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Two-particle localization and antiresonance in disordered spin and qubit chains
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We show that, in a system with defects, two-particle states may experience destructive quantum interference,
or antiresonance. It prevents an excitation localized on a defect from decaying even where the decay is allowed
by energy conservation. The system studied is a qubit chain or an equivalent spin chain with an anisotropic
(XX2) exchange coupling in a magnetic field. The chain has a defect with an excess on-site energy. It
corresponds to a qubit with the level spacing different from other qubits. We show that, because of the
interaction between excitations, a single defect may lead to multiple localized states. The energy spectra and
localization lengths are found for two-excitation states. The localization of excitations facilitates the operation
of a quantum computer. Analytical results for strongly anisotropic coupling are confirmed by numerical studies.
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[. INTRODUCTION the transition frequencies of different qubits are strongly dif-
ferent. Theno}o?, is the only part of the interaction that
One of the most important potential applications of quan-slowly oscillates in time, in the Heisenberg representation,
tum computergQC’s) is studies of quantum many-body ef- and therefore is not averaged out. If the qubit frequencies are
fects. It is particularly interesting to find new many-body close to each other, the term$o},+ o),oY, become smooth
effects in condensed-matter systems that could be easifgnctions of time as well. They lead to resonant excitation
simulated on a QC. In the present paper we discuss one suiopping between qubits. In a multiqubit system with close
effect: antiresonance or destructive quantum interference béequencies, both Ising arklY interactions are present in the
tween two-particle excitations in a system with defects. Wegeneral case, but their strengths may be diffet&htin this
also study interaction-induced two-particle localization on as€nse theXXZ coupling is most general, at least for qubits
defect and discuss implications of the results for quantunyith high transition frequencies. . _
computing. _ The interqubit interaction _often rapidly falls off ywth the
The basic elements of a QC, qubits, are two-state systemg!stance and can be approximated by nearest-neighbor cou-
They are naturally modeled by spin-1/2 particles. In manypl_mg. Many important results on anisotropic spin systems

suggested realizations of QC’s, the qubit-qubit interaction ié’v'th suc;h coupling have peen obtained using the Beth_e an-
“on” all the, time.* In terms of spins, it corresponds to ex- satz. Initially the emphasis was placed on systems without

2 . .
change interaction. The dynamics of such QC’s and spin sysd-efeCté or with defects on the edge of a spin chafiMore

. i ; o recently these studies have been extended to systems with
tems in solids have many important similar aspects that Caofects that are described by integrable Hamiltont4ns.
be studied together.

d s th diff b hHowever, the problem of a spin chain with several coupled
In most proposed QC's the energy difference between thg, qiations and with defects of a general type has not been

qubit states is large compared to the qubit-qubit interactiongqyeq.

This corresponds to a system of spins in a strong external |, thjs paper we investigate interacting excitations in an
magnetic field. However, in contrast to ideal spin systemsgpisotropic spin system with defects. We show that the exci-
level spacings of different qubits can be different. A majoriaiion |ocalized on a defect does not decay even where the
advantageous feature of QC's is that the qubit energies cafecay is allowed by energy conservation. We also find that,
be often individually cont_rollea.‘ This corresponds to con- iy aqdition to a single-particle excitation, a defect leads to
trollable disorder of a spin system, and it allows one to Usgne onset of two types of localized two-particle excitations.
QC’s for studying a fundamentally important problem of e analysis is done for a system with & Z coupling.
how the spin-spin interaction affects spin dynamics in therpe coupling anisotropy is assumed to be strong, as in the

presence of disorder. , _ o _ . case of a QC based on electrons on helium, for exafhple.
Several models of QC’s where the interqubit interaction iste ground state of the system corresponds to all spins

permanently “on” are currently studied. In these models thepointing in the same directiotdownwards, for concrete-

effective spin-spin interaction is usually strongly anisotropic.nes3_ A single-particle excitation corresponds to one qubit

It varies from the essentially Ising couplingor, in nuclear  peing excited, or one spin being flipped. If the qubit energies

magnetic resonance and some other systefr®,m enu-  are tuned in resonance with each other, a QC behaves as an

merate qubits, andis the direction of the magnetic figlto  jdeal spin system with no disorder. A single-particle excita-

the XY-type (i.e., opop,+oyoh) or the XXZtype (i.e.,  tion is then magnon-type, it freely propagates through the

Apmotot+ohon+olol) coupling in some Josephson- system.

junction-based systends. In the opposite case where the qubit energies are tuned far
The Ising coupling describes the system in the case wheraway from each othefas for diagonal disorder in tight-
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binding modely all single-particle excitations are localized.
If the excitation density is high, the interaction between them

PHYSICAL REVIEW B 68, 214410(2003

One excitation

Two excitations

may affect their localization, leading to quantum chaos, cf. 32 A pa—doublet
Refs. 10 and 15-17. Understanding the interplay between
interaction and disorder is a prerequisite for building a QC. | localized BP__
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We will consider the case where the excitation density is low,
yet the interaction is important. In particular, excitations may
form bound pairgbut the pair density is small

One of the important questions is whether the interaction
leads to delocalization of excitations. More specifically, con-
sider an excitation, which is localized on a defect in the
absence of other excitations. We now create an extended —— two magnons
magnon-type excitatiorfa propagating waye that can be %
scattered off the localized one. The problem is whether this & Wl” 2, %/////% |“‘j
will cause the excitation to move away from the defect. We )
show below that, due to unexpected destructive quantum in- FIG. 1. Left panel: the one-excitation energy spectrum in an
terference, the scattering does not lead to delocalization. infinite spin chain with a defect. The energies of extended states
(magnong form a band of width] centered at,. The dashed line
indicates the energy of the excitation localized on the defect. Right

. . . . . panel: the two-excitation energy spectrum. The bang,; 2(Q) is
We consider a one-dimensional array of qubits whichy peq by uncoupled magnons. The band centeredeat+2 is

models a spin-1/2 chain. For nearest-neighbor coupling, thgmed by localized-delocalized paifsDP’s) in which one excita-
Hamiltonian is tion is localized on the defect and the other is in an extended state.
The narrow band centered at2+JA is formed by propagating

extended BP 1

localized
excitation

g4g F——————————-

0, 2

LDP

A. Model and preview

1 1 o . ) o )
H=_ (MgZ4— Jioho bound pairgdBP’s) of excitations. The dashed lines show the ener-
2 ; & 79Ty ; i:;y,z i1Tnn+ 1 gies of the states where both excitations are bound to the defect.
Joo=3.=3  J.=IJA (1) two-excitation states with one excitation localized on the de-

XX yy ’ zz .

fect and the other being in an extended state. We call them
localized-delocalized pairéLDP’s). An interplay between

disorder and interaction may lead to new types of states
where both excitations are localized near the defect. Their
energies are shown in the right panel of Fig. 1 by dashed

Here, o}, are the Pauli matrices arit=1. The parameted
characterizes the strength of the exchange couplingand
determines the coupling anisotropy. We assume tAdt
> 1, for a QC based on electrons on heliya| lies between
20 and 8, for typical parameter valugs. lines.

