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Qubits with electrons on liquid helium
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We study dissipation effects for electrons on the surface of liquid helium, which may serve as the qubits of
a quantum computer. Each electron is localized in a 3D potential well formed by the image potential in helium
and the potential from a submicron electrode submerged into helium. We estimate parameters of the confining
potential and characterize the electron energy spectrum. Decay of the excited electron state is due to two-
ripplon scattering and to scattering by phonons in helium. We identify mechanisms of coupling to phonons. An
estimate of contributions from different scattering mechanisms shows that the decay rate should be&104 s21.
We analyze dephasing of the electron states due to quasielastic ripplon scattering off an electron. The dephas-
ing rate is&102 s21 for T510 mK and depends on temperature asT3. Decay and decoherence of the electron
states result also from classical and quantum electrode noise. We relate the corresponding relaxation rates to
the power spectrum of the fluctuating electric field on the electron. The dependence of the rates on the
electrode parameters is obtained.
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I. INTRODUCTION

Much interest has attracted recently the idea of creatin
condensed-matter based quantum computer~QC!. A major
challenge is to have a system that would have a sufficie
long relaxation time, and nevertheless could be contro
with high precision and allow its quantum state to be m
sured. The proposed systems include localized electron s
in semiconductor heterostructures,1–3 nuclear spins of31P
donors4 or 29Si nuclei5 in a zero nuclear spin28Si matrix,
electron states in a quantum dot excited by terah
radiation,6 excitons in quantum dots,7,8 Josephson-junction
based systems,9–14 electrons on helium surface,15,16 quantum
dots coupled via a linear support,17 and trapped polar
molecules.18

The system of electrons on the surface of superfluid4He
is in several respects attractive for making a scalable qu
tum computer. First, many properties of this system are
ready known experimentally and well understo
theoretically.19 Second, electrons on helium have extrem
long relaxation time: they display the highest mobili
known in a condensed-matter system.20 Last but not least,
the typical interelectron distance is comparatively lar
;1mm. To make a QC we suggested15,16 to fabricate a sys-
tem of microelectrodes, which would be submerged bene
the helium surface. Each electrode is supposed to loca
one electron above it, as seen in Fig. 1, and to control
electron. Respectively, the interelectrode distance should
;1 mm, which makes fabrication technologically feasible

The two states of an electron qubit are the two low
states of quantized motion transverse to the surface. To
ther slow down the already slow relaxation, we initially pr
posed to apply a magnetic fieldB' normal to the surface
Then the estimated relaxation timeT2 due to ripplon scatter-
ing becomes as long as 1024 s, for typical B';1.5 T and
temperaturesT'10 mK, whereas the clock frequency of th
computerV can be in the GHz range. This attracted attent
of experimentalists to the project.21–23
0163-1829/2003/67~15!/155402~15!/$20.00 67 1554
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In this paper we show that, even without a magnetic fie
the relaxation rate of a confined electron can be much
than that of a free electrons. The rate of ripplon-induc
dephasing can be even smaller than the previous estimat
a strong magnetic field. This is due to large level spacing
a 3D confining potential formed by a localizing microele
trode provided the electrode is sufficiently thin. Electrodes
an appropriate shape have already been fabricated.22

For low temperatures, the major known dissipati
mechanism is scattering by surface capillary waves, ripplo
These waves are very slow. Therefore, a large distance
tween electron energy levels makes it impossible to conse
energy and momentum in a one-ripplon decay process.
cay of the excited electron state, i.e. electron energy re
ation may occur via scattering into two short-wavelength r
plons. We show that a very important role is played also
decay processes where the electron energy goes to pho

FIG. 1. ~Color online! A sketch of a microelectrode submerge
by the depthh;0.5mm beneath the helium surface, with an ele
tron localized above it. The electron is driven by a fieldE' normal
to the surface. This field comes from the electrode and the para
plate capacitor~only the lower plate of the capacitor is shown!. The
in-plane electron potentialU i(r ) is parabolic near the minimum
with curvature determined by the electrode potential (r5(x,y) is
the in-plane position vector!.
©2003 The American Physical Society02-1
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in helium. The relevant phonons propagate nearly norma
the surface. We find the mechanisms of electron-phonon c
pling and analyze their contribution to the decay rate.

Electron coupling to excitations in helium leads also
dephasing, i.e. to randomization of the phase difference
tween the electron states. The dephasing is due primaril
scattering of thermally excited ripplons off an electron. W
find its temperature dependence for different coupl
mechanisms. We also investigate the spectrum of sideb
absorption in which a microwave-induced electron transit
is accompanied by creation or annihilation of a ripplon, a
analyze the related decrease of the intensity of the z
ripplon absorption line.

An important problem for electrons on helium, as well
for several other proposed realizations of qubits, is no
from controlling electrodes. If the size of a qubit is sm
compared to the distance to the electrode, as in the cas
electrons on helium, the effect of coupling to the electro
on qubit relaxation can be described in terms of the po
spectrum of the fluctuating electric field of the electrod
This electric field is due to quantum electrode charge-den
fluctuations. We find its power spectrum for a simple b
realistic model of an electrode. This makes it possible
estimate the relaxation rate and to find how it depends on
parameters of the electrodes and the circuit.

In Sec. II below we analyze the energy spectrum o
confined electron and discuss many-electron effects. In
III we discuss energy relaxation rate for different mech
nisms of electron-ripplon and electron-phonon coupling.
Sec. IV we consider dephasing rate. Section V deals w
one-ripplon sidebands and the Debye-Waller type facto
the zero-ripplon absorption line. In Sec. VI we discuss el
tron relaxation and dephasing from fluctuations in the und
lying electrodes. Section VII contains concluding remark

II. ELECTRON STATES IN ONE- AND MANY-ELECTRON
SYSTEMS

A. Single-electron energy spectrum

The quantum computer considered in this paper is ba
on a set of electrons which reside in potential wells in fr
space above liquid helium, cf. Fig. 1. The electrons are p
vented from penetrating into helium by a high potential b
rier ;1 eV at the helium surface. For one electron, the
tential well is formed by the electrostatic image in heliu
the potential from the electrode, and also the potential c
ated by the grounded plate and a parallel plate above
electron layer~the latter is not shown in Fig. 1!.

We assume that the helium occupies the half spacz
<0. The image potential for an electron is2L/z, where
L5(«21)e2/4(«11), with «'1.057 being the dielectric
constant of helium. The energy spectrum for 1D motion
such a potential is hydrogenic,

En52R/n2~n51,2, . . .!, R5L2m/2\2. ~1!

The effective Rydberg energyR is '8 K, and the effective
Bohr radius isr B5\2/Lm'76 Å (m is the electron mass!.
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The electrode potential leads to Stark shift of the ene
levels~1!24 and to quantization of motion parallel to the su
face. A realistic estimate of this potential and of the electr
energy spectrum can be made by modeling the electrode
conducting sphere with a diameter 2r el equal to the electrode
diameter. The center of the sphere is located at depthh be-
neath the helium surface. Typically we expecth to be
;0.5mm, so that it largely exceeds the distance from t
electron to the surface;r B . For z!h and for the in-plane
distance from the electroder[(x21y2)1/2!h,(h22r el

2 )1/2,
the electron potential energy is

U~r ,z!'2
L

z
1eE'z1

1

2
mv i

2r 2 ~2!

with

E'5Velr elh
221erelh~h22r el

2 !22,

v i5~eE' /mh!1/2. ~3!

Here, r5(x,y) is the electron in-plane position vector, an
Vel is the electrode potential. The second term inE' comes
from the image of the electron in the spherical electrode

In approximation~2!, the electron out-of-plane and in
plane motions separate, with in-plane motion being just h
monic oscillations. Variational calculations of the ener
spectrum of the out-of-plane motion were done earlier.24 The
simple model~2! with an infinite wall atz50 describes the
observed transition frequencies with an error of only a f
percent, which is sufficient for the present purposes~more
realistic models have been discussed in literature, see R
25–27 and papers cited therein!. The full electron energy
spectrum in potential~2! is sketched in the inset of Fig. 2
The two states of a qubit are the ground and first-exci
states of motion transverse to the surface,u1& and u2&, both
corresponding to the ground state of in-plane vibrations.

FIG. 2. ~Color online! Energy differenceE22E1 and matrix
elementsznm5^nuzum& of the electron coordinatez normal to he-
lium surface on the wave functions of the ground and first-exci
states ofz motion, u1& and u2&, vs the overall pressing fieldE' .
The fieldE' includes the electrode fieldE' and the field from the
capacitor;eE'r B /R51 for E''0.91 kV/cm. The inset shows th
full energy level diagram. Each levelEn of z motion gives rise to a
set of energy levels of vibrations parallel to helium surface, w
typical spacing\v

i
.
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In what follows, we characterize the electron sta
u i ,n,mn& with the following three quantum numbers:i 51,2
enumerates the state of out-of-plane motion,n50,1, . . .
gives the energy level of in-plane vibrations, andmn

50,1, . . . ,n enumerates degenerate vibrational states wi
this level. In calculations of the relaxation parameters
will assume that in-plane and out-of-plane motions can
separated, so that

u i ,n,mn&5u i &un,mn&

with u i & andun,mn& being functions ofz andr , respectively.

