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Topological features of large fluctuations to the interior of a limit cycle

V. N. Smelyanskiy,1 M. I. Dykman,1 and R. S. Maier2
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2Department of Mathematics, University of Arizona, Tucson, Arizona 85721
~Received 29 October 1996!

We investigate the pattern of optimal paths along which a dynamical system driven by weak noise moves,
with overwhelming probability, when it fluctuates far away from a stable state. Our emphasis is on systems that
perform self-sustained periodic vibrations, and have an unstable focus inside a stable limit cycle. We show that
in the vicinity of the unstable focus, the flow field of optimal paths generically displays a pattern of singulari-
ties. In particular, it contains aswitching linethat separates areas to which the system arrives along optimal
paths of topologically different types. The switching line spirals into the focus and has a self-similar structure.
Depending on the behavior of the system near the focus, it may be smooth, or have finite-length branches. Our
results are based on an analysis of the topology of the Lagrangian manifold for an auxiliary, purely dynamical,
problem that determines the optimal paths. We illustrate our theory by studying, both theoretically and nu-
merically, a van der Pol oscillator driven by weak white noise.@S1063-651X~97!02703-7#

PACS number~s!: 05.40.1j, 02.50.2r, 05.20.2y, 02.40.2k
er
im

u

c-

n
ic
io
ib

a
s
n
ro
in

th
e
.,

s

ie
x

ca

e
ny

hi

has
ter
s of

u-
sed

ve
ften
the
onds
not
an
s-

ilt
e

as

an
its

-
di-
cs
ian.
e
the
n
sian

lly

ive
I. INTRODUCTION

Many nonlinear dissipative systems display stable p
odic oscillations, i.e., their state spaces contain stable l
cycles@1#. Examples include lasers@2#, radiofrequency gen-
erators@1~a!#, chemical@3~a!# and biological@3~b!# systems.
In many cases the vibrations are nonsinusoidal, as in a m
timode laser with strong mode coupling@4#, passive optically
bistable elements@5#, and various sorts of engineering stru
ture @6#.

Fluctuations in periodically oscillating systems play a
extremely important role. They eventually destroy period
ity of the self-sustained oscillations, so that the oscillat
phase becomes random, and a stationary probability distr
tion in the state space of the system is formed@7,8#. This
distribution reaches a maximum at the cycle, does not v
much along the cycle, and falls off rapidly in direction
transverse to the cycle. The shape of the maximum depe
on the character of small transverse fluctuations away f
the cycle. If the fluctuations are due to the system be
perturbed by weak noise~of intensityD), the transverse fall-
off will usually be approximately Gaussian@7–9#, with stan-
dard deviation proportional toD1/2 asD→0.

It was recognized long ago@7,10# that, for systems with
stable limit cycles, it is of considerable interest to analyze
way in which large, occasional fluctuations away from th
cycle take place. These fluctuations are responsible, e.g
switching between coexisting laser modes@11–13#, or be-
tween different photon occupation numbers of a single ma
mode, as observed recently in Ref.@14#. Another interesting
effect attributed to large fluctuations is a sudden trans
dropout in the intensity of a main mode due to power e
change between main- and submodes@13~a!#. Recent interest
in this problem is due to the application of lasers in opti
communication@15#.

The analysis of large fluctuations and switching betwe
attractors, in systems with limit cycles, is similar in ma
ways to the analysis of the corresponding phenomena
other types of nonequilibrium system. Previous work on t
551063-651X/97/55~3!/2369~23!/$10.00
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is due to many authors~see Refs.@16–20# and the more
recent Refs.@21–32#!. In spite of much effort a full analysis
of these phenomena, in systems with stable limit cycles,
been obtained only close to a bifurcation point in parame
space, where the phase and amplitude of the oscillation
the system fluctuate independently@7,8#. Corrections to the
stationary probability density distribution due to weak co
pling between angular and radial fluctuations are discus
in Ref. @17#.

Large fluctuations in systems with stable limit cycles ha
several novel features, arising from the fact that there is o
an unstable fixed point inside the cycle. For example, in
simplest case of a single-mode laser such a point corresp
to the unstable stationary state where the system does
generate light. If present, an unstable fixed point will be
unstable focus or node~or perhaps a saddle point if the sy
tem has more than two dynamical variables!. The stationary
probability density near the unstable fixed point is ‘‘bu
up’’ by large fluctuations away from the limit cycle. Th
possibility of singularities occurring, asD→0, in the prob-
ability distribution of systems lacking detailed balance w
first pointed out by Graham and Te´l @21# ~see also Jauslin
@22#!. We shall show that in oscillating systems with such
unstable fixed point, the way in which fluctuations to
vicinity take place gives rise to a highly unusualsingularity
structureof the stationary probability density there~in the
limit of low noise intensityD).

