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Tunneling from a correlated two-dimensional electron system transverse to a magnetic field
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We show that in a magnetic field parallel to a two-dimensi@@8l) electron layer, strong electron correla-
tions can change the rate of tunneling from the layer to the 3D continuum exponentially. It leads to a specific
density dependence of the escape rate. The mechanism is a dynamsslduer-type recoil, in which the Hall
momentum of the tunneling electron is partly transferred to the whole electron system, depending on the
interrelation between the rate of interelectron momentum exchange and the tunneling duration. We show that,
in a certain temperature range, the parallel magnetic fielceodancerather than suppress the tunneling rate.
The effect is due to the field induced energy exchange between the in-plane and out-of-plane motion. A parallel
magnetic field can also lead to switchings between tunneling from different intra-well states, and between
tunneling and thermal activation. Explicit results are obtained for a Wigner crystal. They are in qualitative and
guantitative agreement with the relevant experimental data for electrons on helium, with no adjustable param-
eters. The theoretical results also suggest new experiments in semiconductor systems which will reveal electron
correlations and their dynamical aspects.
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. INTRODUCTION that a magnetic field® parallel to a 2DES couples the out-
of-plane tunneling motion of an electron to the in-plane mo-

Many properties of low density two-dimensional electrontion. For an isolated electron, which is separated from the
systems (2DES3 are strongly influenced by electron continuum by a 1D potential barriéi(z), see Fig. 1, and is
correlations:~® Tunneling is one of the most direct tools for free to move in the planex(y), this results in an exponential
revealing these correlations, as has been recently demoguppression of the rate of tunneling decay. Indeed, when the
strated in experiments on systems which display the quantulectron moves by a distaneeaway from the layer, it ac-
Hall effect? In these experimentSee also Ref.)&unneling  quires the in-plane Hall velocity, = (e/mc)BX z. The cor-
occurs between two 2D electron layers in a semiconductoresponding kinetic energmvﬁIZEmwgzzlz is subtracted
heterostructure, which are separated by a high and narroftom the energy of the out-of-plane tunneling motioa.(
barrier. The tunneling current is then quite accurately deter=|eB|/mc s the cyclotron frequengyor equivalently, there
mined by a constantunknown tunneling matrix element emerges a “magnetic barrierl’nw§22/2. This leads to a
and the electron and hole propagators in the different layergharp decrease of the decay rate.
and is used to extract infromation about these propagators. The electron-electron interaction can totally change the

In this paper we consider a very different situation. Theabove picture. If the electron system is spatially correlated,
tunneling occurs from an interacting strongly correlatedforming for example a Wigner crystdWC), see Fig. 1, the
2DES into a 3D continuum. The two are separated by aunneling electron transfers a part of its in-plane Hall mo-
shallow and wide barrier. A magnetic fieBlis parallel to the mentum to other electrorfsThis decreases the loss of the
electron layei(the results are readily generalized to the casenergy for out-of-plane tunneling motiéthe mechanism is
of a tilted field. In this case the effect of the field on tunnel- similar to that of the Mesbauer effect where the momentum
ing may not be described in terms of a phenomenologicabf a gamma quantum is given to the crystal as a whole.
tunneling Hamiltonian: it is the tunneling matrix element it-
self that is sensitive to the electron correlations. As we show,
it depends strongly, and very specifically, on electron density,
and also on temperature and the magnetic field. This depen- L
dence tells us about the electron correlations and in-plane . U(z)
dynamics with frequencies comparable to the reciprocal ¢
imaginary tunneling time that an electron spends under the - i
barrier. An exponentially strong deviation of the tunneling ]E/ . 7

exponent in a magnetic field from the predictions of the
single-electron theory have been observed for a 2DES on
helium?® where the parameters are in the right range. How-

ever, the observationsintil now have been unexplained. A "Electrons
theoretical framework for analysis of the problem at zero
temperature was outlined in our recent communicatfdhs. FIG. 1. The geometry of tunneling from a correlated 2DES

The physics of the effects we discuss relies on the factransverse to a magnetic field.
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DB cay via activated overbarrier transitions ®r0.%° There-
fore T, and T, are of the same order of magnitude. The
——————— interrelation between these temperatures is determined by the
“““““ = parameters of the system, and various interesting situations
S~ SU=-e€2 may occur depending on these parameters, as we discuss
z below. For example, the logarithm of the escape rate may
o ] _ _increase withB even for T>T,, because in a certaiB
FIG. 2. Magnetlc fleld_ induced I0\_Ner|ng of the tun_nell_ng barrier range, the rate of tunneling from the ground state exceeds the
by thermal in-plane motiortschematically; the lowering is super- activation rate, even though it is smaller than the activation
imposed on the magnetic barrier for=0). The effective electric  oq forg=0. Similarly, with increasing there may occur
ft':e_ldvg '>S< g?éerm'ned by th@-dependent optimal in-plane velocity, switching from tunneling from the excited intrawell states
- ot : (see Fig. 2to tunneling from the ground state.
For T<T,, on the other hand, the tunneling rate de-
creases with the increasigy For large enougB the tunnel-
fﬁg rate becomes smaller than the rate of activated escape,
which then determines the overall escape rate.

U(z)

However, in the present case tbgnamicsof the interelec-
tron momentum exchange is very substantial. The characte
istic momentum exchange rate is given by the zone

boundary plasma frequency,, which is related to the  Ajhoygh the thermaB-induced tunneling enhancement is

H _ 2.3/2 1/2
terlectrorj denslltén b¥. “’P_f(zze rl; /)=~ ltf wp Xceeds  yonaric as we show it arises only in systems where intrawell
€ reciprocal duration of underbarrier motion in Imaginary mation transverse to the layer is not semiclassical. This is

time 7, * and w., the WC momentum adiabatically follows typical for 2DESs, where the confining potentid(z) is
that of the tunneling electron. As a result, the Hall velocity isusually nonparabolic near the minimum, and even nonana-
nearly the same for all electrons, and<1/N—0 (Nisthe |ytic with a step in the case of heterostructures and, in the
number of electrons The effect of the magnetic field on case of electrons on helium, the singularity of the image
tunneling is then compensated. Fep,m~1 only partial  potential. In contrast, the enhancement does not'iiisthe
compensation occurs. One can say that tunneling is accompnneling rate can be found using the instantunce
panied by creation of phonons of the WC, and the associate@cnhnique? This technique is traditionally applied to de-
energy goes towards the magnetic barrier. However, the bag;ipe tunneling foB=0. ForB+0, it has to be modified,
rier turns out to be smaller than for a free electron, and thgecayse the magnetic field breaks time-reversal symmetry,
tunneling rate is then exponentially larger. Still, =0 itis  ang therefore, except for the case where the Hamiltonian of
much smaller than thB=0 rate. _ _the system has a special fofththere are no escape trajec-
We show in this paper, that unexpegtedly, in a certaingries in real space and imaginary tiffe.
temperature range thg-induced suppression of the rate of |, \what follows, explicit results on the effect of electron
tunneling from a 2DES may be reversed, and then the decayprrelations on tunneling are obtained assuming that elec-
rate exponentially increases wiB. This happens because trons form a Wigner crystal. Because of strong correlations,
thermal energy of the in-plane electron motion is transferregyerlapping of the wave functions of individual electrons is
by the magnetic field into the energy of tunneling motion.sma||, and electrons can be “identified.” The problem is then
One can say that the in-plane motion with a velooty reduced to the tunneling of an electron coupled to in-plane
changes the tunneling barrier by adding an effective out-ofyiprations of the Wigner crystal. As we show, the results
plane electric fielc™*vX B, as illustrated in Fig. 2. For an provide a good approximation also for a correlated electron
appropriate direction of the field pulls an electron from the liquid.
layer, and only these velocity directions contribute to the | Sec. Il we formulate the model. In Sec. IIl we provide
thermal-averaged tunneling rate. a general expression for the tunneling rate in the WKB ap-
The crossover from suppression to enhancement of turproximation, with account taken of the discreteness of the
neling by the field occurs for a certain temperatilite. It energy spectrum of electron motion transverse to the layer.
can be estimated by noticing that, fBr=0, the tunneling The result can be understood in terms of the tunneling tra-
rate from the ground staM,>exd —2%] exponentially de-  jectory where the duration of motion transverse to the layer
pends on the energf, of the intrawell electron motion (in imaginary timé depends on temperature and the mag-
transverse to the laygiS, is the mechanical action for un- netic field in a nontrivial way. The actual derivation is given
derbarrier motion; in what follows we use units whete in the Appendix. We then analyze the tunneling exponent,
=kg=1]. The derivativery=3dS,/JE, gives the imaginary including the cases af=0 and of finiteT but small frequen-
duration of the underbarrier motion. The magnetic field ef-cies of electron vibrations. In Sec. IV we discuss temperature
fectively transfers the in plane electron eneBy, cinto the  effects and show the possibility @&-induced enhancement
out-of-plane energyy, at least in part. The probability to of tunneling and of switching between different regimes of
have an energyEjane is *exp(—Epand T). Therefore the escape from the potential well. In Sec. V explicit results are
overall probability, which is determined by the product of the obtained using the Einstein model of the Wigner crystal in
two exponentials, depends on the interrelation betwleand  which all phonons are assumed to have the same frequency.
79, and one may expect that,~ 7-61. Closed-form expressions are obtained for a triangular and
The timery also often determines the temperatiitgfor ~ square tunneling barriers. In Sec. VI we apply the results to
which there occurs a crossover from tunneling decay to deelectron tunneling from helium surface and provide a de-
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tailed comparison with the experimental dat8ection VIl minimum, in the general case. The metastable intrawell