B. Choosing parameters of the many-electron system

1. Working frequency considerations

For a multiqubit multielectrode QC, the depthh by which
the controlling electrodes are submerged into helium, the
terelectrode distancesdi j , and the electrode potentia
should be chosen in such a way that would optimize per
mance of the QC. This includes, in the first place, havin
high working frequencyVQC and low relaxation rateG. The
frequencyVQC is limited by the rate of single-qubit opera
tions and by the rate of excitation transfer between neighb
ing qubits, which is determined by the qubit-qubit intera
tion.

Single-qubit operations will be performed15 by applying
pulses of resonant microwave radiation, which cause tra
tions between the statesu1& andu2&. The corresponding Rab
frequency isVR5eEmuz12u/\, whereEm is the field ampli-
tude. As seen from Fig. 2,uz12u/r B*0.5, and therefore even
comparatively weak field Em51 V/cm gives VR*6
3108 s21. This shows that single-qubit operations shou
not limit VQC at least at the level of 1072108 Hz.

Because the wave functions of different electrons do
overlap, the interaction between the qubits that we cons
is dipolar, as in liquid-state NMR quantum computers.28 An
important feature of electrons on helium is that their loc
ization length normal to the surfacer B greatly exceeds the
atomic radius, which makes the dipole-dipole interaction
ders of magnitude stronger than the dipolar interaction
atomic systems.

Of interest to us is the part of the qubit-qubit interacti
that depends on the states of the qubits. Two types of dip
moments have to be distinguished. One is determined by
differencez112z22 of average distances of the electron fro
helium surface in the statesu1& andu2&. The dipole moment
e(z112z22) does not depend on time, if we take into accou
time dependence of the wave functions, it can be ca
‘‘static.’’ The interaction energy between the static dipoles
the i th and j th qubits can be written as (1/4)Ui j

(st)sz
i sz

j ,
where sz

i 5u2& i ^2u i2u1& i ^1u i is the operator of the differ-
ence of the state occupations for thei th qubit, and

Ui j
(st)5e2uz222z11u2/di j

3 . ~4!

The other dipole moment is associated with the 1→2
transition. If we use time-dependent wave functions, it os
lates in time at high frequencyV125(E22E1)/\. Resonant
15540
in
e
e

-

r-
a

r-
-

i-

t
er

-

-
n

le
he

t
d
f

l-

interaction between such oscillating dipoles has ene
(1/4)Ui j

(osc)@s1
i s2

j 1H.c.#, wheres1
i 5@s2

i #†52u2& i ^1u i is
the 1→2 transition operator for thei th qubit, and

Ui j
(osc)5e2uz12u2/di j

3 . ~5!

The interaction between static and oscillating dipoles is n
resonant and can be safely neglected.

Interactions ~4! and ~5! allow implementation of a
Controlled-NOT two-qubit gate and of interqubit excitatio
transfer, respectively.15,16 For a typical dipole momenterB ,
the interaction energye2r B

2/di j
3 between the qubits separate

by di j 51mm is 23107 Hz, in frequency units. This energ
is very sensitive todi j and can be increased by reducing t
interelectron distance. Equations~4! and ~5! apply for di j
less than the distance from the electrons to the groun
plate in Fig. 1; for largerdi j the interaction is screened an
falls down asdi j

25 . In practice it means that the interqub
coupling is likely to be limited to nearest and probably ne
nearest neighbors.

The matrix elementsznm depend on the overall fieldE'

that presses electrons against the helium surface. They ca
obtained by solving a one-dimensional Schro¨dinger equation
for the potential2Lz211eE'z with a hard wall atz50 @cf.
Eq. ~2!; we note that the total fieldE' differs from the field
E' produced by one electrode, see below#. The results are
shown in Fig. 2.

The differencez222z11 sharply decreases with increasin
field for smallE' because of field-induced squeezing of t
wave functions, which is particularly strong for the wav
function of the excited stateu2&. The interplay between the
squeezing and better overlapping of the wave functionsu1&
and u2& with increasing field leads to a weak field depe
dence ofz12 for eE'r B /R&1. It is seen from Fig. 2 and Eq
~4! that, for weak pressing fieldE',300 V/cm, the energy
of the ‘‘static’’ interaction is higher than its estimate give
above by a factor varying from 20 to 4 with increasingE' ,
because of the large numerical value of (z222z11)/r B . It is
also significantly higher than the energy given by Eq.~5!.

A substantial part of single- and two-qubit operations
tuning targeted qubits in resonance with microwave radiat
and with each other. It is accomplished by varying fieldsE'

from the corresponding electrodes and thus Stark shifting
qubit transition frequencies (E22E1)/\, cf. Fig. 2. In the
simple case of one microwave frequency, the transition
quencies of different qubits will be tuned away from it an
from each other by;1 –10 GHz, which determines th
range over which they have to be varied. The transition f
quency is changed by 1 GHz ifE' is changed by;1 V/cm.
The respective change of the electrode potential is;0.3 mV
for h50.5mm andr el50.1mm. It can be accomplished ove
the time;1028 s using standard means. Since the fieldsE'

on different electrodes differ by;1 V/cm or ;1%, in Eqs.
~4! and~5! we assumed that the matrix elementsznm are the
same for different qubits. Overall, for interelectron distanc
d&1mm, the qubit-qubit interaction limits the clock fre
quency of the quantum computerVQC to 107–108 Hz.
2-3
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2. Limitations from many-electron effects

The electron energy spectrum should be formed so a
minimize the electron relaxation rate. One of the most ‘‘da
gerous’’ relaxation processes is quasielastic scattering
capillary waves on helium surface, ripplons, in which
electron makes a transition between its states and a ripplo
emitted or absorbed. This scattering is responsible for fi
electron lifetimeT1. Typical energies of appropriate ripplon
are extremely small,;1023 K ~see below!. Therefore, the
scattering can be eliminated for a one-qubit system, if n
of the excited vibrational levels of the stateu1& is in reso-
nance with the ground vibrational level of the stateu2&
shown with a bold line in Fig. 2.

From Eq. ~3!, for a field E'5500 V/cm andh50.5mm
we have v i/2p'2.131010 Hz'1.0 K. Even though the
spacing between vibrational levels is less than the energy
E22E1;6 –10 K, with so bigv i it is easy to avoid reso
nance betweenE2 and an excited vibrational level of th
state 1, i.e. betweenE22E1 andn\v i .

The situation becomes more complicated for a system
interacting qubits. The interaction leads to coupling of
plane vibrations of different electrons. In a many-electr
system the vibrational energy spectrum becomes band
One can think that each vibrational level in Fig. 2 become
bottom of a band of in-plane vibrational excitations. We w
assume that the width of the lowest bandD i is small com-
pared tov i . The width of thenth band is then;nD i for not
too largen. To avoid quasielastic scattering by ripplons, t
vibrational bands should be well separated from each o
up to energiesE22E1, that is forn;(E22E1)/\v i . This
means that

D i!\v i
2/~E22E1!. ~6!

The value ofD i depends on the geometry of the man
electron system. It can be found if the electrodes and
electrons above them form a regular 2D array, or in ot
words, the electrons form a Wigner crystal with the sa
lattice constant as the electrodes. Then, if the phonon
quencies of the free-standing crystal in the absence of
electrode potential arevk j (k is the wave vector andj
51,2 is the branch number!, then the vibrational frequencie
of the pinned crystal are (vk j

2 1v i
2)1/2. The phonon band-

width is small compared tov i providedvk j!v i , in which
caseD i5maxvk j

2 /v i;vp
2/v i , where vp5(2pe2ne

3/2/m)1/2

is the characteristic zone-boundary frequency of the fr
standing Wigner crystal (ne is the electron density!.

It follows from the above arguments and condition~6!
that quasielastic scattering will be eliminated for a pinn
Wigner crystal, provided

vp
2!\v i

3/~E22E1!. ~7!

This imposes an upper limit on the nearest-neighbor spa
d5mindij , becausevp}d23/2. For a square lattice withd
51mm we havevp/2p'6.3 GHz.

For the multielectrode system, the frequencyv i itself de-
pends on the interelectrode distanced. If the electrode radius
r el is small compared to the depthh, the effect of the elec-
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trostatic image in the electrode@in particular, the second term
in Eq. ~3! for E'] can be ignored. The overall potential of th
electrode lattice at a distancez from helium surface (z1h
.0) is

V~r ,z!52pneVelr el(
G

8 G21exp~ iGr !e2G(z1h)

22pneVelr el~z1h!, ~8!

whereG is the reciprocal lattice vector.
The dependence ofv i on h/d for a square electrode arra

is shown in Fig. 3 along with theh/d dependence of the tota
normal field from the electrodes. The electrostatic in-pla
confinement is due to the spatial nonuniformity of the ele
trode potential. Therefore v i falls down as
2p(2eVelr el /md3)1/2exp(2ph/d) for large 2ph/d. How-
ever, as seen from Fig. 3,v i remains close to the single
electrode value~3! for h/d&0.5. This gives the desirabl
range of the aspect ratioh/d.

