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Ripplon-induced tunneling transverse to the magnetic field
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We analyze single-electron tunneling from the bound state above the surface of liquid helium. For strong
enough magnetic fields parallel to the surface, the tunneling must be accompanied by ripplon scattering. The
effective width of the tunneling barrier strongly and nonmonotonically depends on the momentum transferred
to ripplons. The escape rate is affected by Landau quantization of the states behind the barrier. The results
obtained here also apply to electrons on other cryogenic substrates.@S0163-1829~98!50444-4#
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Magnetic field B parallel to the two-dimensional~2D!
electron layer can strongly suppress the probability of t
neling from the layer. This happens because the field ef
tively adds to the potential barrierU(z) an extra term

dU~z;p
H
!5

1

2
mvc

2z21vcpHz, ~1!

wherez is the tunneling direction,vc5eB/m is the cyclo-
tron frequency, andpH is the component of the electron mo
mentum in the Hall directionB3 ẑ. Suppression of tunneling
has been observed1,2 and investigated experimentally2 and
theoretically3 for tunneling between 2D electron layers
semiconductor heterostructures, and also for tunneling ou
a 2D electron layer on helium surface.4 However, the ob-
served decrease of the tunneling current with the increa
magnetic field was smaller, and for electrons on heli
muchsmaller than what follows from calculations that om
ted collisions.

In the present paper we investigate single-electron tun
ing from 2D layers on helium. We show that, for stron
magnetic fields, the tunneling is accompanied by emissio
absorption of ripplons, capillary waves on helium surface
which a part of the electron momentum in the Hall directi
is transferred to a ripplon. As a result the magnetic barrier~1!
is reduced, and therefore the tunneling probability increa
exponentially.5

A distinctive feature of electrons on helium, which mak
the problem of tunneling particularly interesting and diffe
ent from what has been discussed for semiconductor he
structures, is that the tunneling barrierU(z) is smooth~lin-
ear! on its ‘‘external’’ side, see Fig. 1. This barrier is creat
by the image force and by the applied electric fieldE' which
pulls the electronsaway from the surface. In the absence
the magnetic field

U~z!52
L

z
2eE'z. ~2!
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Here,L5e2(e21)/8 is the image-force parameter, and w
assume that helium occupies the half-spacez<0.

Helium is essentially impenetrable for low-energy ele
trons, and for weak electric fields the electrons reside in
ground state of the potential well formed by the infinite w
at z50 and the image-force potential. The wave functi
cg(z) and the energyEg of this state are given by the ex
pressions

cg~z!52g3/2z exp~2gz!, Eg52\2g2/2m, ~3!

whereg5mL/\2 is the reciprocal localization length.
The width of the tunneling barrier for weak electric fie

is

L5uEgu/eE' , ~4!

and we havegL@1 ~this condition is necessary for the tun
neling rate to be small!.

FIG. 1. The effective potential energyU(z)1dU(z,\q) in the
magnetic field for zero~solid line! and close to optimal~dashed
line! electron momentum\q in the direction2B3 ẑ. Transitions
between the state localized on the helium surface and the s
behind the barrier are induced by ripplons. Inset: Landau quant
tion of the states behind the barrier. For largeB, electrons make
transitions to the lowest Landau level.
R10 214 © 1998 The American Physical Society
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Because of the smoothness ofU(z) for z;L, a suffi-
ciently strong magnetic fieldB parallel to the surface elimi
nates the states behind the overall barrierU(z)1dU(z;pH)
with the energyEg of the ground intrawell state and zer
Hall momentumpH50.4 This happens fora.1, where

a54dU~L;0!/uEgu[2mvc
2L/eE' . ~5!

The momentum transfer from ripplons, which is analyz
in the present paper, can restore the tunneling. With acc
taken of this transfer, the effective width of the tunneli
barrier is given by the conditionU(z)1dU(z;pH)5Eg . It
strongly and nonmonotonically depends on the transfe
momentumpH . Therefore the probability density of ripplon
induced transitions sharply peaks at an optimal ripplon m
mentum. In calculating this momentum and the transit
rate it is necessary to allow for the Landau quantization
the states behind the barrier~see Fig. 1!.

