, the tunneling rate d
creases with the increasingB. For large enoughB the tunnel-
ing rate becomes smaller than the rate of activated esc
which then determines the overall escape rate.

Although the thermalB-induced tunneling enhancement
generic, as we show it arises only in systems where intraw
motion transverse to the layer is not semiclassical. This
typical for 2DESs, where the confining potentialU(z) is
usually nonparabolic near the minimum, and even nona
lytic, with a step in the case of heterostructures and, in
case of electrons on helium, the singularity of the ima
potential. In contrast, the enhancement does not arise11 if the
tunneling rate can be found using the instanton~bounce!
technique.12 This technique is traditionally applied to de
scribe tunneling forB50. For BÞ0, it has to be modified,
because the magnetic field breaks time-reversal symm
and therefore, except for the case where the Hamiltonian
the system has a special form,13 there are no escape traje
tories in real space and imaginary time.14

In what follows, explicit results on the effect of electro
correlations on tunneling are obtained assuming that e
trons form a Wigner crystal. Because of strong correlatio
overlapping of the wave functions of individual electrons
small, and electrons can be ‘‘identified.’’ The problem is th
reduced to the tunneling of an electron coupled to in-pla
vibrations of the Wigner crystal. As we show, the resu
provide a good approximation also for a correlated elect
liquid.

In Sec. II we formulate the model. In Sec. III we provid
a general expression for the tunneling rate in the WKB
proximation, with account taken of the discreteness of
energy spectrum of electron motion transverse to the la
The result can be understood in terms of the tunneling
jectory where the duration of motion transverse to the la
~in imaginary time! depends on temperature and the ma
netic field in a nontrivial way. The actual derivation is give
in the Appendix. We then analyze the tunneling expone
including the cases ofT50 and of finiteT but small frequen-
cies of electron vibrations. In Sec. IV we discuss temperat
effects and show the possibility ofB-induced enhancemen
of tunneling and of switching between different regimes
escape from the potential well. In Sec. V explicit results a
obtained using the Einstein model of the Wigner crystal
which all phonons are assumed to have the same freque
Closed-form expressions are obtained for a triangular
square tunneling barriers. In Sec. VI we apply the results
electron tunneling from helium surface and provide a d
9-2
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tailed comparison with the experimental data.5 Section VII
contains concluding remarks.

II. TUNNELING FROM A HARMONIC WIGNER
CRYSTAL

A 2D electron system displays strong correlations if t
ratio G of the characteristic Coulomb energy of the electro
electron interactione2(pn)1/2 to the characteristic kinetic en
ergy is large~here,n is the electron density!. In degenerate
systems the kinetic energy is the Fermi energypn/m,
whereas in nondegenerate systems it is the thermal enerT.
An example of a strongly correlated nondegenerate 2DE
electrons on helium. The experimental data for this sys
refer to the rangeG.20.2 A classical transition to a Wigne
crystal ~WC! was observed forG'130.15,16 Recently much
attention have attracted also strongly correlated low-den
electron and hole systems in semiconductors, where t
have been reached the values ofG;40 which are expected to
be sufficient for Wigner crystallization in a degenera
system.1 Another example is strongly correlated systems
the quantum Hall regime.

In what follows we discuss the effect on tunneling only
the magnetic fieldB parallel to the electron layer. It is mos
pronounced if the tunneling lengthL is long, because the
in-plane Hall momentum due to tunnelingmvcL is simply
proportional toL. Respectively, of utmost interest to us a
systems with broad and comparatively low barriers. Yet
experimental systems the barrier widths are most likely to
less than 103 Å. Therefore, in order to somewhat simplif
the analysis we will assume thatL is less than the averag
interelectron distance;n21/2. In this case, since electrons
a strongly correlated system stay away from each other,
in-plane electron dynamics only weakly affects the tunnel
potential.17 We will neglect this effect forB50.

The major effect on tunneling forBÞ0 should come from
recoil from a few nearest neighbors, or alternatively, fro
short-wavelength in-plane excitations which have large d
sity of states. The presence or absence of long-range ord
the 2DES does not then affect the tunneling rate, see
III B. Therefore we will analyze tunneling assuming that t
electron system is a Wigner crystal. As we show, the prob
is then reduced to tunneling of a polaron formed by the e
tron coupled to phonons of the WC, with the couplin
strength controlled by the magnetic field. We believe that t
model contains the most essential physics of tunneling fr
correlated systems and therefore provides a good approx
tion even where electrons form a correlated fluid.

In a strongly correlated system, exchange effects are
significant, and one can identify the tunneling electron.
out-of-plane motion forB50 is described by the Hamil
tonian

H05
pz

2

2m
1U~z!. ~1!

The potentialU(z) has a well which is separated by a tu
neling barrier from the extended states with a quasicont
ous spectrum, see Fig. 1. The well is nonparabolic near
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minimum, in the general case. The metastable intraw
states are quantized. We will consider temperatures for wh
nearly all electrons are in the lowest level, with energyEg .

The magnetic fieldB parallel to the layer mixes the out
of-plane motion of the tunneling electron with the in-pla
vibrations of the Wigner crystal. The full Hamiltonian is o
the form

H5H01HB1Hv , ~2!

with

Hv5
1

2 (
k, j

@m21pk jp2k j1mvk j
2 uk ju2k j # ~3!

and

HB5
1

2
mvc

2z22vczN21/2(
k, j

@B̂3pk j #z . ~4!

Herepk j , uk j , andvk j are the 2D momentum, displacemen
and frequency of the WC phonon of branchj ( j 51,2) with
a 2D wave vectork. We chose the equilibrium in-plane po
sition of the tunneling electron to be at the origin. Then
in-plane 2D momentum isp5N21/2(pk j for B50.

The interaction HamiltonianHB ~4! does notconserve the
phonon quasimomentumk. The Hall momentum of the tun
neling electron is transferred to the WC as a whole. The te
HB couples the out-of-plane motion to lattice vibrations. T
problem of many-electron tunneling is thus mapped ont
familiar problem of a particle coupled to a bath of harmon
oscillators,18,13 with the coupling strength controlled by th
magnetic field. The distinctions from the standard situat
stem from the nonparabolicity of the potential well near t
minimum and from the fact that coupled byHB are the elec-
tron coordinate zand the in-planemomentaof the lattice.
These quantities have different symmetry with respect
time inversion. In the general case@for example, where the
potential energy of the system has odd-order terms in
displacementsuk j ], the broken time-reversal symmetry re
quires a special approach to the analysis of tunneling.6 The
results discussed below can be appropriately generalized
ing this approach.

For the model~2!, the analysis is simplified by the struc
ture of the Hamiltonian~see Ref. 13!. For vibrations with the
HamiltonianHv ~3!, one can make a canonical transform
tion from the canonical coordinates and momentauk j andpk j
to the new canonical coordinates and momentapk j and
2uk j , respectively. This transformation interchanges
time-reversal symmetry of the in-plane dynamical variabl
it makes pk j and uk j even and odd in time, respectivel
BecauseHB is independent ofuk j and is linear inpk j , in the
new variables it takes on a more familiar form of a ‘‘pote
tial’’ coupling which depends on the dynamical coordinat
z, pk j only, with restored time-reversal symmetry.
9-3
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III. THE TUNNELING EXPONENT

A. General formulation

We now evaluate the escape rateW in the WKB approxi-
mation. The major emphasis will be placed on the tunnel
exponent. We will assume that the escape rate is much
than the intrawell relaxation rate, and the distribution ov
the intrawell states of the system is thermal. This is not n
essarily true for 2D systems. Usually the in-plane degree
freedom~phonons! equilibrate fast, but the distribution ove
the statesn51,2,3, . . . , of quantized intrawell motion in the
z direction requires longer time to become equilibrium. O
results can be generalized to the case of slow intrawell
laxation, see Sec. VI.

The rates of tunneling decay of intrawell states shar
increase, whereas the thermal state population decreases
the state energy. As a result, there is a comparatively s
group of states~generally with the samen but with different
phonon occupation numbers!, from which the system is mos
likely to escape. To logarithmic accuracy

W}Ze
21max

n
exp~2Rn2bEn!,

~5!
Rn5min

z(t)
Rn@z~t!#.