3. The overall pressing field E�

The total perpendicular field on a localized electronE'

comes from the electrodes and the parallel-plate capac
with the plates parallel to the helium surface. The lower pl
is submerged into helium and is shown in Fig. 1. The up
plate is above the surface and further away; it is not sho
As we will see, the squeezing of the electron wave functio
by the fieldE' ~cf. Fig. 2! increases the electron relaxatio
rate. Therefore,E' should be minimized. At the same time
the electrostatic confinement~the frequencyv i) increases
with the increasing field from the electrodes. It would
good to compensate the out-of-plane fieldE' while keeping
the in-plane potential as strongly confining as possible. T

FIG. 3. ~Color online! In-plane frequencyṽ i5v i /v i8 and nor-

mal to the surface fieldẼ'5E' /E'8 for an electron above a squar
array of electrodes. The electron is localized at heighth above one
of the electrodes. The interelectrode spacing isd. Electrodes are
modeled by small spheres,r el /h!1, with same positive potentia
Vel . The scaling frequencyv i85(eVelr el /mh3)1/2 is given by Eq.

~3! and corresponds to the limitd→`. The scaling field isẼ'8

52pneVelr el . Asymptotic behavior ofṽ i andẼ' for large 2ph/d
is shown with dashed lines.
2-4
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QUBITS WITH ELECTRONS ON LIQUID HELIUM PHYSICAL REVIEW B67, 155402 ~2003!
can be accomplished by using a field from the capaci
which is uniform in the plane and does not affect in-pla
confinement.

The limitation on the compensating capacitor field com
from the condition that the overall field behind the electr
layer should attract electrons to helium, otherwise they w
leave the surface. This field is formed not only by the ext
nally applied potentials, but also by the electron layer its
The total averaged overr applied field in the electron plan
should therefore exceed 4pene . In other words, the uniform
component 2pneVelr el of the electrode field2]zVuz50 ~8!
can be compensated down to 4pene . The remaining press
ing field on the electronE' becomes thenC32pneVelr el
12pene with smallC (C'0.24 forh/d50.5, as seen from
Fig. 3!.

We note that the frequencyv i can be further increase
electrostatically without increasingE' by using a more so-
phisticated configuration of electrodes. Analysis of such c
figurations is outside the scope of this paper. We note a
that, for sufficiently largev i , the curvature of the electrod
potential~8! in the z direction may become substantial, pa
ticularly for highly excited states of out-of-plane motio
However, for a typical v i/2p520 GHz, the effective
curvature-induced change of the out-of-plane field for low
states 2mv i

2r B /e is only '14 V/cm.

C. Electrostatic force on helium

Electric field from the electrodes and pressure from
electrons~polaronic effect! lead to deformation of the helium
surface. The effect of the electrode potential can be ea
estimated by noticing that the dielectric constant of helium
close to one,«21'0.057!1. Therefore, if the surface i
raised byj(r ), the associated change in the density~per unit
area! of the free energy of heliumDF in the surface field
E(r ) is 2(«21)E2(r )j(r )/8p. Bending of the surface is
counteracted by surface energy, with densitys(]j/]r )2/2,
where s is the surface tension. The competition betwe
these two terms gives the heightj;(«21)E'

2 h2/8ps for
h;d. For typical E'533102 V/cm, h50.5mm, and d
51mm this gives a negligibly smallj,10210 cm. There-
fore, this effect can be safely ignored.

III. DECAY OF THE EXCITED ELECTRON STATE

A. The Hamiltonian of coupling to surface displacement

The major mechanism of electron relaxation for low te
peratures is scattering by vibrations of the liquid helium s
face. A complete calculation of the energy of coupling
surface vibrations is nontrivial. The density profile of th
interface between helium and its vapor has a complica
form, with the 10%/90% interfacial width'6 –7 Å, for low
temperatures.29 As a consequence, even for a flat surface
electron potential is more complicated than the simple im
potential2L/z for z.0 and a sharp wall atz50 ~2!.25 In
particular the repulsive barrier is smooth, it becomes h
compared to the binding energyR already on the tail of the
helium density distribution. The spatial structure of surfa
excitations is complicated as well. However, for excitatio
15540
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with sufficiently long wavelengths to a good approximati
the vibrating helium surface can still be considered as a c
rugated infinitely high potential wall. The electron wav
function is set equal to zero on the surface.

In this approximation the HamiltonianHi of interaction of
an electron with surface vibrations is obtained by chang
the electron coordinatesr→r , z→z2j(r ) wherej(r ) is the
surface displacement, see Refs. 30–32. The interaction
series in the ratioj/r B . Typically this ratio is very small,
;331023 for thermal displacement with characterist
wave numbers. Therefore, to a good approximationHi can
be expanded inj, keeping only lowest-order terms. The m
jor term,Hi

(1) , is linear inj(r )5(qjqe
iqr,

Hi
(1)5(

q
jqe

iqrV̂q , ~9!

with

V̂q52
i

m
~q•p̂!p̂z2

i\

2m
q2p̂z1eE'1Lq2vpol~qz!,

vpol~x!5x22@12xK1~x!#. ~10!

Here, p̂52 i\] r is the 2D electron momentum, andp̂z5

2 i\]z . The first two terms in the operatorV̂q describe a
kinematicinteraction, which arises because the electron w
function is set equal to zero on a nonflat surface. The te
vpol(qz) describes the change of the polarization energy
to surface curvature31,32 @K1(x) is the modified Bessel func
tion#.

The quadratic inj coupling is

Hi
(2)5 (

q1 ,q2

jq1
jq2

exp@ i ~q11q2!r #V̂q1q2
. ~11!

As in the case of linear coupling, it also has a kinematic p
discussed in Ref. 32 and a polarization part,

V̂q1q2
5V̂q1q2

(k) 1V̂q1q2

(pol) , V̂q1q2

(k) 52~q1q2!pz
2/2m. ~12!

The polarization coupling parameters can be obtained in
same way as it was done31,32for the linear coupling constant
}vpol(qz). They have the form

V̂q1q2

(pol)52Lz23@12u~q1z!2u~q2z!1u~ uq11q2uz!#,

u~x!5x2K2~x!/2 ~13!

1. Coupling to ripplons

The biggest contribution to surface vibrations comes fr
capillary waves, ripplons. The corresponding displacem
jq is related to the creation and annihilation operators
ripplons by

jq5S21/2~\q/2rvq!1/2~bq1b2q
† !, ~14!

whereS is the area of the system,r is the helium density, and
the ripplon frequencyvq5(sq3/r)1/2 for q@(rg/s)1/2.

The change of variables used to take into account the h
wall potential on helium surface leads also to extra terms
2-5
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the kinetic energy of ripplons coupled to the electron, wh
is yet another source of electron-ripplon coupling.32 Com-
pared to similar terms in Eqs.~9! and~11!, these terms have
an extra parametervqm/\q2, which is extremely small for
typical q.

There are several limitations on the wave numbersq of
ripplons for which the electron-ripplon coupling has the fo
~9!–~13!. Monarkha and Shikin32 argue that essentiallyqrB
should be&1. This could be too restrictive. But we believ
that q should certainly be small compared to the recipro
width of the helium liquid-vapor interface and the reciproc
decay length of the electron wave function into helium~note
that there is no factor 2p here, because a capillary wave wi
wave numberq decays into helium as exp(qz), for a sharp
interface!. Both lengths are of order of a few angstrom
which means that the large-q cutoff qmax should be
&107 cm21.

A cutoff at 107 cm21 is consistent also with the conditio
that Hi

(2) ~11! should be small. The effect ofHi
(2) is seen

already in the first order of the perturbation theory. It com
primarily from large-q terms in the kinematic part in Eq
~12!. For the relevant wave numbers\vq@kBT, and
therefore from Eq. ~14! we have ^jq1

jq2
&

'S21dq1 ,2q2
\q1

21/2/2(sr)1/2. This gives the relative chang
of the electron kinetic energy for motion transverse to
surface

dK/K5\qmax
7/2 /14p~sr!1/2.

Clearly,dK very strongly depends on the cutoff wave num
ber qmax. Numerical estimates givedK/K'331024 for
qmax5107 cm21, whereas forqmax5108 cm21 the relative
change of the kinetic energy would be equal to one. Find
Hi for q@107 cm21 requires a full calculation of the
ripplon-induced modulation of the electron potential for t
diffuse helium surface, which is not a subject of the pres
paper.

In what follows we will use spectroscopic notations a
define the decay rateG as the rate of decay of the off
diagonal matrix elementr12 of the electron density matrix
So defined,G gives the decay-induced contribution to th
half-width of the peak in the spectrum of microwave abso
tion. It is related to the lifetimeT1 of the electron excited
state byG5(2T1)21.