contains concluding remarks. states are quantized. We will consider temperatures for which
nearly all electrons are in the lowest level, with enekgy.
II. TUNNELING FROM A HARMONIC WIGNER The magnetic fieldB parallel to the layer mixes the out-
CRYSTAL of-plane motion of the tunneling electron with the in-plane

vibrations of the Wigner crystal. The full Hamiltonian is of
A 2D electron system displays strong correlations if thethe form
ratioI" of the characteristic Coulomb energy of the electron-
electron interactioe?(7n)? to the characteristic kinetic en-
ergy is large(here,n is the electron density In degenerate H=Ho+Hg+H,, @
systems the kinetic energy is the Fermi energp/m,
whereas in nondegenerate systems it is the thermal efergy with
An example of a strongly correlated nondegenerate 2DES is
electrons on helium. The experimental data for this system
refer to the rangd >202 A classical transition to a Wigner
crystal (WC) was observed foF ~ 13016 Recently much
attention have attracted also strongly correlated low-density
electron and hole systems in semiconductors, where there
have been reached the valued'of 40 which are expected to and
be sufficient for Wigner crystallization in a degenerate
systemt Another example is strongly correlated systems in 1 R
the quantum Hall regime. HB=§mw§ZZ—ch N2> [Bx pyl,. 4
In what follows we discuss the effect on tunneling only of k)
the magnetic fieldB parallel to the electron layer. It is most
pronounced if the tunneling length is long, because the Herep;, uy;, andw; are the 2D momentum, displacement,
in-plane Hall momentum due to tunnelimyw.L is simply  and frequency of the WC phonon of branich(j=1,2) with
proportional toL. Respectively, of utmost interest to us are a 2D wave vectok. We chose the equilibrium in-plane po-
systems with broad and comparatively low barriers. Yet insition of the tunneling electron to be at the origin. Then its
experimental systems the barrier widths are most likely to bén-plane 2D momentum ip=N"123 pyj for B=0.
less than 18 A. Therefore, in order to somewhat simplify ~ The interaction Hamiltoniahiz (4) does notonserve the
the analysis we will assume thatis less than the average phonon quasimomentuin The Hall momentum of the tun-
interelectron distance-n~*2 In this case, since electrons in neling electron is transferred to the WC as a whole. The term
a strongly correlated system stay away from each other, thelg couples the out-of-plane motion to lattice vibrations. The
in-plane electron dynamics only weakly affects the tunnelingoroblem of many-electron tunneling is thus mapped onto a
potential*” We will neglect this effect foB=0. familiar problem of a particle coupled to a bath of harmonic
The major effect on tunneling @+ 0 should come from  oscillators'®*® with the coupling strength controlled by the
recoil from a few nearest neighbors, or alternatively, frommagnetic field. The distinctions from the standard situation
short-wavelength in-plane excitations which have large denstem from the nonparabolicity of the potential well near the
sity of states. The presence or absence of long-range order iinimum and from the fact that coupled big are the elec-
the 2DES does not then affect the tunneling rate, see Se@ron coordinate zand the in-planenomentaof the lattice.
Il B. Therefore we will analyze tunneling assuming that the These quantities have different symmetry with respect to
electron system is a Wigner crystal. As we show, the problemime inversion. In the general cafier example, where the
is then reduced to tunneling of a polaron formed by the elecpotential energy of the system has odd-order terms in the
tron coupled to phonons of the WC, with the coupling displacementsi;], the broken time-reversal symmetry re-
strength controlled by the magnetic field. We believe that thiyuires a special approach to the analysis of tunnélifbe
model contains the most essential physics of tunneling fromesults discussed below can be appropriately generalized us-
correlated systems and therefore provides a good approximing this approach.
tion even where electrons form a correlated fluid. For the model2), the analysis is simplified by the struc-
In a strongly correlated system, exchange effects are natire of the Hamiltoniarisee Ref. 18 For vibrations with the
significant, and one can identify the tunneling electron. ItsHamiltonianH, (3), one can make a canonical transforma-
out-of-plane motion forB=0 is described by the Hamil- tion from the canonical coordinates and momangaandpy;
tonian to the new canonical coordinates and momepa and
5 —Uy;, respectively. This transformation interchanges the
pz time-reversal symmetry of the in-plane dynamical variables,
HO:ﬁJFU(Z)' @D makes py; and u,; even and odd in time, respectively.
BecauseHg is independent ofiy; and is linear inpy; , in the
The potentialU(z) has a well which is separated by a tun- new variables it takes on a more familiar form of a “poten-
neling barrier from the extended states with a quasicontinutial” coupling which depends on the dynamical coordinates
ous spectrum, see Fig. 1. The well is nonparabolic near the, p,; only, with restored time-reversal symmetry.

1
Ho=3 %‘ [ PP i+ Mavig Uy U] &
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lIl. THE TUNNELING EXPONENT Here, x(7)=(p)(7)p)(0)) is the correlation function of the
in-plane momenturp; of an electron in the correlated 2DES.

_ _ For electrons forming a Wigner crystal(7) is simply re-
We now evaluate the escape raten the WKB approxi- lated to the phonon Green'’s function

mation. The major emphasis will be placed on the tunneling
exponent. We will assume that the escape rate is much less
; ) T m — —

than the intrawell relaxation rate, and the distribution over X(1)= = 2 o[ (N +1)e “u7+ne”™]  (8)
the intrawell states of the system is thermal. This is not nec- 2N g
essarily true for 2D systems. Usually the in-plane degrees of _
freedom(phonons$ equilibrate fast, but the distribution over (nkj=[exp(8a>k]-)—1]‘1 is the thermal occupation number
the state;=1,2,3 ..., ofquantized intrawell motion in the The extreme tunneling trajector( ), which provides a
z direction requires longer time to become equilibrium. Ourminimum to the functionak,,, goes from a point= z;, near
results can be generalized to the case of slow intrawell rethe well to the boundary of the classically accessible region
laxation, see Sec. VI. over the timer;, and then bounces back to the pamt[in

The rates of tunneling decay of intrawell states sharplyEq. (6) we setz,,=0]. The initial pointz;, is chosen under
increase, whereas the thermal state population decreases witte barrier, but close to the well, so that the wave function is
the state energy. As a result, there is a comparatively smaemiclassical and the out-of-plane electron motion is sepa-
group of stateggenerally with the sama but with different  rated from the in-plane vibrations, see the Appendix. There-
phonon occupation numbeygrom which the system is most fore the initial condition for the tunneling trajectory have the

A. General formulation

likely to escape. To logarithmic accuracy same form as for a free electron
71 _ _
WeeZ, mnaxexp( R,—BE,), _ v [2[U(z,)—E,]]*2
5 z(0)=1z,, Z(O):E: — | 9

R,=minR[z(7)].
1) Here, y, is the characteristic decrement of the intrawell wave

Here,R, is the tunneling exponent for theh state, and the function in thez direction. .

factor exp{BE,) allows for thermal occupation of this state ~ The duration of tunneling motior; has to be obtained

(B=1/kgT). The factor Z,~exp(-BE,) is the partiton from the condition at the boundary of the classically acces-

function for the motion transverse to the layer in the neglecgible range behind the barrier. If the potenti(z) is smooth

of tunneling. there, the matching of the WKB wave functions occurs at a
Equation (5) is obtained by statistical averaging over turning point®

phonons, for each state as described in the Appendix. It

differs from the standard procedd’ebecause the intrawell 'Z( 7)=0. (10)

motion in thez direction is not semiclassical. Even though

the underbarrier motion is semiclassical, its duration i

imaginary timer; is not equal tg3/2. Nevertheless the result

of elimination of phonons, obtained by solving the linear

equations of underbarrier motid@6) for the phonon “co-

ordinates” py;(7) has a familiar form of an influence

. 18 . .
functional:™ In fact, the effective duration of the phonon g,,n4g 16 the lowest-order term in the cumulant expansion of
tunneling motion is still equal tflz’ see EQ(Al4). As @ e apnropriate propagator. Parallel magnetic field couples
resultR,, is given byR, (A13) [a={n,ny;}] with the appro-  he tynneling motion of an electron to the in-plane dynamical

Mhe tunneling trajectory is by construction symmetrical in
time with respect tors, z(7s+ 7)=2z(7— 1) for 0<7<r7;.