The mechanism of ripplon-induced tunneling is differe
from that of defect-induced tunneling in semiconductor5

Vibrations of the helium surface result in a coordina
dependent perturbation of the boundary conditions for
electron wave function. The interaction HamiltonianHi is
obtained by changing to variablesr→r ,z→z2j(r ), where
j~r ! is the ripplon-induced displacement of the helium s
face @cf. Refs. 6 and 7;r5(x,y) is the in-plane electron
coordinate#. To first order inj~r !,

Hi5(
q

jqe
iqrV̂q~P̂,p̂z ,z!, j~r !5(

q
jqe

iqr, ~6!

with

V̂q~P̂,p̂z ,z!52
i

m
~q•P̂! p̂z2

i\

2m
q2p̂z1vcP̂x2eE'

1LKq~z!.

Here, P̂5(2 i\¹x1mvcz,2 i\¹y) is the 2D electron mo-
mentum, and we choseB to be pointing in they direction
~respectively, the Hall momentumpH is pointing in thex
direction!.

The first two terms in the operatorV̂q describe akine-
matic interaction with ripplons which is due to the curvatu
of the surface on which the electron wave function is
equal to 0. The polarization interactionKq(z) is given in Ref.
7. The kinematic interaction turns out to be more import
for the tunneling than the change of the potential energy
to surface displacement.

Even for the lowest temperatures used in the experim
on electrons on helium~see Ref. 8!, the surface displacemen
j~r ! is classical and quasistatic for typical waveleng
&1025 cm. For many purposes it is an ideal zero-me
Gaussian random field, with the correlator̂ujqu2&
5kBT/Ssq2, wheres is the surface tension andS is the area
of the system.

The electron-ripplon interaction~6! gives rise to mixing
of the intrawell state~3! and the external states on the opp
site side of the barrier, as shown in Fig. 1. ForgL@1, the
wave functionscnq(z) of the external states are to a goo
approximation eigenfunctions of an electron in crossed e
tric and magnetic fieldsE' andB, with energies
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Enq5\vcS n1
1

2D1
\2qy

2

2m
1

eE'
mvc

S \qx2
eE'
2vc

D . ~7!

To the lowest order in the coupling to ripplons, the rate
ripplon-induced transitionsWr is given by

Wr5
2p

\ (
n,q

^ujqu2& z~cguV̂qucnq!z2d~Eg2Enq!. ~8!

Once the electron tunnels into the statecnq , it drifts in
crossedB andE' fields parallel to the helium surface. How
ever, in a relatively short time it is scattered by the electro
localized on the surface and moves away from the surfa
Therefore the bottleneck for escape is reaching an exte
state, and the overall escape rate is given byWr .9

The matrix element in Eq.~8! involves the overlap of the
two wave functions,cg andcnq . These functions decay ex
ponentially from opposite ends of the barrier, see Fig.
Therefore we only need to know their tails. The tail ofcg(z)
for z@1/g is given by the WKB approximationcg(z)
}exp@2S1(z;0)/\#, where

S1~z;q!5E
2/g

z

dz8upz~z8;q!u, ~9!

andpz is the momentum in thez direction as a function ofz
and the in-plane momentum\q,

pz~z;q!5„2m@Eg2U~z!#2~mvcz1\qx!
22\2qy

2
…

1/2

~the lower limit in the integral forS1 is set at the turning
point; it affects only the prefactor incg!.

Similarly, cnq(z,r )}exp@iqr2S2(z,q)/\# with

S2~z;q!5E
z

zt
dz8upz~z8;q!u, ~10!

wherezt[zt(q) is the turning point on the external side o
the barrier defined by the conditionpz(zt ;q)50.

The matrix elements in Eq.~8! are evaluated for the wav
numbers qn which satisfy the conditionEnqn

5Eg . The

overlap of the wave functions iscg(z)cnqn
(z,r )

}exp@2S(z;qn)/\#, where

S~z;qn!5S1~z;0!1S2~z;qn!. ~11!

The function S ~11! has a minimum, so tha
exp@2S(z;qn)/\# has a sharp peak forz5 z̄(qn), wherez̄ is
defined byupz( z̄;0)u5upz( z̄;qn)u. The matrix elements~i.e.,
the integrals overz! in Eq. ~8! can be therefore calculated b
the steepest descent method and are}exp@2S(z̄;qn)/\#.