B. One-ripplon decay

An important consequence of strong in-plane elect
confinement is that it essentially eliminates decay proces
in which an electron transition is accompanied by emiss
or absorption of one ripplon. This happens because ripp
are very slow. Energy conservation in a transition requi
too large ripplon momentum for an electron to accomm
date.

Decay of the excited qubit stateu2,0,0& does not require a
transition into the ground stateu1,0,0&. An electron can emit
a ripplon and make a transitionu2,0,0&→u1,n,mn& into any
excited stateun,mn& of in-plane vibrations in the stateu1& of
z motion, see Fig. 2. In the case of decay into low-frequen
excitations, most ‘‘dangerous’’ are transitions with a minim
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electron energy change. These are transitions to the vi
tional energy level of the stateu1& with the energy closest to
E2. It has the quantum number

n5nc[ int @~E22E1!/\v i#

~int@x# is the integer part ofx). In the general case the elec
tron energy change in a transitionu2,0,0&→u1,nc ,mnc

& is

&\v i .
The one-ripplon decay rate is determined by the ma

elements ^2,0,0uexp(iqr )V̂qu1,nc ,mnc
& of the electron-

ripplon coupling ~9! and ~10!. They contain factors
^0,0uexp(iqr )unc ,mnc

&. It is easy to see that these factors a

exponentially small forq@nc
1/2/ai , where

ai5~\/mv i!
1/2 ~15!

is the electron in-plane localization length. The conditionq
&nc

1/2/ai determines the limiting wave number of ripplon
that may be emitted in an electron transition.

The frequency of ripplons withq5nc
1/2/ai is much less

thanv i , provided

v i@~s/r!1/2@m~E22E1!/\2#3/4.

This inequality is satisfied already forv i/2p*0.2 GHz,
whereas a typicalv i for confined electrons is;20 GHz.
Therefore one-ripplon decay is exponentially improbab
This result does not change for a many-electron system
vided the bands of in-plane vibrations are narrow, as d
cussed in Sec. II B, see Eq.~6!.

C. Two-ripplon decay

Even for a large separation between electron energy
els, where one-ripplon decay processes are exponent
suppressed, decay with emission of two ripplons may still
possible.33,34 Indeed, each of the wave vectorsq1 ,q2 of the
emitted ripplons can be large: it is only their sum that
limited by the reciprocal electron localization length. Th
means thatq1'2q2, i.e. the ripplons propagate in opposi
directions and have nearly same frequencies. They are d
mined by energy conservation,vq1

'vq2
'dE/2\, where

dE is the electron energy change.
A characteristic minimal value ofdE in an electron tran-

sition u2,0,0&→u1,n,mn& is ;\v i . For a typical v i/2p
520 GHz, the ripplon frequencyvq becomes equal tov i/2
when q51.23107 cm21. For wave numbers that are s
large, the theory~9!–~13! already overestimates the streng
of the electron-ripplon coupling. Even largerq are required
for ripplon-induced transitions over several vibrational le
els, because in such transitions the electron energy cha
exceeds\v i . We will disregard them and discuss on
minimal-energy transitionsu2,0,0&→u1,n,mn& with n5nc .
For these transitions

dE5E22E12nc\v i .
2-6
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For typical temperatures of 10 mK we have\vq1,2
'dE/2

@kBT, and electron decay occurs via spontaneous emis
of ripplons.

To find the two-ripplon decay rateG2r one should first
calculate the matrix elements of the two-ripplon coupli
Hi

(2) ~11! on the relevant electron wave functions. They fa
tor into products of matrix elements of out-of-plane and
plane electron operators,

^2,0,0uV̂q1q2
exp@ i ~q11q2!r #u1,n,mn&

5^2uV̂q1q2
u1&^0,0uexp@ i ~q11q2!r #un,mn&.

~16!

The squared absolute values of the terms~16! should then be
summed over the final statesn,mn and overq1,2. The sum-
mands have to be multiplied by an extraq1,2-dependent
weighting factor, which comes from the Fourier compone
of the ripplon-induced displacement of the helium surfa
jq1

,jq2
~14! and from the energy conservation law.

The calculation is significantly simplified by the fact th
the sum overmn can be found independently. This is becau
all states of in-plane electron vibrationsun,mn& with samen
but differentmn have same energies. We will use the relati

g~n,q!5(
mn

u^0,0ueiqrun,mn&u25xne2x/n!,

x5q2ai
2/2, ~17!

where the electron localization lengthai is given by Eq.~15!.
The function g(n,q) ~17! is exponentially small if q
@n1/2/ai .

For n5nc , the sum overmn of the squared absolute va
ues of the matrix elements~16! gives a factorg(nc ,uq1
1q2u). This factor imposes the expected constraint on
typical ripplon wave vectors,uq11q2u&nc

1/2/ai!q1,2. In
turn, this inequality significantly simplifies integration ov
q1 ,q2. One can setq1'2q2 everywhere except for the
function g(n,uq11q2u), which can be easily integrated ove
q11q2.

We will analyze the contributions to the decay rate fro
the kinematic and polarization two-ripplon couplings sep
rately. The kinematic coupling is determined by the te
V̂q1q2

(k) ~12! in V̂q1q2
. Keeping only this term, we obtain th

decay rateG2r
(k) as

G2r
(k)5

K12
2 R2qres

7/2

24pai
2r1/2s3/2

, K125
^1upz

2/2mu2&
R

. ~18!

Here,qres is given by the conditionvqres
5dE/2\. The decay

rate is determined by the scaled matrix element of the kin
energy of out-of-plane motionK12. It is shown in Fig. 4.

The rateG2r
(k) depends onqres and therefore ondE very

steeply, G2r
(k)}dE7/3. For dE5\v i/4 and v i/2p520 GHz

we have qres'4.63106 cm21 and G2r
(k)57.6310223.8

3103 s21 for the pressing fieldE'50 –300 V/cm. This
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value can be decreased by reducingdE. However, Eq.~18!
is probably an overestimate even for thedE used above,
because it is based on the approximation of an infinite-w
potential for an electron and the assumption that the hel
surface is sharp.

The expression for the two-ripplon decay rateG2r
(pol) due

to the polarization two-ripplon interaction~13! has the same
form as Eq.~18!. Just the factorK12

2 qres
7/2 in Eq. ~18! has to be

replaced withU12
2 (qres)/r B

4qres
1/2, whereU12 is determined by

the matrix element of22r B
3V̂q1q2

(pol)/L ~13! on the functions

u1&,u2&. For typical uq11q2u&nc
1/2/ai , the major contribu-

tion to this matrix element comes from the range of co
paratively smalluq11q2uz. Therefore, a good estimate ca
be obtained by replacingK2(uq11q2uz) with its small-z limit
in Eq. ~13! and by settingq15q25qres in the other terms in
V̂q1q2

(pol) . Then

U12~q!52r B
3^1uz23@22q2z2K2~qz!#u2&. ~19!

The coefficientU12 as given by Eq.~19! is shown in Fig.
4. FordE andv i chosen above we haveG2r

(pol)/G2r
(k);0.1 for

E'502300 V/cm. The rateG2r
(pol) grows much slower then

G2r
(k) with increasingqres ~and thus with increasingdE).
Besides the termsG2r

(k) andG2r
(pol) due to purely kinematic

and polarization mechanisms, there is a contribution to
decay rate from the interference of these two mechanism
is smaller thanG2r

(k)1G2r
(pol) and will not be discussed.

D. Phonon-induced decay

An important channel of electron energy relaxation is d
cay into phonons in helium. For a typical energy trans
dE;\v i , the wave numbers of the phonons participating
decay are;v i /vs , wherevs is the sound velocity in helium

FIG. 4. The absolute values of the scaling factorsK12 ~18! and
U12(q) ~19! in the probabilities of scattering into two ripplons du
to the kinematic and polarization couplings, respectively. The
plons propagate in opposite directions with nearly same wave n
bersqres given by the energy conservation condition:vq5dE/2\
for q5qres. Only transitions with smallest energy transferdE are
taken into account and the approximation of an infinite sharp
tential wall for an electron at the helium surface is used. The d
for U12 refer to qres53.5/r B , which corresponds todE/2p\
'5 GHz.
2-7
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They are much larger than the reciprocal in-plane locali
tion length of the electronai

21 , which limits the in-plane
momentum transfer from electrons to phonons. As a res
only phonons propagating nearly normal to the surface~in
the z direction! may be excited in a one-phonon decay~cf.
Ref. 33!.