We will consider effects due to a single defect. Respec- A localized one-spin excitation cannot decay by emitting
tively, all on-site spin-flip energies™ are assumed to be the a magnon, by energy conservation. But it might experience
same except for the site=n, where the defect is located, an induced decay when a magnon is inelastically scattered
that is, off the excited defect into an extended many-spin state.
Magnon-induced decay is allowed by energy conservation
when the total energy of the localized one-spin excitation
and the magnon coincides with the energy of another two-

In order to formulate the problem of interaction-induced particle state. In th&XXZ model the total number of excita-
decay of localized excitations, we preview in Figa part of  tions(flipped sping is conserved, and therefore decay is only
the results on the energy spectrum of the system. In the alpossible into extended states of two bound magnons. In other
sence of the defect, the energies of single-spin excitationgords, it may only happen when the LDP band overlaps with
(magnonslie within the bande; =J, wheres;=¢—JA (the  the BP band in Fig. 1.
energy is counted off from the ground-state engrghhe Decay into BP states may occur directly or via the two-
defect has a spin-flip energy that differs gya qubit with a  excitation state located next to the defect. The amplitudes of
transition frequency different from that of other qubit¥  the corresponding transitions turn out to be nearly equal and
leads to a localized single-spin excitation with no thresholdopposite in sign. As a result of this quantum interference,
in g, for an infinite chain. The energy of the localized state iseven though the band of bound magnons is narrow and has
shown by a dashed line on the left panel of Fig. 1. high density of states, the LDP to BP scattering does not

We now discuss excitations that correspond to two flippechappen, i.e., the excitation on the defect is not delocalized.
spins. A defect-freéXXZ system has a two-magnon band of The BP to LDP scattering does not happen either, i.e., a
independently propagating noninteracting magnons. Howlocalized excitation is not created as a result of BP decay.
ever, the anisotropy of the exchange coupling leads also to In Sec. Il below and in the Appendix we briefly analyze
the onset of bound pai®P’s) of excitations. The BP band |ocalization of one excitation in a finite chain with a defect,
is much narrower than the two-magnon band and is separatedr different boundary conditions. In Sec. Il we discuss the
from it by a comparatively large energy differend&, see two-excitation states localized near a defect. In Sec. IV we
the right panel of Fig. 1. In the presence of a defect, there areonsider the resonant situation where the energy band of ex-

S(n)=8+g(3n’n0. (2
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tended bound-pair states is within the band of energies of the N
flipped defect spin plus a magnon, i.e., where the BP band = Z a(n)¢(n), 4
overlaps with the LDP band in Fig. 1. We find that the local- n=1

ized excitation remains on the defect site in this case. Ana- h q h . itebei d
lytical results for a chain with strong anisotrojy| are com- W” er(;:]qb(n) _corrgspon ds ot ehspln__(t)jn SMELEIng up a][]
pared with numerical calculations. Section V contains®/l Other spins being down. The Scmger equation for

concluding remarks. a(n) has the form

JA JA J
Il. ONE EXCITATION: LOCALIZED AND EXTENDED €1t 9% n,t 5 Onat 5 dnnja(n)+5la(n—1)
STATES

In order to set the scene for the analysis of the two- +an+t1)]=E.an), ®)

Sécétzistgo?hgaszlll-nkrgglsr?i?soenoinc?nlg ;hig)t%gndg dWse %”eﬂywheresl:s—JA is the energy of a flipped spin in an ideal
d uXXZ W hai w ith a defeld dxt;I :pp b P! d infinite chain in the absence of excitation hopping &nds

N anAAZ spin chain with a detec’ and the role of bound- - o oha_eycitation energy eigenvalue. For an opkspin
ary conditions. The Hamiltonian of the chain with the defect hai 8(0)=a(N+1)=0 in Eq.(5

n site ng has the form(1) and (2). We assume that the chain we se(0)=a( )=0in Eq.(5).
on site No ' . The Hamiltonian of a closedll-spin chain has the form
excitation energy largely exceeds both the coupling con-

. . (1), where both sums ovar go from 1 toN and the siteN
stant|J| and the energy excess on the defect gte In this .+ 1 coincides with the site 1. Here, the defect locatign

. . , . ) . ®n be chosen arbitrarily. The wave function can be sought in
being parallel, with(om)=—1 irrespective of the signs of 4 torm(4). The Schidinger equation then has the for8),

J.9, gndA. . o except that there are no terms proportionabtq, 6, \ from
Without a defect, one-spin excitations are magnons. Theyha ang points of the chain. It has to be solved with the
freely propagate throughout the chain. The term in theooundary conditiora(n+N)=a(n).

H%;niltonia%g (1) -responsible for one-excitation hopping is For an open chain, the solution of the Safirger equa-
HY=2Hy", with tion (5) can be sought in the form of plane waves propagat-
ing between the chain boundaries and the defect,

| =

t _1 i — | r . .
Hg)__‘]i;w onon = g IR+ ), a(n)=C, ,e™M+C/ e " |n—nyl=1. (6)
The subscript$ andr refer to the coefficients for the waves
=tV =0n. 10, - (3  to the left (1<<ny) and to the right 1>n,) from the defect.
The interrelations between these coefficients and the coeffi-
The operators{” andt{’ cause excitation shifta—n+1  cienta(ny) follow from the boundary conditions and from
andn+1—n, respectively. matching the solutions aty. They are given by EqqAl)
A defect leads to magnon scattering and to the onset oknd(A2).
localized states. Both propagation of excitations and their For a closed chain, on the other hand, the solution can be
localization are interesting for quantum computing. Coherengought in the form
excitation transitions allow one to have a QC geometry

where remote “working” qubits are connected by chains of a(n)=Ce™+C’e ' ny<n=N,
“auxiliary” qubits, which form “transmission lines™ Local-
ization, on the other hand, allows one to perform single-qubit a(n)=Ce’M+N 4 Ccre=it+N)  1<p<n,. @

operations on targeted qubit.

A QC makes it possible to model spin chains with differ- . .
ent boundary conditions. The simplest models are an open Th? e_nergyEl as a funpt|on of¢ can be obtained by
spin chain with free boundaries, which is mimicked by aSUbSt'tu“ng Eq$(6) .and(7) into Eq. (5). Both for the open
finite-length array of qubitgfor electrons on helium, it can and closed chains it has the form
be implemented using an array of equally spaced electrodes,
cf. Ref. 19 or a periodic chain, which can be mimicked by a Ei1=¢,+Jcosé. 8
ring of qubits.