In evaluatingS( z̄;qn) it is convenient to scale the electro
momentum\q by 2mE' /B and introduce the respective d
mensionless momentum componentQ transverse to the mag
netic field and the dimensionless kinetic energyQ2Qn

5(B2/2mE'
2 )\2qy

2/2m of the motion along the magneti
field in thenth Landau band~7!,

Q52~\B/2mE'!qx , Qn5~2n11!/4G1Qb ,

Qb5~a21!/4, G52a23/2gL. ~12!



ll
e

an

f

-

-
t
n

s

x-

l

th

ns

tly
n-

f
e-
e

ly
um-
nt

n
uld
l
n
ns

that
-
e

um

r

RAPID COMMUNICATIONS

R10 216 PRB 58BARABASH, DYKMAN, PLATZMAN, AND SMELYANSKIY
Here,Qn is the minimal value ofQ}qx in thenth band. It is
given by the conditionEnqx

5Eg . The quantityQb is the

value of Q for which the bottom of the potential we
2eE'z1dU(z;\qx) behind the barrier in Fig. 1 lies at th
energyEg of the localized state on the helium surface.

For gL@1, the expression forS ~11! can be simplified by
noticing that, for characteristicz@1/g, the image-force term
2L/z in the electron energy~2! is small. ThenS( z̄;qn)
5\GR(Q,Qn), where

R~Q,Qn!5Q@4Qb1~Q2Qn /Q!2#1/222Qbln@~a1/2

21!/t2#12~Qn2Qb!ln@2~Qn2Qb!1/2/t1#

1a1/2/2,

t65Q6Qn /Q1@~Q2Qn /Q!214Qb#1/2. ~13!

The major contribution to the escape rateWr ~8! comes
from the range ofqx ,n, where the functionR(Q,Qn) is
close to its minimum. We will first assume that one c
change from the sum overn to the integral overQn . The
integrals overQ andQn in Eq. ~8! may notbe independently
evaluated by the steepest descent method, because o
constraintQ2Qn}\2qy

2/2m>0. For a givenQ, R(Q,Qn) is
monotonically decreasingwith the increasingQn ~i.e., with
the decreasingqy

2! in the allowed rangeQn<Q. ThereforeR

is minimal for Q5Qn . The position of the minimumQ̄ is
given by the equation,

dR~Q̄,Q̄!/dQ̄50. ~14!

Equations~13! and~14! result in a simple algebraic equa
tion for Q̄. By solving it one finds thatQ̄ varies from 0.2a
for a!1 to a/4 for a@1. This shows that the optimal mo
mentum transferred by ripplons\uq̄xu and the extreme poin
z̄52LQ̄/a where the ripplon scattering ‘‘occurs’’ remai
close to half the characteristic Hall momentumeBL and the
midpointL/2 of theB50 barrier, respectively. This justifie
the neglect of image forces in Eq.~13!.

In calculating the integral overqx in Eq. ~8! for Q,Qn

close toQ̄ one should keep only the linear term in the e
pansion ofR in Q2Qn . It follows from Eqs.~11!–~13! that
the characteristicQ2Qn which contribute to the integra
over q are}(gL)21. The characteristicuQn2Q̄u}(gL)21/2

are much larger where the sum overn in ~8! can be replaced
by an integral. Evaluating the integral overQn by the steep-
est descent method, we obtain

Wr5C exp@2gLR~a!#, R~a!54a23/2R~Q̄,Q̄!,
~15!

R~a!'
1

4
a1/2F11

2

a S 112 ln
a

4 D G for a@1.

The functionR~a! is shown in Fig. 2. It gives theexpo-
nentin the rate of ripplon-induced escape as a function of
magnetic field (a}B2) and monotonically increases witha.
For small fields,a!1, R'R(0)54/3, andgLR coincides
with the exponent of the rate of tunneling without ripplo
for B50.
the

e

The prefactorC in the escape rate can be convenien
written in the form of a product of the prefactor in the tu
neling rate forB50 and a dimensionless parameterC̃,

C5@\g2/m exp~2!#C̃,

C̃52kTg2Q̄~Q̄222Q̄1a!1/4/as~R9!1/2, ~16!

whereR95d2R(Q̄,Q̄)/dQ̄2. We note that, in the range o
interest wherea*1, the prefactor is determined by the kin
matic terms in Eq.~6!. The corrections from other terms ar
;1/gL.

