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Two-particle localization and antiresonance in disordered spin and qubit chains
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We show that, in a system with defects, two-particle states may experience destructive quantum interference,
or antiresonance. It prevents an excitation localized on a defect from decaying even where the decay is allowed
by energy conservation. The system studied is a qubit chain or an equivalent spin chain with an anisotropic
(XXZ) exchange coupling in a magnetic field. The chain has a defect with an excess on-site energy. It
corresponds to a qubit with the level spacing different from other qubits. We show that, because of the
interaction between excitations, a single defect may lead to multiple localized states. The energy spectra and
localization lengths are found for two-excitation states. The localization of excitations facilitates the operation
of a quantum computer. Analytical results for strongly anisotropic coupling are confirmed by numerical studies.
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I. INTRODUCTION

One of the most important potential applications of qua
tum computers~QC’s! is studies of quantum many-body e
fects. It is particularly interesting to find new many-bod
effects in condensed-matter systems that could be ea
simulated on a QC. In the present paper we discuss one
effect: antiresonance or destructive quantum interference
tween two-particle excitations in a system with defects.
also study interaction-induced two-particle localization on
defect and discuss implications of the results for quant
computing.

The basic elements of a QC, qubits, are two-state syste
They are naturally modeled by spin-1/2 particles. In ma
suggested realizations of QC’s, the qubit-qubit interaction
‘‘on’’ all the, time.1 In terms of spins, it corresponds to e
change interaction. The dynamics of such QC’s and spin
tems in solids have many important similar aspects that
be studied together.

In most proposed QC’s the energy difference between
qubit states is large compared to the qubit-qubit interact
This corresponds to a system of spins in a strong exte
magnetic field. However, in contrast to ideal spin system
level spacings of different qubits can be different. A ma
advantageous feature of QC’s is that the qubit energies
be often individually controlled.2–4 This corresponds to con
trollable disorder of a spin system, and it allows one to u
QC’s for studying a fundamentally important problem
how the spin-spin interaction affects spin dynamics in
presence of disorder.

Several models of QC’s where the interqubit interaction
permanently ‘‘on’’ are currently studied. In these models t
effective spin-spin interaction is usually strongly anisotrop
It varies from the essentially Ising couplingsn

zsm
z in nuclear

magnetic resonance and some other systems5–9 (n,m enu-
merate qubits, andz is the direction of the magnetic field! to
the XY-type ~i.e., sn

xsm
x 1sn

ysm
y ) or the XXZ-type ~i.e.,

Dnmsn
zsm

z 1sn
xsm

x 1sn
ysm

y ) coupling in some Josephson
junction-based systems.2,3

The Ising coupling describes the system in the case wh
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the transition frequencies of different qubits are strongly d
ferent. Thensn

zsm
z is the only part of the interaction tha

slowly oscillates in time, in the Heisenberg representati
and therefore is not averaged out. If the qubit frequencies
close to each other, the termssn

xsm
x 1sn

ysm
y become smooth

functions of time as well. They lead to resonant excitati
hopping between qubits. In a multiqubit system with clo
frequencies, both Ising andXY interactions are present in th
general case, but their strengths may be different.10,11 In this
sense theXXZ coupling is most general, at least for qubi
with high transition frequencies.

The interqubit interaction often rapidly falls off with th
distance and can be approximated by nearest-neighbor
pling. Many important results on anisotropic spin syste
with such coupling have been obtained using the Bethe
satz. Initially the emphasis was placed on systems with
defects12 or with defects on the edge of a spin chain.13 More
recently these studies have been extended to systems
defects that are described by integrable Hamiltonian14

However, the problem of a spin chain with several coup
excitations and with defects of a general type has not b
solved.

In this paper we investigate interacting excitations in
anisotropic spin system with defects. We show that the e
tation localized on a defect does not decay even where
decay is allowed by energy conservation. We also find th
in addition to a single-particle excitation, a defect leads
the onset of two types of localized two-particle excitation

The analysis is done for a system with theXXZ coupling.
The coupling anisotropy is assumed to be strong, as in
case of a QC based on electrons on helium, for examp4

The ground state of the system corresponds to all sp
pointing in the same direction~downwards, for concrete
ness!. A single-particle excitation corresponds to one qu
being excited, or one spin being flipped. If the qubit energ
are tuned in resonance with each other, a QC behaves a
ideal spin system with no disorder. A single-particle exci
tion is then magnon-type, it freely propagates through
system.

In the opposite case where the qubit energies are tune
away from each other~as for diagonal disorder in tight
©2003 The American Physical Society10-1
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binding models!, all single-particle excitations are localize
If the excitation density is high, the interaction between th
may affect their localization, leading to quantum chaos,
Refs. 10 and 15–17. Understanding the interplay betw
interaction and disorder is a prerequisite for building a Q
We will consider the case where the excitation density is l
yet the interaction is important. In particular, excitations m
form bound pairs~but the pair density is small!.

One of the important questions is whether the interact
leads to delocalization of excitations. More specifically, co
sider an excitation, which is localized on a defect in t
absence of other excitations. We now create an exten
magnon-type excitation~a propagating wave!, that can be
scattered off the localized one. The problem is whether
will cause the excitation to move away from the defect. W
show below that, due to unexpected destructive quantum
terference, the scattering does not lead to delocalization

A. Model and preview

We consider a one-dimensional array of qubits wh
models a spin-1/2 chain. For nearest-neighbor coupling,
Hamiltonian is

H5
1

2 (
n

« (n)sn
z1

1

4 (
n

(
i 5x,y,z

Jii sn
i sn11

i ,

Jxx5Jyy5J, Jzz5JD. ~1!

Here,sn
i are the Pauli matrices and\51. The parameterJ

characterizes the strength of the exchange coupling anD
determines the coupling anisotropy. We assume thatuDu
@1; for a QC based on electrons on helium,uDu lies between
20 and 8, for typical parameter values.4

We will consider effects due to a single defect. Resp
tively, all on-site spin-flip energies« (n) are assumed to be th
same except for the siten5n0 where the defect is located
that is,

« (n)5«1gdn,n0
. ~2!

In order to formulate the problem of interaction-induc
decay of localized excitations, we preview in Fig. 1 a part of
the results on the energy spectrum of the system. In the
sence of the defect, the energies of single-spin excitat
~magnons! lie within the band«16J, where«15«2JD ~the
energy is counted off from the ground-state energy!. The
defect has a spin-flip energy that differs byg ~a qubit with a
transition frequency different from that of other qubits!. It
leads to a localized single-spin excitation with no thresh
in g, for an infinite chain. The energy of the localized state
shown by a dashed line on the left panel of Fig. 1.