An openN-spin chain is described by the Hamiltonig), The eigenfunction$6) and (7) with real 6 correspond to
where the first sum runs over=1, ... N and the second sinusoidal wavegextended stat¢sFrom Eq.(8), their ener-
sum runs oven=1, ... N—1 (the edge spins have neigh- gies lie within the band:;*J. In contrast, localized states
bors only inside the chajnin what follows, we count energy have complexd, and their energies lie outside this band. The
off the ground-state energy Eq=—(Ne+g)/2+(N corresponding solutions for both types of chains are dis-

—1)JA/4, i.e., we replace in Eq1) H—H—E,. cussed in the Appendix. In a sufficiently long chain, there is
The eigenfunctions dofl in the case of one excitation can always one localized one-excitation state on a defect. Its en-
be written a&? ergy is given by Eq(A8). In the case of an open chain with
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the coupling anisotropy parametgs|>1, there are also lo- C 1—2Ae 1+ i1+ 62)
calized states on the chain boundaries. Their energy is given —=— . . . (13
by Eq. (A6). C'  1-2Ae'%2+¢!(P1t02)
With account taken of normalization, Eq41) and(13) fully
. TWO EXCITATIONS: UNBOUND, BOUND, AND determine the wave function. The states with g form a
LOCALIZED STATES two-magnon band with width|d|, as seen from the disper-

. L . . . sion relation(12). The magnons are not bound to each other
A spin chain with a defect displays rich behavior in the and propagate independently.

presence of two excitations. It is determined by the interplay Lo .
between disorder and interexcitation coupling. Solutions of . For |A|>1, Eq. (13 also*hasl a SOIUUQN:_O’ Wh'C.h
the two-excitation problem have been obtained in the case §fV€S @ complex phasé,=6y =36 ~ix with «=>0. This
a disorder potential of several special types, where the sy§-0|u“9n corresponds  to the wave functioa(n,m)
tem is integrablé? Here we will study the presumably non- *€XHion+m)/2—«(m—n)]; we havem>n. From Egs.
integrable but physically interesting problem where the on-(ll)_(l3) we obtain
site energy of the defect differs from that of the host sites. 3

The system is described by the Hamiltonid. In order e *=A"1cog0/2), Egp=EL+-—cosb,
to concentrate on the effects of disorder rather than bound- 2A
aries, we will consider a closed chain of lendth We will
also assume that the anisotropy is strodg>1.

The wave function of a chain with two excitations is
given by a linear superposition

EQ)= 261+ A+ (14)
BPT 481 oA

Equation(14) describes a bound pair of excitations. Such
a pair can freely propagate along the chain. The wave func-
lﬁz:nzm a(n,m)¢(n,m), (9 tion is maximal when the excitations are on neighboring
sites. The size of the BP, i.e., the typical distance between the
where ¢(n,m) is the state where spins on the siteandm  excitations, is determined by the reciprocal decrement,
are pointing upward, whereas all other spins are pointingnd ultimately by the anisotropy parameterFor large|A|,
downward. In a periodic chain, the sites with numbers thathe excitations in a BP are nearly completely bound to near-
differ by N are identical, therefore we hava(n,m)  est sites. Then the coefficieragn,m)« &, 1y, to the low-

=a(m,n+N). est order inA| L.
From Eq. (1), the Schrdinger equation for the coeffi- The distance between the centers of the BP band and the
cientsa(n,m) is two-magnon bamE(BO,%— 2¢ is given approximately by the
BP binding energydA. The width of the BP bandl/A| is
(281+90n n,+90mn, +IA S ns1)a(n,m) parametrically smaller than the width of the two-magnon

band 4J|, see Fig. 1.

For nearest-neighbor coupling and for lafge, transport
of bound pairs can be visualized as occurring via an interme-
diate step. First, one of the excitations in the pair makes a
X(1=6mn+1)Ta(n,m+1)]=Exa(n,m). (10  virtual transition to the neighboring empty site, and as a re-
sult the parallel spins in the pair are separated by one site.
The corresponding state differs in energy & from the
bound-pair state. At the next step the second spin can move
next to the first, and then the whole pair moves by one site.
From perturbation theory, the bandwidth should JJ¢JA

A. An ideal chain =J/A, which agrees with Eq.14).

In the absence of a defect the system is integrable. The The above arguments can be made quantitative by intro-

solution of Eq.(10) can be found using the Bethe ansttz, ducing an effective Hamiltoniall®=3N_ HY of BP's. It
is obtained from the Hamiltoniad () (3) in the second order
a(n,m)=Ce/(f1n+%m 4 C’el(f2n+01m) (11)  of perturbation theory in the one-excitation hopping constant

+ %J[a(n—l,m)+[a(n+ 1m)+a(n,m—1)]

Here, E, is the energy of a two-excitation stafe,;=¢
—JA is the on-site one-excitation energy, cf. E§)]. As
before, we assume that the defect is located onmgjte

The energy of the state with give#,, 6, is obtained by
substituting Eq(11) into Eq.(10) written form>n+1. This  _ J J
gives A =Tt 0]+ e+,
(15
E,=2¢g,+J(c0sH;+cosb,). (12
The operators{" of excitation hopping to the right or left

By requiring that the ansatll) applies also fom=n are given by Eq(3). The first pair of terms irﬁ“-lff) [Eq.(195)]
+1, we obtain an interrelation between the coefficie@ts describes virtual transitions in which a BP dissociates and
andC’, then recombines on the same site. This leads to a shift of the
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on-site energy level of the BP h}/2A. The second pair of tion are similar to what was used in the problem of one
terms describes the motion of a BP as a whole to the left oexcitation in an open chain.

to the right. From Eg.(10), the energy of an LDP is
The action of the Hamiltoniafl ) on the wave function
a(n,n+1) is given by E pp~2e;+g+Jcosh. (19
=0 J J The wave numbe# takes onN— 3 valuesmk/(N—2), with
H%a(n,n+1)=77a(nn+1)+ Haln+1n+2) k=1,... N—3. As expected, the bandwidth of the LDP is
2|J|, as in the case of one-excitation band in an ideal chain.
+a(n—1,n)]. (16) We have compared Edq19) with numerical results ob-