Here,Rn is the tunneling exponent for thenth state, and the
factor exp(2bEn) allows for thermal occupation of this sta
(b[1/kBT). The factor Ze'exp(2bE1) is the partition
function for the motion transverse to the layer in the negl
of tunneling.

Equation ~5! is obtained by statistical averaging ov
phonons, for each staten, as described in the Appendix.
differs from the standard procedure,12 because the intrawel
motion in thez direction is not semiclassical. Even thoug
the underbarrier motion is semiclassical, its duration
imaginary timet f is not equal tob/2. Nevertheless the resu
of elimination of phonons, obtained by solving the line
equations of underbarrier motion~A6! for the phonon ‘‘co-
ordinates’’ pk j (t) has a familiar form of an influence
functional.18 In fact, the effective duration of the phono
tunneling motion is still equal tob/2, see Eq.~A14!. As a
resultRn is given byRa ~A13! @a5$n,nk j%# with the appro-
priate phonon occupation numbersnk j .

Overall, Rn@z# in Eq. ~5! is a retarded action functiona
for a 1D electron motion normal to the layer

Rn@z#5E
0

2t f
dt1Fm

2
ż21U~z!1

1

2
mvc

2z2~t1!G
22t fEn1Ree@z#. ~6!

The first two terms here give the action for underbarrier m
tion of an electron in the magnetic field, whereasRee gives
the retarded action which results from the electron-elect
interaction

Ree@z#52
1

2
vc

2E
0

2t f E
0

t1
dt1dt2z~t1!z~t2!x~t12t2!.

~7!
24530
g
ss
r
c-
of

r
e-

y
ith

all

t

n

r

-

n

Here,x(t)5^pi(t)pi(0)& is the correlation function of the
in-plane momentumpi of an electron in the correlated 2DES
For electrons forming a Wigner crystal,x(t) is simply re-
lated to the phonon Green’s function

x~t!5
m

2N (
k j

vk j@~ n̄k j11!e2vk jt1n̄k je
vk jt# ~8!

(n̄k j5@exp(bvk j )21#21 is the thermal occupation number!.
The extreme tunneling trajectoryz(t), which provides a

minimum to the functionalRn , goes from a pointz5zin near
the well to the boundary of the classically accessible reg
over the timet f , and then bounces back to the pointzin @in
Eq. ~6! we setzin50]. The initial pointzin is chosen under
the barrier, but close to the well, so that the wave function
semiclassical and the out-of-plane electron motion is se
rated from the in-plane vibrations, see the Appendix. The
fore the initial condition for the tunneling trajectory have th
same form as for a free electron

z~0!5zin , ż~0!5
gn

m
5F2@U~zin!2En#

m G1/2

. ~9!

Here,gn is the characteristic decrement of the intrawell wa
function in thez direction.

The duration of tunneling motiont f has to be obtained
from the condition at the boundary of the classically acc
sible range behind the barrier. If the potentialU(z) is smooth
there, the matching of the WKB wave functions occurs a
turning point19

ż~t f !50. ~10!

The tunneling trajectory is by construction symmetrical
time with respect tot f , z(t f1t)5z(t f2t) for 0,t,t f .

We expect that not only do Eqs.~6!, ~7! apply to a Wigner
crystal, but they also provide a good approximation in t
case of a correlated electron liquid, and then Eq.~7! corre-
sponds to the lowest-order term in the cumulant expansio
the appropriate propagator. Parallel magnetic field coup
the tunneling motion of an electron to the in-plane dynami
degress of freedom of all other electrons. Tunneling provi
a way to measure the actual autocorrelation function of
in-plane momentum.

The term Ree is negative. It means that the electro
electron interaction in a correlated 2DES alwaysincreases
the tunneling rate in the presence of a magnetic field. Mo
over, when this term exceeds (mvc

2/2)*z2dt, the tunneling
exponent as a whole decreases with the increasingB.

Two physical phenomena are described by the termRee.
One is the dynamical compensation of the Hall moment
of the tunneling electron by the WC as the electron mo
under the barrier in thez direction. The other is therma
‘‘preparation’’ of the Hall momentum, which is then trans
formed by the magnetic field into the momentum of moti
in the z direction. We analyze these effects in the followin
subsections.
9-4
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B. Zero temperature limit

It would be natural to think that, since tunneling is acco
panied by creation of phonons forT50, then the higher the
phonon frequency the lower the tunneling rate. In fact j
the opposite is true.

The effect of the electron-electron interaction on tunn
ing, as characterized byRee, depends on the interrelatio
between the characteristic phonon frequencyvp and the tun-
neling durationt f . When the tunneling electron is ‘‘pushed
by the Lorentz force, it exchanges the in-plane moment
with other electrons. The parametervpt f determines what
portion of the momentum goes to the crystal as a wh
during the tunneling~note that the tunneling motion goes
imaginary time; a discussion of the physical meaning of
tunneling duration is given in Ref. 20!. As mentioned in the
Introduction, in the adiabatic limit of largevpt f , all elec-
trons have same in-plane velocity, with an accuracy to qu
tum fluctuations. Therefore the Lorentz force produces
acceleration, andno phononsare created during the tunne
ing. The effect of the magnetic field on tunneling should th
be eliminated.

These arguments are confirmed by the analysis of Eq.~7!.
If the electron system is rigid enough in the plane, so t
vk jt f@1, the major contribution toRn comes fromt12t2

;vk j
21!t f . Thereforez(t2)'z(t1), so that inRn the two

terms}vc
2 compensate each other. The tunneling occurs a

the electron were disconnected from the phonons and did
experience a magnetic field. The only effect of the magn
field is that the electron mass is effectively incremented b
B-dependent factor, and the tunneling exponentR[R1 is ap-
propriately renormalized:m→m* andR→(m* /m)1/2RB50,
with

m* 'mF11
vc

2

2mE
0

t f
dt t2x~t!G

'mF11~2N!21(
k j

~vc
2/vk j

2 !G . ~11!

Here, we assume that the major contribution to the integ
over t comes from timest;1/vp!t f . Respectively, for a
Wigner crystal, the major contribution to the sum over (k, j ),
comes fromvk j;vp . The integral only weakly depends o
the upper limitt f , which also provides the inverse of th
lower cutoff frequency in the sum over (k, j ). For a Wigner
crystal, the dependence of the mass renormalization ont f is
logarithmic.

The tunneling rate approaches its value forB50 with
increasingvp . On the other hand, the slope of the logarith
of the tunneling rate as a function ofvc depends explicitly
on vp . This provides a means for measuringvp .

For vpt f;1, only a part of the Hall momentum can b
taken by the electron crystal. The rest goes into the in-pl
kinetic energy of the tunneling electron, and ultimately in
creations of WC phonons. However, the tunneling expon
Rn usually decreaseswith increasing phonon frequencie
This is because the more rigid the electron system is,
more effectively it compensates the in-plane Hall mom
tum.
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The relative role of phonons of different frequencies a
wave numbers can be characterized by the density of st
weighted with the interactionJ(v), see Ref. 21. From Eq
~8!, for the couplingHB

J~v!5~m/g1
2N!(

k j
vk j d~v2vk j !.

The small-v behavior ofJ(v) is determined primarily by
transverse acoustic phonons, withJ(v)}v2. This corre-
sponds to ‘‘superohmic’’ dissipation, according to th
nomenclature.21 The effect on tunneling of low-frequenc
phonons is comparatively small in this case, which is n
surprising, because the coupling iskinematic, the tunneling
electron is coupled to the phonon momentapk j . The major
effect on Rn comes from high-frequency short-waveleng
phonons, which have large density of states. An import
consequence is that tunneling is influenced primarily
short-range order in the electron system.

On the whole, forT50, the magnetic-field induced term
in the tunneling exponent is positive, i.e. the tunneling r
decreases with the magnetic field. This can be seen from
~6!, ~7! by replacingz(t1)z(t2) in Ree with (1/2)@z2(t1)
1z2(t2)#>z(t1)z(t2) and then integrating the functio
x(t12t2) over t2 @for the termz2(t1)] or t1 @for z2(t2)].
For specific models, the dependence of the tunneling rate
B and the vibration frequencies will be illustrated in Sec.
and the results will be compared with the experiment.