We now discuss excitations that correspond to two flipp
spins. A defect-freeXXZ system has a two-magnon band
independently propagating noninteracting magnons. H
ever, the anisotropy of the exchange coupling leads als
the onset of bound pairs~BP’s! of excitations. The BP band
is much narrower than the two-magnon band and is separ
from it by a comparatively large energy differenceJD, see
the right panel of Fig. 1. In the presence of a defect, there
21441
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two-excitation states with one excitation localized on the
fect and the other being in an extended state. We call th
localized-delocalized pairs~LDP’s!. An interplay between
disorder and interaction may lead to new types of sta
where both excitations are localized near the defect. Th
energies are shown in the right panel of Fig. 1 by dash
lines.

A localized one-spin excitation cannot decay by emitti
a magnon, by energy conservation. But it might experie
an induced decay when a magnon is inelastically scatte
off the excited defect into an extended many-spin sta
Magnon-induced decay is allowed by energy conserva
when the total energy of the localized one-spin excitat
and the magnon coincides with the energy of another tw
particle state. In theXXZ model the total number of excita
tions~flipped spins! is conserved, and therefore decay is on
possible into extended states of two bound magnons. In o
words, it may only happen when the LDP band overlaps w
the BP band in Fig. 1.

Decay into BP states may occur directly or via the tw
excitation state located next to the defect. The amplitude
the corresponding transitions turn out to be nearly equal
opposite in sign. As a result of this quantum interferen
even though the band of bound magnons is narrow and
high density of states, the LDP to BP scattering does
happen, i.e., the excitation on the defect is not delocaliz
The BP to LDP scattering does not happen either, i.e
localized excitation is not created as a result of BP deca

In Sec. II below and in the Appendix we briefly analyz
localization of one excitation in a finite chain with a defec
for different boundary conditions. In Sec. III we discuss t
two-excitation states localized near a defect. In Sec. IV
consider the resonant situation where the energy band of

FIG. 1. Left panel: the one-excitation energy spectrum in
infinite spin chain with a defect. The energies of extended sta
~magnons! form a band of widthJ centered at«1. The dashed line
indicates the energy of the excitation localized on the defect. R
panel: the two-excitation energy spectrum. The band 2(«16J) is
formed by uncoupled magnons. The band centered at 2«11g is
formed by localized-delocalized pairs~LDP’s! in which one excita-
tion is localized on the defect and the other is in an extended s
The narrow band centered at 2«11JD is formed by propagating
bound pairs~BP’s! of excitations. The dashed lines show the en
gies of the states where both excitations are bound to the defe
0-2
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tended bound-pair states is within the band of energies of
flipped defect spin plus a magnon, i.e., where the BP b
overlaps with the LDP band in Fig. 1. We find that the loc
ized excitation remains on the defect site in this case. A
lytical results for a chain with strong anisotropyuDu are com-
pared with numerical calculations. Section V conta
concluding remarks.

II. ONE EXCITATION: LOCALIZED AND EXTENDED
STATES

In order to set the scene for the analysis of the tw
excitation case, in this section and in the Appendix we brie
discuss the well-known case of one excitation~flipped spin!
in an XXZ spin chain with a defect18 and the role of bound-
ary conditions. The Hamiltonian of the chain with the defe
on site n0 has the form~1! and ~2!. We assume that the
excitation energy« largely exceeds both the coupling co
stantuJu and the energy excess on the defect siteugu. In this
case the ground state of the system corresponds to all s
being parallel, with^sn

z&521 irrespective of the signs o
J,g, andD.

Without a defect, one-spin excitations are magnons. T
freely propagate throughout the chain. The term in
Hamiltonian ~1! responsible for one-excitation hopping
H (t)5(nHn

(t) , with

Hn
(t)5

1

4
J (

i 5x,y
sn

i sn11
i [

1

8
J~ tn

( l )1tn
(r )!,

tn
(r )5@ tn

( l )#†5sn11
1 sn

2 . ~3!

The operatorstn
(r ) and tn

( l ) cause excitation shiftsn→n11
andn11→n, respectively.

A defect leads to magnon scattering and to the onse
localized states. Both propagation of excitations and th
localization are interesting for quantum computing. Coher
excitation transitions allow one to have a QC geome
where remote ‘‘working’’ qubits are connected by chains
‘‘auxiliary’’ qubits, which form ‘‘transmission lines’’.4 Local-
ization, on the other hand, allows one to perform single-qu
operations on targeted qubit.

A QC makes it possible to model spin chains with diffe
ent boundary conditions. The simplest models are an o
spin chain with free boundaries, which is mimicked by
finite-length array of qubits~for electrons on helium, it can
be implemented using an array of equally spaced electro
cf. Ref. 19! or a periodic chain, which can be mimicked by
ring of qubits.

An openN-spin chain is described by the Hamiltonian~1!,
where the first sum runs overn51, . . . ,N and the second
sum runs overn51, . . . ,N21 ~the edge spins have neigh
bors only inside the chain!. In what follows, we count energy
off the ground-state energy E052(N«1g)/21(N
21)JD/4, i.e., we replace in Eq.~1! H→H2E0.

The eigenfunctions ofH in the case of one excitation ca
be written as18
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c15 (
n51

N

a~n!f~n!, ~4!

wheref(n) corresponds to the spin on siten being up and
all other spins being down. The Schro¨dinger equation for
a(n) has the form

S «11gdn,n0
1

JD

2
dn,11

JD

2
dn,NDa~n!1

J

2
@a~n21!

1a~n11!#5E1a~n!, ~5!

where«15«2JD is the energy of a flipped spin in an ide
infinite chain in the absence of excitation hopping andE1 is
the one-excitation energy eigenvalue. For an openN-spin
chain we seta(0)5a(N11)50 in Eq. ~5!.

The Hamiltonian of a closedN-spin chain has the form
~1!, where both sums overn go from 1 toN and the siteN
11 coincides with the site 1. Here, the defect locationn0
can be chosen arbitrarily. The wave function can be sough
the form~4!. The Schro¨dinger equation then has the form~5!,
except that there are no terms proportional todn,1 ,dn,N from
the end points of the chain. It has to be solved with t
boundary conditiona(n1N)5a(n).

For an open chain, the solution of the Schro¨dinger equa-
tion ~5! can be sought in the form of plane waves propag
ing between the chain boundaries and the defect,

a~n!5Cl ,re
iun1Cl ,r8 e2 iun, un2n0u>1. ~6!

The subscriptsl andr refer to the coefficients for the wave
to the left (n,n0) and to the right (n.n0) from the defect.
The interrelations between these coefficients and the co
cient a(n0) follow from the boundary conditions and from
matching the solutions atn0. They are given by Eqs.~A1!
and ~A2!.

For a closed chain, on the other hand, the solution can
sought in the form

a~n!5Ceiun1C8e2 iun, n0,n<N,

a~n!5Ceiu(n1N)1C8e2 iu(n1N), 1<n,n0 . ~7!