1. Decay due to phonon-induced surface displacement

We propose two mechanisms of electron-phonon coup
that lead to qubit decay. One is related to phonon-indu
displacement of the helium surface. This mechanism can
quantitatively described in the approximation of a sharp
lium boundary, which provides an infinitely high potenti
barrier for electrons. The coupling is given by Eqs.~9! and
~10! with jq being now a phonon-induced component of t
surface displacement. As in the case of coupling to ripplo
it would be unreasonable to use this approximation for sh
wavelength phonons, in particular for phonons withQz
@107 cm21 (Qz is the normal to the surface component
the electron-phonon wave vector!. For typical v i/2p
520 GHz we haveQz;v i /vs;53106 cm21. Therefore,
we will again consider decay of the stateu2,0,0& into closest
lower-energy statesu1,nc ,mnc

&.
For a typicalq[(qx ,qy);1/ai and Qz&v i /vs we have

sq2/rvs
2Qz!1. This inequality allows one to think of th

helium surface as a free boundary for phonons and to ign
coupling between phonons and ripplons.35,36 Then surface
displacement is simply related to the Fourier componentsuQ
of the phonon displacement field@here,Q5(q,Qz) is the 3D
phonon wave vector, anduQ is the displacement alongQ]. In
turn, uQ is related to the operators of creation and annih
tion of phonons in a standard way,

uQ5~\/2rVvsQ!1/2~cQ2c2Q
† ! ~20!

(V is the volume of helium!.
From Eqs.~9!, ~10!, and~20!, we obtain the rate of deca

u2,0,0&→u1,nc ,mn& due to phonon-induced surface displac
ment in the form

Gph
(s)5~8p2rvsdE!21 (

mn50

nc E dqu^2,0,0ueiqrV̂qu1,nc ,mn&u2.

~21!

Here, we have used thatQz@q[(qx
21qy

2)1/2. Integration
over Qz is done by replacing the phonon wave numberQ
with Qz in the energy conservation lawd(\vsQ2dE). We
also replacedQ with Qz in the expansion coefficients Eq
~20! of the phonon displacement field.

We start with the contribution toGph
(s) from the kinematic

terms in V̂q @the first two terms in Eq.~10!#. The matrix
element of the sum of these terms@weighted with exp(iqr )]
on the wave functions of in-plane electron vibrations is

^0,0uexp~ iqr !@~qp̂!1\q2/2#un,mn&

52nmv i^0,0uexp~ iqr !un,mn&.
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The sum overmn in Eq. ~21! can be then calculated usin
Eq. ~17!. This gives the following expression for the kine
matic contribution to the decay rate,

Gph
(s;k)'~E22E1!2z12

2
nc

2m3v i
3

4prvs\
3dE

. ~22!

The numerical value ofGph
(s;k) is 7.83102 s21 for E'50,

v i/2p521.1 GHz, anddE'\v i (nc55 in this case!. It
goes up to;1.53104 s21 for E'5300 V/cm andv i/2p
520.6 GHz ~in this casenc512). The values ofv i were
adjusted here to meet the conditiondE5E22E12nc\v i
'\v i for the energy spectrum calculated for a sharp heli
boundary; the real level spacing is a few perce
smaller,24–27 leading to a slightly smallerGph

(s;k) for v i/2p
;20 GHz. We expect a more significant change~reduction!
of Gph

(s;k) due to diffuseness of helium surface.
The contribution toGph

(s) from the polarization term in

V̂q @the last term in Eq.~10!# can be calculated similarly an
has the form

Gph
(s; pol)'

4R2r B
2

nc!prvsdEai
6E0

`

dxe2xxnc12v2~x!, ~23!

where v2(x)5u^1uvpol@(2x)1/2z/ai#u2&u2. The numerical
value ofGph

(s; pol) is ;73102 s21 for E'50 and goes up to
;73103 s21 for E'5300 V/cm~we used samev i as in the
above estimate ofGph

(s;k)).
There exists also a contribution toGph

(s) ~21! from the in-
terference of the polarization and kinematic interactions d
cussed above. It is bilinear in the corresponding terms inV̂q
Eq. ~10! and can be obtained from~21! in the same way as
the decay ratesGph

(s; k) ,Gph
(s; pol) ~22! and ~23!. The resulting

expression is of the same order of magnitude as Eqs.~22!
and ~23!.

The scattering rateGph
(s) can be reduced by decreasing t

pressing fieldE' . It can also be reduced by going to a high
confinement frequencyv i . With increasingv i the wave-
length of the phonons participating in electron decay w
decrease and ultimately become smaller than the width of
diffuse layer on helium surface~in fact, the above calculation
probably already overestimates the scattering rate!. In this
case scattering by phonons will be largely suppressed.
frequencyv i can be increased by using a more complica
electrode configuration. The spectrum of in-plane elect
excitations can be also controlled by a magnetic field app
transverse to the helium surface, as initially suggested
qubits in Ref. 15.

2. Decay due to phonon-induced modulation of the helium
dielectric constant

Another mechanism of coupling to phonons is throu
phonon-induced modulation of the image potential of
electron. It results from the modulation of the helium dens
dr and related modulation of the dielectric constantd«. It is
2-8
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reasonable to assume that, for long-wavelength phon
d«5(«21)dr/r. To lowest order in«21, d« the coupling
energy is

Hi
(d)52

1

8pE dR8d«~R8!E2~R8;R!. ~24!

Here the integration goes over the space occupied by hel
R[(r ,z) is the 3D position vector, andE(R8;R) is the elec-
tric field at R8 created by an electron located at a pointR.
This field is calculated for free space. Equation~24! is ob-
tained in a standard way from the electrostatic energy o
dielectric with a dielectric constant close to one in an ext
nal field E(R8;R).

Using Eq. ~24!, the coupling Hamiltonian can be the
written in the form

Hi
(d)5(

Q
uQexp~ iqr !V̂Q

(d) , V̂Q
(d)5 iLqQv (d) ~25!

with v (d)[v (d)(q,Qz ,z) being

v (d)5E
0

`

dz8~z1z8!21e2 iQzz8K1@q~z1z8!#. ~26!

As in the case discussed in the preceding section, c
pling ~25! gives rise to transitions between electron ene
levels accompanied by emission of phonons. Here, too,
typical in-plane wave numbers of emitted phononsq are
much less than the normal to the surface wave numberQz
'dE/\vs. The expression for the corresponding decay r
Gph

(d) has the form

Gph
(d)'

R2dErB
2

p\2rvs
3E

0

`

dqq3u^2uv (d)u1&u2g~nc ,q!. ~27!

Evaluation of the integral is largely simplified by the fact th
the function q3g(n,q) sharply peaks atq5qn'(2n
13)1/2/ai . Therefore, with an error less than 10% one c
replacev (d) in Eq. ~27! by its value~26! for q5qnc

.

For v i/2p520 GHz anddE5\v i , the value ofGph
(d) var-

ies from;13104 s21 to ;63104 s21 with E' increasing
from 0 to 300 V/cm. However, these values have to be ta
with care. The integrand inv (d) ~26! is a fast oscillating
function of z8 on the characteristic scalez8;r B , because
typically Qzr B@1 (Qzr B'4 for chosenv i). In addition, the
integrand of the matrix element ofv (d) in Eq. ~27! has an
integrable singularity forz5z850 @the wave functions
cn(z)}z for z→0]. As a result, a significant contribution t
the matrix element comes from small distances from the
lium surface,z8!r B . Changing, in view of diffuseness o
helium surface, the limit of integration in Eq.~26! from z8
50 to a more reasonablez85r B/10 reduces the value ofGph

(d)

by a factor of 3.
The decay rateGph

(d) decreases with the increasingdE
roughly as 1/dE ~and even faster, in view of the ‘‘dead
layer on the diffuse surface!. For higherdE and, respec-
tively, for higher wave numbers of resonant phonons,
simple approximation~25! no longer describes the electro
15540
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phonon interaction. Therefore, as in the case of scatte
due to phonon-induced surface deformation, a way to red
the scattering rate is to increase the frequency of in-pl
vibrations.

Full coupling to phonons is given by the sum of the kin
matic and polarization couplings parametersV̂q and V̂Q

(d) .
Therefore, the total rate of phonon scattering contains cr
terms which describe interference of the coupling mec
nisms. These terms do not change the overall estimate o
rate.

We note that an interesting situation may occur if one
the transition frequencies of the electron comes in resona
with the roton energy. In this case we expect an increas
the decay rate. Observing it would be a direct demonstra
of coupling to volume excitations in helium.

E. Radiative decay

Even though the dipole matrix element for the electr
transition 2→1 is large, the rate of radiative deca
;e2z12

2 R3/\4c3'2 s21 is extremely small. For low-Q mi-
crowave cavities or waveguides which will be used in e
periment, radiative decay will play no role in electron rela
ation.

IV. DEPHASING DUE TO RIPPLON SCATTERING

In addition to depopulation of the excited state of a qub
electron coupling to excitations in liquid helium leads also
dephasing, i.e. diffusion of the phase difference between
qubit statesu2,0,0& and u1,0,0&. The dephasing results from
random modulation, by thermal fluctuations in helium, of t
distance between the energy levels 1 and 2. In other term
can be described as quasielastic scattering of thermal ex
tions off an electron. The scattering is different in differe
electron states. Therefore, it randomizes the phase differe
between the wave functions of the states without caus
interstate transitions. The corresponding decoherence me
nism is known for defects in solids37 as modulational or Ra-
man broadening. For electrons on helium it was discusse
Refs. 15 and 33.