C. High temperatures and small phonon frequencies

The analysis of the tunneling rate somewhat simplifies
the case of comparatively high temperatures and small p
non frequencies, where the vibrations are classical and t
frequencies are small compared to the reciprocal tunne
durationvk jb,vk jt f!1. In this case

Ree@z#522mTvc
2t f

2z̄ 2, z̄5t f
21E

0

t f
dt z~t!. ~12!

Equations~6!, ~12! also describe the tunneling action of
single electron, with the Maxwell distribution of the in-plan
momentum inside the well exp(2p2/2mT). The coupling of
the ẑ3B component of the momentum to the out-of-pla
motion gives rise to the term22pvc*0

t fdt z(t) in the tun-
neling action@see Eqs.~4!, ~A3!#. The extreme value of the
sum of this term and2p2/2mT is just equal to2Ree@z# as
given by Eq.~12!.

The single-electron form of the tunneling exponent is
be expected in the limit of smallvk j , because the distribu
tion over in-plane momenta of electrons forming a Wign
crystal is Maxwellian, in the classical limit. For smallvk jt f
the momenta do not change over the tunneling durat
therefore only the momentum of the tunneling electron its
is important. The above derivation provides an independ
test of the derivation used to obtain the general express
~6!, ~7!.

We note that the actionRee@z# ~12! is still retarded, it
does not correspond to a local in time Lagrangian. The fu
9-5
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tional form of Ree remains the same even for temperatu
T&vk j provided the phonon frequencies are small compa
to t f

21 andvc . In this caseT in Eq. ~12! has to be replaced

by (4N)21(vk j (2n̄k j11)[x(0)/2m. This factor explicitly
depends on the phonon dispersion law, but again, the m
contribution comes from short-wavelength high-frequen
phonons, which are determined by the short-range orde
the electron system.

IV. ENHANCEMENT OF TUNNELING
BY A MAGNETIC FIELD

In this section we show that a parallel magnetic field c
enhance the rate of tunneling from the electron layer. Qu
tatively, the enhancement is due to transferring the energ
thermal in-plane motion into the energy of out-of-plane tu
neling. On the formal level it is a consequence of the
crease, with increasing temperature, of the absolute valu
the termRee ~7! in the tunneling action. Since this term
gives a negative contribution to the tunneling exponent,
whole B-dependent term inR becomes negative startin
with a certain crossover temperatureTcr , and then the tun-
neling rate increases withB. The region where the overa
escape rate increases withB is not universal and depends o
the potentialU(z) and the phonon spectrum. The enhan
ment occurs in a limited temperature range, and may s
from B50 or have a finite threshold inB. However, very
strong fields suppress rather than enhance escape.

A. Small magnetic fields: The crossover temperature

The lower temperature bound of the enhancement dom
is the crossover temperatureTcr . It can be determined from
the small-B expansion of the tunneling exponent for th
ground staten51 in Eq. ~5! ~we use the subscriptg for this
state!,

Rg~B!'Rg~0!1Ag~T!vc
2 , vct0!1, ~13!

wheret0 is the tunneling time in the ground state~with en-
ergyE5Eg) for B50. The role of the ground state is spec
in that the barrier width here is usually bigger than for t
excited states. Therefore the effect of the magnetic fi
which accumulates under the barrier, is most pronounce
the ground state.

The value ofAg is given by the terms}vc
2 in the action

Rg ~6! calculated along the tunneling trajectoryz0(t) for B
50. From the analysis in Sec. III B it follows thatAg.0 for
T→0. The crossover temperature is given by

Ag~Tcr!50. ~14!

For T.Tcr the tunneling exponentRg decreases and the tun
neling rate increases withB, in the region of comparatively
small B.

In the limit of low phonon frequencies,vk j!1/t0 ,Tcr ,
from Eqs. ~6!, ~12! it follows that bcr[1/Tcr52t0z̄ 0

2
/z0

2,
where z̄0 is the average coordinatez̄ ~12! for the B50 tra-
jectory with energyEg , andz0

2 is the mean square value ofz
on the same trajectory
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z0
25t0

21E
0

t0
dt z0

2~t! ~E5Eg!.

One can see thatbcr,2t0. It follows from Eq.~7! that 2t0 is
also the limiting value ofbcr in the opposite case of high
phonon frequenciesvk j@1/t0. On the whole, we have the
following bounds on temperature for the tunneling enhan
ment in the ground intrawell state:

2t0
z̄0

2

z0
2
,bcr,2t0 . ~15!

Generallyz̄0
2
/z0

2;1.
It follows from the above arguments that the value of t

crossover temperatureTcr51/bcr decreases with increasin
phonon frequencies, that is the crossover is determined
high-frequency phonons which, in the case of 2D elect
systems, have large wave numbers and are determined b
short-range order. We emphasize that there is no thresho
B for tunneling enhancement in the range~15! provided the
system tunnels from the ground state.

B. Small magnetic fields: Upper temperature limit
for enhancement

The tunneling rate may increase withB in the excited
states, too. However, this does not happen for simple mo
potentials investigated below. If the tunneling is enhanc
only in the ground state, the upper temperature bound of
enhancement domain is often the temperatureT1→2 where
the probability of tunneling from the first excited stat
weighted with the occupation factor, exceeds that from
ground state, forB50. It can be estimated for smooth tun
neling barriers where, forB50, the tunneling duration as
function of energyt0(E) decreases with the increasing e
ergy E, which is often the case. From Eq.~6!, switching
between tunneling from the ground (n51) and first excited
state (n52) occurs for the reciprocal temperature

b1→252

E
E1

E2
t0~E!dE

E22E1
~E1[Eg!.

This value lies between 2t0(E2) and 2t0(E1). Depending
on the tunneling potential,b1→2 can be smaller or large
thanbcr ~15!. If a magnetic field does not increase the rate
tunneling from the staten52, the field-induced tunneling
enhancement starting withB50 occurs forTcr,T,T1→2.

C. Field-induced switching between the levels
and from activation to tunneling

Even in the temperature rangeT.T1→2 a sufficiently
strong magnetic field can increase the tunneling rate, p
videdT.Tcr . This happens if the tunneling exponent for th
ground state Rg(0)[Rn51(0) exceeds Rn52(0). Then
within a certain temperature range the escape rate forB50
is determined by tunneling from the excited staten52. The
rate of this tunneling decreases with increasingB (Rn52 in-
9-6
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TUNNELING FROM A CORRELATED TWO- . . . PHYSICAL REVIEW B64 245309
creases withB). For some B the exponentsRn52(B)
1b(E22E1) andRn51(B) become equal to each other. F
larger B the system tunnels from the ground state, and
tunneling rate increases withB.

Similarly, since the activation rate is often weakly a
fected byB, in a certain temperature range where esc
already occurs via activation forB50, starting with someB
it may again go through tunneling from the ground sta
This happens if the tunneling rate for the ground state
comes bigger than the activation rate, and can be obse
only in a limited range ofB, as discussed in Sec. V forTcr
,T1→2 ,Ta . For a special model the switching is illustrate
in Fig. 5 below. We note that, in principle, theB-induced
enhancement of the escape rate may occur in a lim
B range even forTcr.T1→2 ,Ta ~we assume here that the
malization inside the well occurs before the electron
capes!.

V. TUNNELING ENHANCEMENT FOR THE EINSTEIN
MODEL OF A WIGNER CRYSTAL

In what follows we will illustrate the general results an
apply them to specific 2D systems assuming that all vib
tional modes have the same frequency,vk j5vp , i.e., using
the Einstein model of the Wigner crystal. This is motivat
by the results of Sec. III B that the tunneling is determin
primarily by short-wavelength vibrations, which have a co
paratively weak dispersion. When discussing the experim
we will set vp equal to the characteristic short-waveleng
plasma frequency (2pe2n3/2/m)1/2, wheren is the electron
density.

A. Triangular barrier

For electrons above helium surface and in certain type
semiconductor heterostructures, the potentialU(z) in the
barrier region is largely determined by the electric fie
which pulls electrons away from the intrawell states. To
good approximationU(z) is then linear inz for z>zin , and
if we setzin50, we have

U~z!5
g2

2m S 12
z

L D ~z>0!. ~16!

Here,g[g1 is the decrement of the ground-state wave fu
tion cg[c1 near the well,] ln c1 /]z52g for z50, see the
discussion before Eq.~9!. The additive constant inU(z)
is chosen so that the energy of the ground stateEg50. Then
L is the tunneling length in the ground state forB50. It
is determined by the pulling electric field. We assume t
gL@1.