We expect that not only do Eq&®), (7) apply to a Wigner
crystal, but they also provide a good approximation in the
case of a correlated electron liquid, and then &g.corre-

priate phonon occupation numberg . , _ degress of freedom of all other electrons. Tunneling provides
Overall, Rq[2] in Eq. (5 is a retarded action functional 3 \yay to measure the actual autocorrelation function of the
for a 1D electron motion normal to the layer in-plane momentum.
27, m 1 The term R, is negative. It means that the electron-
Rn[z]:j dr, ?224. U(z2)+ 5mwgz?(n) electron interaction in a correlated 2DES alwagsreases
0 the tunneling rate in the presence of a magnetic field. More-
—27E,+Red Z]. 6) over, when this term exceedm:/2)[z°dr, the tunneling

exponent as a whole decreases with the increaBing
The first two terms here give the action for underbarrier mo-  Two physical phenomena are described by the tRyp.
tion of an electron in the magnetic field, wheré@s, gives  One is the dynamical compensation of the Hall momentum
the retarded action which results from the electron-electromf the tunneling electron by the WC as the electron moves

interaction under the barrier in the direction. The other is thermal
1 5 “preparation” of the Hall momentum, which is then trans-
_ e formed by the magnetic field into the momentum of motion

Red Z]=— = 03 f f drd7,z(1y)z — 7). _ y e . ;
ed 2] 2@ o Jo mdr2( 1)) x(11 = 7) in the z direction. We analyze these effects in the following

(7) subsections.
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B. Zero temperature limit The relative role of phonons of different frequencies and
It would be natural to think that, since tunneling is accom-Wave numbers can be characterized by the density of states

panied by creation of phonons fdr=0, then the higher the weighted with th_e interactiod(w), see Ref. 21. From Eq.
phonon frequency the lower the tunneling rate. In fact just®): for the couplingHg

the opposite is true.

_ The effect of the electron-electron interactic_)n on tur_mel— J(w):(m/ﬁN)E wyj 8= wy;).

ing, as characterized bR.., depends on the interrelation ki

between the characteristic phonon frequeagyand the tun-
neling durationr; . When the tunneling electron is “pushed
by the Lorentz force, it exchanges the in-plane momentu
with other electrons. The parameteyr; determines what

, The smallew behavior ofJ(w) is determined primarily by
transverse acoustic phonons, wilfw)xw?. This corre-
r‘%ponds to “superohmic” dissipation, according to the

ortion of the momentum qoes to the crvstal as a whol nomenclaturé! The effect on tunneling of low-frequency
P 9 y honons is comparatively small in this case, which is not

QUnng the t_uanellng.{note t_hat the tunnellng motion goes in surprising, because the couplingkimematic the tunneling
imaginary time; a discussion of the physical meaning of the

: LT . . ; electron is coupled to the phonon momepia. The major
tunnelmg durgnon IS given In Ref_. 20s mentioned in the effect onR,, comes from high-frequency short-wavelength
Introduction, in the adiabatic limit of large,7¢, all elec-

trons have same in-plane velocity, with an accuracy to uan}:_)honons, which have large density of states. An important
b Y. ytod consequence is that tunneling is influenced primarily by

tum fluctl_Jatlons. Therefore the Lorentz for'ce produces n%hort—range order in the electron system.
acceleration, ando phononsare created during the tunnel-

ing. The effect of the magnetic field on tunneling should then Ohn the W?.Ole’ forr=0, t_he mggneﬂp-ﬁelﬁ mduce::_i term
be eliminated. in the tunneling exponent is positive, i.e. the tunneling rate

These arguments are confirmed by the analysis o decreases with the magnetic field. This can be seen from Egs.
9 = con yu y 4 {6), (7) by replacingz(r;)z(r;) in Ree with (1/2)[2(ry)
If the electron system is rigid enough in the plane, so tha+22( )1=2(7,)z(r,) and then integrating the function
w71, the major contribution t&®, comes fromr;— 7, T2)]= AT T2 grafing

_ 2 2
~ wy < 7¢. Thereforez(r,)~z(7;), so that inR, the two X(71.=72) Over 7 [for the termz'(r,)] or 7, [for 2°(r,)].

2 , For specific models, the dependence of the tunneling rate on
terms«wg compensate each other. The tunneling occurs as i

> i B and the vibration frequencies will be illustrated in Sec. V,
the electron were disconnected from the phonons and did g}, the results will be compared with the experiment.

experience a magnetic field. The only effect of the magnetic
field is that the electron mass is effectively incremented by a
B-dependent factor, and the tunneling exporieatR, is ap-
propriately renormalizedn—m* andR— (m*/m)¥°Rg_o, The analysis of the tunneling rate somewhat simplifies in
with the case of comparatively high temperatures and small pho-
non frequencies, where the vibrations are classical and their
frequencies are small compared to the reciprocal tunneling
durationwy; 8, wyj7¢<1. In this case

C. High temperatures and small phonon frequencies

m*=~m

1+ wgJde 2
omly T7x(7)

~Mm

1+(2N)‘1% (i wF)

. (1D) Red Z]= — 2mTwir?2?, ?:Tf—lf 'drz(7). (12)
0

Here, we assume that the major contribution to the integral

over 7 comes from times~ 1/w,<7;. Respectively, fora . ; S X
p=f J -
Wigner crystal, the major contribution to the sum ovierj{, single electron, with the Maxwell distribution of the in-plane

- 5 .
comes fromw,;~w,. The integral only weakly depends on monjentum inside the well exp(p72mT). The coupling of
the upper limit7;, which also provides the inverse of the the ZXB component of the momentum to the out-of-plane
lower cutoff frequency in the sum ovek,j). For a Wigner ~motion gives rise to the term 2pw [ 'd7 z(7) in the tun-
crystal, the dependence of the mass renormalizationsam  neling action[see Eqs(4), (A3)]. The extreme value of the
logarithmic. sum of this term and-p%2mT is just equal to— R.d z] as
The tunneling rate approaches its value B+#0 with given by Eq.(12).
increasingw, . On the other hand, the slope of the logarithm  The single-electron form of the tunneling exponent is to
of the tunneling rate as a function af; depends explicitly be expected in the limit of smaib,;, because the distribu-
oNn w, . This provides a means for measuring . tion over in-plane momenta of electrons forming a Wigner
For w,7¢~1, only a part of the Hall momentum can be crystal is Maxwellian, in the classical limit. For small; 7
taken by the electron crystal. The rest goes into the in-planthe momenta do not change over the tunneling duration,
kinetic energy of the tunneling electron, and ultimately intotherefore only the momentum of the tunneling electron itself
creations of WC phonons. However, the tunneling exponenis important. The above derivation provides an independent
R, usually decreaseswith increasing phonon frequencies. test of the derivation used to obtain the general expressions
This is because the more rigid the electron system is, théb), (7).
more effectively it compensates the in-plane Hall momen- We note that the actioRed z] (12) is still retarded, it
tum. does not correspond to a local in time Lagrangian. The func-

Equationg6), (12) also describe the tunneling action of a
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tional form of R, remains the same even for temperatures R AL 2

T< wy; provided the phonon frequencies are small compared Z20=To fo drz(m) (E=Ey).