. . . tained by direct solution of the eigenvalue problé&tf). For
The Schrdinger equatlon foraBPis given by the sum of the - 100, A =20, g/J=10, we obtained excellent agreement
diagonal partthe first term of Eq. (10) with m=n+1 and  4nce we took into account that the energy levelld) are
the right-hand side of E¢16). In this approximation a BP  gitionally shifted byd2/2g. This shift can be readily ob-

eigenfunction i(n,m) = &, 1mexp(én), and the dispersion  (4ineq from Eq(10) as the second-order correctiéin J) to

law is of the form(14). the energyE4 of the excitation localized on the defect. It
follows also from EqJ(A8) for |g|>|J|.
B. Localized states in a chain with a defect We note that the result is trivially generalized to the case
We now consider excitations in the presence of a defecf a finite but small density of magnons. The wave function
In this section we assume that the defect excess ergigy ~@(No.M1,Mz, ... .My) of M uncoupled magnons and an ex-
such that citation on the siteng is given by a sum of the appropriately
weighted  permutations  of  exp{é;m*=id,m, . ..
lg|>13|, [IA—g|>|J]. (17) +i6ymy) over the site numbens; (these numbers can be

arranged so thatm;<-.-<m<ng<my,;<---<my),
The first inequality guarantees that the localization length ofyith real ¢,. The weighting factors for largkA| are found
an excitation on the defect is smdlits inverse Iméy  from the boundary conditions and the condition that
~In2|g/J>1, cf. Eq.(A7)]. a(ng,m;,m,, ...)=0 whenever any two numbens, ,m; , ;

The second condition in Eq17) can be understood by differ by 1. When the ratio of the number of excitatidvisto
noticing that, in a chain with a defect, there is a two-the chain lengttN is small, the energy is just a sum of the
excitation state where one excitation is localized on the deenergies of uncoupled magnons and the localized excitation,
fect where.as _the other is in an extended magnon-type statge it is M +1)81+g+\]2iM:j_COS(9i- For smallM/N, scat-
These excitations are not bound together. The energy of suGring of a magnon by the excitation on a defect occurs as if
an unbound localized-delocalized paltDP) should differ  there were no other magnons, i.e., the probability of a three-

from the energy of unbound pair of magnons sy, and  particle collision is negligibly small.
from the energy of a bound pair of magnofig) by ~JA

—g. In this section we consider the case where both these 2. Bound pairs localized on the defect: the doublet
energy differences largely exceed the magnon bandwidth
(the case wher¢JA —g|=|J| will be discussed in the fol-
lowing section.

For large|A|,|g/J|, a bound pair of neighboring excita-
tions should be strongly localized when one of the excita-
tions is on the defect site. Indeed, if we disregard intersite
1. Unbound localized-delocalized pairs (LDP's) excitation hopping, the energy of a BP sitting on the defect is
E®=2¢,+g+JA. It differs significantly from the energy
of freely propagating BP'$14), causing localization.

The major effect of the excitation hopping is that the pair
can make resonant transitions between the sitgsng+ 1)

In the neglect of excitation hopping, the energy of an
excitation pair where one excitation is far from the defect
(Jn—ng|>1) and the other is localized on the defect is
2e1+9. [This can be seen from E(LO) for the coefficients 54 1), Such transitions lead to splitting of the en-
a(n,m) in which off-diagonal terms are disregardpdit the g4y Jevel of the pair into a doublet. To second orded the

same time_, if one exci_tation is on_the defect and the other '%nergies of the resulting symmetric and antisymmetric states
on the neighboring siteng+ 1, this energy becomese2

+g+JA. The energy differencedA largely exceeds the are

characteristic bandwidtl. Therefore, if the excitation was 3(2JA+g) 32

initially far from the defect, it will be reflected before it ECI=®+ g + ] (20)
reaches the sitay+ 1. 4A(JA+g) 4(JA+9)

The above arguments suggest to seek the solution for the o ) )
wave function of an LDP in a periodic chain in the form  The energy splitting between the states is smallAfandg
have same sign. If on the other harjdA+g|=|J|, the

a(ng,m)=CeM4C’e 1M (18)  theory has to be modified. Here, the bound pairs with one
excitation localized on the defect are resonantly mixed with
with the boundary conditiona(ng,ng+1)=a(ng,ng+N extended unbound two-magnon states. We do not consider
—1)=0. This boundary condition and the form of the solu- this case in the present paper.
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We note that, in terms of quantum computing, the onset off herefore there arbl—2 physically distinct root®, as ex-
a doublet suggests a simple way of creating entangled statgsected for arN-spin chain with two excluded BP states lo-
Indeed, by applying ar pulse at frequency,;+g one can cated at (p,ng*x1).
selectively excite the qubity. If then a# pulse is applied at Depending on the rati@=J/(4A 6Egp)=(JA—Q)/q,
the frequencyE] — (e1+9), it will selectively excite a Bell  the rootsé are either all real or there is one or two pairs of
state[|01>+|10>]/\/§, wherelij) describes the state where complex roots with opposite signs. Real roots correspond to
the qubits on siteg,— 1 andny+1 are in the statel§) and extended states, whereas complex roots correspond to the
i), respectively. The excitations on siteg+1 can then be states that decay away from the defect. The onset of complex

separated without breaking their entanglement using twotoots can be analyzed in the same way as described in the

qubit gate operations. Appendix for one excitation. There is much similarity, for-
mally and physically, between the onset of localized BP
3. Localized states split off the bound-pair band states next to the defect and the onset of surface states at the

edge of an open chain.

i () _ ~
The energy differenc&, ’— Egp~g between BP states We rewrite Eq.(23) in the form

on the defect sitd20) and extended BP states largely ex-
ceeds the bandwidthl/A| of the extended states. Therefore
it is a good approximation to assume that the wave functions taf (N—1)]=
of extended BP states are equal to zero on the defect. In other

words, such BP's are reflectdmtforethey reach the defect. . lgl>1 all roots of Eq.(24) are real. At|q/=1 there

In this senf?r,] t??hdefe_ct acts fas at bounflziry for theTaO_ ccurs a bifurcation where two real roots with opposite signs
may expect that there is a surface-type state associated Wil o (3t 9=0 for q=1, or at 6= for g=—1). They

this boundary. 1
. - become complex forq|<l1. For|q|=1—-2(N—-1 two
The emergence of the surface-type state is facilitated b%ther real rooris coalﬁlee a0 (|)Crl|77 and ;noth()er pair of
the defect-induced change of the on-site energy of a BP lo-

. complex roots emerges.
cated next to the defect on the S't%{rl'nﬁz) [pr (n‘.’ . Ag the length of gt]he chain increases, the difference be-
—2ny—1)]. This change arises because virtual dlssomatloqween the pairs of complex roots decreases. In the kit
of a BP with one excitation hopping onto a defect site gives_m the roots merge pairwise. The imaginary part of one of
a different energy denominator compared to the case where Re roots is '
virtual transition is made onto a regular site. It is describe
by an extra termdEgp in the expressioll5) for the diagonal Im 0@; In| SEgp/(J/4A)] (25)

part of the HamiltoniarH Y with n=ngy+1 [or n=ny—2],

2sinf(cosf—Qq)
(cosf—q)>—sirfg’