The approximation~16! applies only within the barrier
region, and not inside the well, whereU(z) is singular.
Moreover, it holds provided the width of the tunneling ba
rier is small compared to the in-plane interelectron dista
n21/2 @see Eq.~24! below#.

In order to calculate the ground-state tunneling expon
it is convenient to solve directly the equations of moti
of the electron and phonons under the barrier~A6! with the
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boundary conditions~9!, ~10!, ~A12!, and~A14!. For a trian-
gular potential, these equations are linear. This allowed u
obtain a simple expression for the tunneling exponent

R̃52np
2t red

3 13npt red~12t red!coth@vpb/22npt red#

1313t red~n221!, Rg52gLR̃/3n2. ~17!

Here,np5vpt0 andnc5vct0 are, respectively, the dimen
sionless in-plane and cyclotron frequencies scaled by
tunneling durationt0 for B50, andn25np

21nc
2 .

The quantityt red5t f /t0 in Eq. ~17! is the reduced tun-
neling duration. It is given by the equation

@~12t red!npn2coth@vpb/22npt red#2nc
2#tanhnt red

5n@np
2t red2n2#. ~18!

In the limit T→0, Eqs.~17!, ~18! go over into the result
obtained earlier6 ~in Ref. 6 we usedv0 andn0 instead ofvp

andnp). In this limit, the role of the many-electron effects
particularly important. In the single-electron approximati
(vp50) the tunneling durationt f and the tunneling expo
nent Rg diverge for vc→t0

21.5 This happens because th
effective single-electron potentialU(z)1(1/2)mvc

2z2,
which takes into account the parabolic magnetic barrier, d
not have classically allowed extended states with energyEg

50 behind the barrier.
The interelectron momentum exchange makes tunne

possible for allB. For vct0.1 and T50, the tunneling
exponent is a steep function of the exchange ratevp in the
limit of slow exchange,vpt0!1. In the opposite limit of the
fast momentum exchange,vp@t0

21 ,vc , from Eqs. ~17!,
~18! we obtaint red'1 @i.e., t f't0], andRg'4gL/3. These
are the values for tunneling forB50. The overall depen-
dence of the tunneling exponent onvp for T50 is shown in
the inset of Fig. 3.

For a given magnetic field, the dependence of the tunn
ing exponentRg on the frequencyvp becomes less stee
with increasing temperature, as seen from Fig. 3. This
because thermal in-plane motion of the tunneling elect
becomes more important than interelectron momentum
change with increasing temperature. For largevpt0 ,vpb,
the curves for different temperatures merge together and
proach theB50 asymptote.

The value ofRg can be calculated independently from th
functionalRn ~6! using the direct variational method. Even
simple approximation wherez(t) is quadratic int, with the
only variational parameter being the tunneling durationt f ,
gives a reasonably good result. For the highest tempera
in Fig. 3, it is shown by the dashed line. Such calculati
gives a good approximation for higher temperatures, and
for lower temperatures but not too smallvpt0. For low tem-
9-7
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peratures and smallvpt0 the trajectoryz(t) is strongly non-
parabolic, and more than one parameter is required in
variational calculation.

B. Field-induced tunneling enhancement
and switching to tunneling from activation

The explicit expression for the tunneling exponent~17!
allows us to analyze the tunneling enhancement and the m
netic field induced switching to tunneling discussed in S
IV. In the small-B limit, where vc!vp ,t0

21, the tunneling
exponentRg(B) is seen from Eq.~17! to be quadratic inB.
The coefficientAg in Eq. ~13! can be easily calculated. From
the conditionAg50 we obtain the value of the reciproc
temperaturebcr which corresponds to the crossover from d
crease to increase of the tunneling rate due to a magn
field

bcr52t01
2

vp
tanh21Fnp@3np2~31np

2!tanhnp#

np
323np13 tanhnp

G .
~19!

In agreement with~15!, bcr monotonically increases withvp
from 5t0/3 at vp50 to 2t0 for vp→`.

The dependence of the tunneling exponent~17! on the
magnetic field for different temperatures is shown in Fig.
Above the crossover temperature (b,bcr), Rg(B) decreases
with B. Then Rg(0)2Rg(B) and the tunneling probability
increasewith the increasing field, for smallB. The slope
dRg /dB2}b2bcr for B→0. However, for strong fields the
tunneling rate decreases with the increasingB, because the
Hall momentum can no longer be compensated by ther
fluctuations.

It is clear from the data in Fig. 4 that, for the barri
chosen, the magnetic field induced increase of the tunne
exponentR is numerically small. However, for typicalR
*50 it can still be noticeable.

The expression~17! gives the tunneling exponent only fo
low enough temperatures where the system escapes from

FIG. 3. The tunneling exponent in the ground stateR(B)
[Rg(B) for a triangular potential barrier~16! as a function of the
phonon frequencyvp in the Einstein model of the Wigner crysta
for vct052. The timet052mL/g is the duration of tunneling for
B50 andT50. The curves 1 to 3 refer to reciprocal temperatu
b/t057, 5, 3. The dashed line is the result of the direct variatio
method forb53t0, with one variational parametert f .
24530
e

g-
.

-
tic

.

al

g

the

ground state. For higher temperatures, one should take
account the possibility of escape from excited states and
an activated transition over a potential barrier. The positio
of the excited levels depend not only on the barrier sha
but also on the shape of the potentialU(z) inside the well.
The analysis for a specific system, electrons on the surfac
liquid helium, is done in the next section. Here, in order
illustrate different scenarios, we discuss two cases: a nar
well, in which case the ground state is essentially the o
intrawell state, and a well with a comparatively shallow e
cited state. We assume that the intrawell relaxation rate
higher than the escape rate.

We start with the case of one bound state in the poten
well. Here, forB50 switching from tunneling to activation
occurs for the temperatureTa[1/ba5(4t0/3)21. This tem-
perature is higher than the crossover temperature 1/bcr ~19!,
and therefore there is a region where the enhancemen
tunneling by a magnetic field can be observed, as discus
above~see Fig. 4!. However, even though forT.Ta the B

s
l

FIG. 4. The dependence of the tunneling exponentR(B)
[Rg(B) on the magnetic field~17! for vpt051/3 near the cross-
over temperaturebcr'1.67t0 ~19!. The curves 1 to 3 correspond t
(b2bcr)/t050.2,0,20.3.

FIG. 5. Magnetic field induced switching from activation~a!
and from tunneling from the excited state~b! to tunneling from the
ground state, forvpt051/3 ~respectively,bcr'1.67t0). The escape
exponentR5minn@Rn1b(En2E1)#}2ln W. In ~a!, there is only one
intrawell state in the potential wellU(z), and the transition to ac-
tivation for B50 occurs forb/t054/3. The curves 1, 2 correspon
to (b2bcr)/t0520.35,20.4. In ~b!, the positionE2 of the excited
level (n52) is chosen at 0.2g2/2m below the barrier top. The tem
perature is chosen at (b2bcr)/t0520.16, so that forB50 the
system tunnels from the excited state. The observable~smaller! ex-
ponentRn1bEn for a givenB is shown with the bold line, wherea
the dashed line shows the bigger exponent.
9-8
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50 escape occurs via overbarrier transitions, the increas
the tunneling rate with the increasingB can make tunneling
more probable for sufficiently strongB. If the activation
rate is independent ofB, the overall dependence of the e
ponent of the escape rateR(B)5minn@Rn(B)1b(En2E1)#
}2 ln W(B) on B is shown in Fig. 5~a!. In this case,R(0)
5g2/2mT is the barrier height over temperature. Switchi
to tunneling and the increase of the escape rate withB occur
where the tunneling exponentRg(B) as given by Eq.~17!
becomes less thanR(0).

Similar switching occurs in the temperature range wh
tunneling from the first excited level is more probable th
from the ground state, forB50. With increasingB, the tun-
neling rate in the excited state decreases, whereas in
ground state it increases, and therefore starting with cer
B, the system switches to tunneling from the ground st
This is illustrated in Fig. 5~b!.