The energyE1 as a function ofu can be obtained by
substituting Eqs.~6! and ~7! into Eq. ~5!. Both for the open
and closed chains it has the form

E15«11J cosu. ~8!

The eigenfunctions~6! and ~7! with real u correspond to
sinusoidal waves~extended states!. From Eq.~8!, their ener-
gies lie within the band«16J. In contrast, localized state
have complexu, and their energies lie outside this band. T
corresponding solutions for both types of chains are d
cussed in the Appendix. In a sufficiently long chain, there
always one localized one-excitation state on a defect. Its
ergy is given by Eq.~A8!. In the case of an open chain wit
0-3
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L. F. SANTOS AND M. I. DYKMAN PHYSICAL REVIEW B 68, 214410 ~2003!
the coupling anisotropy parameteruDu.1, there are also lo-
calized states on the chain boundaries. Their energy is g
by Eq. ~A6!.

III. TWO EXCITATIONS: UNBOUND, BOUND, AND
LOCALIZED STATES

A spin chain with a defect displays rich behavior in t
presence of two excitations. It is determined by the interp
between disorder and interexcitation coupling. Solutions
the two-excitation problem have been obtained in the cas
a disorder potential of several special types, where the
tem is integrable.14 Here we will study the presumably non
integrable but physically interesting problem where the
site energy of the defect differs from that of the host site

The system is described by the Hamiltonian~1!. In order
to concentrate on the effects of disorder rather than bou
aries, we will consider a closed chain of lengthN. We will
also assume that the anisotropy is strong,uDu@1.

The wave function of a chain with two excitations
given by a linear superposition

c25 (
n,m

a~n,m!f~n,m!, ~9!

wheref(n,m) is the state where spins on the sitesn andm
are pointing upward, whereas all other spins are point
downward. In a periodic chain, the sites with numbers t
differ by N are identical, therefore we havea(n,m)
5a(m,n1N).

From Eq. ~1!, the Schro¨dinger equation for the coeffi
cientsa(n,m) is

~2«11gdn,n0
1gdm,n0

1JDdm,n11!a~n,m!

1
1

2
J†a~n21,m!1@a~n11,m!1a~n,m21!#

3~12dm,n11!1a~n,m11!‡5E2a~n,m!. ~10!

Here, E2 is the energy of a two-excitation state@«15«
2JD is the on-site one-excitation energy, cf. Eq.~5!#. As
before, we assume that the defect is located on siten0.

A. An ideal chain

In the absence of a defect the system is integrable.
solution of Eq.~10! can be found using the Bethe ansatz,12

a~n,m!5Cei (u1n1u2m)1C8ei (u2n1u1m). ~11!

The energy of the state with givenu1 ,u2 is obtained by
substituting Eq.~11! into Eq.~10! written for m.n11. This
gives

E252«11J~cosu11cosu2!. ~12!

By requiring that the ansatz~11! applies also form5n
11, we obtain an interrelation between the coefficientsC
andC8,
21441
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122Deiu11ei (u11u2)

122Deiu21ei (u11u2)
. ~13!

With account taken of normalization, Eqs.~11! and~13! fully
determine the wave function. The states with realu1,2 form a
two-magnon band with width 4uJu, as seen from the disper
sion relation~12!. The magnons are not bound to each oth
and propagate independently.

For uDu.1, Eq. ~13! also has a solutionC50, which
gives a complex phaseu25u1* 5 1

2 u2 ik with k.0. This
solution corresponds to the wave functiona(n,m)
}exp@iu(n1m)/22k(m2n)#; we have m.n. From Eqs.
~11!–~13! we obtain

e2k5D21cos~u/2!, EBP5EBP
(0)1

J

2D
cosu,

EBP
(0)52«11JD1

J

2D
. ~14!

Equation~14! describes a bound pair of excitations. Su
a pair can freely propagate along the chain. The wave fu
tion is maximal when the excitations are on neighbori
sites. The size of the BP, i.e., the typical distance between
excitations, is determined by the reciprocal decrementk21,
and ultimately by the anisotropy parameterD. For largeuDu,
the excitations in a BP are nearly completely bound to ne
est sites. Then the coefficientsa(n,m)}dn11,m , to the low-
est order inuDu21.

The distance between the centers of the BP band and
two-magnon bandEBP

(0)22«1 is given approximately by the
BP binding energyJD. The width of the BP banduJ/Du is
parametrically smaller than the width of the two-magn
band 4uJu, see Fig. 1.

For nearest-neighbor coupling and for largeuDu, transport
of bound pairs can be visualized as occurring via an interm
diate step. First, one of the excitations in the pair make
virtual transition to the neighboring empty site, and as a
sult the parallel spins in the pair are separated by one
The corresponding state differs in energy byJD from the
bound-pair state. At the next step the second spin can m
next to the first, and then the whole pair moves by one s
From perturbation theory, the bandwidth should beJ2/JD
[J/D, which agrees with Eq.~14!.

The above arguments can be made quantitative by in
ducing an effective HamiltonianH̃ (t)5(n51

N H̃n
(t) of BP’s. It

is obtained from the HamiltonianH (t) ~3! in the second order
of perturbation theory in the one-excitation hopping const
J,

H̃n
(t)5

J

64D
@ tn21

(r ) tn21
( l ) 1tn11

( l ) tn11
(r ) #1

J

64D
@ tn

( l )tn21
( l ) 1tn

(r )tn11
(r ) #.

~15!

The operatorstn
(r ,l ) of excitation hopping to the right or lef

are given by Eq.~3!. The first pair of terms inH̃n
(t) @Eq. ~15!#

describes virtual transitions in which a BP dissociates a
then recombines on the same site. This leads to a shift of
0-4
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on-site energy level of the BP byJ/2D. The second pair of
terms describes the motion of a BP as a whole to the lef
to the right.

The action of the HamiltonianH̃ (t) on the wave function
a(n,n11) is given by

H̃ (t)a~n,n11!5
J

2D
a~n,n11!1

J

4D
@a~n11,n12!

1a~n21,n!#. ~16!

The Schro¨dinger equation for a BP is given by the sum of t
diagonal part~the first term! of Eq. ~10! with m5n11 and
the right-hand side of Eq.~16!. In this approximation a BP
eigenfunction isa(n,m)5dn11,mexp(iun), and the dispersion
law is of the form~14!.

B. Localized states in a chain with a defect

We now consider excitations in the presence of a def
In this section we assume that the defect excess energyg is
such that

ugu@uJu, uJD2gu@uJu. ~17!

The first inequality guarantees that the localization length
an excitation on the defect is small@its inverse Imud
' ln 2ug/Ju@1, cf. Eq.~A7!#.