(24)

The second root has opposite sign.
SEaoe Jg 21) One can show from the Schitimger equation for the BP’s
BPT4A(JA—Q)” that the solution(25) describes a “surface-type” BP state
localized next to the defect on sitesy(+1,ny+2). The so-
Using the transformed Hamiltonig6), one can analyze |ution with — egg, describes the surface state amy{ 2,0
BP states in a way similar to the analysis of ong-excitation_ 1). The amplitudes of these states exponentially decay
states in an open chain, see the Appendix. The Siohger  away from the defect. FodA>g>JA/2>0 or JA<g
equation for BP states away from the defect is given by the jA/2<0 we have Re#$b=0. Forg>JA>0 or g<JA
first term in Eq.(10) and by Eqs(16) and(21). The BPwave  —o, we have Re9$h= , and decay of the localized state is
functions can be sought in the form accompanied by oscillations. The complex roots in a finite
6N ~r—ifn chain can be pictured as describing those same states on the
a(n,n+1)=Ce™+Cle ™. (22 opposite sites of the defect. But now the states are “tunnel”
Then the BP energy as a function éfis given by Egp split because of the overlap of their tails inside the chain,
= EEOF),+ (J/12A)cosh, cf. Eq. (14). which leads to the onset of two slightly different localization
The values ofg can be found from the boundary condi- lengths. _ _ o
tion that the BP wave function is equal to zero on the defect, The energy of the localized state in a long chain is
i.e., a(ng,ngt+1)=a(ng—1,ng)=a(ny+N—-1ne+N)=0.

From the Schidinger equations foa(n,n+1) with n=n, EG) —EO@) 1 SE +(‘]/4A)2 (26)
+1 andn=N-+ny—2, we obtain an equation fa# of the BP— —BP BP Y SEgp
form
It lies outside the bandE&+ (J/2A), Eq. (14), of the ex-
J 2 10(N-3) tended BP states. The distance to the band edge strongly
f(O)=1(=0), f(0)= 5EBP_E9 e . depends on the interrelation between the defect excess en-

(23) ergyg and the BP binding energlA. It is of the order of the
BP bandwidth|J/A|, except for the range where the differ-
Equation(23) has 2(N—1) solutions for exp@). The so- ence betweedA and g becomes small. In this range the
lutions exp{(#)==1 are spurious, in the general case. Theenergy of the surface-type state sharply increases in the ab-
roots § and — @ describe one and the same wave function.solute value. This is illustrated in Fig. 2. The localization
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10 E-2¢;
5| g<dA JA
w% |
+a(n0_21n0_1)5n,n0725m,n071 (27)
ST g>JA ] (we remind thaim>n). The energy of a state with giveh
10 ‘ can be found from Eq(10) as before by considering far

0.5 1 1.5 2 away fromn,. It is given by Eq.(19).
g/(JA) The interrelation between the coefficient,C’a(n,
+1ny+2), anda(ng—2,n,—1), as well as the values @f

_ FIG. 2. The distance between the energy level of the BP localyy 4 he obtained from the boundary conditions. These con-
ized next to the defect and the center of the band of extended B

Hitions follow from the fact that the energy of a pair on sites
states,egp=(ESL—EX)/(J/4A), vs the scaled defect excess e gy P

n- . : . :
ergy g/JA. The localized state exists in an infinite chain gdA (ng,No* 1) and the energies of the pairs described by Eq.

. X : (27) differ by ~g~JA, cf. (20). Therefore the pairs on sites
>1/2. Th | h | -dashed | h h - )
/ e vertical and horizontal dot-dashed lines show the as +1) are decoupled from the statéz?), and in the

ymptotes forg—JA andg/JA— oo, respectively. The results refer (No,No

to the range where the BP and LDP bands are far from each othe‘?l,naIySiS of the LDP's we can se(no,ng*+1)=0. Decou-

compared to the LDP bandwid{d|. These bands are sketched in Pléd @lso are unbound two-excitation states with no excita-
the inset(the BP band is above the LDP band fhk/g>1). The tion on the defect, ie., two-magnon states. Therefore
dashed line in the inset shows where the energy level of the loca@(n,m)=0 if simultaneouslym—n>1 and (—ng)(m
ized BP state is located with respect to the bands. —ng) #0.

From Eq.(10) written for n=ny,m=ny+2 andn=n,

(9)]-1 ] —2m=n, [with account taken of the relatiom(n,m)
length|Im 6g%|~* is large when the state energy is close t0— a(m,n+N)] we obtain

the band edge and shrinks down with decreasiny—g|, _ _
i.e., with increasing 6Egp). a(ng+1ny+2)=Ce Mot Cre '#notd),

a(n,m)=(Ce’™+C'e” "™ 5,

+a(No+1.ng+2)n n,+16mny+2

a(no— 2’n0_ 1) — Cei 0(n0+N—1)+ C'e_io(n0+N_1).
IV. ANTIRESONANT DECOUPLING OF (28)

TWO-EXCITATION STATES The interrelation betwee@ andC’ and the equation for
e@ follow from Egs. (27), (28), and (10) written for n=ng

Th lysis of th i i ly if th
e analysis of the preceding section does not apply if t  Im—no+2, andn—n,—2m=ny—1. They have the

pair binding energyA is close to the defect excess eneggy

When|g—JA| is of the order of the LDP bandwid{|, the form

BP and LDP states are in resonance, their bands overlap or 2(JA—g)e’—J A

nearly overlap with each other. One might expect that there C'=- . Ce?'fo, (29
would occur mixing of states of these two bands. In other 2(JA—g)e™'’=J

words, a delocalized magnon in the LDP band might be scatypg
tered off the excitation on the defect, and as a result they

both would move away as a bound pair. However, as we To)=T(—0),
show, such mixing does not happen. In order to simplify
notations we will assume in what follows thgtJ,A>0. T(9)=€e™N[2(JA—g)e - J]2. (30)

Equation(30) is an 2Nth order equation for expf). Its

A. A bound pair localized next to the defect analysis is completely analogous to that of Eg3). The
ots #= 0,7 are spurious, and the roofsof opposite signs
escribe one and the same wave function. Thereforé¢3Dy.
hasN—1 physically distinct root®. Real s correspond to

In the resonant region we should reconsider the analysi
of the next-to-the-defect bound pair localized on sitag (
+1,ng+2) or (ng—2,ny—1). As|g—JA| decreases, the en-
ergy of this pair26) moves away from the BP band, see Fig. €xtended sta}ts()as. Complex roots appear fe3A2-g|>J.