C. Square barrier: Field-induced crossover
to thermal activation

In many physically interesting systems, the tunneling b
rier U(z) is nearly rectangular. This is often the case
semiconductor heterostructures, where the barrier is form
by the insulating layer. If we countU off from the intrawell
energy levelEg and set the boundaries atz50 andz5L, the
barrier has the form

U~z!5g2/2m, 0,z,L. ~20!

Here, 1/g is the decay length under the barrier, see Eq.~9!,
and we have neglected the lowering of the barrier due to
electrostatic field from other electrons at their lattice sit
which is a good approximation for the interelectron distan
n21/2!L.

We assume that, behind the barrier (z.L), an electron
can move semiclassically with all energies. Then the dec
ing underbarrier wave function has to be matched to an
propriate propagating wave behind the barrier atz5L. In
contrast to the case of a smooth barrier, because the pote
U(z) is discontinuous atz5L, the z component of the
momentum should not be the same on the opposite side
the boundary. However, the in-plane ‘‘momentum’’ comp
he

ur
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nents of the phononsuk j , which are imaginary under the
barrier, still have to be continuous. Respectively, the bou
ary conditions~A7! for the tunneling trajectory should b
changed to

z~t f !5L, uk j~t f !50 ~21!

(t f is the imaginary time at which the boundary is reache!.
With the boundary conditions~21!, elimination of phonon

variables from the Euclidean action in the tunneling exp
nent is similar to what was done for a smooth barrier in
Appendix. The resulting expression for the retarded act
functionalRn@z# coincides with Eq.~6!, providedz(t f1t)
is definedasz(t f2t), for 0<t<t f .

An important feature of a rectangular tunneling barrier
that, for B50, the tunneling timet0(E)52(1/2)dRn /dEn
monotonically increases with energyEn . Therefore the
maximum of the function2bE2R(E), which gives the es-
cape probability, corresponds either to the transition from
ground state or to activation over the barrier. Switching
activation occurs for the temperatureTa5g2/2mRg(0)
[g/4mL5(4t0)21. It is less than 1/2 of the temperatureTcr
of the crossover fromB-suppressed toB-enhanced tunneling
as given by Eq.~15!, and therefore we do not expect th
crossover to occur in systems with a square barrier.

For temperaturesT,Ta andB50, escape occurs via tun
neling, and its probability decreases with the increasingB.
Starting with someB, where the tunneling exponent becom
bigger than the activation exponentg2/2mT, it becomes
more probable to escape via an activated transition. Then
magnetic field dependence of the escape rate becomes m
weaker.

The B dependence of the escape rate for different te
peratures is illustrated in Fig. 6. The results refer to the E
stein model of the Wigner crystal. In this model the tunneli
exponent can be obtained directly from the@linear, in this
case# equations of motion~A6! with the boundary conditions
~9!, ~A12!, ~21!. It has the form

Rg5gL@11t red1nck~t red!#, ~22!

where the functionk(t red) and the reduced tunneling tim
t red5t f /t0 are given by the equations
k~t red![
nc~coshnt red21!

nc
21np

2coshnt red1nnpcoth@vpb/22npt red#sinhnt red

5
1

ncnp
2

nc
2~222 coshnt red1nt redsinhnt red!2n3~t red21!sinhnt red

~12coshnt red!~12nc
2/np

2!1nt redsinhnt red

~23!
s

ing
se.
with np5vpt0 , nc5vct0, andn5(np
21nc

2)1/2.
The temperature of switching to activation is given by t

equationTa5g2/2mRg . From Eqs.~22!, ~23!, Rg increases
with the magnetic field. Therefore the switching temperat
 e

Ta does not exceed 1/4t05g2/2mRg(B50) and decrease
with B.

The effect of saturation of the escape rate with increas
B shown in Fig. 6 is not limited to square barriers, of cour
9-9
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For strong enoughB and nonzero temperatures, the tunneli
rate becomes smaller than the activation rate, and the sy
switches to activation; the switching may go in steps w
increasingB, via tunneling from excited intrawell states.

VI. COMPARISON WITH THE EXPERIMENTAL
DATA ON TUNNELING FROM HELIUM SURFACE

Tunneling from a strongly correlated 2DES has been
vestigated in much detail for electrons on helium surface22,5

In this system, a good agreement has been reached bet
theory and experiment in the absence of the magnetic fi
where the primary role of the electron correlations is
change the effective single-electron tunneling barrier~see be-
low!. As mentioned before, there were also done interes
experiments on tunneling in a magnetic field. However,
observed strong field dependence of the tunneling rate
matically differed from the predictions of the single-electr
theory and remained unexplained5 ~the data for the lowes
temperature have been compared to the theory forT50 in
Ref. 7!.

Electrons on helium surface are localized in a 1D pot
tial box. The smooth side of this box is the image poten
2L/z, where L5e2(e21)/4(e11) (e'1.057 is the di-
electric constant of helium!, andz is the direction normal to
the surface. The other side is a steep high barrier;1 eV on
the surface (z50), which prevents electrons from penetra
ing into the helium. The intrawell states can be made me
stable by applying a fieldE' which pulls the electrons awa
from the surface. This field is determined by the helium c
geometry and depends on the applied voltage and the e
tron densityn, see Ref. 23. The overall electron potential h
the form

U~z!52Lz212ueE'uz2mv̄2z2 ~z.0!. ~24!

FIG. 6. The logarithm of the escape rateR(B)
5min@Rg ,g2/2mT# for the square potential barrier and forvp

5(2t0)21 (t05mL/g). The valueR(0) is given by the tunneling
exponent R(0)52gL. Curves 1 to 3 correspond tob/t0

54.5,5.5,6.5. The sections of the curves whereR(B) increases cor-
respond to tunneling and are described by Eq.~22!, whereas the
horizontal sections of the curves correspond to thermal activat
Inset: the magnetic field dependence of the switching tempera
Tat0.
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The term}v̄2 describes the Coulomb field created by oth
electrons at their in-plane lattice sites~the ‘‘correlation
hole’’17,24!. Only the lowest-order term in the ratio of th
tunneling lengthL to the interelectron distancen21/2 has
been kept in Eq.~24!, and

v̄5F e2

2m (
l

8 uRl u23G1/2

[F 1

2N (
k j

vk j
2 G1/2

~25!

is given by the sum over lattice sitesRl . For a triangular
lattice, v̄'(4.45e2n3/2/m)1/2.25 The conditions 1/g!L
!n21/2 are typically very well satisfied in experiment, wit
the decay length 1/g51/Lm'0.731026 cm, L;uEg /eE'u
'g2/2mueE'u;1025 cm, andn21/2;1024 cm ~in the esti-
mate of L we used thatuEgu@ueE'u/g, mv̄2/g2, and that
ueE'u/g*v̄).

To compare the predicted dynamical effect of t
electron-electron interaction with the experimental data
tunneling in the magnetic field,5 we use the Einstein mode
of the WC and set all phonon frequenciesvk j equal to the
characteristic plasma frequencyvp5(2pe2n3/2/m)1/2. The
numerical results change only slightly when the phonon f
quency is varied within reasonable limits, e.g., is replaced
v̄; in the expression forU(z) we usev̄ as given by Eq.~25!.

The calculated magnetic field dependence of the tunne
rate for the parameters used in the experiment is show
Fig. 7. The data refer to the values ofT where escape occur
via tunneling from the ground state. The actual calculation
largely simplified by the fact that, deep under the barrier,
image potential2L/z in Eq. ~24! can be neglected. The
equations of motion~A6! become then linear, and the tunne
ing exponentRg can be obtained in an explicit, althoug
cumbersome form, which was used in Fig. 7. The correct
to Rg from the image potential is;1/gL, which is the small
parameter of the theory. Moreover, since this correct
comes from the range of smallz, where the effect of the
magnetic field is small, it is largely compensated whe
Rg(B)2Rg(0) is calculated. This and other correction

n.
re

FIG. 7. The relative rate of electron tunneling from the heliu
surfaceW(B)/W(0) as a function of the magnetic fieldB for the
electron densityn50.83108 cm22 and the calculated pulling field
E'524.7 V/cm. Solid lines show how the theory compares to
experimental data points of Ref. 5. The error bars show the un
tainty in the theoretical values due to the uncertainty in the par
eters of the experiment.
9-10
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;1/gL result in changes of the theoretical curves that
smaller than the uncertainty inRg(B)2Rg(0) due to the
uncertainties inn andE' in the experiment.5