Dephasing comes primarily from coupling to ripplons, b
cause they are soft. The density of states of thermally exc
ripplons is comparatively high even for low temperatures.
the same time, thermal occupation numbers of the rippl
coupled to an electron by one-ripplon couplingHi

(1) are
large. Indeed, the typical wave numberqr and frequencyv r
of such ripplons are

qr51/ai , v r[vqr
5~s/r!1/2qr

3/2. ~28!

For v i/2p520 GHz we have v r /2p'4.83107 Hz
'2.3 mK, i.e.\v r!kBT even for temperatures as low as 1
mK. As we will see, the dephasing rate depends on the b
typical ripplon frequencies,v r andkBT/\.

For completeness, we will briefly outline a simple way
obtain the dephasing rate due to an electron-ripplon coup
Hi ~a more consistent approach is based on the master e
tion, but it gives the same result!. To first order inHi , the
2-9
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changes of the electron energiesdÊ1,2 of the states
u1,0,0&,u2,0,0& are determined by the diagonal matrix el
ments of Hi on the corresponding wave functions. The
matrix elements are operators with respect to ripplons. In
interaction representation the ripplon coordinatesjq become
functions of time. The typical ripplon frequenciesv r ,kBT/\
are small compared to the electron transition frequen
;v i . Therefore, in the spirit of the adiabatic approximatio
the electron energiesdÊ1,2 become parametrically depende
on time in terms ofjq(t). So does also the change in th
interlevel distance

dÊ21~ t !5^2,0,0uHi~ t !u2,0,0&2^1,0,0uHi~ t !u1,0,0&. ~29!

The average value of the energy difference~29!,

^dÊ21(t)&, is independent of time~here and beloŵ•& means
averaging over the thermal distribution of ripplons!. It gives
a shift of the transition frequency of the qubit. In what fo
lows we will assume that this shift has already been inc
porated intoE1,2 and set̂ dÊ21(t)&50.

The increment of the phase differencedf̂21(t) between
the states 1,2 is given by the integral ofdÊ21 over time.
From Eq.~29! we have for the mean-square phase increm

dw21
2 ~ t ![^@df̂21~ t !2df̂21~0!#2&

5\22EE
0

t

dt1dt2^dÊ21~ t1!dÊ21~ t2!&. ~30!

The operatordÊ21(t) has two typical frequencies,v r and
kBT/\. Therefore, the correlator̂dÊ21(t1)dÊ21(t2)& decays
on times ut12t2u&v r

21 . For t@v r
21 the phase difference

then displays a diffusion-type behavior, with

dw21
2 ~ t !'2Gft.

The parameter

Gf5\22ReE
0

`

dt^dÊ21~ t !dÊ21~0!& ~31!

gives the dephasing rate.
It follows from Eq. ~31! that, to the second order of pe

turbation theory, linear in ripplon coordinate terms indÊ21
give Gf50. The value ofGf is determined in this approxi
mation by the two-ripplon coupling

Hi
(qe)5 (

j 51,2
(
q,q8

vqq8 jbq
†bq8u j ,0,0&^ j ,0,0u. ~32!

The individual terms in the sum overq,q8 describe scattering
of a ripplon with wave vectorq8 into a ripplon with wave
vector q. The momentum is transferred to the electron a
no transitions between electron states occur.

For coupling~32! dephasing rate~31! has the form

Gf5
p

\2 (
q,q8

uvqq812vqq82u2n̄~vq!@ n̄~vq8!11#d~vq2vq8!,

~33!
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wheren̄(v)5@exp(\v/kBT)21#21 is the Planck number. It is
seen from Eq.~33! that only thermally excited ripplons with
vq&kBT/\ contribute to the rateGf . In what follows we
will estimate contributions toGf from different mechanisms
of electron-ripplon coupling taken separately and will aga
ignore cross terms, which contain products of coupling c
stants for different mechanisms.

A. Dephasing rate for different coupling mechanisms

The matrix elementsvqq8 j in expression~33! for the
dephasing rate are linear in the parameters of the direct t
ripplon couplingHi

(2) ~11!. However, in the second order o
perturbation theory they are renormalized by the one-ripp
couplingHi

(1) ~9!,

vqq8 j'
\~qq8!1/2

Sr~vqvq8!
1/2F ^ j ,0,0uV̂2qq8u j ,0,0&e2(q2q8)2ai

2/4

2 (
n.0,mn

~V
qq8

j nmn1V
2q82q

j nmn !~\nv i!
21G , ~34!

where V
qq8

j nmn5Vq
j nmn(V

q8

j nmn)* and Vq
j nmn

5^ j ,0,0uV̂2qe
2 iqru j ,n,mn&. In calculating the renormaliza

tion due to one-ripplon coupling we disregarded the con
bution from virtual transitions into different states of out-o
plane motion u j 8&, because they involve a large energ
change~it is straightforward to incorporate the correspondi
terms!. We also disregarded ripplon energies\vq compared
to \v i .

The contributionGf
(k) to the dephasing rate~33! from the

direct two-ripplon kinematic coupling~12! has a simple form
in the case ofv r!kBT/\. ThenGf

(k) is determined primarily
by forward scattering of ripplons off the electron, withuq
2q8u&1/ai , but with vq5vq8;kBT/\@v r . Calculating
the integral over the angle betweenq andq8 by the steepes
descent method, we obtain

Gf
(k)5

p1/2r

27A2ai
S kBT

\s D 3

R2K̃12
2 , ~35!

whereK̃12 is the difference of the expectation values of t
kinetic energypz

2/2m in the states 1 and 2 divided byR. For

E'50 we haveK̃1253/4, and one can show thatK̃12 de-
creases with increasingE' . The numerical value ofGf

(k) is
Gf

(k)&0.73102 s21 for T510 mK andv i/2p520 GHz.
The contribution from the direct two-ripplon polarizatio

coupling ~13! can be estimated by utilizing the fact that th
wave vectors of thermal ripplonsqT5(r/s)1/3(kBT/\)2/3 are
less than 1/r B for low temperatures. To lowest order inq

T
r B

the polarization contribution is again given by Eq.~35!, but
now K̃12 is the difference of the expectation values of t
potential energyL/2z divided byR. The corresponding rate
is of the same order asGf

(k) .
We now estimate the dephasing rateGf ~33! due to one-

ripplon coupling~10!. We note first that the kinematic term
in Eq. ~10! drop out of the matrix elementsvqq8 j ,
2-10
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because they do not have diagonal matrix elements on
functions u1&,u2&. The terms quadratic in the electric fie
E' drop out from the differencevqq812vqq82, because they
are independent of the electron state normal to the surf
The major contribution to the dephasing rate comes from
polarization one-ripplon coupling}vpol in V̂q ~10!. We will
denote it asGf

(pol) .

The polarization term inV̂q does not depend on the in
plane electron coordinate. This makes it possible to calcu
the sum overn,mn in Eq. ~34! for vqq8 j . We will use the
relation

(
mn

^0,0ue2 iqrun,mn&^n,mnueiq8ru0,0&

5
1

n!
~qq8ai

2/2!nexp@2~q21q82!ai
2/4#.

Further calculation is simplified in the case ofkBT@v r .
Here, again, the major contribution to the dephasing r
comes from forward scattering withq,q8@uq2q8u andqq8
@ai

22 . Then

(
n.0

V
qq8

j nmn/\nv i'2^ j uV̂2qu j &^ j uV̂q8u j &

3exp@2~q2q8!2ai
2/4#~\v iai

2qq8!21.

In this approximation we obtain

Gf
(pol);

r

ai
S kBT

\s D 3

R2k12
2 ,

k125u^1uvpol~qz!u1&u22u^2uvpol~qz!u2&u2. ~36!

The matrix elementk12 here has to be calculated forq
5qT , and we assumed thatk12 is a smooth function ofq for
q;qT . The numerical value ofk12 is '0.23 for q'qT and
T510 mK, it weakly depends on the pressing fieldE' . The
phase relaxation rate from one-ripplon polarization coupl
is Gf

(pol);102 s21.
The overall ripplon-induced phase relaxation rate appe

to be small. It displays an unusual temperature depende
Gf}T3, as seen from Eqs.~35! and~36!, and comparatively
weakly depends on the in-plane frequencyv i . We note that
it is much smaller than our previous estimate15 obtained for
the case where the in-plane confinement was due to a m
netic field and electrostatic in-plane confinement was co
paratively weak.

V. RIPPLON-INDUCED SIDEBAND ABSORPTION

Coupling to ripplons modifies the spectrum of microwa
absorption by a confined electron. Without this coupling
spectrum would have ad-shape peak at the transition fre
quency (E22E1)/\. Ripplons lead to a polaronic shift an
broadening of the peak. The half-width of the peakG0 is
given by the sum of the electron decay and dephasing ra
We will call this spectral peak the zero-ripplon line in ana
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ogy with zero-phonon lines in light absorption spectra
solids.