2. At the same time, the distance between the pair energy and'€S€ rootsdipp, describe localized states. In the limit of a
the LDP bandE§)— 2, —g becomessmallerwith decreas- 10Ng chain,N—z, the imaginary part of one of them is

ing |g—JA| as long agJA —g|>|J|/2. For|JA—g|~J, the (s) _ _

next-to-the-defect pairs are hybridized with LDP’s. The hy- Im 6pp=In2(JA=g)/J], @Y
bridization occurs in first order in the nearest-neighbor couwhereas the other root has just opposite sign.

pling constantl. The wave function of the localized state is maximal either

To describe the hybridization, we will seek the solution ofon sites (p+1,n5+2) or (ng—2,np—1) and exponentially
the Schrdinger equatior(10) in the form of a linear super- decays into the chain. FOA —g<0 this decay is accompa-
position of an LDP stat¢18) and a pair on the next to the nied by oscillations, R&($,= . The energy of the local-
defect sites, ized state is
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16

delocalized pairs. To lowest order i~ %, a BP on sites
(n,n+1) far away from the defect can resonantly hop only
to the nearest pair of sites, see E(5) and (16). As noted
g<JA | before, the hopping requires an intermediate virtual transi-
tion of the BP into a dissociated state, which differs in energy
-8 | i by JA.
g>JA A different situation occurs for the BP on the sitag, (
-16 : s s +2,ny+3) [or (ng—3,ng—2)]. Such BP can hop onto the
-16 - 2(JAEg)/J 8 16 sites g+ 1,ny+2) and hy+3,ny+4), as described by Eq.
(16). But in addition, forlJA —g|=J it can make a transition
FIG. 3. The energy difference between the localized BP staténto the LDP state on sitesif,ng+3) [or (ng—3,ng)]. In-
and the LDP bandg, pp=(E{)p—2¢,—9)/(J/2), vs the energy deed, such state has the energ@e,+g, which is close to
mismatch 2JA —g)/J. In the region between the dot-dashed linesthe BP energy=2e,+JA.
the BP state is delocalized. The results refer to the case where the The transition {5+ 2,05+ 3)—(ng,Ng+3) goes through
BP and LDP bands are close to each other or overlap, as sketchedtiie intermediate dissociated statg ¢ 1,0+ 3), which dif-

the inset(the BP band is above the LDP band fdh>g). The  fers in energy by=~JA. It can be taken into account by

dashed line in the inset shows where the energy level of the local- , . () . ; ;
ized BP state is located with respect to the bands. adding the termsH™ to the BP hopping Hamiltoniari6)

for the sites fig+2,ny+3),

(J12)? -
E‘Ls%p=2£1+JA+JA_g- (32) SH®a(ng+2ne+3)=(J/40)a(ng,no+3). (33
The localized stat¢Egs. (27) and (31)] is a “surface- Extended BP states are connected to LDP states only

type” state induced by the defect. It is the resonant-regiorthrough a BP on the sitesig+2,n,+3). We are now in a
analog of the localized next-to-the-defect state discussed iposition to analyze this connection. From E(6) and(33),
Sec. llIB 3. The wave function of the latter stdtegs.(22) e see that

and(25)] was a linear combination of the wave functions of

bound pairs. In contrast, the state given by E83%) and(31) D) L STt

is a combination of the wave functions of the bound pair [HO+5HBa(no+2n0+3)

located next to the defect and a localized-delocalized pair.

The evolution of the surface-type state is controlled by the =(J/4A)[a(ng,no+3)+a(ne+1ne+2)]+A, (34
difference between the excess energies of binding two exci- . . N :
tations in a pair or localizing one of them on the defect’hereA is a linear combination of the amplitudeno
|JA—g|. As|JA—g] varies, the state changes in the follow- + 2o+ 3) anda(ng+3,no+4). _
ing way. It first splits off the BP band wheldA —g| be- The suma(ng,no+3)+a(ng+1ne+2) in Eq. (34) can
comes less thag, see Fig. 2. Its energy moves away from be expressed in terms of the LDP wave functié2g. With
the band of extended BP states with decreakidg—g| and ~ account taken of the interrelatio29) between the coeffi-
the localization length decreasgsf. Eq. (25)]. Well before ~ cientsC,C’ in Eq. (27), we have
|JA —g| becomes of orded, the state becomes strongly lo-
calized on the sitesng+1,ny+2) or (Ng—2,np—1). a(no+1,ng+2)+a(ng,no+3)

In the region|JA—g|~J the localized state becomes - o
stronger hybridized with LDP states than with extended BP #Csing cosf[ JA—g—Jcosd]. (35

states. This hybridization occurs in first order Jnvia a Equations(34) and (35) describe the coupling between the
transition Qp+1ng+2)—(ng,ng+2) [or (Np—2no—1)  BP on the sitesr{,+2,ny+3) and the LDP eigenstates with
—(No—2,np)]. In this region the localization length in- given ¢.
creases with decreasingA —g|, cf. Eq.(31). Ultimately, for An important conclusion can now be drawn regarding the
|JA—g[=J/2 the localized surface-type state disappears, agehavior of BP and LDP states in the resonant region. The
seen in Fig. 3. The evolution of the energy of the localizedcenter of the BP band lies at2+JA +(J/2A) (14), and the
state withJA —g is shown in Fig. 3. BP band is parametrically narrower than the LDP bagg 2
The crossover from hybridization of the localized surface-+g+3 cosf (19). When the BP band is inside the LDP band,
type BP state with extended BP states to that with LDP stateghjs means that, for an appropriate wave numbesf the
occurs in the regiofg|>|JA—g[>|J|. Itis described using |pp magnonJA=g+J cosé, to zeroth order im\ 2 (this
a different approach in Ref. 20. We note that the expressiong the approximation used to obtain the LDP dispersion law
for the energy of the localized stat€26) and (32) go over |t follows from Egs.(34) and (35) that, for suchJA—g and
into each other fotJA —g|<|g|. 6 there is no coupling between the LDP and extended BP
states.

The above result means that LDP and extended BP states
do not experience resonant scattering into each other, even
We are now in a position to consider resonant couplinghough it is allowed by the energy-conservation law. Such
between extended states of bound pairs and localizedscattering would correspond to the scattering of a magnon

B. Decoupling of bound pairs and LDP’s in the resonant
region
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1 ‘ The dotted lines in Fig. 4 show a completely different
picture which arises when the BP band is inside the LDP
band. In this case an excitation pair placed initially o (

: +1ny+2) hybridizes with LDP rather than BP states. A

2

la(ng+1,ng+2)|

0 transformation of the pairng+1,ng+2) into LDP’s with
o 1 ‘ increasing time is clearly seen. The period of oscillations is
% of the order of the reciprocal bandwidth of the LDRIS !, it
<§' 0.5 ¢ is much shorter than in the previous case. Remarkably, as a
iff 0 consequence of the antiresonance, extended states of bound

pairs are not excited to any appreciable extent, as seen from
the amplitude of the pair on the sitesyt2,ny+3).