As seen from Fig. 7, the dynamical many-electron the
is in good qualitative and quantitative agreement with
experiment, without any adjustable parameters. At low te
peratures (T50.04 K), the many-electron tunneling rate
bigger than the single-electron estimate5 by a factor of 102

for B50.25 T. For this temperature, the tunneling rate
well described by theT→0 limit.7 The B dependence of the
tunneling rate is very sensitive to temperature. The role
dynamical many-electron effects becomes less importan
higher T. Interestingly, the theoretical data on theratio of
W(B)/W(0) become less sensitive to the experimental
certainties in the cell geometry~which determinesE') and
the electron densityn for intermediate temperaturesT
;0.14 K. This is because the corresponding errors inW(B)
andW(0) compensate each other for such temperatures

The crossover to magnetic-field enhanced tunneling
curs for temperatureTcr'0.19 K, for the parameters in Fig
7. The expected increase of the tunneling rate withB for T
.Tcr is shown in Fig. 7. It has indeed been observed in
experiment.5 The analysis of the experiment requires to e
tablish whether, for temperatures of interest, escape actu
occurs via tunneling. To that end we note first that, as
follows from a direct variational calculation, the potenti
U(z) ~24!, with the parameter values specified in Fig. 7, h
only one metastable intrawell state. Electrons are initia
prepared in this state.

If the intrawell relaxation were fast enough, the tempe
ture of the crossover from tunneling to activationTa for B
50 would be given by the condition that the tunneling e
ponentRg be equal to the activation exponent (Umax2Eg)/T
@here,Umax is the maximal value of the potentialU(z)]. This
would giveTa'0.15 K. However, activated escape requir
that the in-plane thermal energy of an electron be tra
formed into the energy of its out-of-plane motion. This i
volves a large transfer of the in-plane momentu
;@2m(Umax2Eg)#

1/2. The electron-electron interaction doe
not give rise to such a transfer in a strongly correlated s
tem, since the reciprocal interelectron distance isn1/2

!@2m(Umax2Eg)#
1/2.

The major momentum transfer mechanism is scattering
capillary waves on the helium surface, ripplons.2 Electron-
ripplon coupling is weak. As a result, the prefactor in t
activation rate, which is quadratic in the coupling constant
small. ForB50 it is ;g2T2/\s,26 wheres is the surface
tension of liquid helium, and forT,0.25 K it is smaller
than the prefactor in the tunneling rate (\g2/m)exp(22) by
a factor,1025. Therefore the crossover from tunneling
activation occurs for higher temperatures than it would f
low from the condition of equal tunneling and activatio
exponents.

For the parameters in Fig. 7, the rates of activation a
tunneling escape become equal for temperatures slig
higher than 0.26 K~for B50). Therefore we believe that th
experimentally observed increase of the escape rate withB is
due to the discussed mechanism ofB-enhanced tunneling
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The smaller experimental values of the relative escape
W(B)/W(0) for T50.26 K can be understood by noticin
that the activation rate is close to the tunneling rate for s
T, and since it presumably only weakly depends onB,27 the
overall slope of ln@W(B)/W(0)# should be smaller than that o
the theoretical curve which ignores activation~by a factor
;2, according to an estimate which ignores the depende
of the activation rate onB). Therefore we do not show erro
bars for this curve.

The prefactor

The dependence of the potentialU(z) ~24! on n gives rise
to the density dependence of the tunneling rate even foB
50. We calculated the exponent and the prefactor inW
5W(B50) by matching the WKB wave function under th
barrier for 1/g!z!L with the tail of the non-WKB intrawell
solution~here,L5\2g2/2mueE'u is the characteristic barrie
width!. In the spirit of the logarithmic perturbation theor
~LPT!,28 the wave function of the ground state inside t
well and not too far from it can be sought in the form

cg~z!5const3z exp@2A~z!# ~26!

@we take into account that the functioncg(z) has one zero,
which is located at the helium surface,z50].

The functiondA/dz satisfies a Riccati equation. It can b
solved near the well (z!L) by considering the last two
terms in the potentialU(z) ~24! as a perturbation. For sma
z, the major correction comes from the term}E' . To the
first order inE' ,

A~z!'gzS 12
z

4L D . ~27!

In obtaining this expression we took into account the corr
tion to the ground state energydEg523ueE'u/2g. This cor-
rection can be obtained from the condition that the linear
E' term in dA/dz remain finite forz→0.

The correction toA ~27! is small forz small compared to
the barrier widthL. We note that the exponentA(z) has an
overall functional form which differs from that of the com
monly used2 variational wave functionc(z)}z exp(2g̃z),
with g̃ being a variational parameter.

The expression forA ~27! matches the small-z/L expan-
sion of the actionS of the WKB wave function under the
barrier forL@z@g21. This allowed us to find the prefacto
in the WKB wave function and in the tunneling rate. Th
resulting tunneling rate is shown in Fig. 8. It fully agre
with the experiment~see also Ref. 22!.

VII. CONCLUSIONS

It follows from the results of the present paper that tu
neling in a magnetic field parallel to the electron layer
extremely sensitive to physical properties of the 2D syste
It provides a unique tool for investigating electron corre
tions not imposed by a magnetic field, and in-plane and o
of-plane many-electron dynamics, including sho
wavelength in-plane excitations. It is also sensitive to
9-11
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rates of transitions between intrawell states. There arise
physical phenomena, such as magnetic field enhanced
neling and switching back and forth between tunneling fr
different intrawell states and between tunneling and act
tion. The effect of the field on tunneling from a correlat
system depends on the interrelation between the charac
tic rate of interelectron momentum exchange, the recipro
duration of tunneling in imaginary time 1/t f , and tempera-
ture.

For low temperatures, where escape occurs via tunne
from the ground intrawell state, the tunneling rate is affec
primarily by high-frequency in-plane many-electron vibr
tions, which are determined by short-range order in
2DES. The vibration frequencies are of the order of the ch
acteristic zone-boundary frequency of the Wigner crys
vp . If vp@1/t f , the effect of the magnetic field on tunne
ing is nearly completely compensated in the case where
width of the tunneling barrier is small compared to the int
electron distance.

At higher temperatures, the magnetic field may in fa
enhancerather than suppress the rate of tunneling decay.
overall escape rate as a function ofB and T, and switching
between different escape regimes, have been analyzed
simple but realistic models of the tunneling barrier.

Our results on the field dependence of the tunneling
and its evolution with temperature, including field-induc
tunneling enhancement, are in full qualitative and quant
tive agreement with the existing experimental data on t
neling from a strongly correlated 2DES on helium,5 with no
adjustable parameters.

The results also apply to 2DES in semiconductor hete
structures. For correlated systems in semiconductors, tun
ing has been investigated mostly for the magnetic fieldB
perpendicular or nearly perpendicular to the electron la
see Ref. 3. The data on tunneling in a field parallel to
layer refer to high density double-layer 2DESs~Refs. 29, 30!
with a thin barrier, where the tunneling matrix element cou
be assumed to be nearly independent of the field.

The effect of a parallel magnetic field is most pronounc
in systems with shallow and broad barriersU(z), for which
it has not been investigated. For example, in a GaAlAs str

FIG. 8. The rate of electron tunneling from the helium surfa
W for B50 as a function of the electron density. The dots show
experimental data~Ref. 5!. The pulling fieldE' was calculated from
the geometry of the experimental cell, the applied voltage, and
density.
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ture with a square barrier of widthL50.1mm and height
g2/2m50.02 eV, for the electron densityn51.5
31010 cm22 and B51.2 T we havevpt0'0.6 andvct0
'1 (t05mL/g is the tunneling duration forn5B50).
The results of Sec. V C for square barriers~with account
taken of the correlation-hole correction! show that the inter-
electron momentum exchange should significantly mod
the tunneling rate in this parameter range.7 This provides a
comparatively simple and direct means for revealing elect
correlations, and possibly even a transition from an elect
fluid to a pinned Wigner crystal.
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APPENDIX: MANY-BODY WKB APPROXIMATION

1. General formulation

In this section we obtain a general expression for the
cape rateW. We assume that the state of the system under
barrier can be described in the WKB approximation, but
the same time, the intrawell electron motion can be stron
quantized. Under the barrier, the interaction of the tunnel
electron with phonons of the Wigner crystal is strong. O
should therefore think of escape of the coupled electr
phonon system. We enumerate the states of this systemca
by the quantum numbera5(n,$nk j%), wheren enumerates
the states of quantized intrawell electron motion in thez
direction, andnk j are the phonon occupation numbers. F
fast intrawell relaxation, escape is characterized by a sin
rateW, as explained in the text. To logarithmic accuracy

W5Z21(
a

Waexp~2bEa!,

~A1!
Wa5Caexp@22Sa~jf ,jin!#uca~jin!u2.