to rf‘l andw, . In this caseT in Eq. (12) has to be replaced

by (4N)_1Ewkj(2ij+ 1)= x(0)/2m. This factor explicitly One can see _thaﬁcr<270. It fo!lows from Eq.(?) that 27 i;
depends on the phonon dispersion law, but again, the maj@s0 the limiting value ofB., in the opposite case of high
contribution comes from short-wavelength high-frequencyPhonon frequencies,;>1/7o. On the whole, we have the
phonons, which are determined by the short-range order ifpllowing bounds on temperature for the tunneling enhance-

the electron system. ment in the ground intrawell state:
7
IV. ENHANCEMENT OF TUNNELING 270 2< B <27p. (15)
BY A MAGNETIC FIELD 2(2)

In this section we show_that a parallel magnetic field Ca’,’GenerallyEg/z_g~1.
enhance the rate of tunnelllng from the elect.ron layer. Quali- it follows from the above arguments that the value of the
tatively, the enhancement is due to transferring the energy Qfossover temperatur, = 1/3,, decreases with increasing
thermal in-plane motion into the energy of out-of-plane tun-phonon frequencies, that is the crossover is determined by
neling. On the formal level it is a consequence of the in-high frequency phonons which, in the case of 2D electron
crease, with increasing temperature, of the absolute valué Q{stems, have large wave numbers and are determined by the
the termRee (7) in the tunneling action. Since this term ghortrange order. We emphasize that there is no threshoid in

gives a negative contributipn to the tunneling .exponen'F, thes for tunneling enhancement in the ran@é) provided the
whole B-dependent term iR becomes negative starting system tunnels from the ground state.

with a certain crossover temperaturg, and then the tun-
neling rate increases witB. The region where the overall
escape rate increases wBhs not universal and depends on
the potentialu(z) and the phonon spectrum. The enhance-
ment occurs in a limited temperature range, and may start The tunneling rate may increase wihin the excited
from B=0 or have a finite threshold iB. However, very states, too. However, this does not happen for simple model

B. Small magnetic fields: Upper temperature limit
for enhancement

strong fields suppress rather than enhance escape. potentials investigated below. If the tunneling is enhanced
only in the ground state, the upper temperature bound of the
A. Small magnetic fields: The crossover temperature enhancement domain is often the temperaflife , where

the probability of tunneling from the first excited state,

_ The lower temperature bound of the enhancement domaifyejghted with the occupation factor, exceeds that from the
is the crossover temperatufe,. It can be determined from ground state, foB=0. It can be estimated for smooth tun-

the smallB expansion of the tunneling exponent for the pajing harriers where, foB=0, the tunneling duration as a
ground state1=1 in Eq. (5) (we use the subscrigtfor this  ¢nction of energyr,y(E) decreases with the increasing en-
stats, ergy E, which is often the case. From E¢f), switching
between tunneling from the ground£1) and first excited
Ry(B)=~Ry(0)+Ay(T) w2, <1, 13 .
o(B)=Ry(0)F Ao, weTo (13 state i=2) occurs for the reciprocal temperature
where 7y is the tunneling time in the ground stageith en-

ergyE=E,) for B=0. The role of the ground state is special E2 EVdE

in that the barrier width here is usually bigger than for the L 7o(E)

excited states. Therefore the effect of the magnetic field, /31%2:2? (E1=Ey).

which accumulates under the barrier, is most pronounced in 2 =1

the ground state. This value lies between (E,) and 2r(E;). Depending

The value ofAy is given by the _termsc_wﬁ in the action  on the tunneling potential3; ., can be smaller or larger
Ry (6) calculated along the tunneling trajectary(7) for B thang,, (15). If a magnetic field does not increase the rate of
=0. From the analysis in Sec. Ill B it follows tha§,>0 for  tunneling from the state=2, the field-induced tunneling

T—0. The crossover temperature is given by enhancement starting wiB=0 occurs forT,<T<T;_,.
Ag(Tcr) =0. (14 . . o
C. Field-induced switching between the levels
For T>T,, the tunneling exponerR, decreases and the tun- and from activation to tunneling
gﬁ]lg]l?Brate increases with, in the region of comparatively Even in the temperature range>T, ., a sufficiently

strong magnetic field can increase the tunneling rate, pro-
: _ s vided T>T,,. This happens if the tunneling exponent for the

from E_qs (6), (12) it follows .thei'BCf_ UTer=2792 o/ 25, ground state Ry(0)=R,-1(0) exceedsR,_»(0). Then

wherez, is the average coordinae(12) for the B=0 tra-  within a certain temperature range the escape rat® fof

jectory with energyg,, andzé is the mean square value of is determined by tunneling from the excited state2. The

on the same trajectory rate of this tunneling decreases with increadhdR,-, in-

In the limit of low phonon frequenciesy,; <1/, T,
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creases withB). For someB the exponentsR,_,(B)  boundary condition$9), (10), (A12), and(A14). For a trian-
+ B(E,—E,) andR,_(B) become equal to each other. For gular potential, these equations are linear. This allowed us to
larger B the system tunnels from the ground state, and thé@btain a simple expression for the tunneling exponent
tunneling rate increases with
Similarly, since the activation rate is often weakly af-
fected byB, in a certain temperature range where escape R=— v37% 3, Tred 1= Tred) COt w812~ v Tred
already occurs via activation f@=0, starting with som®
it may again go through tunneling from the ground state. + 3437 ¥2—1), Rg=2yLﬁ/3v2. a7
This happens if the tunneling rate for the ground state be-
comes bigger than the activation rate, and can be observed
only in a limited range oB, as discussed in Sec. V fa, ~ Here,v,=w,7 and v,= w7, are, respectively, the dimen-
<T, .,,T,. For a special model the switching is illustrated sionless in-plane and cyclotron frequencies scaled by the
in Fig. 5 below. We note that, in principle, ti&induced  tunneling durationro for B=0, andv?=v2+vZ.
enhancement of the escape rate may occur in a limited The quantityr,.q=7¢/7o in Eq. (17) is the reduced tun-
B range even foif,>T,_,,T, (we assume here that ther- neling duration. It is given by the equation
malization inside the well occurs before the electron es-
capes.
[(1— 7(eg) vpvzcotf[ 0pBI2— vy Tied — vﬁ]tanhvrred
V. TUNNELING ENHANCEMENT FOR THE EINSTEIN _ 5 5
MODEL OF A WIGNER CRYSTAL = [ vpTrea— V7). (18)

In what follows we will illustrate the general results and
apply them to specific 2D systems assuming that all vibra- | the Jimit T—0, Eqgs.(17), (18) go over into the result

tional modes have the same frequeney; = wy, i.€., USING  gptained earliér(in Ref. 6 we useds, and v, instead ofw,,
the Einstein model of the Wigner crystal. This is motivated vp). In this limit, the role of the many-electron effects is
by the results of Sec. Ill B that the tunneling is determ'nedparticularly important. In the single-electron approximation
pr|ma_r|ly by short-_wavel_ength V|brat!ons, V\.'h'Ch have a com- w,=0) the tunneling duratiom; and the tunneling expo-
paratively weak dispersion. When discussing the experimenfﬁe;’]t R. diverge forw.—r-15 Tfhis happens because the
we will set w,, equal to the characteristic short-wavelength 9 i 9 ¢ 7o - i PP 2 0
plasma frequency (2e2n¥2/m)¥2, wheren is the electron eﬁgctlve S|.ngle—electron potent|aI'U(z)+(1/.2)mwc.z ,
density. which takes into account the parabolic magnetic barrier, does
not have classically allowed extended states with engigy
=0 behind the barrier.
] ) ) The interelectron momentum exchange makes tunneling
For electrons above helium surface and in certain types %ossible for allB. For w,7,>1 and T=0, the tunneling
semllcondu_ctor _heterostructures,_the potentiglz) in .the. exponent is a steep function of the exchange tagen the
bar.ner region is largely determined _by the electric field it of slow exchangew,7<1. In the opposite limit of the
which pulls electrons away from the intrawell states. To &2st momentum exchangey,> TSl,wc, from Egs. (17),

good approximatiorJ (z) is then linear inz for z=z,, and (18) we obtainr,e~1 [i.e., = o), andRy~4yL/3. These

It we setz,=0, we have are the values for tunneling fd=0. The overall depen-
52 7 dence of the tunneling exponent an for T=0 is shown in
U(2)= _< 1— _) (z=0). (16) the inset of Fig. 3.
2m L For a given magnetic field, the dependence of the tunnel-

Here, y= v, is the decrement of the ground-state wave func\"d €xponentR, on the frequencyw, becomes less steep
tion 4= near the wellgln ¢, /9z=— for z=0, see the with increasing temperature, as seen from Flg_. 3. This is
discussion before Eq9). The additive constant it(2) because thermal in-plane motion of the tunneling electron
is chosen so that the energy of the ground sigte 0. Then becomes more important than interelectron momentum ex-
L is the tunneling length in the ground state Bk=0. It ~ change with increasing temperature. For larggro, w0,

is determined by the pulling electric field. We assume thathe curves for different temperatures merge together and ap-
yL>1. proach theB=0 asymptote.