From one point of view, singularities arise for the follow
ing reason. The stationary probability density in the imme
ate vicinity of the limit cycle is determined by the dynami
of the system near the cycle, and is asymptotically Gauss
Normally one would expect, by linearizing the motion of th
system near the unstable fixed point contained within
limit cycle, that the probability density there would be a
inverted Gaussian. The shape of this inverted Gaus
would be determined by the local~linearized! dynamics of
the system. But it is by no means clear that two loca
defined functions~a Gaussian and an inverted Gaussian! will
match together smoothly. In fact, we shall see that the na
2369 © 1997 The American Physical Society
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assumption of an inverted Gaussian distribution near the
stable fixed point is incorrect.

Our approach to the problem of large fluctuations to
vicinity of an unstable fixed point makes heavy use of
optimal pathconcept. At least in the case of linear mode
the concept can be traced back to the work of Onsager
Machlup @33#. An optimal path ~sometimes called an
Onsager-Machlup optimal path! is a path along which a dy
namical system experiencing weak random perturbati
moves, with overwhelming probability, when it eventua
fluctuates away from the vicinity of an attractor to a specifi
remote point in its state space. This path provides a m
mum to a certain action functional that describes the pr
abilities of arrival to the specified point along different path
Each such probability becomes exponentially small
D→0, but the exponential falloff rate is path dependent,
that it becomes exponentially more probable for the sys
to move along a distinguished ‘‘optimal’’ trajectory tha
along other trajectories. The particular form of the acti
functional depends on the nature of the random perturbat
~fluctuations may be induced by external noise, or by
number of molecules in a chemical system being finite, et!.
We emphasize that optimal paths are real physical obje
they have been experimentally observed@26#. Note thatex-
tremepaths, which provide extrema of the action function
may not necessarily provide the absolute minimum. In t
paper we shall study the singular properties of the flow fi
of extreme paths, both optimal and nonoptimal.

From a formal point of view, the analysis of aD→0 limit
in terms of optimal trajectories is similar to the analysis
the \→0 limit of quantum mechanics in terms of the e
treme trajectories of semiclassical WKB theory. A we
known feature of the pattern of extreme trajectories app
ing in the semiclassical approximation is the presence
caustics: curves that are envelopes of trajectories, in
sense that trajectories are reflected from them@34,35#. Caus-
tics have in fact been discovered numerically in the fl
field of extreme paths of fluctuating systems of various ty
@22,27,29,31#, @23~a!#. However, unlike a wave function in
quantum mechanics, the probability density in the theory
large fluctuations, the asymptotic properties of which are
termined by the flow of optimal paths, is non-negative de
nite. Normally a semiclassical approximation to a wave fu
tion acquires a phase factor when the WKB trajectory fr
which it is computed encounters a caustic. This suggests
in the asymptotic theory of fluctuating systems,optimal ex-
treme trajectories are forbidden, by a sort of ‘‘censorship
from ever encountering caustics. By the time they rea
them, they have ceased to be optimal. This is a key dif
ence between theD→0 limit of fluctuation theory and the
\→0 limit of quantum mechanics.

A topological analysis showing exactly how, in white
noise driven systems, optimal paths automatically av
caustics was given in Ref.@30#. The analysis there was lim
ited to fluctuations in systems whose state spaces con
only stable fixed points and saddle points; no other singul
ties, such as limit cycles, were discussed. For models in
restricted class, it was shown that caustics can emanat
pairs, fromcusp points. The location of cusp points, in th
system state space, is determined by the global patter
optimal paths; only occasionally can the location of cu
n-
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points, and caustics, be determined analytically@24~b!#, @29#.
In the present paper we extend and generalize the ana

of Ref. @30# to any system with a stable limit cycle tha
contains an unstable fixed point. In particular, we consi
the case when the unstable fixed point is an unstable fo
~so that in the absence of fluctuations, trajectories in the s
tem state space spiral away from it!. We shall show that
generically, the flow field of optimal paths near the unsta
focus displays a self-similarpattern of singularities~includ-
ing a caustic, and under some circumstances an infinite
quence of cusps!. The caustic is unobservable in the sen
that optimal extreme paths are not incident on it. But t
pattern is accompanied by a self-similarswitching line: a
curve that separates regions in state space that are rea
via topologically different sorts of optimal path, in the wea
noise (D→0) limit. This curve spirals into the unstable fo
cus, and its presence is responsible for the singular beha
there ~in the weak-noise limit! of the stationary probability
distribution.