V. CONCLUSIONS

a(ng,n +2)*

We have analyzed the dynamics of a disordered spin chain
with a strongly anisotropic coupling in a magnetic field. A
FIG. 4. Time evolution of a two-excitation wave packet in an defect in such a chain can lead to several localized states,
XXZ chain with a defectja(n,m)|? is the occupation of sites depending on the number of excitations. This is a conse-
(n,m). Initially an excitation pair is placed next to the defect on quence of the interaction between excitations and its inter-
sites 15+ 1,ng+2). The solid and dashed lines refer to the casesplay with the disorder. We have studied chains with one and
where the BP and LDP bands are, respectively, far away from eactwo excitations.
other (@=JA/4) and overlappingd=JA). In the first case a bound The major results refer to the case of two excitations.
pair slowly oscillates between neighboring sitesn(+ 1) and does  Here, the physics is determined by the interrelation between
not dissociatd a(ng,ne+2) remains very smdll In the case of the excess on-site energy of the defg@nd the anisotropic
overlapping bands, the pair ahd+1no+2) is hybridized with  part of the exchange couplin\. Strong anisotropy leads to
LDP’s, but practically does not mix with bound pairs on other Sitesbinding of excitations into nearest-neighbor pairs that freely
[a(ng+ 2,nq+ 3). remains very small The results refer to a ten-site propagate in an ideal chain. Because of the defect, BP's can
closed chain with =10. localize. A simple type of a localized BP is a pair with one of
the excitations located on a defect. A less obvious localized
off the excitation localized on the defect, with both of themstate corresponds to a pair localized next to a defect. It re-
becoming a bound pair that moves away from the defect, ominds of a surface state split off from the band of extended
an inverse process. BP states, with the surface being the defect site. We specified
Physically, the antiresonant decoupling of BP and LDPthe conditions where the localization occurs and found the
states is a result of strong mixing of a BP on the sites ( characteristics of the localized states.
+1ny+2) and LDP's. Because of the mixing, the ampli-  Our most unexpected observation is the antiresonant de-
tudes of transitions of extended BP states to the sitgs ( coupling of extended BP states from localized-delocalized
+1,no+2) and (,np+3) compensate each other, to low- pairs. The LDP’s are formed by one excitation on the defect
est order inA "1, site and another in an extended state. The antiresonance oc-
To illustrate the antiresonant decoupling we show in Fig.curs for g=JA, when the BP and LDP bands overlap. It
4 two types of time evolution of excitation pairs. In both results from destructive quantum interference of the ampli-
cases the initial state of the system was chosen as a pair @ides of transitions of BP’s into two types of resonant two-
the sites (p+1,ng+2), i.e.,a(ng+1ny+2)=1 for t=0. excitation states: one is an LDP, and the other is an excitation
The time-dependent Schiimger equation was then solved pair on the sites next to the defect. As a result of the anti-
with the boundary condition that corresponds to a closedesonant decoupling, extended BP’s and LDP’s do not scatter
chain. into each other, even though the scattering is allowed by
The solid lines refer to the case of nonoverlapping BP anénergy conservation. This means that an excitation localized
LDP bands|J|<|g—JA| and|g|<|JA|/2. In this case there on the defect does not delocalize as a result of coupling to
does not emerge a localized surface-type BP state next to tlegher excitations.
defect. Therefore an excitation pair placed initially on the The occurrence of multiple localized states in the pres-
sites 1o+ 1,np+2) resonantly transforms into extended BP ence of other excitations is important for quantum comput-
states and propagates through the chain. This propagationiisg. It shows that, even where the interaction between the
seen from the figure as oscillations of the return probabilityqubits is “on” all the time, we may still have well-defined
and the probability to find the BP on another arbitrarily cho-states of individual qubits that can be addressed and con-
sen pair of neighboring sitesig+2,ny+ 3). The oscillation  trolled. One can prepare entangled localized pairs of excita-
rate should be small, of the order of the bandwidith. This  tions, as we discussed in Sec. llIB2, or more complicated
estimate agrees with the numerical data. It is seen that the Béhtangled excitation complexes. The results of the paper also
state is not transformed into LDP states. The amplitude oprovide an example of new many-body effects that can be
LDP states on sitesng,m=ny+2) remains extremely studied using quantum computers with individually con-
small, as illustrated fom=ny+2. trolled qubit transition energies.
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Grant No. ITR-0085922 and by the Institute for Quantumpear as a result of algebraic transformations. Therefore Eq.
Sciences .at Michigan State Uni>\//ersity (A3) hasN physically distinct roots, as expected for a chain

of N spins. We note that, fogy=0 the position of the impu-
. rity ng drops out from Eq(A3), and then the equation goes
APPENDIX: ONE EXCITATION over into the result for an ideal chain.

In an infinite spin chain in a magnetic field, the anisotropy ~ Solutions of Eq(A3) with real ¢ correspond, in the case
of the spin-spin interaction does not affect the spectrum an@f @ long chain, to delocalized magnon-type excitations
wave functions of one excitation. The matrix element of thePropagating in the chain. Their bandwidth isJp
term S,020Z,, in the Hamiltonian(1) is just a constant. ~ Along with delocalized states, EGA3) describes also lo-
However, the situation becomes different for a chain of finitec@lized states with comple#. Complex roots of Eq(A3)
length, because the coupling anisotropy can lead to surfacdn be found for a long chain, whergim 6|(N
states. In the case of two excitations, analogs of surface-type No)./Im #[ne>1. They describe surface states, which are
states emerge near defects in an infinite chain, as discussialized on the chain boundaries, and a state localized on
in Sec. Ill. Here, for Comp|eteness and keeping in mind éhe defect. The localization |ength of the states is given by
reader with the background in quantum computing, wel1l/Im o).
briefly outline the results of the standard analysis of a finite- The surface states arise only for the anisotropy parameter
length spin chain with one excitation. |A[>1. The corresponding values éfare
1. Localized surface and defect-induced states in an open fs==1 In|A| T7O(-4). (AS)

chain Here, the signst and — refer to the states localized on the

The Schrdinger equation for an excitation in an open |€ft and right boundaries, respectively, a8dx) is the step
chain has the forns), and its solutiora(n) to the leftand to  function. _
the right from the defect can be written in the form of a FTOM Eq.(8), the energy of the surface state is
superposition of counterpropagating plane waves, (@&j.
The relation between the amplitudes of these wa@s énd
C,,) follows from the boundary conditiong(0)=a(N It lies outside the energy band of delocalized excitations. We
+1)=0. By substituting Eq(6) into Eq.(5) with n=1 and note that, forA>1 the surface states decay monotonically