The second condition in Eq.~17! can be understood b
noticing that, in a chain with a defect, there is a tw
excitation state where one excitation is localized on the
fect whereas the other is in an extended magnon-type s
These excitations are not bound together. The energy of s
an unbound localized-delocalized pair~LDP! should differ
from the energy of unbound pair of magnons by'g, and
from the energy of a bound pair of magnons~14! by 'JD
2g. In this section we consider the case where both th
energy differences largely exceed the magnon bandwidJ
~the case whereuJD2gu&uJu will be discussed in the fol-
lowing section!.

1. Unbound localized-delocalized pairs (LDP’s)

In the neglect of excitation hopping, the energy of
excitation pair where one excitation is far from the defe
(un2n0u@1) and the other is localized on the defect
2«11g. @This can be seen from Eq.~10! for the coefficients
a(n,m) in which off-diagonal terms are disregarded.# At the
same time, if one excitation is on the defect and the othe
on the neighboring siten061, this energy becomes 2«1
1g1JD. The energy differenceJD largely exceeds the
characteristic bandwidthJ. Therefore, if the excitation wa
initially far from the defect, it will be reflected before
reaches the siten061.

The above arguments suggest to seek the solution for
wave function of an LDP in a periodic chain in the form

a~n0 ,m!5Ceium1C8e2 ium, ~18!

with the boundary conditiona(n0 ,n011)5a(n0 ,n01N
21)50. This boundary condition and the form of the sol
21441
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excitation in an open chain.

From Eq.~10!, the energy of an LDP is

ELDP'2«11g1J cosu. ~19!

The wave numberu takes onN23 valuespk/(N22), with
k51, . . . ,N23. As expected, the bandwidth of the LDP
2uJu, as in the case of one-excitation band in an ideal ch

We have compared Eq.~19! with numerical results ob-
tained by direct solution of the eigenvalue problem~10!. For
N5100, D520, g/J510, we obtained excellent agreeme
once we took into account that the energy levels~19! are
additionally shifted byJ2/2g. This shift can be readily ob-
tained from Eq.~10! as the second-order correction~in J) to
the energyEd of the excitation localized on the defect.
follows also from Eq.~A8! for ugu@uJu.

We note that the result is trivially generalized to the ca
of a finite but small density of magnons. The wave functi
a(n0 ,m1 ,m2 , . . . ,mM) of M uncoupled magnons and an e
citation on the siten0 is given by a sum of the appropriatel
weighted permutations of exp(6iu1m16iu2m2 . . .
6 iuMmM) over the site numbersmi ~these numbers can b
arranged so thatm1,•••,mk,n0,mk11,•••,mM),
with real u i . The weighting factors for largeuDu are found
from the boundary conditions and the condition th
a(n0 ,m1 ,m2 , . . . )50 whenever any two numbersmi ,mi 11
differ by 1. When the ratio of the number of excitationsM to
the chain lengthN is small, the energy is just a sum of th
energies of uncoupled magnons and the localized excitat
i.e., it is (M11)«11g1J( i 51

M cosui . For smallM /N, scat-
tering of a magnon by the excitation on a defect occurs a
there were no other magnons, i.e., the probability of a thr
particle collision is negligibly small.

2. Bound pairs localized on the defect: the doublet

For largeuDu,ug/Ju, a bound pair of neighboring excita
tions should be strongly localized when one of the exc
tions is on the defect site. Indeed, if we disregard inters
excitation hopping, the energy of a BP sitting on the defec
ED

(0)52«11g1JD. It differs significantly from the energy
of freely propagating BP’s~14!, causing localization.

The major effect of the excitation hopping is that the p
can make resonant transitions between the sites (n0 ,n011)
and (n021,n0). Such transitions lead to splitting of the en
ergy level of the pair into a doublet. To second order inJ the
energies of the resulting symmetric and antisymmetric sta
are

ED
(6)5ED

(0)1
J~2JD1g!

4D~JD1g!
6

J2

4~JD1g!
. ~20!

The energy splitting between the states is small ifJD andg
have same sign. If on the other hand,uJD1gu&uJu, the
theory has to be modified. Here, the bound pairs with o
excitation localized on the defect are resonantly mixed w
extended unbound two-magnon states. We do not cons
this case in the present paper.
0-5
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We note that, in terms of quantum computing, the onse
a doublet suggests a simple way of creating entangled st
Indeed, by applying ap pulse at frequency«11g one can
selectively excite the qubitn0. If then ap pulse is applied at
the frequencyED

12(«11g), it will selectively excite a Bell
state@ u01&1u10&]/A2, whereu i j & describes the state wher
the qubits on sitesn021 andn011 are in the statesu i & and
u j &, respectively. The excitations on sitesn061 can then be
separated without breaking their entanglement using t
qubit gate operations.

3. Localized states split off the bound-pair band

The energy differenceED
(6)2EBP'g between BP state

on the defect site~20! and extended BP states largely e
ceeds the bandwidthuJ/Du of the extended states. Therefo
it is a good approximation to assume that the wave functi
of extended BP states are equal to zero on the defect. In o
words, such BP’s are reflectedbeforethey reach the defect
In this sense, the defect acts as a boundary for them.
may expect that there is a surface-type state associated
this boundary.

The emergence of the surface-type state is facilitated
the defect-induced change of the on-site energy of a BP
cated next to the defect on the sites (n011,n012) @or (n0
22,n021)]. This change arises because virtual dissociat
of a BP with one excitation hopping onto a defect site giv
a different energy denominator compared to the case whe
virtual transition is made onto a regular site. It is describ
by an extra termdEBP in the expression~15! for the diagonal
part of the HamiltonianH̃n

(t) with n5n011 @or n5n022],

dEBP5
Jg

4D~JD2g!
. ~21!

Using the transformed Hamiltonian~16!, one can analyze
BP states in a way similar to the analysis of one-excitat
states in an open chain, see the Appendix. The Schro¨dinger
equation for BP states away from the defect is given by
first term in Eq.~10! and by Eqs.~16! and~21!. The BP wave
functions can be sought in the form

a~n,n11!5Ceiun1C8e2 iun. ~22!

Then the BP energy as a function ofu is given by EBP

5EBP
(0)1(J/2D)cosu, cf. Eq. ~14!.

The values ofu can be found from the boundary cond
tion that the BP wave function is equal to zero on the defe
i.e., a(n0 ,n011)5a(n021,n0)[a(n01N21,n01N)50.
From the Schro¨dinger equations fora(n,n11) with n5n0
11 andn5N1n022, we obtain an equation foru of the
form

f ~u!5 f ~2u!, f ~u!5FdEBP2
J

4D
eiuG2

eiu(N23).

~23!