Here we introduced a vectorj5(z,$pk j%) with components
which enumerate thez-coordinate of the tunneling electro
and the ‘‘coordinates’’pk j of the phonons,Z is the partition
function calculated neglecting escape, andCa are the pref-
actors in the partial escape ratesWa , they will not be dis-
cussed in this paper.

The exponents inWa are determined19 by the wave func-
tions ca(j) at the turning pointsjf on the boundary of the
classically accessible range (jf depend ona, see below!.
It is convenient to evaluateca(jf) in two steps, each
of which gives an exponential factor. The first facto
exp@2Sa(jf ,jin)#, describes decay of the wave function de
under the barrier. Formally, it relatesca(jf) to ca(jin). The
point jin is chosen close to the well, but it also lies under t
barrier, so thatSa can be calculated in the WKB approxima
tion. The second factor isca(jin) itself. The resulting rate
should be independent ofjin .

We start with the functionSa(j,jin). To the lowest order
in \, for systems with time-reversal symmetry~which we

e

e
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‘‘restored’’ by the canonical transformation! it is the action
for a classical underbarrier motion in imaginary timet5 i t
with purely imaginary momenta12

pz5 i ]S/]z, uk j52 i ]S/]pk j . ~A2!

As a function of imaginary timet, the actionS(j,jin) is
given by the integral of the Euclidean LagrangianLE,

Sa~j,jin!5E
0

t

LEdt2Eat. ~A3!

The LagrangianLE is obtained from the Hamiltonian~2!
using the Legendre transformationL5pz(dz/dt)
2(uk j (dpk j /dt)2H, followed by the transition to imagi-
nary time, which gives

LE5L01Lv1LB . ~A4!

Here, L05(m/2)ż21U(z) is the Eucledian Lagrangian fo
motion in thez direction,LB5HB is the term induced by the
magnetic field, andLv is the phonon Lagrangian,Lv
5(k jLk j , with

Lk j5
1

2m
pk jpÀk j1

1

2mvk j
2

ṗk j ṗÀk j ~A5!

~overdot means differentiation overt).
The classical equations of motion in imaginary time ha

the standard form

d

dt

]LE

] j̇
2

]LE

]j
50. ~A6!

To calculate the escape rate, one has to find a trajec
which starts atj(0)5jin and reaches the boundary of th
classically accessible rangejf at some timet f , and to cal-
culate the actionSa along this trajectory.

If the potential barrierU(z) is smooth, the wave function
and its derivatives under the barrier have to match the W
wave function in the classically allowed range behind
barrier. Matching occurs at a turning point of the classi
motion ~A6! where the derivatives of the exponents of t
both wave functions become equal to zero,19 ]Sa /]z
5]Sa /]pk j50, i.e.,

ż~t f !50, ṗk j~t f !50. ~A7!

Equation~A7! is also the condition of the extremum ofSa
with respect to the pointsj on the boundary of the classicall
accessible range: the escape rate is determined by the
mum of Sa on this boundary. A detailed analysis of the b
havior of multidimensional tunneling trajectories in imag
nary time for systems with time-reversal symmetry for
parabolic well is given in Ref. 31.

It follows from Eqs.~A6! and ~A7! that, if the equations
of motion are extended beyondt f , the system will bounce
off the turning point and then move under the barrier back
the starting point. The section of the trajectory fort.t f is
mirror symmetrical to that fort,t f ,
24530
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z~t f1t!5z~t f2t!, pk j~t f1t!5pk j~t f2t!, ~A8!

where 0<t<t f . The tunneling exponent 2Sa can be calcu-
lated along the trajectory~A6! which starts atjin and comes
back to the same point in time 2t f .

For the boundary conditions~A7!, the timet f is deter-
mined by the initial conditions on the trajectory, which a
given byca(jin). If the intrawell dynamics is semiclassica
the dominating contribution to the overall rateW ~A1! comes
from the energiesEa for which the duration of the tunneling
motion t f5b/2.12 In the general case this is no longer tru

2. The wave function close to the well

We are interested in the case where the width of the qu
tum well is much less than the typical widthL of the tunnel-
ing barrier. More precisely, we assume that for low-lyin
intrawell statesn, the characteristic lengths 1/gn of localiza-
tion in the z direction aregn

21!L. Then, even where the
effect of the magnetic field accumulates under the barrier
the tunneling rate is strongly changed, the field may still o
weakly perturb the intrawell motion. In this case, inside t
well and close to it, the out-of-plane electron motion is se
rated from the in-plane vibrations, and the state energies

Ea5En1(
k j

«k j , «k j5vk jnk j . ~A9!

Usually the interlevel distancesEn112En@vk j , for low-
lying levels.

Because of the separation of motion, we can choos
planez5zin under the barrier but close to the well, so that f
z'zin the wave functionsca(j) are semiclassical and facto

cn,$nk j %
~j!}e2gnzexpF2(

k j
Snk j

~pk j !G . ~A10!

Here, gn is given by Eq.~9!, whereasSnk j
has a standard

form of the action of a free oscillator. Forj5jin , Eqs.~A2!,
~A10! give the initial velocitiesj̇(0) on the WKB trajectory
~A6! as functions ofj(0)[jin .

In order to find the initial values of the phonon dynamic
variables which maximizeW, it is convenient to writeSnk j

andpk j in Eq. ~A10! in the energy-phase representation, u
ing the phonon energy«k j and the imaginary timetk j it takes
for a phonon to move under the barrier from the bound
(2m«k j )

1/2 of the classically allowed region to a givenpk j .
With the Euclidean Lagrangian of the phonons~A5!, we
have forpk j5@pk j # in[pk j (0)

Snk j
@pk j~0!#5E

2tk j

0

dtLk j~t!2«k jtk j ~A11!

and

pk j~0!5ek j~2m«k j !
1/2coshvk jtk j ,

~A12!
ṗk j~0!5ekj ~2«k jmvk j

2 !1/2sinhvk jtk j

@ek j is the polarization vector of the mode (k, j )].
9-13
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3. A three-segment optimal trajectory

To evaluate the escape rateW to logarithmic accuracy,
one can, following Feynman’s procedure, solve the equati
of motion ~A6! for the vibration ‘‘coordinates’’pk j (t) in
terms ofz(t) and the initial energies«k j and phasesvk jtk j .
Then, from the boundary condition~A7!, one can findtk j
and then perform thermal averaging by summing the esc
rate overnk j with the Boltzmann weighting factor. Here w
give an alternative derivation, which provides a better insi
into the structure of the tunneling trajectory.

We note that, from Eqs.~A1!, ~A3!, ~A10!, and~A11!, the
partial escape rateWa can be written asWa}exp(2Ra), with

Ra5(
k j

E
2tk j

0

dt Lk j~t!1E
0

2t f
dt LE~t!

1(
k j

E
2t f

2t f1tk j
dt Lk j~t!22Ent f22(

k j
«k j~t f1tk j !

~A13!

@the term gnzin in Eq. ~A10! is small compared toRa
;gnL and should be incorporated into the prefactor, see S
VI #.

From Eq. ~A13!, the tunneling electron in itsnth state,
accompanied by phonons, move under the barrier alon
classical trajectory for the imaginary time 2t f . This motion
is described by the LagrangianLE. Before and after that, the
phonons are moving on their own, disconnected from
electronicz motion, for timestk j and with the Lagrangian
Lv5(k jLk j , so that the overall phonon trajectories ma
closed loops which start and end at turning points.

In the WKB approximation, the sum ofWa ~A1! over the
phonon occupation numbersnk j can be replaced by the inte
gral over«k j , which should then be evaluated by the steep
descent method. The corrections due to the discretenes
the values of«k j are small providedvk jt f!Ra . From Eq.
~A13!, the extremum of exp(2Ra2bEa) with respect to«k j
is reached for

tk j5
1

2
b2t f . ~A14!