An important consequence of coupling to ripplons is a
the occurrence of comparatively broad sidebands in the
sorption spectrum next to the zero-ripplon line. The sid
bands are formed, because a microwave-induced elec
u1,0,0&→u2,0,0& transition can be accompanied by creati
or annihilation of one or several ripplons. They are similar
phonon sidebands in absorption spectra of defects in solid37

The ripplon sidebands can be understood from
Franck-Condon picture of a microwave-induced electr
transition as happening for an instantaneous ripplon confi
ration. Since the equilibrium ripplon positions are differe
in the ground and excited electron states, the transition
accompanied by excitation or absorption of ripplons, and
transition energy differs from its valueE22E1 in the ab-
sence of coupling to ripplons.

In order to describe the effect it suffices to keep in t
Hamiltonian of the electron-ripplon coupling only thos
terms that have diagonal matrix elements on the elec
wave functionsu j ,0,0&, i.e. to replaceHi with

(
j

^ j ,0,0uHi u j ,0,0&u j ,0,0&^ j ,0,0u.

One can then apply a standard canonical transforma
which shifts ripplon coordinates so that they are counted
from their equilibrium values in the ground electron sta
The transformed one-ripplon interaction Hamiltonian~9! and
~10! then takes a Franck-Condon form

Hi
FC5(

q
jqLF~q!u2,0,0&^2,0,0u,

F~q!5q2@^2uvpol~qz!u2&2^1uvpol~qz!u1&#e2q2ai
2/4.

~37!

For weak coupling, of primary interest are one-ripplo
sidebands. Because ripplon occupation numbers are larg
kBT@\v r , the probabilities of microwave-induced electro
transitions accompanied by absorption and emission of a
plon are the same. Respectively, the sidebands are symm
cal as functions of frequency detuningDv5v2(E2
2E1)/\ ~we haveuDvu;v r!(E22E1)/\). Microwave ab-
sorption in the region of the sidebands is quadratic in
electron-ripplon coupling parameters. It can be calculated
perturbation theory inHi

FC. From Eq.~37! we obtain for the
scaled sideband absorption coefficientasb(v),

asb~v!5Gsbāsb~v!,Gsb5
kBTR2r B

2r

p\2s2ai
,

āsb5ai E dqq24F2~q!d~Dv6vq!. ~38!

The absorption coefficient itself is given byasb multiplied by
the integral intensity of the electron absorption spectru
The latter is the integral of the absorption coefficient ov
frequency and is equal to the appropriately scaled oscilla
strength of the electron transition.
2-11
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In Eq. ~38! we assumed thatuDvu is much larger than the
half-width of the zero-ripplon lineG0. This condition is sat-
isfied in the interesting regionuDvu;v r , since from the
above estimatesv r /G0*104.

The sideband intensity is determined by the factorGsb.
For T510 mK andv i/2p520 GHz we haveGsb'0.1. The
smallness ofGsb indicates that the sidebands formed by tw
or many-ripplon processes are not important.

The scaled absorption coefficient in the one-ripplon si
band is shown in Fig. 5. It monotonically decreases with
increasing distanceuDvu from the zero-ripplon line. For
small uDvu ~but uDvu@G0) we haveāsb}uDvu21/3. As ex-
pected, decay of the sideband absorption with increas
uDvu is much slower than decay of the Lorentzian tail of t
zero-ripplon line}G0/(Dv)2. For largeuDvu/v r , the side-
band absorption falls off as exp@2(uDvu/vr)

4/3/2#, because
coupling to short-wavelength ripplons is exponentially we
We note that the one-ripplon sidebands do not display st
ture, in contrast to sidebands in electron-phonon system
solids that reflect singularities in the phonon density
states.

A. Intensity of the zero-ripplon line

The integral intensity of the electron absorption spectr
~the oscillator strength! is independent of the electron
ripplon coupling. However, the integral intensity of the zer
ripplon line is reduced by the coupling, because of the si
bands. This reduction is described by a Debye-Waller-t
factor ~the Pekar-Huang-Reese factor in the theory
electron-phonon spectra! exp(2W). The parameterW is
given by the integral ofasb over v,

W5GsbW̄, W̄52ai E dqq24F2~q!. ~39!

The dependence of the scaling factorW̄ on the fieldE'

andv i is shown in Fig. 6. It is clear from this figure and E
~39! that W weakly depends on the in-plane electron fr
quencyv i as long as the corresponding ripplon frequen
v r!kBT/\. At the same time,W decreases with the increa
ing pressing fieldE' , because the difference in the effectiv

FIG. 5. The scaled coefficient of microwave absorption in

sideband regionāsb ~38! vs frequency detuningDv5v2(E2

2E1)/\ for E'50 andv i/2p520 GHz.
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radii of the electron statesu1& andu2& decreases, and so doe
the difference in the ripplon equilibrium positions in th
statesu1& and u2&.

The calculated value of the Debye-Waller factor for ele
trostatically confined electrons isW'0.120.05 for v i/2p
520 GHz andE' varying from 0 to;300 V/cm. It is close
to the estimateW;0.05 given earlier15 for the case of in-
plane confinement by a magnetic field. This factor emer
also in the analysis of the operation of a quantum compu
based on trapped atomic ions,38 because optical transition
are connected to vibrational modes of the ions~the number
of such modes is small, for a small number of ions!.

In the context of quantum computing, sideband absorpt
and the Debye-Waller reduction of the zero-ripplon abso
tion strength differ qualitatively from electron decay an
dephasing. Sideband absorption does not affect an elec
qubit between quantum operations. In contrast to dissipa
effects, it does not happen between operations. Howeve
shows that a fraction of electron transitions may go wro
as they are accompanied by excitation of ripplons. Theref
the Debye-Waller factor characterizes fidelity of quantu
operations. The number of ‘‘wrong’’ transitions, and ther
fore the role of the Debye-Waller factor, depends on the w
a specific operation is performed. For example, it depends
the spectral width of a microwave pulse. Optimal ways
performing quantum operations in the presence of sideb
absorption will be discussed in a separate publication.

VI. DECAY AND DEPHASING FROM COUPLING
TO THE ELECTRODE

Relaxation of a confined electron~qubit! may result also
from coupling to the underlying electrode. The correspon
ing relaxation parameters can be found in the same way a
the case of coupling to ripplons/phonons. Fluctuations of
electrode potential modulate the interlevel distance and t
give rise to dephasing. In addition, an electron can mak
transition between the states, with energy being transfe
to an excitation in the electrode~for example, an electron
hole pair or a plasmon!.

The analysis of the dissipation can be formulated in fai
general terms using the fact that the size of the wave func

FIG. 6. The scaling factorW̄ in expression~39! for the Debye-
Waller exponent W. The curves 1 to 4 refer tor B /ai
50.18,0.25,0.35,0.5 (v i/2p'10,20,39,79 GHz, respectively!.
2-12
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QUBITS WITH ELECTRONS ON LIQUID HELIUM PHYSICAL REVIEW B67, 155402 ~2003!
of the qubit;r B is small compared to the distance to t
electrodeh. Then the interaction with the electrode can
described in the dipolar approximation,

Hdip52ed Ê'z, ~40!

whered Ê' is the fluctuating part of the field on the electro
normal to helium surface. This field comes from charg
density fluctuations in the electrode. Equation~40! is just the
linear inz/h term in the expansion of the Coulomb couplin
energy of the electron and the charge density in the elect
~retardation effects are not important for the frequencies
interest!. The field d Ê' is an operator with respect to th
electrode charge density. Here and below we do not cons
effects of fluctuations of the electrode potential on in-pla
electron motion; they are weak and less important for qu
dynamics.

Electron relaxation parameters can be expressed in te
of the correlation function of the fluctuating field

Q~v!5E
0

`

dteivt^d Ê'~ t !d Ê'~0!&. ~41!

As we will see, of interest is the behavior of the functio
Q(v) in two frequency regions: low frequenciesv
&kBT/\ and comparatively high frequenciesv'(E2
2E1)/\. We will assume thatQ(v) is smooth in the both
regions.

We will consider first the effect of the fluctuations of th
electric field with frequenciesv!(E22E1)/\. Such fluc-
tuations result in loss of coherence of the electron states
dephasing. The dephasing rate can be found in the same
as it was done in Sec. IV for a fluctuating ripplon fiel
Through linear Stark effect, a slowly varying fieldd Ê'(t)
leads to an instantaneous changedÊ21 of the distance be-
tween the electron energy levelsE2 andE1. From Eq.~40!,

dÊ21~ t !52e~z222z11!d Ê'~ t !. ~42!

A random change of the interlevel distance causes di
sion of the phase differencedf̂21(t) of the wave functions
u2& and u1&. As explained in Sec. IV, diffusion behavior i
displayed on times that largely exceed the correlation time
the field d Ê'(t). The corresponding dephasing rate of t
qubit Gf

(el) is equal to the phase diffusion coefficient. Fro
Eqs.~31!, ~42! we obtain

Gf
(el)5e2~z222z11!

2ReQ~0!/\2. ~43!