The approximation(16) applies only within the barrier The value ofR, can be calculated independently from the
region, and not inside the well, whetd(z) is singular. functionalR, (6) using the direct variational method. Even a
Moreover, it holds provided the width of the tunneling bar- simple approximation wherg(7) is quadratic inr, with the
rier is small compared to the in-plane interelectron distancenly variational parameter being the tunneling duratign
n~ Y2 [see Eq(24) below]. gives a reasonably good result. For the highest temperature

In order to calculate the ground-state tunneling exponentn Fig. 3, it is shown by the dashed line. Such calculation
it is convenient to solve directly the equations of motiongives a good approximation for higher temperatures, and also
of the electron and phonons under the bar(&8) with the  for lower temperatures but not too smal}r,. For low tem-

A. Triangular barrier
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FIG. 4. The dependence of the tunneling expon&{(B)
=Ry(B) on the magnetic field17) for w,7o=1/3 near the cross-
over temperatur@.~1.67ry (19). The curves 1 to 3 correspond to
(B—Be)!7%=0.2,0-0.3.

FIG. 3. The tunneling exponent in the ground st&EB)
=Ry(B) for a triangular potential barrigfl6) as a function of the
phonon frequencys, in the Einstein model of the Wigner crystal
for w,79=2. The timery=2mL/y is the duration of tunneling for
B=0 andT=0. The curves 1 to 3 refer to reciprocal temperatures
BlTo=7, 5, 3. The dashed line is the result of the direct variational
method forB=237,, with one variational parameter .

ground state. For higher temperatures, one should take into
account the possibility of escape from excited states and via
an activated transition over a potential barrier. The positions
of the excited levels depend not only on the barrier shape,
but also on the shape of the potentii{z) inside the well.
Phe analysis for a specific system, electrons on the surface of
liquid helium, is done in the next section. Here, in order to
illustrate different scenarios, we discuss two cases: a narrow
well, in which case the ground state is essentially the only
intrawell state, and a well with a comparatively shallow ex-
The explicit expression for the tunneling exponéh?)  cited state. We assume that the intrawell relaxation rate is
allows us to analyze the tunneling enhancement and the magigher than the escape rate.
netic field induced switching to tunneling discussed in Sec. We start with the case of one bound state in the potential
IV. In the smallB limit, where w < wp,rgl, the tunneling  well. Here, forB=0 switching from tunneling to activation
exponentRy(B) is seen from Eq(17) to be quadratic iB.  occurs for the temperatufg,= 1/B.=(47o/3)" L. This tem-
The coefficient\g in Eq. (13) can be easily calculated. From perature is higher than the crossover temperatysg, 119),
the conditionA;=0 we obtain the value of the reciprocal and therefore there is a region where the enhancement of
temperatured,, which corresponds to the crossover from de-tunneling by a magnetic field can be observed, as discussed
crease to increase of the tunneling rate due to a magnetipove(see Fig. 4 However, even though fof>T, the B

peratures and smadl, 7y the trajectoryz(7) is strongly non-

parabolic, and more than one parameter is required in th
variational calculation.

B. Field-induced tunneling enhancement
and switching to tunneling from activation

field 0.06 ‘ . . 0.01
2 [3v,— (3+ v?)tanhy,] @ !
_ _q| YpLoPp™ Vp Vp e
Pa=270t wptanh 1/3— 3vp+ 3 tanhy, g 2
(19 g, 0.03 ok
In agreement wit{15), B, monotonically increases witl, @ T,>T,
from 57/3 atw,=0 to 27, for w,— . &
The dependence of the tunneling exponéh) on the 0 ‘ . .

magnetic field for different temperatures is shown in Fig. 4. 0 10 2 220 0O 2 2 2 4
Above the crossover temperatug< 8,), Ry(B) decreases BTy BTy

with B. Then Ry(0)—Ry(B) and the tunneling probability

increasewith the increasing field, for smaB. The slope . . .
dR, /dB2x g— A, for B—0. However, for strong fields the and from tunneling from the excited stat® to tunneling from the
Ry . cr T ! ground state, fotw, 7= 1/3 (respectively 8.~ 1.67r;). The escape
tunneling rate decreases with the increasddoecause the xponenR=min[R,+ B(E,—E,)J=—InW. In (a), there is only one
Hall mqmentum can no longer be compensated by therm trawell state in the potential well (z), and the transition to ac-
fluctuations. o _tivation for B=0 occurs forg/r,=4/3. The curves 1, 2 correspond
It is clear from the data in Fig. 4 that, for the barrier 5 (53— g /7= —0.35-0.4. In(b), the positiorE, of the excited
chosen, the magnetic field induced increase of the tunnelingye| (n=2) is chosen at 0:2%/2m below the barrier top. The tem-
exponentR is. numeri(_:ally small. However, for typicaR perature is chosen a3t )/ o= —0.16, so that foB=0 the
=50 it can still be noticeable. system tunnels from the excited state. The observi@ntalle) ex-
The expressioll7) gives the tunneling exponent only for ponentR,+ BE, for a givenB is shown with the bold line, whereas
low enough temperatures where the system escapes from thie dashed line shows the bigger exponent.

FIG. 5. Magnetic field induced switching from activatida)
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=0 escape occurs via overbarrier transitions, the increase @fents of the phononsy;, which are imaginary under the
the tunneling rate with the increasijcan make tunneling payrier, still have to be continuous. Respectively, the bound-

more probable for sufficiently strong. If the activation ary conditions(A7) for the tunneling trajectory should be
rate is independent d8, the overall dependence of the ex- changed to

ponent of the escape rate(B)=min[R,B)+B(E,—Ey)]
«—InW(B) on B is shown in Fig. %a). In this caseR(0) z(m9)=L, u(7)=0 (21
=+2/2mT is the barrier height over temperature. Switching
to tunneling and the increase of the escape rate RBidlccur

where the tunneling exponefy(B) as given by Eq/(17) variables from the Euclidean action in the tunneling expo-

becqmes Ies; tth(O). . nent is similar to what was done for a smooth barrier in the
Similar switching occurs in the temperature range where

tunneling from the first excited level is more probable thanAppenle' The resulting expression for the retarded action

from the ground state, fd8=0. With increasing, the tun- TUI‘(;Ct]LOHE(lJRn[z] CO'”C:‘desoiVltiEQ(G), providedz(r+ 7)
neling rate in the excited state decreases, whereas in the detne asz(rq—7), for 0<r<ry. . —_
’ An important feature of a rectangular tunneling barrier is

ground state it increases, and therefore starting with certai{}1at forB=0, the tunneling timero(E) = — (1/2)dR, /dE
’ — Y 0 - n

B, the system switches to tunneling from the ground state, ; . .
This is illustrated in Fig. &b). monotonically increases with energl,. Therefore the

maximum of the function- BE—R(E), which gives the es-
cape probability, corresponds either to the transition from the
ground state or to activation over the barrier. Switching to
activation occurs for the temperaturé,=y?/2m Ry(0)

In many physically interesting systems, the tunneling bar= y/4mL=(47,) 1. It is less than 1/2 of the temperatufg
rier U(z) is nearly rectangular. This is often the case forof the crossover fronB-suppressed t8-enhanced tunneling
semiconductor heterostructures, where the barrier is formeds given by Eq(15), and therefore we do not expect the
by the insulating layer. If we cound off from the intrawell ~ crossover to occur in systems with a square barrier.