In Sec. II we derive Hamilton’s equations of motion fo
the extreme paths~in particular, for optimal paths!, and find
initial conditions for these paths in the vicinity of the stab
limit cycle. In Sec. III we explain what topological singular
ties of the pattern of extreme paths can be like. In Sec. IV
study the behavior of the extreme paths that extend to
vicinity of the unstable focus, by linearizing Hamilton’
equations of motion there. We show that generically, ther
a caustic that spirals down to the unstable focus, and be
the task of determining the location of this caustic and
associated cusp points, if any. In Sec. V, by reducing
equations for the extreme paths near an unstable fixed p
to a ‘‘normal form’’ ~a set of uncoupled lower-order equ
tions!, we identify the parameters that determine the lo
dynamics of the paths. In Sec. VI we obtain explicit equ
tions for the positions of the extreme paths, and the cau
near the unstable focus. A detailed topological analysis
the so-calledLagrangian manifoldformed by the paths is
given, and features of the flow field of paths related to
singular structure of manifold are discussed. We also disc
the switching line. In Sec. VII the results of Sec. VI a
extended to the more difficult case when the caustic spira
down to the unstable focus has an infinite sequence of c
points lying along it. In Sec. VIII we investigate numerical
the global pattern of extreme paths for a van der Pol osc
tor, and analyze global and local singularities of this patte
Section IX contains concluding remarks.

II. EQUATIONS FOR THE EXTREME PATHS
OF A FLUCTUATING SYSTEM

A. The eikonal approximation

For any dynamical system, a detailed picture of the flu
tuations about an attractor, and the shape of the steady-
probability distribution, requires a specification of the und
lying dynamics and the source of the fluctuations. Howev
the above-mentioned singular features of the distribution
of the pattern of optimal paths occur very generally. The
fore we shall consider the simplest model of a fluctuat
system that can display these features: a two-variable
namical system driven by white noise, with a stable lim
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55 2371TOPOLOGICAL FEATURES OF LARGE FLUCTUATIONS . . .
cycle containing an unstable focus or node. The equatio
motion of such a system is of the form

dq

dt
5K~q!1f~ t !, ~1!

with ^f(t)&50 and

^ f i~ t ! f j~ t8!&5DQi jd~ t2t8!, i , j51,2. ~2!

Here q5(q1 ,q2) is a vector of dynamical variables, an
f(t) is white Gaussian noise with intensityD @the matrix
Qi j is non-negative definite, and we assume t
maxuQij u5O(1)#. The drift fieldK specifies the dynamics o
the system in the absence of noise. We choose it so tha
system has a limit cycle, i.e., the equationdq/dt5K(q) has a
solution q(cl)(t) satisfying q(cl)(t1t (cl))5q(cl)(t), where
t (cl) is the period of oscillation.

A noise-driven van der Pol oscillator@7#, for example, fits
into this framework. In dimensionless variables the equat
of motion of such an oscillator is

ẍ12h~x221!ẋ1x5 f 1~ t ! ~3!

~whereh.0). If one letsq15x andq25 ẋ, and sets

K15q2 , K252q122hq2~q1
221!, Qi j54hd i2d j2 ,

~4!

then Eq.~1! reduces to Eq.~3!. Notice thatq50 is an un-
stable fixed point of the van der Pol oscillator; it is contain
within a stable limit cycle. We haveK(0)50, and

det~]Ki /]qj !50.0, ~]Ki /]qi !50.0 ~5!

~summation over repeated indices is understood!.
The stationary probability densityP5P(q) of any system

described by Eqs.~1! and ~2! satisfies the time-independe
Fokker-Planck equation

D

2

]2

]qi]qj
@Qi j P~q!#2

]

]qi
@KiP~q!#50. ~6!

In the limit of small noise intensityD one can seek an ap
proximate solution of Eq.~6! in an eikonal or WKB form
@36#

P~q!;C~q!exp@2S~q!/D#, D→0. ~7!

Equation~7! is a sort of asymptotic Maxwell-Boltzmann dis
tribution, with S(q) the ‘‘activation energy’’ of fluctuations
to the vicinity of the pointq in the system state spac
C(q) is a WKB prefactor, which we shall not investigate
any detail in this paper. If one substitutes the asympto
form ~7! into Eq. ~6!, and keeps only the terms of lowe
order in D, one arrives at the following nonlinear parti
differential equation for the functionS(q):

H~q,p![K~q!•p1 1
2pQ̂p50, p[

]S

]q
. ~8!