Equation~23! has 2(N21) solutions for exp(iu). The so-
lutions exp(iu)561 are spurious, in the general case. T
roots u and 2u describe one and the same wave functio
21441
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Therefore there areN22 physically distinct rootsu, as ex-
pected for anN-spin chain with two excluded BP states lo
cated at (n0 ,n061).

Depending on the ratioq5J/(4D dEBP)[(JD2g)/g,
the rootsu are either all real or there is one or two pairs
complex roots with opposite signs. Real roots correspond
extended states, whereas complex roots correspond to
states that decay away from the defect. The onset of com
roots can be analyzed in the same way as described in
Appendix for one excitation. There is much similarity, fo
mally and physically, between the onset of localized
states next to the defect and the onset of surface states a
edge of an open chain.

We rewrite Eq.~23! in the form

tan@u~N21!#5
2sinu~cosu2q!

~cosu2q!22sin2u
. ~24!

For uqu.1 all roots of Eq.~24! are real. At uqu51 there
occurs a bifurcation where two real roots with opposite sig
merge ~at u50 for q51, or at u5p for q521). They
become complex foruqu,1. For uqu5122(N21)21 two
other real roots coalesce atu50 or p and another pair of
complex roots emerges.

As the length of the chain increases, the difference
tween the pairs of complex roots decreases. In the limiN
→` the roots merge pairwise. The imaginary part of one
the roots is

Im uBP
(s) 5 lnudEBP /~J/4D!u. ~25!

The second root has opposite sign.
One can show from the Schro¨dinger equation for the BP’s

that the solution~25! describes a ‘‘surface-type’’ BP stat
localized next to the defect on sites (n011,n012). The so-
lution with 2uBP

(s) describes the surface state on (n022,n0

21). The amplitudes of these states exponentially de
away from the defect. ForJD.g.JD/2.0 or JD,g
,JD/2,0 we have ReuBP

(s) 50. For g.JD.0 or g,JD
,0, we have ReuBP

(s) 5p, and decay of the localized state
accompanied by oscillations. The complex roots in a fin
chain can be pictured as describing those same states o
opposite sites of the defect. But now the states are ‘‘tunn
split because of the overlap of their tails inside the cha
which leads to the onset of two slightly different localizatio
lengths.

The energy of the localized state in a long chain is

EBP
(s) 5EBP

(0)1dEBP1
~J/4D!2

dEBP
. ~26!

It lies outside the bandEBP
(0)6(J/2D), Eq. ~14!, of the ex-

tended BP states. The distance to the band edge stro
depends on the interrelation between the defect excess
ergyg and the BP binding energyJD. It is of the order of the
BP bandwidthuJ/Du, except for the range where the diffe
ence betweenJD and g becomes small. In this range th
energy of the surface-type state sharply increases in the
solute value. This is illustrated in Fig. 2. The localizatio
0-6
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length uIm uBP
(s) u21 is large when the state energy is close

the band edge and shrinks down with decreasinguJD2gu,
i.e., with increasingudEBPu.

IV. ANTIRESONANT DECOUPLING OF
TWO-EXCITATION STATES

The analysis of the preceding section does not apply if
pair binding energyJD is close to the defect excess energyg.
Whenug2JDu is of the order of the LDP bandwidthuJu, the
BP and LDP states are in resonance, their bands overla
nearly overlap with each other. One might expect that th
would occur mixing of states of these two bands. In oth
words, a delocalized magnon in the LDP band might be s
tered off the excitation on the defect, and as a result t
both would move away as a bound pair. However, as
show, such mixing does not happen. In order to simp
notations we will assume in what follows thatg,J,D.0.

A. A bound pair localized next to the defect

In the resonant region we should reconsider the anal
of the next-to-the-defect bound pair localized on sitesn0
11,n012) or (n022,n021). As ug2JDu decreases, the en
ergy of this pair~26! moves away from the BP band, see F
2. At the same time, the distance between the pair energy
the LDP bandEBP

(s) 22«12g becomessmallerwith decreas-
ing ug2JDu as long asuJD2gu.uJu/2. For uJD2gu;J, the
next-to-the-defect pairs are hybridized with LDP’s. The h
bridization occurs in first order in the nearest-neighbor c
pling constantJ.

To describe the hybridization, we will seek the solution
the Schro¨dinger equation~10! in the form of a linear super
position of an LDP state~18! and a pair on the next to th
defect sites,

FIG. 2. The distance between the energy level of the BP lo
ized next to the defect and the center of the band of extended
states,«BP5(EBP

(s) 2EBP
(0))/(J/4D), vs the scaled defect excess e

ergy g/JD. The localized state exists in an infinite chain forg/JD
.1/2. The vertical and horizontal dot-dashed lines show the
ymptotes forg→JD andg/JD→`, respectively. The results refe
to the range where the BP and LDP bands are far from each o
compared to the LDP bandwidthuJu. These bands are sketched
the inset~the BP band is above the LDP band forJD/g.1). The
dashed line in the inset shows where the energy level of the lo
ized BP state is located with respect to the bands.
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a~n,m!5~Ceium1C8e2 ium!dn,n0

1a~n011,n012!dn,n011dm,n012

1a~n022,n021!dn,n022dm,n021 ~27!

~we remind thatm.n). The energy of a state with givenu
can be found from Eq.~10! as before by consideringm far
away fromn0. It is given by Eq.~19!.

The interrelation between the coefficientsC,C8,a(n0
11,n012), anda(n022,n021), as well as the values ofu
should be obtained from the boundary conditions. These c
ditions follow from the fact that the energy of a pair on sit
(n0 ,n061) and the energies of the pairs described by E
~27! differ by ;g'JD, cf. ~20!. Therefore the pairs on site
(n0 ,n061) are decoupled from the states~27!, and in the
analysis of the LDP’s we can seta(n0 ,n061)50. Decou-
pled also are unbound two-excitation states with no exc
tion on the defect, i.e., two-magnon states. Theref
a(n,m)50 if simultaneously m2n.1 and (n2n0)(m
2n0)Þ0.

From Eq. ~10! written for n5n0 ,m5n012 and n5n0
22,m5n0 @with account taken of the relationa(n,m)
5a(m,n1N)] we obtain

a~n011,n012!5Ceiu(n011)1C8e2 iu(n011),

a~n022,n021!5Ceiu(n01N21)1C8e2 iu(n01N21).
~28!

The interrelation betweenC andC8 and the equation for
u follow from Eqs. ~27!, ~28!, and ~10! written for n5n0
11,m5n012, and n5n022,m5n021. They have the
form

C852
2~JD2g!eiu2J

2~JD2g!e2 iu2J
Ce2iun0, ~29!

and

f̃ ~u!5 f̃ ~2u!,

f̃ ~u!5eiuN@2~JD2g!e2 iu2J#2. ~30!