(7 is the imaginary time at which the boundary is reaghed
With the boundary condition@1), elimination of phonon

C. Square barrier: Field-induced crossover
to thermal activation

energy leveE4 and set the boundariesat 0 andz=L, the For temperature$<T, andB=0, escape occurs via tun-
barrier has the form neling, and its probability decreases with the increading
5 Starting with somd3, where the tunneling exponent becomes
U(z)=v"/2m, 0<z<L. (200 pigger than the activation exponen£/2mT, it becomes

Here, 14 is the decay length under the barrier, see @ ~ MOre probable to escape via an activated transition. Then the
and we have neglected the lowering of the barrier due to thE'agnetic field dependence of the escape rate becomes much

electrostatic field from other electrons at their lattice sitesVeaker.

which is a good approximation for the interelectron distance 1he B dependence of the escape rate for different tem-
n-2<| peratures is illustrated in Fig. 6. The results refer to the Ein-

We assume that, behind the barrig>(L), an electron stein model of the Wigner crystal. In this model the tunneling
can move semiclassically with all energies. Then the decay€*Ponent can be obtained directly from tHimear, in this
ing underbarrier wave function has to be matched to an ap=2S8 equations of motiotA6) with the boundary conditions
propriate propagating wave behind the barriezatL. In (9, (A12), (21). It has the form
contrast to the case of a smooth barrier, because the potential

S . ’ Ry=7YL[1+ Treqt , 22
U(z) is discontinuous az=L, the z component of the o= YL+ Treat ver(Tred | (22
momentum should not be the same on the opposite sides wfhere the functiork(r,e9 and the reduced tunneling time
the boundary. However, the in-plane “momentum” compo- 7,.q= 7¢/ 7o are given by the equations

ve(coshvreg—1)

K(Tred =

V§+ VSCOShVTred-i- vv,CotH @, B12— v Treg] SINN Y Tieq

1 v2(2—2 coshvryegqt vTeSiNN Y Tre)) — ¥3(Treg— 1)SINM Y Treq 23
VcV,za (1—coshyr,ey(1— V(Z:/ vg)-l- VTreSINNYV T g

with vp=w,7g, Vo= wcTo, andv=(v3+v2)*2 T, does not exceed 1#4=y*2mRy(B=0) and decreases
The temperature of switching to activation is given by thewith B.

equationT ;= yZ/Zng. From Egs.(22), (23), Ry increases The effect of saturation of the escape rate with increasing

with the magnetic field. Therefore the switching temperatureB shown in Fig. 6 is not limited to square barriers, of course.
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For strong enougB and nonzero temperatures, the tunneling i
rate becomes smaller than the activation rate, and the system 10
switches to activation; the switching may go in steps with S
increasingB, via tunneling from excited intrawell states. ;
[aa]
S o1
=
VI. COMPARISON WITH THE EXPERIMENTAL 0.01
DATA ON TUNNELING FROM HELIUM SURFACE
0.001
Tunneling from a strongly correlated 2DES has been in-
vestigated in much detail for electrons on helium surf&ce. 0.0001 + 005 01 015 0
In this system, a good agreement has been reached between Bz(Tz)

theory and experiment in the absence of the magnetic field,

where the primary role of the electron correlations is to  FIG. 7. The relative rate of electron tunneling from the helium

change the effective single-electron tunneling baiisee be-  surfaceW(B)/W(0) as a function of the magnetic fiell for the

low). As mentioned before, there were also done interestinglectron density=0.8x 10° cm 2 and the calculated pulling field

experiments on tunneling in a magnetic field. However, theg, =24.7 V/cm. Solid lines show how the theory compares to the

observed strong field dependence of the tunneling rate draxperimental data points of Ref. 5. The error bars show the uncer-

matically differed from the predictions of the single-electrontainty in the theoretical values due to the uncertainty in the param-

theory and remained unexplairfetthe data for the lowest eters of the experiment.

temperature have been compared to the theoryTfe© in .

Ref. 7). The term= w? describes the Coulomb field created by other
Electrons on helium surface are localized in a 1D poten<€lectrons at their in-plane lattice sitdthe “correlation

tial box. The smooth side of this box is the image potentialhole”*”?%. Only the lowest-order term in the ratio of the

—Alz, where A=e?(e—1)/4(e+1) (e~1.057 is the di- tunneling lengthL to the interelectron distance *? has

electric constant of heliumandz is the direction normal to  been kept in Eq(24), and

the surface. The other side is a steep high barrigr eV on 5

the surface £=0), which prevents electrons from penetrat- & 2/ IR 3

ing into the helium. The intrawell states can be made meta- 2m 9 !

stable by applying a field, which pulls the electrons away . . _ . .

from the surface. This field is determined by the helium cell'S glven_by the sum over lattice sitd% . For a triangular

geometry and depends on the applied voltage and the eletattice, w=~(4.45’n¥9m)¥2?° The conditions Iy<L

tron densityn, see Ref. 23. The overall electron potential has<n™~ 2 are typically very well satisfied in experiment, with
the form the decay length 3=1/Am~0.7x10 °® cm, L~ |E4/e€ |

~y?I2m|e€  |~10"° cm, andn~?~10"* cm (in the esti-
- mate ofL we used thafEy|>|e€, |/y, mw?/y? and that
U(2)=—Az"'-[ef[z—mw’Z (z2>0). (249 |e€, |ly=w).

To compare the predicted dynamical effect of the
electron-electron interaction with the experimental data on
tunneling in the magnetic fieRiwe use the Einstein model
of the WC and set all phonon frequencieg; equal to the
characteristic plasma frequenay,=(2me?n*¥m)"2 The
numerical results change only slightly when the phonon fre-
quency is varied within reasonable limits, e.g., is replaced by
w; in the expression fod (z) we usew as given by Eq(25).

The calculated magnetic field dependence of the tunneling
rate for the parameters used in the experiment is shown in
Fig. 7. The data refer to the values Divhere escape occurs
via tunneling from the ground state. The actual calculation is
co largely simplified by the fact that, deep under the barrier, the
image potential—=A/z in Eq. (24) can be neglected. The
equations of motiotA6) become then linear, and the tunnel-
=(275) 1 (1y=mLiy). The valueR(0) is given by the tunneling ing exponentRy can b_e obtained in_ an explicit, although
exponent R(0)=2yL. Curves 1 to 3 correspond tgg/r,  cumbersome form, which was used in Fig. 7. The correction
=4.5,5.5,6.5. The sections of the curves whe(B) increases cor- {0 Rq from the image potential is-1/yL, which is the small
respond to tunneling and are described by E2p), whereas the Parameter of the theory. Moreover, since this correction
horizontal sections of the curves correspond to thermal activationgomes from the range of smat] where the effect of the
Inset: the magnetic field dependence of the switching temperaturgragnetic field is small, it is largely compensated where
T.70. Ry(B)—Ry(0) is calculated. This and other corrections

12 12

(25

1
R 2_
2N %: @

o
[s=]

[R(0)-R(B)I/R(0)

S
=

0.6 s go . ‘
1

FIG. 6. The logarithm of the escape ratdr(B)
=min[Rg,y2/2mT] for the square potential barrier and for,
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~1/yL result in changes of the theoretical curves that areThe smaller experimental values of the relative escape rate
smaller than the uncertainty iRy(B)—Ry(0) due to the W(B)/W(0) for T=0.26 K can be understood by noticing
uncertainties im and&, in the experiment. that the activation rate is close to the tunneling rate for such
As seen from Fig. 7, the dynamical many-electron theoryT, and since it presumably only weakly dependsByt{ the
is in good qualitative and quantitative agreement with theoverall slope of IfWW(B)/W(0)] should be smaller than that of
experiment, without any adjustable parameters. At low temthe theoretical curve which ignores activatidoy a factor
peratures T=0.04 K), the many-electron tunneling rate is ~ 2, according to an estimate which ignores the dependence
bigger than the single-electron estinfaty a factor of 16 of the actl\{atlon rate oB). Therefore we do not show error
for B=0.25 T. For this temperature, the tunneling rate isbars for this curve.
well described by th@ — 0 limit.” The B dependence of the
tunneling rate is very sensitive to temperature. The role of The prefactor
dynamical many-electron effects becomes less important for The dependence of the potenti#{z) (24) onn gives rise
higher T. Interestingly, the theoretical data on thatio of  to the density dependence of the tunneling rate everBfor
W(B)/W(0) become less sensitive to the experimental un=0. We calculated the exponent and the prefactoMin
certainties in the cell geometryvhich determines€|) and =W(B=0) by matching the WKB wave function under the
the electron densityn for intermediate temperature$  barrier for 1ly<z<L with the tail of the non-WKB intrawell
~0.14 K. This is because the corresponding erroi/(B)  solution(here,L=%%y?/2m|e€, | is the characteristic barrier
andW(0) compensate each other for such temperatures. Width). In the spirit of the logarithmic perturbation theory
The crossover to magnetic-field enhanced tunneling octLPT),?® the wave function of the ground state inside the
curs for temperatur@,~0.19 K, for the parameters in Fig. Well and not too far from it can be sought in the form
7. The expected increase of the tunneling rate \Bitfor T _
>T, is shown in Fig. 7. It has indeed been observed in the ()= conskzexd ~A(z)] (26)
experiment. The analysis of the experiment requires to es{we take into account that the functiay(z) has one zero,
tablish whether, for temperatures of interest, escape actuallyhich is located at the helium surfaces 0].
occurs via tunneling. To that end we note first that, as it The functiondA/dz satisfies a Riccati equation. It can be
follows from a direct variational calculation, the potential solved near the wellZ<L) by considering the last two
U(2) (24), with the parameter values specified in Fig. 7, hasterms in the potentidl(z) (24) as a perturbation. For small
only one metastable intrawell state. Electrons are initiallyz, the major correction comes from the tem€, . To the
prepared in this state. first order in&, ,
If the intrawell relaxation were fast enough, the tempera-
ture of the crossover from tunneling to activatidg for B z
=0 would be given by the condition that the tunneling ex- A(Z)%ﬂ( 1- I) (27
ponentR, be equal to the activation exponetd f,,—Eg)/T o _ _ _
[here'UmaXiS the maximal value of the potenna'(z)] This In Obtalnlng th|S eXpreSS|On we tOOk into account the correc-
would giveT,~0.15 K. However, activated escape requirestion to the ground state energie,= —3|e<, |/2y. This cor-
that the in-p]ane thermal energy of an electron be trans[ection can be obtained from the condition that the linear in
formed into the energy of its out-of-plane motion. This in- €1 term indA/dz remain finite forz—0.
volves a large transfer of the in-plane momentum The correction toA (27) is small forz small compared to
~[2m(U yax—Eg)]¥2 The electron-electron interaction does the barrier widthL. We note that the exponeAt(z) has an
not give rise to such a transfer in a Strong|y correlated sysovera” functional form which differs from that of the com-
tem, since the reciprocal interelectron distance ¥’  monly used variational wave functiony(z)=zexp(—y2),