This expression shows that the duration of the free pho
motion tk j is the same for all vibrational modes. Moreove
the overall duration of the three-segment optimal traject
of each vibration is 2(tk j1t f)5b. Examples of the trajec-
tories are shown in Fig. 9.

For low temperatures,b.2t f , the direction of time
along the vibrational trajectory does not change,tk j.0. The
corresponding branch of the intrawell vibrational wave fun
tion ~A10! }exp$2Snk j

@pk j (0)#% decays with the increasing
d

yo

g
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upk j (0)u in the classically forbidden regionupk j (0)u
.(2m«k j )

1/2. In contrast, forb,2t f , we havetk j,0. This
shows that the extremum over«k j is reached if the intrawel
vibrational wave function is analytically continued from th
decaying to the increasing branch.

For tk j5(b/2)2t f,0, the ‘‘free-vibrations’’ termSnk j
is

negative, it gives rise to the decrease of the tunneling ex
nent. This is the formal reason why, for sufficiently hig
temperatures, an in-plane magnetic field can increase the
neling rate compared to itsB50 value by coupling
thermally-excited in-plane vibrations to the tunneling m
tion.

If the intrawell motion transverse to the layer were sem
classical, the sum over the energy levels of this motionEn in
Eq. ~A1! could be replaced by an integral. The extremum
the integrand is reached fort f5b/2,tk j50. This is the fa-
miliar result of the instanton theory, in which the whole sy
tem moves under the barrier from the well to the turni
point and back over the imaginary timeb.12 Clearly, in this
case one should not expect the tunneling rate to be enha
by a magnetic field.

In the case of 2D electron systems, the potential wel
not parabolic, and each term in the sum overn ~A1! has to be
considered separately. Except for narrow parameter interv
the contribution of one of them is dominating, and the el
tron tunnels from the corresponding state.

FIG. 9. Optimal trajectories of the tunneling electronz(t) and
the vibrations of the WC forb.2t f ~a! and b,2t f ~b!. The nu-
merical data refer to the Einstein model of the Wigner crystal, w

pH being the vibrational momentum in the Hall directionẑ3B, in
units \gg/2 (gg is the value ofgn in the ground staten51). The
arrows show the direction of motion along the optimal trajecto
when b,2t f . The tunneling potential is of the form~16!, with
dimensionless cyclotron frequencyvct052.0, wheret052mL/gg

is the imaginary tunneling time forB50. The vibrational frequency
is vpt051.0.
ble
.N.
*Email address: dykman@pa.msu.edu
1E. Abrahams, S.V. Kravchenko, and M.P. Sarachik, Rev. Mo

Phys.73, 251 ~2001!.
2Two-dimensional Electron Systems on Helium and Other Cr

genic Substrates, edited by E. Andrei~Kluwer, New York 1997!.
3Presumably, correlations played a very substantial role in the
.

-

i-

ant increase of inter-layer tunneling observed recently in dou
layer heterostructures by I.B. Spielman, J.P. Eisenstein, L
Pfeiffer, and K.W. West, Phys. Rev. Lett.84, 5808~2000!.

4Perspectives in Quantum Hall Effects, edited by S. Das Sarma
and A. Pinczuk~Wiley, New York, 1997!.

5L. Menna, S. Yu¨cel, and E.Y. Andrei, Phys. Rev. Lett.70, 2154
9-14



n

hy

ct

a
lla

.

56

et

h

-

A.

ally
ned
ev.

rfi,

s.

eld.
by

s

on

ys.
-

n,

B

d

TUNNELING FROM A CORRELATED TWO- . . . PHYSICAL REVIEW B64 245309
~1993!; E.Y. Andrei, in Two-dimensional Electron Systems o
Helium and Other Cryogenic Substrates~Ref. 2!, p. 207.

6T. Barabash-Sharpee, M.I. Dykman, and P.M. Platzman, P
Rev. Lett.84, 2227~2000!.

7M.I. Dykman, T. Sharpee, and P.M. Platzman, Phys. Rev. Lett.86,
2408 ~2001!.

8A strong effect on tunneling of the momentum transfer to defe
was first discussed by B.I. Shklovskii, JETP Lett.36, 51 ~1982!;
B.I. Shklovskii and A.L. Efros, Sov. Phys. JETP57, 470~1983!.

9I. Affleck, Phys. Rev. Lett.46, 388 ~1980!.
10A.I. Larkin and Yu.N. Ovchinnikov, Pis’ma Zh. E´ksp. Teor. Fiz.

37, 322 ~1983! @JETP Lett.37, 382 ~1983!#; J. Stat. Phys.41,
425 ~1985!.

11For a potential of a special form, the instanton technique w
applied to tunneling of an electron coupled to harmonic osci
tors in a magnetic field by P. Ao, Phys. Rev. Lett.72, 1898
~1994!; Physica B194-196, 1233~1994!.

12J.S. Langer, Ann. Phys.~N.Y.! 41, 108~1967!; S. Coleman, Phys
Rev. D15, 2929~1977!.

13A.O. Caldeira and A.J. Leggett, Ann. Phys.~N.Y.! 149, 374
~1983!.

14T. Sharpee, M.I. Dykman, and P.M. Platzman, cond-mat/0106
~unpublished!.

15C.C. Grimes aand G. Adams, Phys. Rev. Lett.42, 795 ~1979!.
16D.S. Fisher, B.I. Halperin, and P.M. Platzman, Phys. Rev. L

42, 798 ~1979!.
17M.Ya. Azbel and P.M. Platzman, Phys. Rev. Lett.65, 1376

~1990!.
18R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Pat

Integrals ~McGraw-Hill, New York, 1965!.
19L.D. Landau and E.M. Lifshitz,Quantum Mechanics: Non

relativistic Theory~Pergamon, New York, 1977!; M.V. Berry
and K.E. Mount, Rep. Prog. Phys.35, 315 ~1972!.
24530
s.

s

s
-

6

t.

20R. Landauer and Th. Martin, Rev. Mod. Phys.66, 217 ~1994!.
21A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher,

Garg, and W. Zwerger, Rev. Mod. Phys.59, 1 ~1987!.
22For B50, a good agreement between measured and numeric

evaluated tunneling rates for electrons on helium was obtai
by G.F. Saville, J.M. Goodkind, and P.M. Platzman, Phys. R
Lett. 70, 1517~1993!.

23M.J. Lea, P. Fozooni, A. Kristensen, P. J. Richardson, K. Dje
M. I. Dykman, C. Fang-Yen, and A. Blackburn, Phys. Rev. B55,
16 280~1997!.

24Y. Iye, K. Kono, K. Kajita, and W. Sasaki, J. Low Temp. Phy
38, 293 ~1980!.

25M.I. Dykman, J. Phys. C16, 7397~1982!.
26S. Nagano, S. Ichimaru, H. Totsuji, and N. Itoh, Phys. Rev. B19,

2449 ~1979!.
27The rate of activation escape may depend on the magnetic fi

The field ‘‘pushes’’ the ground state upward in energy,
mvc

2@^z2&2^z&2#/2, for a weak field~the averaging is per-
formed for the ground state!. It also changes the wave function
with energies close to the barrier top. For example, forB
50.4 T the magnetic lengthl 5(\c/eB)1/2 is ;0.6 of the dis-
tance from the helium surface to the barrier top positi
(L/ueE'u)1/2.

28R.J. Price, Proc. Phys. Soc. London67, 383 ~1954!.
29J.P. Eisenstein, T.J. Gramila, L.N. Preiffer, and K.W. West, Ph

Rev. B44, 6511~1991!; S.Q. Murphy, J.P. Eisenstein, L.N. Pre
iffer, and K.W. West,ibid. 52, 14 825~1995!.

30J. Smoliner, W. Demmerle, G. Berthold, E. Gornik, G. Weiman
and W. Schlapp, Phys. Rev. Lett.63, 2116~1989!; G. Rainer, J.
Smoliner, E. Gornik, G. Bo¨hm, and G. Weimann, Phys. Rev.
51, 17 642~1995!.

31U. Eckern and A. Schmid, inQuantum Tunnelling in Condense
Matter, edited by Yu. Kagan and A.J. Leggett~Elsevier, New
York, 1992!, p. 145.
9-15