The assumption of a short correlation time ofd Ê'(t) is
equivalent to the assumption that the spectrum ReQ(v) ~41!
is smooth at frequenciesv&Gf

(el) . If this is not the case or if

the noised Ê'(t) is non-Gaussian, decay of coherence of
statesu2& and u1& becomes nonexponential. Although th
analysis has then to be modified, Eq.~42! is still advanta-
geous as it relates dephasing to fluctuations of the fi
d Ê'(t), which can be independently characterized.
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The decay rate of the qubitG12
(el) is determined by the

probability of a field-induced transitionu2&→u1& between
the electron states. This probability is determined, in turn,
quantum fluctuations of the fieldd Ê'(t) at frequencyV12
5(E22E1)/\. To the lowest order in the couplingHdip ,

G12
(el)5e2uz12u2ReQ~V12!/\

2. ~44!

Here we assumed that decay is due to spontaneous emi
only, i.e. that there are no induced processes with ene
transferE22E1.

To estimate relaxation parameters of electrons on hel
we will assume that the controlling electrode is a conduct
sphere of a small radiusr el submerged at depthh beneath
helium surface, as discussed in Sec. II. For low frequenc
the surface of the sphere is equipotential. Then the fluct
ing field of the electrode is simply related to its fluctuatin
potentialdV̂el , d Ê'5dV̂elr el /h

2.
Much of the low-frequency fluctuations is due to volta

noise from an external lead attached to the electrode.
lead temperatureText may largely exceed the helium tem
perature in the cryostatT. The voltage noise is white forv
!kBText/\. Its intensity is given by Nyquist’s theorem an
is determined by the lead resistanceRext. From Eq.~43!, the
dephasing rate is

Gf
(el)52kBTextRexte

2~z222z11!
2r el

2 /\2h4. ~45!

For Rext525V, Text51 K, r el50.1 mm, h50.5 mm,
and z222z115r B we obtainGf

(el)'13104 s21. This shows
that thermal electrode noise may be a major source
dephasing for a qubit. Equation~45! indicates how to reduce
the dephasing rate. It can be accomplished by further coo
down external leads, reducing their resistance, and increa
the depth by which controlling electrodes are submerged
low helium surface.

In contrast to low-frequency noise, high-frequency vo
age fluctuations from sources outside the thermostat ca
filtered out. Much of high-frequency quantum fluctuatio
that affect a qubit come from the underlying microelectro
itself. They depend on the interrelation between the elect
relaxation timetel in the electrode andV12

21 . If telV12!1,
the electrode conductivity does not display dispersion up
frequencies*V12; it greatly exceedsV12 for typical V12.

An order-of-magnitude estimate of the decay rateG12
(el)

can be made by assuming that the controlling electrode
lead attached to a sphere, and this sphere is equipote
~fluctuations of the total charge in the sphere make a m
contribution to the fieldd Ê' for small r el /h). Then from
Nyquist’s theorem

G12
(el)52~E22E1!Rele

2uz12u2r el
2 /\2h4, ~46!

whereRel is the resistance of the lead. If we estimate it
0.1V, then using the same parameters as in the estimat
Gf

(el) and settingE22E1 equal to the ‘‘Rydberg’’ energyR
~1!, we obtainG12

(el);53102 s21. Even though this estimate
is very approximate, it is clear that the major effect of ele
trodes on qubit relaxation is dephasing rather than decay
2-13



ys
W
ar
th
s

t
b
d
ub
or

i
on

nc
nd

le
ts
a
.

ca
e
tu
ns
in
r
t

rin
er
n
o
de

av
a
d
th
le
e
re
m
in
b

ur

t
of
w
e
e

e

ua
g

the
An
d to

um
he
rate

tion
by
e-

lon
a
ig-
ra-
ti-

.
ons
re-
-
of

fined
ese
m in

e
d.

nd
the

a
the
lon
tem

f

-

M. I. DYKMAN, P. M. PLATZMAN, AND P. SEDDIGHRAD PHYSICAL REVIEW B 67, 155402 ~2003!
VII. CONCLUSIONS

In this paper we have provided a comprehensive anal
of parameters of qubits based on electrons on helium.
introduced a simple realistic model of electrodes, which
submerged into helium in order to localize and control
electrons. This model allowed us to estimate parameter
the electron energy spectrum and their dependence on
electrode potential. Control of the qubits is performed
varying the fieldE' normal to helium surface. The fiel
changes the distance between the energy levels of a q
which are the ground and first-excited levels of motion n
mal to the surface. It enables tuning qubits in resonance w
each other and with externally applied microwave radiati

The electrode potential determines not onlyE' , but also
the in-plane electron confinement. We found the freque
v i of electron vibrations parallel to the helium surface a
related it to the fieldE' . Typical frequenciesv i/2p are of
order of a few tens of GHz for typical E'

;100–300 V/cm. We analyzed both the cases of one e
trode and an electrode array, and investigated the effec
electrode geometry, including the interelectrode distance
the depth by which electrodes are submerged into helium

We identified relaxation mechanisms, estimated de
rates for a confined electron, and found their dependenc
control parameters. In contrast to unconfined electrons s
ied previously, decay is due primarily to electron transitio
in which energy is transferred to two ripplons propagating
opposite directions or to a bulk phonon propagating nea
normal to the surface. We found mechanisms of coupling
phonons. In the cases of both ripplon and phonon scatte
helium excitations with comparatively large wave numb
are involved. For different coupling mechanisms we fou
the dependence of the decay rate on the parameters
confined electron. The decay rate is essentially indepen
of temperature, for low temperatures.

The overall decay rate is of order 104 s21 for typical v i .
This estimate is obtained assuming that the typical w
numbers of excitations into which an electron may scatter
&107 cm21. We conjecture that coupling to ripplons an
phonons with much shorter wavelengths is small. Then
decay rate can be significantly decreased by localizing e
trons more strongly in the plane. This will lead to a larg
level spacing of the in-plane electron vibrations, and the
fore helium excitations with higher energies and wave nu
bers will be required for decay. The localization can be
creased electrostatically through electrode design or
applying a magnetic field perpendicular to the helium s
face.

The major mechanism of dephasing due to coupling
excitations of the helium is scattering of thermal ripplons
an electron. We calculated the scattering rate and sho
that it displays an unusualT3 temperature dependence. Th
most significant contribution to the dephasing rate com
from processes which involve virtual transitions betwe
electron states. The ripplon-induced dephasing rate
;102 s21 for typical v i andT510 mK.

An important mechanism of dephasing is voltage fluct
tions of controlling electrodes. The dephasing rate stron
15540
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depends on the source of these fluctuations and also on
depth by which electrodes are submerged into helium.
estimate for Johnson noise from a typical lead connecte
an electrode gives dephasing rate;104 s21. Our results in-
dicate how this rate can be significantly reduced. Quant
fluctuations of the electrode field give rise to decay of t
excited electron state. However, the corresponding decay
is small.

We also analyzed sidebands of the electron absorp
spectrum related to electron transitions accompanied
emission or absorption of a ripplon. We found the Deby
Waller factor that describes the intensity of the zero-ripp
absorption line. It gives the overall probability of exciting
ripplon in an electron transition induced by a broadband s
nal, and therefore it characterizes the fidelity of qubit ope
tions. The shape of ripplon sidebands is important for op
mizing control pulses in order to achieve maximal fidelity

The results provide a quantitative basis for using electr
on helium as qubits of a quantum computer. The clock f
quency of such computerVQC is determined by the dipole
dipole interelectron interaction and is in the range
107–108 Hz even for interelectron distances'1 mm. It
largely exceeds both decay and dephasing rates of a con
electron. Our results suggest ways of further reducing th
rates. They show how to choose parameters of the syste
an optimal way. Because for electrons on heliumE22E1
@\v i@\VQC@\G, there is an extremely broad rang
where the qubit parameters can be dynamically controlle
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APPENDIX: ONE-RIPPLON POLARONIC EFFECT

Besides relaxation, coupling to ripplons leads also to
polaronic effect. Because ripplon frequencies are low,
major contribution comes from processes in which a ripp
is created or annihilated, but the state of the electron sys

FIG. 7. The factorf p in the Franck-Condon polaronic shift o
the transition frequency of a qubit~A1! as a function of the pressing
field E' for typical values of the in-plane localization lengthai .
The curves 1 to 4 correspond tor B /ai50.18,0.25,0.35,0.5; the re
spective values ofv i/2p are'10, 20, 39, and 79 GHz.
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QUBITS WITH ELECTRONS ON LIQUID HELIUM PHYSICAL REVIEW B67, 155402 ~2003!
is not changed. Polaronic shift of the electron transition f
quency is then determined by the diagonal matrix eleme
of Hi

(1) ~9! on the wave functionsu1,0,0&,u2,0,0&. Keeping
only these terms inHi

(1) corresponds to the adiabatic a
proximation in which ripplons have different equilibrium po
sitions depending on the presence of an electron~one can
think of a ‘‘dimple’’ made by an electron on helium
surface19! and on the electron state. Of primary interest to
is the state dependence, as it characterizes the streng
coupling of the electron transition to ripplons. The corr
sponding coupling is described by the Franck-Condon in
action Hamiltonian~37!.

The Franck-Condon polaronic shift of the transition fr
quency 1→2 due to coupling~37! is given by a simple per-
turbation theory,
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