<[2M(U ma—EQT o ~with 'y being a variational parameter.

The major momentum transfer mechanism is scattering by The expression foA (27) matches the smai/L expan-
capillary waves on the helium surface, rippldnElectron-  sjon of the actionS of the WKB wave function under the
ripplon coupling is weak. As a result, the prefactor in theparrier forl >z y~1. This allowed us to find the prefactor
activation rate, which is quadratic in the coupling constant, isn the WKB wave function and in the tunneling rate. The

small. ForB=0 it is ~¥*T?/fis,*® whereo is the surface resulting tunneling rate is shown in Fig. 8. It fully agrees
tension of liquid helium, and fof<0.25 K it is smaller  jth the experimentsee also Ref. 22

than the prefactor in the tunneling rate2/m)exp(—2) by
a factor<10 °. Therefore the crossover from tunneling to
activation occurs for higher temperatures than it would fol-
low from the condition of equal tunneling and activation It follows from the results of the present paper that tun-
exponents. neling in a magnetic field parallel to the electron layer is
For the parameters in Fig. 7, the rates of activation anagxtremely sensitive to physical properties of the 2D system.
tunneling escape become equal for temperatures slightlif provides a unique tool for investigating electron correla-
higher than 0.26 Kfor B=0). Therefore we believe that the tions not imposed by a magnetic field, and in-plane and out-
experimentally observed increase of the escape rateBugh of-plane  many-electron  dynamics, including short-
due to the discussed mechanism BEnhanced tunneling. wavelength in-plane excitations. It is also sensitive to the

VII. CONCLUSIONS
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ture with a square barrier of width=0.1um and height
y?2m=0.02 eV, for the electron densityn=1.5

1} ] X10' cm™? andB=1.2 T we havew,7,~0.6 andw.7g

~1 (rg=mL/vy is the tunneling duration fon=B=0).

o1l 1 The results of Sec. V C for square barrigrgith account
taken of the correlation-hole correctioshow that the inter-
electron momentum exchange should significantly modify
0.01 ¢ E the tunneling rate in this parameter rarfg€his provides a
comparatively simple and direct means for revealing electron
L correlations, and possibly even a transition from an electron

0.2 0.6 1 fluid to a pinned Wigner crystal.
g 2
n(10" cm ™)

W(S(::c'l )

FIG. 8. The rate of electron tunneling from the helium surface ACKNOWLEDGMENTS
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density.

rates of transitions between intrawell states. There arise new APPENDIX: MANY-BODY WKB APPROXIMATION
physical phenomena, such as magnetic field enhanced tun-
neling and switching back and forth between tunneling from
different intrawell states and between tunneling and activa- In this section we obtain a general expression for the es-
tion. The effect of the field on tunneling from a correlated cape ratéV. We assume that the state of the system under the
system depends on the interrelation between the characterigarrier can be described in the WKB approximation, but at
tic rate of interelectron momentum exchange, the reciprocdhe same time, the intrawell electron motion can be strongly
duration of tunneling in imaginary time 4/, and tempera- quantized. Under the barrier, the interaction of the tunneling
ture. electron with phonons of the Wigner crystal is strong. One
For low temperatures, where escape occurs via tunnelinghould therefore think of escape of the coupled electron-
from the ground intrawell state, the tunneling rate is affectedPhonon system. We enumerate the states of this sygiem
primarily by high-frequency in-plane many-electron vibra- by the quantum numbez=(n,{ny;}), wheren enumerates
tions, which are determined by short-range order in théhe states of quantized intrawell electron motion in the
2DES. The vibration frequencies are of the order of the chardirection, andn,; are the phonon occupation numbers. For
acteristic zone-boundary frequency of the Wigner crystafast intrawell relaxation, escape is characterized by a single
w,. If wp>1l7(, the effect of the magnetic field on tunnel- rateW, as explained in the text. To logarithmic accuracy
ing is nearly completely compensated in the case where the

1. General formulation

width of the tunneling barrier is small compared to the inter- W=2z"1> W, exg — BE,)
electron distance. i ar

At higher temperatures, the magnetic field may in fact (A1)
enhanceather than suppress the rate of tunneling decay. The W,=C exd —2S,(&.& 1| (&%

overall escape rate as a function®fand T, and switching _ ]
between different escape regimes, have been analyzed fbtere we introduced a vectdj=(z,{py;}) with components
simple but realistic models of the tunneling barrier. which enumerate the-coordinate of the tunneling electron
Our results on the field dependence of the tunneling rat@nd the “coordinatesf; of the phononsZ is the partition
and its evolution with temperature, including field-inducedfunction calculated neglecting escape, a are the pref-
tunneling enhancement, are in full qualitative and quantita@ctors in the partial escape raté,, they will not be dis-
tive agreement with the existing experimental data on tuncussed in this paper.
neling from a strongly correlated 2DES on helidwjth no The exponents W, are determined by the wave func-
adjustable parameters. tions ¢,(&) at the turning points; on the boundary of the
The results also apply to 2DES in semiconductor heteroclassically accessible rangé;(depend one, see below
structures. For correlated systems in semiconductors, tunndl- is convenient to evaluatey,(&) in two steps, each
ing has been investigated mostly for the magnetic figld of which gives an exponential factor. The first factor,
perpendicular or nearly perpendicular to the electron laye©xd —S,(&,&n) ], describes decay of the wave function deep
see Ref. 3. The data on tunneling in a field parallel to theunder the barrier. Formally, it relates,(&) to ¢,(&n). The
layer refer to high density double-layer 2DE@efs. 29, 30  point &, is chosen close to the well, but it also lies under the
with a thin barrier, where the tunneling matrix element couldbarrier, so tha, can be calculated in the WKB approxima-

be assumed to be nearly independent of the field. tion. The second factor ig (&) itself. The resulting rate
The effect of a parallel magnetic field is most pronouncedshould be independent &, .
in systems with shallow and broad barri¢i$z), for which We start with the functiors,(£,&,). To the lowest order

it has not been investigated. For example, in a GaAlAs strucin 7, for systems with time-reversal symmettyhich we
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“restored” by the canonical transformatipiit is the action

for a classical underbarrier motion in imaginary time it

with purely imaginary momenta
pz:i(;)S/(?Z, ukj:_

|9/ 9Py - (A2)

As a function of imaginary timer, the actionS(§,&;,) is
given by the integral of the Euclidean Lagrangiag,

Sa(&,&n) = fo Ledr—E,T. (A3)
The LagrangianLg is obtained from the Hamiltoniai2)
using the Legendre transformationL=p,(dz/dt)
— XUy (dpyg; /dt)—H, followed by the transition to imagi-
nary time, which gives

LE:LO+LU+LB' (A4)

Here, Lo=(m/2)z?+U(2) is the Eucledian Lagrangian for
motion in thez direction,Lg=Hp is the term induced by the

magnetic field, andL,
:EKJLKJ y W|th

is the phonon Lagrangianl.,

1 1

ij:ﬁpkjp—kj (A5)

2Me E]pkjp Kj

(overdot means differentiation ovej.