Here the matrix operatorQ̂ corresponds to the diffusion ma
trix Qi j in Eq. ~6!. Equation~8! can be interpreted as th
of

t

he

n

ic

Hamilton-Jacobi equation of anauxiliary Hamiltonian dy-
namical system, with the HamiltonianH(q,p). In this inter-
pretationS(q) is a classical action at zero energy.

If the noise is weak, the probability densityP(q) will be
tightly peaked around the stable limit cycle. Moreover b
cause of phase diffusion@7#, the functionS(q) should be
constant on the limit cycle to leading order inD asD→0. It
follows @21~b!# that S(q) satisfies the following boundary
conditions on the limit cycle:

S ]S

]qD
q5q~cl !~t!

50, S„q~cl !~t !…5 const, ~9!

for all tP(0,t (cl)). Heret has the meaning of elapsed tim
for deterministic motion along the limit cycle.

The Hamilton-Jacobi equation~8! may be solved by the
method of characteristics. The equations for the characte
tics have the form

dq

dt
5

]H

]p
5K~q!1Q̂p, ~10a!

dp

dt
52

]H

]q
52

]K~q!

]q
p, ~10b!

and the evolution equation forS along any characteristic is

dS

dt
5p•q̇. ~11!

Equations~10! are Hamilton’s equations of motion for th
auxiliary system. They describe the trajectories of this s
tem that give rise to extreme values of its action functio
@37,38#. This action functional is of the form

S@q~ t !#5E
tmin

tmax
@ q̇~ t !2K„q~ t !…#Q̂21@ q̇~ t !2K„q~ t !…#dt.

In general there will be many zero-energy trajectories t
begin on the stable limit cycle and terminate at a specifi
point q8. As a consequence, the quantityS(q8) is in general
multivalued. One of these trajectories gives theleastaction.
This least valueSmin(q8) is the physical value of the zero
energy action: the one that would appear in the eikonal
proximation~7! to the stationary probability densityP at the
point q8.

Using a path-integral formulation of the problem of larg
fluctuations@20,26#, @24~b!#, or an equivalent probabilistic
formalism @16#, one can show that the extreme trajecto
q(t) giving rise toSmin(q8) is theoptimal fluctuational tra-
jectory of the original dynamical system that reachesq8.
When a fluctuation to the vicinity of any pointq8 not on the
limit cycle occurs, in theD→0 limit it becomes increasingly
likely that the fluctuation took place along the optimal tr
jectory. The optimal trajectory of the system corresponds
an optimal~most probable! realization of the random force
f.

The auxiliary dynamical system, being Hamiltonian, h
dynamical variables (q,p). What is the significance of the
momentump for the original noise-perturbed dynamical sy
tem? Through the eikonal approximation, at any pointq
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2372 55V. N. SMELYANSKIY, M. I. DYKMAN, AND R. S. MAIER
along an optimal path the momentump determines the
D→0 limit of the logarithmic gradient of the stationar
probability density. Moreover, the momentum may be int
preted as a measure of the extent to which optimal traje
ries move against the deterministic driftK. It is clear from
Hamilton’s equation~10a! thatp50 only for trajectories sat-
isfying q̇5K(q), i.e., deterministic~nonfluctuational! trajec-
tories.

B. Initial conditions for extreme trajectories

The initial conditions for the extreme trajectories eman
ing from the stable limit cycle, i.e., the zero-energy trajec
ries satisfying Eq.~10!, follow from the behavior of the clas
sical action functionS(q) in the vicinity of the cycle.
Because the gradient¹S(q) vanishes on the cycle, near th
cycle one may seek anapproximately quadraticsolution for
the action, of the sort first considered by Ludwig@18# ~cf.
Refs.@9,25#!

S~j l ,jn!'
1
2l~j l !jn

2 . ~12!

The coordinatej l is the distance along the limit cycle~mea-
sured from an arbitrary point!. The other coordinate,jn , is
the normal distance to the limit cycle. In the limit of sma
noise intensity we have what is effectively one-dimensio
diffusion normal to the limit cycle, and Eqs.~7! and ~12!
describe the Gaussian distribution of the system in that
rection.

The equation forj l as a function of the timet of motion
along the cycle has the formdj l /dt5v l(t), wherev l(t) is
the speed along the cycle. One can viewl in Eq. ~12! as a
function of the time variablet, rather thanj l . A Riccati
equation forl̄(t)[l@j l(t)# can be obtained by substitutin
Eq. ~12! into the zero-energy Hamilton-Jacobi equation~8!
and taking the limitjn→0. It has the form@25#

l̇̄12
]vn
]jn

l̄1Qnnl̄
250, l̄~t1t~cl !!5l̄~t!, ~13!

vn[K• ĵn , Qnn[ ĵnQ̂ĵn .