Eq=e,+J(A%+1)/2A. (AB)

n=N, we obtain with the distance from the boundary (Re=0). For suffi-
. ciently large negativé\, on the other hand, the decay of the
C/=-DCj, C/=-D '™ Nc,, wave function is accompanied by oscillations, aath)
) ] changes sign from site to site.
D=[1-Aexpio)]/[1-Aexp(—id)]. (A1) A defect in a long chain gives rise to a localized one-spin

excitation for an arbitrary excess enemgy® The amplitude

The relations betwee@, ,, C, ;, and the amplitude of the a(n) decays away from the defect as

wave function on the defect sitgng) follow from Egs. (5)

and(6) for n=no*1, a(n)=a(ng)expifgn—ngl),
_ ion _ —2i6n
a(no)=C,e™[1-De =] 04=i sinh X(|g/3]) + =0 (—g/J). (A7)
— aifngr1 M —1a2i6(N+1-ng)
Cre™[1-D""e 1. (A2) The energy of the localized state is
With Egs. (A1) and (A2), all coefficients in the wave func- 5 oy
tion (6) are expressed in terms of one numtagn,). It can Eq=e1+(g?+3%)"*sgng. (A8)

be obtained from normalization.

In a finite chain, the values of are quantized. They can
be found from Eq(5) with n=ny. With account taken of Eqg.
(A2), this equation can be written as

For small|g/J|, we have Imdy~|g/J|, i.e., the reciprocal
localization length is simply proportional to the defect excess
energy|g|. In the opposite case of lardg/J| we have Im
0q=In|2g/J|. In this case the amplitude of the localized state

fN(e)_DZfN(_e):_(ig/J Sina)[fN(9)+D2fN(_0) I’a(p|(|j|); T)a”‘Sn Onﬁl with the distance from the defe(ﬂ,(n)
o« (2|g/J]) "ol
—2D cos#(N—2np+1)], (A3) If the localization length is comparable to the chain

length, the notion of localization is not well defined. How-
ever, when discussing numerical results, one can formally

fn(@)=exdio(N+1)]. (A4) call a state localized if its wave function exponentially de-
cays away from the defect and is described by a solution of

The analysis of the roots of E¢A3) is standard. Thisis a Eg.(A3) with complexd. This is equivalent to the statement

2(N+1)-order equation for expf), but its solutions foré  that the state enerdy, lies outside the band of magnons in
come in pairsd and — 6. Each pair gives one wave function, the infinite chain. In an open finite chain such localized state

where
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1.5 ‘ ‘ In order to fully determine the wave functi@{n) [Eqg. (7)],
Egs. (A9) and (A10) should be substituted into the Schro
dinger equation(5) for n=n,.

Equations(5) and (A9) can be satisfied provided that ei-
ther g=0, which means that there is no defect, afng)
=0. The first condition describes excitations in an ideal
closed chain and is not interesting for the present paper. The
conditiona(ng) =0 corresponds to the wave functiagn)
«sin(n—ng), which has a simple physical meaning. It is a
standing wave in an ideal chain with a node at the location of
a defect. Because of the node, the corresponding state “does
not know” about the defect, and therefore it is exactly the

gl ’ same as in an ideal chain.
In the presence of a defect, the solutions of EP) in

FIG. 5. The reciprocal localization length Iy for an infinite ~ the range of interest Q0<m are §=27k/N with k
chain[Eq. (A7)] as a function of the defect excess eneggfor J ~ =1.2,...,N—1)/2 for oddN, or k=1,2,... N/2—1 for
=1 (solid line). Also shown are the results for an open chain with €V€NN.
the number of sitedl=6 and 12 anch,=N/2 (stars and crosses,  The equation forg that follows from Eqgs(5) and (A10)
respectively and a closed chain with 6 and 12 sit@ircles and ~ has the form
squares, respectivelyThey are obtained from EqA3) with A ig
=10 and from Eq(A11l). In an open chain, solutions with nonzero expiON)—1=— ——[exp(iON)+1].  (All1)
Im 64 emerge starting with a certaig/J|>|g/J|min- In a closed Jsiné

chain with evenN there is no threshold ihg/J| for the onset of  For g0 this equation has eitheN@ 1)/2 (for odd N) or

states with Img4# 0. N/2+1 (for evenN) solutions for= 6. Therefore the total

) o ) number of solutions fo® that follow from Eqgs.(A9) and
may emerge provided the localization length is smaller thana11) is N, as expected.

the distance from the defect to the boundaries. This means By rewriting Eq. (A11) as tan@gN/2)= —(g/J sin#6) and
that the defect excess enerfp| should exceed a minimal piotting the left- and right-hand sides as functionséofcf.
value that depends on the size of the chain. The comparisaRef. 18, one can see that all physically distinct roots of this
of Eq. (A7) with the numerical solutions of the full equation equation but one are real and lie in the intervat @<

Im o,

(A3) for a finite chain is shown in Fig. 5. [except for one case, see belpvBuch solutions describe
delocalized states with sinusoidal wave functions.
2. One-excitation states in a closed chain The complex root of Eq(A1l), 6= 64, describes a state

localized on the defect. For a long chain, BgN>1, the

As pointed out in Sec. Il, for a closed chain the solution ofgq|ytion has the fornfA7), as expected. An interesting situ-
the Schrdinger equation can be also sought in the form ofgtion occurs for a shorter chain. Nfis even or ifg/J>0, a

counterpropagating waves with different amplitudes, @Y. |ocalized solution with complexy emerges for any defect
Clearly, the phaseg and — 6 describe one and the same excess energg. Thresholdless localization does not happen
wave function. The one-excitation enerBy is given by Eq.  in an open chain. In a closed chain, it arises because there is
(8). no reflection from boundaries. For small positigé] one

The interrelation between the amplitudes of the wavegptains the complex solution of E¢A11) in the form 6
C,C’ in Eq. (7) and the amplitude of the wave function on ~j(2g/NJ)"2 The square-root dependence of tpon g is
the defect sitea(ngy) can be obtained from Ed5) with n seen from Fig. 5.
=ng*1. This equation has two solutions, Equation(A11) has a complex solution also for evéh
and small negativeg/J. In this casefg~i(—2g/NJ)*?

iON _ — i on Ia—ifn
e =1, a(ng)=Ce™o+Cle "7, (A9) +r, i.e., the decay of the wave functi@(n) is accompa-
and nied by sign flipsa(n+1)/a(n)<0. Such oscillations can-
, N not be reconciled with the periodicity condition for odd
a(ng)=Ce"Mo(1+¢e' ™) Therefore, for oddN and negativey/J a decaying solution
—Cle 1™Mo(1+e ™) [explioN)#1]. arises only when-g/J exceeds a threshold value. One can

show from Eq.(A11) that this value i$g/J|mi,=2/N, which
(A10) has also been confirmed numerically.
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