For a&1, the electron is scattered by ripplons into high
excited Landau bands behind the barrier, with the band n
ber n;G(Q̄2Qb). ~We note that the steepest desce
method applies provideda@1/gL.!

With the increasinga the characteristicn decreases@as
exp(2a/2) for large a#, and eventually becomes small. I
this case the Landau quantization behind the barrier sho
become substantial~see Fig. 1!. Since the energy of the fina
stateEnq is equal toEg , one might expect that the transitio
rate would display Shubnikov–de Haas-type oscillatio
with B each time the bottom of a Landau band crossesEg .
However, this does not happen. The physical reason is
the positions of the Landau bands~7! depend on the trans
ferred momentum\qx , which is adjusted so as to maximiz
the escape rate.

For largea, escape is accompanied by the moment
transfer;Qb in dimensionless units. The functionR is sin-
gular atQb . For Q2Qb , Qn2Qb!1 anda@1

R~Q,Qn!'R~Qb ,Qb!1~a13!~Q2Qb!/22~Qn

2Qb!ln@ea2/16~Qn2Qb!#. ~17!

It follows from Eqs.~14! and~17! that the characteristicn
is determined by the parameter

b5a1/2gL exp~2a/2!, gL@a1/2@1, ~18!

FIG. 2. Comparison of the tunneling rate~line 1! and the rateWr

~15!, ~16! of ripplon-induced escape~line 2! for gL515, T

50.04 K ~W̄ is the escape rate scaled by the tunneling rate foB
50!. Inset: the effective actionD5R(a)2R(0) and the scaled

prefactorC̃ in Wr as a function of the scaled magnetic fielda1/2

5\gvc /eE' .
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which depends ona exponentially strongly. For b@1, even
thougha is large, the escape rate is dominated by the tr
sitions to highly excited Landau bands, andWr is then given
by Eq. ~15!.

For b;1, one cannot replace the sum overn in Eq. ~8! by
an integral. The escape rate is then a sum of ‘‘partial’’ esc
rates to different Landau bands behind the barrier,

Wr5C@R9/4pG#1/2(
n

exp@22GR~Qn ,Qn!#. ~19!

When b!1, the major contribution to the escape rateWr
~19! comes from the transitions to the lowest Landau ba
n50, and only the term withn50 should be retained in Eq
~19!.

The prefactor in~19! has been obtained in the WKB ap
proximation for the functionscnq . For smalln, one should
allow for an extran-dependent factor incnq , which is nu-
merically close to 1. In particular, forn50 it is equal to
(p/e)1/4. Interestingly, with account taken of this facto
~squared!, Eq. ~19! for b!1 goes overinto Eq. ~15! of the
steepest descent method. This behavior resembles som
sults of the instanton theory@cf. Ref. 10#. Overall, in the
whole range ofb, the sum~19! is well approximated by Eq
~15!.

Numerical results on the ripplon-induced escape rate
shown in Fig. 2. The electron-ripplon interaction is ve
n

st

e
r.
-

e

d

re-

re

weak, and therefore the crossover from the tunneling with
ripplons to the ripplon-induced one occurs fora very close
to 1. The dependence of the exponentR on the magnetic
field is comparatively weak fora;1, in contrast to the ex-
tremely steep dependence of the tunneling rate without
plons, which is a signature of the mechanism we have
cussed. The specific dependence of the exponentgLR
}B/E'

2 on the fieldsB,E' for a@1 may be used to identify
the mechanism under consideration experimentally. We n
that the existing data4 refer to the rangea,1 where ripplons
essentially do not affect the escape rate.

It follows from the above analysis that ripplon scatteri
eliminates magnetic-field-induced localization of electrons
the smooth potential barrier on helium surface. An intere
ing feature of tunneling through a smooth barrier is that,
strong magnetic fields, quantization of electron states beh
the barrier becomes substantial. The results apply directl
electrons localized on other cryogenic surfaces, includ
3He and liquid and solid neon and hydrogen. We note th
for electrons on solid substrates, the scattering will be du
surface defects, in which case the scattering rate is hig
and the crossover to scattering-induced tunneling will oc
for smallera.
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