Equation~30! is an 2Nth order equation for exp(iu). Its
analysis is completely analogous to that of Eq.~23!. The
rootsu50,p are spurious, and the rootsu of opposite signs
describe one and the same wave function. Therefore Eq.~30!
hasN21 physically distinct rootsu. Realu ’s correspond to
extended states. Complex roots appear for 2uJD2gu.J.
These roots,uLDP

(s) , describe localized states. In the limit of
long chain,N→`, the imaginary part of one of them is

Im uLDP
(s) 5 lnu2~JD2g!/Ju, ~31!

whereas the other root has just opposite sign.
The wave function of the localized state is maximal eith

on sites (n011,n012) or (n022,n021) and exponentially
decays into the chain. ForJD2g,0 this decay is accompa
nied by oscillations, ReuLDP

(s) 5p. The energy of the local-
ized state is

l-
P

s-

er,

l-
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ELDP
(s) 52«11JD1

~J/2!2

JD2g
. ~32!

The localized state@Eqs. ~27! and ~31!# is a ‘‘surface-
type’’ state induced by the defect. It is the resonant-reg
analog of the localized next-to-the-defect state discusse
Sec. III B 3. The wave function of the latter state@Eqs.~22!
and~25!# was a linear combination of the wave functions
bound pairs. In contrast, the state given by Eqs.~27! and~31!
is a combination of the wave functions of the bound p
located next to the defect and a localized-delocalized pa

The evolution of the surface-type state is controlled by
difference between the excess energies of binding two e
tations in a pair or localizing one of them on the defe
uJD2gu. As uJD2gu varies, the state changes in the follow
ing way. It first splits off the BP band whenuJD2gu be-
comes less thang, see Fig. 2. Its energy moves away fro
the band of extended BP states with decreasinguJD2gu and
the localization length decreases@cf. Eq. ~25!#. Well before
uJD2gu becomes of orderJ, the state becomes strongly lo
calized on the sites (n011,n012) or (n022,n021).

In the region uJD2gu;J the localized state become
stronger hybridized with LDP states than with extended
states. This hybridization occurs in first order inJ, via a
transition (n011,n012)→(n0 ,n012) @or (n022,n021)
→(n022,n0)]. In this region the localization length in
creases with decreasinguJD2gu, cf. Eq.~31!. Ultimately, for
uJD2gu5J/2 the localized surface-type state disappears
seen in Fig. 3. The evolution of the energy of the localiz
state withJD2g is shown in Fig. 3.

The crossover from hybridization of the localized surfac
type BP state with extended BP states to that with LDP st
occurs in the regionugu@uJD2gu@uJu. It is described using
a different approach in Ref. 20. We note that the express
for the energy of the localized states~26! and ~32! go over
into each other foruJD2gu!ugu.

B. Decoupling of bound pairs and LDP’s in the resonant
region

We are now in a position to consider resonant coupl
between extended states of bound pairs and localiz

FIG. 3. The energy difference between the localized BP s
and the LDP band,«LDP5(ELDP

(s) 22«12g)/(J/2), vs the energy
mismatch 2(JD2g)/J. In the region between the dot-dashed lin
the BP state is delocalized. The results refer to the case wher
BP and LDP bands are close to each other or overlap, as sketch
the inset~the BP band is above the LDP band forJD.g). The
dashed line in the inset shows where the energy level of the lo
ized BP state is located with respect to the bands.
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delocalized pairs. To lowest order inD21, a BP on sites
(n,n11) far away from the defect can resonantly hop on
to the nearest pair of sites, see Eqs.~15! and ~16!. As noted
before, the hopping requires an intermediate virtual tran
tion of the BP into a dissociated state, which differs in ene
by JD.

A different situation occurs for the BP on the sites (n0
12,n013) @or (n023,n022)]. Such BP can hop onto th
sites (n011,n012) and (n013,n014), as described by Eq
~16!. But in addition, foruJD2gu&J it can make a transition
into the LDP state on sites (n0 ,n013) @or (n023,n0)]. In-
deed, such state has the energy'2«11g, which is close to
the BP energy'2«11JD.

The transition (n012,n013)→(n0 ,n013) goes through
the intermediate dissociated state (n011,n013), which dif-
fers in energy by'JD. It can be taken into account b
adding the termdH̃ (t) to the BP hopping Hamiltonian~16!
for the sites (n012,n013),

dH̃ (t)a~n012,n013!5~J/4D!a~n0 ,n013!. ~33!

Extended BP states are connected to LDP states
through a BP on the sites (n012,n013). We are now in a
position to analyze this connection. From Eqs.~16! and~33!,
we see that

@H̃ (t)1dH̃ (t)#a~n012,n013!

5~J/4D!@a~n0 ,n013!1a~n011,n012!#1A, ~34!

where A is a linear combination of the amplitudesa(n0
12,n013) anda(n013,n014).

The suma(n0 ,n013)1a(n011,n012) in Eq. ~34! can
be expressed in terms of the LDP wave functions~27!. With
account taken of the interrelation~29! between the coeffi-
cientsC,C8 in Eq. ~27!, we have

a~n011,n012!1a~n0 ,n013!

}C sinu cosu@JD2g2J cosu#. ~35!

Equations~34! and ~35! describe the coupling between th
BP on the sites (n012,n013) and the LDP eigenstates wit
given u.

An important conclusion can now be drawn regarding
behavior of BP and LDP states in the resonant region. T
center of the BP band lies at 2«11JD1(J/2D) ~14!, and the
BP band is parametrically narrower than the LDP band 2«1
1g1J cosu ~19!. When the BP band is inside the LDP ban
this means that, for an appropriate wave numberu of the
LDP magnon,JD5g1J cosu, to zeroth order inD21 ~this
is the approximation used to obtain the LDP dispersion la!.
It follows from Eqs.~34! and~35! that, for suchJD2g and
u there is no coupling between the LDP and extended
states.

The above result means that LDP and extended BP st
do not experience resonant scattering into each other, e
though it is allowed by the energy-conservation law. Su
scattering would correspond to the scattering of a mag

te

the
in

l-
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off the excitation localized on the defect, with both of the
becoming a bound pair that moves away from the defect
an inverse process.

Physically, the antiresonant decoupling of BP and L
states is a result of strong mixing of a BP on the sitesn0
11,n012) and LDP’s. Because of the mixing, the amp
tudes of transitions of extended BP states to the sitesn0
11,n012) and (n0 ,n013) compensate each other, to low
est order inD21.

To illustrate the antiresonant decoupling we show in F
4 two types of time evolution of excitation pairs. In bo
cases the initial state of the system was chosen as a pa
the sites (n011,n012), i.e., a(n011,n012)51 for t50.
The time-dependent Schro¨dinger equation was then solve
with the boundary condition that corresponds to a clo
chain.