PHYSICAL REVIEW B64 245309

(it 1)=2(1i— 1), Pyj(Ti+T)=pyj(7i—7), (A8)

where O< 7= 7;. The tunneling exponent, can be calcu-
lated along the trajector§A6) which starts at;,, and comes
back to the same point in timer2.

For the boundary condition®A7), the time 7 is deter-
mined by the initial conditions on the trajectory, which are
given by ¢ ,(&y). If the intrawell dynamics is semiclassical,
the dominating contribution to the overall raté(Al) comes
from the energie& , for which the duration of the tunneling
motion 7¢= B/2.? In the general case this is no longer true.

2. The wave function close to the well

We are interested in the case where the width of the quan-
tum well is much less than the typical widthof the tunnel-
ing barrier. More precisely, we assume that for low-lying
intrawell state:, the characteristic lengths{ of localiza-
tion in the z direction arey, *<L. Then, even where the
effect of the magnetic field accumulates under the barrier and
the tunneling rate is strongly changed, the field may still only
weakly perturb the intrawell motion. In this case, inside the
well and close to it, the out-of-plane electron motion is sepa-
rated from the in-plane vibrations, and the state energies are

wkjnk]- . (Ag)

Ea:En'i‘; 8kj! Skj:
J

The classical equations of motion in imaginary time haveUsually the interlevel distanceS,,;—E,>wy;, for low-

the standard form

d dle

dr (}lg

e

GE (AB)

To calculate the escape rate, one has to find a trajectory
which starts at{(0)= &, and reaches the boundary of the

classically accessible rangg at some timer;, and to cal-
culate the actior§, along this trajectory.

lying levels.

Because of the separation of motion, we can choose a
planez=z;, under the barrier but close to the well, so that for
z~17;, the wave functiong,(&) are semiclassical and factor,

(A10)

Ui ng) (&) <€ vnzexr{ - % Sh (Pig)

Here, y, is given by Eq.(9), whereassnkj has a standard

If the potential barriet) (z) is smooth, the wave function form of the action of a free oscillator. Fér= &, Egs.(A2),
and its derivatives under the barrier have to match the WKBA10) give the initial velocities£(0) on the WKB trajectory
wave function in the classically allowed range behind the(A6) as functions of(0)=&,,.

barrier. Matching occurs at a turning point of the classical

In order to find the initial values of the phonon dynamical

motion (A6) where the derivatives of the exponents of thevariables which maximiz&V, it is convenient to wntcﬁn

both wave functions become equal to z&togS,/dz
=9S,19p;j=0, i.e.,

z(7)=0, py;(7)=0.

Equation(A7) is also the condition of the extremum 8,

(A7)

andpy; in Eq. (A10) in the energy-phase representatmn us-
ing the phonon energy,; and the imaginary time,; it takes
for a phonon to move under the barrier from the boundary
(2mey;) 2 of the classically allowed region to a given; .
With the Euclidean Lagrangian of the phono(s5), we

have forpy;= [pkj]inEpkj(o)

with respect to the point§ on the boundary of the classically
accessible range: the escape rate is determined by the mini-
mum of S, on this boundary. A detailed analysis of the be-
havior of multidimensional tunneling trajectories in imagi-
nary time for systems with time-reversal symmetry for a
parabolic well is given in Ref. 31.

It follows from Egs.(A6) and (A7) that, if the equations
of motion are extended beyonqd, the system will bounce
off the turning point and then move under the barrier back to
the starting point. The section of the trajectory for 7; is
mirror symmetrical to that for<<r;,

(A11)

Sn, [Pxj (0)]= dT'—kj(T)_

=]

Skj Tkj
and

pk](O) = qq-(stkj)l/zCOShwkj Tkj ,
_ (A12)
pk](O) - Q<J (28kj me])llzs|nhwa Tki

[&; is the polarization vector of the modé,()].
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3. A three-segment optimal trajectory I 0.6
. L @ | L (b)
To evaluate the escape rate to logarithmic accuracy, 1 1

one can, following Feynman’s procedure, solve the equations ] 03
of motion (A6) for the vibration “coordinates”py;(7) in
terms ofz(7) and the initial energies,; and phases,; 7y; . g 0
Then, from the boundary conditiofA7), one can findry; . 135
and then perform thermal averaging by summing the escap: o RN
rate ovemn,; with the Boltzmann weighting factor. Here we -1 \/ _1H39 // \
give an alternative derivation, which provides a better insight ' N
into the structure of the tunneling trajectory. a3

We note that, from Eq$A1l), (A3), (A10), and(All), the L 0
partial escape raté/, can be written a¥V,xexp(—R,), with S+ 0 o By Loy % By 2%

Ra=2,
Kj

0 FIG. 9. Optimal trajectories of the tunneling electrpfy) and

the vibrations of the WC fo>27; () and 8<27; (b). The nu-
merical data refer to the Einstein model of the Wigner crystal, with
py being the vibrational momentum in the Hall directipi B, in
unitsfi yg/2 (74 is the value ofy, in the ground state=1). The
arrows show the direction of motion along the optimal trajectory
(A13)  when <27 . The tunneling potential is of the forr(L6), with

[the term y,z,, in Eq. (A10) is small compared toR, dimensionless cyclotron frequenay.7o=2.0, wherero=2mL/y,

~ v, and should be incorporated into the prefactor, see Se(i,s. the imaginary tunneling time f@&=0. The vibrational frequency
Vl]n ' IS wp7p=1.0.

2T
dTij(T)+f "drLg(7)
_Tkj 0

27+ 7Kj

+2
q

dTij(T)_ZEan_2% 8kj(7'f+ Tkj)

2’7‘f

From Eg.(Al13), the tunneling electron in iteth state,
accompanied by phonons, move under the barrier along ®;(0)| in the classically forbidden region|py;(0)|
classical trajectory for the imaginary timer2 This motion >(2m8kj)1/2. In contrast, fop3<27(, we haver,;<0. This
is described by the Lagrangiar. Before and after that, the  shows that the extremum ove; is reached if the intrawell

phonons are moving on their own, disconnected from th&jiprational wave function is analytically continued from the
electronicz motion, for timesr,; and with the Lagrangian decaying to the increasing branch.

L,=2jLyj, so that the overall phonon trajectories make For 7= (8/2)— 7<0, the “free-vibrations’ termSnkj is

closed loops which start and end at turning points. o . .
In the WKB approximation, the sum &, (A1) over the negative, it gives rise to the decrease of the tunneling expo-
' x nent. This is the formal reason why, for sufficiently high

phonon occupation numbeng; can be replaced by the inte- . S .
gral overz,; , which should then be evaluated by the SteepesT[emperatures, an in-plane magnetic field can increase the tun-
1 ?Iing rate compared to itd88=0 value by coupling

descent method. The corrections due to the discretenesst I ted in-l ibrati o the 1 i
the values ofe,; are small providedo,;7s<R,. From Eq. tioenrma y-excited in-plane vibrations 1o the tunneling mo-

(AL3), the extremum of exp(R,—BE,) ith respect toe, If the intrawell motion transverse to the layer were semi-

's reached for classical, the sum over the energy levels of this moEgrin
1 Eqg. (A1) could be replaced by an integral. The extremum of
Tj=5 B~ Tt (Al4)  the integrand is reached fo=B/2,7,;=0. This is the fa-
miliar result of the instanton theory, in which the whole sys-
This expression shows that the duration of the free phonotem moves under the barrier from the well to the turning
motion 7,; is the same for all vibrational modes. Moreover, point and back over the imaginary ting 12 Clearly, in this
the overall duration of the three-segment optimal trajectorycase one should not expect the tunneling rate to be enhanced
of each vibration is 2f,;+ 7;) = 8. Examples of the trajec- by a magnetic field.
tories are shown in Fig. 9. In the case of 2D electron systems, the potential well is
For low temperaturesp>2r;, the direction of time notparabolic, and each term in the sum oagAl) has to be
along the vibrational trajectory does not changg>0. The  considered separately. Except for narrow parameter intervals,
corresponding branch of the intrawell vibrational wave func-the contribution of one of them is dominating, and the elec-
tion (A10) xexp{—shkj[pkj(O)]} decays with the increasing tron tunnels from the corresponding state.
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