The solid lines refer to the case of nonoverlapping BP a
LDP bands,uJu!ug2JDu andugu,uJDu/2. In this case there
does not emerge a localized surface-type BP state next to
defect. Therefore an excitation pair placed initially on t
sites (n011,n012) resonantly transforms into extended B
states and propagates through the chain. This propagati
seen from the figure as oscillations of the return probabi
and the probability to find the BP on another arbitrarily ch
sen pair of neighboring sites (n012,n013). The oscillation
rate should be small, of the order of the bandwidthJ/D. This
estimate agrees with the numerical data. It is seen that the
state is not transformed into LDP states. The amplitude
LDP states on sites (n0 ,m>n012) remains extremely
small, as illustrated form5n012.

FIG. 4. Time evolution of a two-excitation wave packet in
XXZ chain with a defect;ua(n,m)u2 is the occupation of sites
(n,m). Initially an excitation pair is placed next to the defect o
sites (n011,n012). The solid and dashed lines refer to the ca
where the BP and LDP bands are, respectively, far away from e
other (g5JD/4) and overlapping (g5JD). In the first case a bound
pair slowly oscillates between neighboring sites (n,n11) and does
not dissociate@a(n0 ,n012) remains very small#. In the case of
overlapping bands, the pair at (n011,n012) is hybridized with
LDP’s, but practically does not mix with bound pairs on other si
@a(n012,n013) remains very small#. The results refer to a ten-sit
closed chain withD510.
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The dotted lines in Fig. 4 show a completely differe
picture which arises when the BP band is inside the L
band. In this case an excitation pair placed initially on (n0
11,n012) hybridizes with LDP rather than BP states.
transformation of the pair (n011,n012) into LDP’s with
increasing time is clearly seen. The period of oscillations
of the order of the reciprocal bandwidth of the LDP’s,J21, it
is much shorter than in the previous case. Remarkably,
consequence of the antiresonance, extended states of b
pairs are not excited to any appreciable extent, as seen
the amplitude of the pair on the sites (n012,n013).

V. CONCLUSIONS

We have analyzed the dynamics of a disordered spin ch
with a strongly anisotropic coupling in a magnetic field.
defect in such a chain can lead to several localized sta
depending on the number of excitations. This is a con
quence of the interaction between excitations and its in
play with the disorder. We have studied chains with one a
two excitations.

The major results refer to the case of two excitatio
Here, the physics is determined by the interrelation betw
the excess on-site energy of the defectg and the anisotropic
part of the exchange couplingJD. Strong anisotropy leads to
binding of excitations into nearest-neighbor pairs that fre
propagate in an ideal chain. Because of the defect, BP’s
localize. A simple type of a localized BP is a pair with one
the excitations located on a defect. A less obvious locali
state corresponds to a pair localized next to a defect. It
minds of a surface state split off from the band of extend
BP states, with the surface being the defect site. We spec
the conditions where the localization occurs and found
characteristics of the localized states.

Our most unexpected observation is the antiresonant
coupling of extended BP states from localized-delocaliz
pairs. The LDP’s are formed by one excitation on the def
site and another in an extended state. The antiresonanc
curs for g'JD, when the BP and LDP bands overlap.
results from destructive quantum interference of the am
tudes of transitions of BP’s into two types of resonant tw
excitation states: one is an LDP, and the other is an excita
pair on the sites next to the defect. As a result of the a
resonant decoupling, extended BP’s and LDP’s do not sca
into each other, even though the scattering is allowed
energy conservation. This means that an excitation locali
on the defect does not delocalize as a result of coupling
other excitations.

The occurrence of multiple localized states in the pr
ence of other excitations is important for quantum comp
ing. It shows that, even where the interaction between
qubits is ‘‘on’’ all the time, we may still have well-defined
states of individual qubits that can be addressed and c
trolled. One can prepare entangled localized pairs of exc
tions, as we discussed in Sec. III B 2, or more complica
entangled excitation complexes. The results of the paper
provide an example of new many-body effects that can
studied using quantum computers with individually co
trolled qubit transition energies.
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APPENDIX: ONE EXCITATION

In an infinite spin chain in a magnetic field, the anisotro
of the spin-spin interaction does not affect the spectrum
wave functions of one excitation. The matrix element of t
term (nsn

zsn11
z in the Hamiltonian~1! is just a constant.

However, the situation becomes different for a chain of fin
length, because the coupling anisotropy can lead to sur
states. In the case of two excitations, analogs of surface-
states emerge near defects in an infinite chain, as discu
in Sec. III. Here, for completeness and keeping in mind
reader with the background in quantum computing,
briefly outline the results of the standard analysis of a fin
length spin chain with one excitation.

1. Localized surface and defect-induced states in an open
chain

The Schro¨dinger equation for an excitation in an ope
chain has the form~5!, and its solutiona(n) to the left and to
the right from the defect can be written in the form of
superposition of counterpropagating plane waves, Eq.~6!.
The relation between the amplitudes of these waves (Cl ,r8 and
Cl ,r) follows from the boundary conditionsa(0)5a(N
11)50. By substituting Eq.~6! into Eq. ~5! with n51 and
n5N, we obtain

Cl852DCl , Cr852D21e2iu(N11)Cr ,

D5@12D exp~ iu!#/@12D exp~2 iu!#. ~A1!

The relations betweenCl ,r8 , Cl ,r , and the amplitude of the
wave function on the defect sitea(n0) follow from Eqs.~5!
and ~6! for n5n061,

a~n0!5Cle
iun0@12De22iun0#

5Cre
iun0@12D21e2iu(N112n0)#. ~A2!

With Eqs. ~A1! and ~A2!, all coefficients in the wave func
tion ~6! are expressed in terms of one number,a(n0). It can
be obtained from normalization.

In a finite chain, the values ofu are quantized. They ca
be found from Eq.~5! with n5n0. With account taken of Eq
~A2!, this equation can be written as

f N~u!2D2f N~2u!52~ ig/J sinu!@ f N~u!1D2f N~2u!

22D cosu~N22n011!#, ~A3!

where

f N~u!5exp@ iu~N11!#. ~A4!

The analysis of the roots of Eq.~A3! is standard. This is a
2(N11)-order equation for exp(iu), but its solutions foru
come in pairsu and2u. Each pair gives one wave function
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as seen from Eq.~6!. In addition, Eq. ~A3! has rootsu
50,p; they are spurious~unlessuDu51 andg50) and ap-
pear as a result of algebraic transformations. Therefore
~A3! hasN physically distinct roots, as expected for a cha
of N spins. We note that, forg50 the position of the impu-
rity n0 drops out from Eq.~A3!, and then the equation goe
over into the result for an ideal chain.

Solutions of Eq.~A3! with real u correspond, in the cas
of a long chain, to delocalized magnon-type excitatio
propagating in the chain. Their bandwidth is 2uJu.

Along with delocalized states, Eq.~A3! describes also lo-
calized states with complexu. Complex roots of Eq.~A3!
can be found for a long chain, whereuIm uu(N
2n0),uIm uun0@1. They describe surface states, which a
localized on the chain boundaries, and a state localized
the defect. The localization length of the states is given
u1/Im uu.

The surface states arise only for the anisotropy param
uDu.1. The corresponding values ofu are

us56 i lnuDu1pQ~2D!. ~A5!

Here, the signs1 and2 refer to the states localized on th
left and right boundaries, respectively, andQ(x) is the step
function.

From Eq.~8!, the energy of the surface state is

Es5«11J~D211!/2D. ~A6!

It lies outside the energy band of delocalized excitations.
note that, forD.1 the surface states decay monotonica
with the distance from the boundary (Reu50). For suffi-
ciently large negativeD, on the other hand, the decay of th
wave function is accompanied by oscillations, anda(n)
changes sign from site to site.

A defect in a long chain gives rise to a localized one-s
excitation for an arbitrary excess energyg.18 The amplitude
a(n) decays away from the defect as

a~n!5a~n0!exp~ iudun2n0u!,

ud5 i sinh21~ ug/Ju!1pQ~2g/J!. ~A7!

The energy of the localized state is

Ed5«11~g21J2!1/2sgng. ~A8!

For smallug/Ju, we have Imud'ug/Ju, i.e., the reciprocal
localization length is simply proportional to the defect exce
energyugu. In the opposite case of largeug/Ju we have Im
ud5 lnu2g/Ju. In this case the amplitude of the localized sta
rapidly falls off with the distance from the defect,a(n)
}(2ug/Ju)2un2n0u.

If the localization length is comparable to the cha
length, the notion of localization is not well defined. How
ever, when discussing numerical results, one can form
call a state localized if its wave function exponentially d
cays away from the defect and is described by a solution
Eq. ~A3! with complexu. This is equivalent to the statemen
that the state energyEd lies outside the band of magnons
the infinite chain. In an open finite chain such localized st
0-10
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may emerge provided the localization length is smaller th
the distance from the defect to the boundaries. This me
that the defect excess energyugu should exceed a minima
value that depends on the size of the chain. The compar
of Eq. ~A7! with the numerical solutions of the full equatio
~A3! for a finite chain is shown in Fig. 5.

2. One-excitation states in a closed chain

As pointed out in Sec. II, for a closed chain the solution
the Schro¨dinger equation can be also sought in the form
counterpropagating waves with different amplitudes, Eq.~7!.
Clearly, the phasesu and 2u describe one and the sam
wave function. The one-excitation energyE1 is given by Eq.
~8!.

The interrelation between the amplitudes of the wa
C,C8 in Eq. ~7! and the amplitude of the wave function o
the defect sitea(n0) can be obtained from Eq.~5! with n
5n061. This equation has two solutions,

eiuN51, a~n0!5Ceiun01C8e2 iun0, ~A9!

and

a~n0!5Ceiun0~11eiuN!

5C8e2 iun0~11e2 iuN! @exp~ iuN!Þ1#.

~A10!

*Electronic address: santos@pa.msu.edu
†Electronic address: dykman@pa.msu.edu
1M.A. Nielsen and I.L. Chuang,Quantum Computation and Quan

tum Information ~Cambridge University Press, Cambridg
2000!.

2Y. Makhlin, G. Scho¨n, and A. Shnirman, Rev. Mod. Phys.73, 357

FIG. 5. The reciprocal localization length Imud for an infinite
chain @Eq. ~A7!# as a function of the defect excess energyg for J
51 ~solid line!. Also shown are the results for an open chain w
the number of sitesN56 and 12 andn05N/2 ~stars and crosses
respectively! and a closed chain with 6 and 12 sites~circles and
squares, respectively!. They are obtained from Eq.~A3! with D
510 and from Eq.~A11!. In an open chain, solutions with nonze
Im ud emerge starting with a certainug/Ju.ug/Jumin . In a closed
chain with evenN there is no threshold inug/Ju for the onset of
states with ImudÞ0.
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In order to fully determine the wave functiona(n) @Eq. ~7!#,
Eqs. ~A9! and ~A10! should be substituted into the Schr¨-
dinger equation~5! for n5n0.

Equations~5! and ~A9! can be satisfied provided that e
ther g50, which means that there is no defect, ora(n0)
50. The first condition describes excitations in an ide
closed chain and is not interesting for the present paper.
condition a(n0)50 corresponds to the wave functiona(n)
}sinu(n2n0), which has a simple physical meaning. It is
standing wave in an ideal chain with a node at the location
a defect. Because of the node, the corresponding state ‘‘d
not know’’ about the defect, and therefore it is exactly t
same as in an ideal chain.

In the presence of a defect, the solutions of Eq.~A9! in
the range of interest 0,u,p are u52pk/N with k
51,2, . . . ,(N21)/2 for odd N, or k51,2, . . . ,N/221 for
evenN.

The equation foru that follows from Eqs.~5! and ~A10!
has the form

exp~ iuN!2152
ig

J sinu
@exp~ iuN!11#. ~A11!

For gÞ0 this equation has either (N11)/2 ~for odd N) or
N/211 ~for evenN) solutions for6u. Therefore the total
number of solutions foru that follow from Eqs.~A9! and
~A11! is N, as expected.

By rewriting Eq. ~A11! as tan(uN/2)52(g/J sinu) and
plotting the left- and right-hand sides as functions ofu ~cf.
Ref. 18!, one can see that all physically distinct roots of th
equation but one are real and lie in the interval 0,u,p
@except for one case, see below#. Such solutions describe
delocalized states with sinusoidal wave functions.

The complex root of Eq.~A11!, u5ud , describes a state
localized on the defect. For a long chain, ImudN@1, the
solution has the form~A7!, as expected. An interesting situ
ation occurs for a shorter chain. IfN is even or ifg/J.0, a
localized solution with complexud emerges for any defec
excess energyg. Thresholdless localization does not happ
in an open chain. In a closed chain, it arises because the
no reflection from boundaries. For small positiveg/J one
obtains the complex solution of Eq.~A11! in the form ud
' i (2g/NJ)1/2. The square-root dependence of Imud on g is
seen from Fig. 5.

Equation~A11! has a complex solution also for evenN
and small negativeg/J. In this caseud' i (22g/NJ)1/2

1p, i.e., the decay of the wave functiona(n) is accompa-
nied by sign flips,a(n11)/a(n),0. Such oscillations can
not be reconciled with the periodicity condition for oddN.
Therefore, for oddN and negativeg/J a decaying solution
arises only when2g/J exceeds a threshold value. One c
show from Eq.~A11! that this value isug/Jumin52/N, which
has also been confirmed numerically.
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