Here ĵl and ĵn are orthogonal unit vectors that are loca
parallel and perpendicular to the limit cycle. Sovn is the
component of the velocityK normal to the cycle, and
DQnn is the diffusion coefficient in the direction normal t
the cycle~clearly vn50 on the cycle, i.e., atjn50). The
coefficients]vn /]jn and Qnn are evaluated on the cycle
They depend on the position along the cyclej l , or, equiva-
lently, on the timet. This dependence is periodic, and t
solutionl̄5l̄(t) should be periodic as well, which unique
determines it. Eq.~13! can be reduced to a linear equation f
the function 1/l̄(t) and then solved, yielding an explicit ap
proximation to the actionS(q) near the limit cycle@9,25#.

Sincep5¹S, Eq. ~12! yields the following expression
for the components of the momentump parallel to and per-
pendicular to the cycle

pl~j l ,jn!'
1

2

dl

dj l
jn
2 , pn~j l ,jn!'l~j l !jn , ~14!
-
o-

-
-

l

i-

when ujnu!1. In what follows we shall setpl'0, because
pl is of the same order of magnitude as the terms in
equation forpn that arise from the cubic-in-jn corrections to
the action that were dropped in Eq.~12!. The smallness of
pl as compared topn has the following explanation. In con
trast to the deterministic trajectories of the system in
absence of noise, the extreme trajectories near the limit c
spiralaway from the cycle; however, the direction of spira
ing is the same. Deterministic trajectories satisfy equati
of the form~10!, with p50, and therefore it is clear thatpl is
small compared topn near the cycle.

It follows from Eqs. ~14! that the initial conditions for
zero-energy extreme trajectories emanating from the li
cycle can be chosen in the following way. Suppose that a
initial instant t0 we chooseq(t0) to be close to the limit
cycle. We may then set

p~ t0!5l~j l !jnĵn , S~ t0!5 1
2l~j l !jn

2 , ~15!

where j l[j l„q(t0)… and jn[jn„q(t0)…. Since the zero-
energy trajectories satisfying Eq.~10! spiral away from the
cycle, it is clear that we shall describe one and the same
if the value ofjn„q(t0)… differs by the increment ofjn over
one turn~or over several turns!. The entire flow of the zero-
energy Hamiltonian trajectories emanating from the lim
cycle is therefore mapped onto the two intervals ofjn ~one
for positive and one for negativejn) that lie between the
neighboring turns of a single path. In other words, the en
family of zero-energy extreme trajectories emanating fr
the limit cycle can be parameterized asq(t;jn), p(t;jn), with
jn lying within one of the corresponding intervals, whic
depend on the choice ofj l . This fact paves the way to a
numerical analysis of the global flow. The numerical analy
of a particular system~the van der Pol oscillator mentione
in Sec. II A!, using this technique, will be given in Sec. VII

III. SINGULARITIES OF THE PATTERN
OF OPTIMAL PATHS

A. Many valuedness and the generation of singularities

A well known property of Hamiltonian trajectories is tha
they may correspond to a local extremum rather than to
global minimum of the action functional. On account of th
existence of local extrema, several extreme trajecto
q(t,jn) with different values of the parameterjn may arrive
at the same pointq. The actionS(t;jn) as computed from the
differential equation~11! will be, in general, a multivalued
function of the end pointq. If at each pointq one selects the
minimum value ofS(q), then a single-valued surface o
minimum action Smin5Smin(q) will be defined piecewise.
The quantitySmin(q) determines the asymptotic (D→0)
logarithm of the stationary probability distributionP5P(q)
via the eikonal approximation Eq.~7!.

Generically, the surfaceSmin5Smin(q) will contain curves
~‘‘switching lines’’! at which different sheets ofS5S(q) in-
tersect each other transversally, i.e., at a nonzero an
Along any such curve the first derivative ofSmin(q) in the
transverse direction will be discontinuous@21,22#. However,
the resulting singularities of the distributionP(q) will be
smeared out at nonzero noise intensityD. They appear only
asymptotically, asD→0.
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Singularities may also appear on individual branches
the multivalued functionS(q). To investigate these singular
ties, and related singular features of the pattern of extre
trajectories, one needs to study the generic topological p
erties of the auxiliary Hamiltonian system in its fou
dimensional phase space. It follows from Hamilton’s equ
tions ~10! that in this space, a stable limit cycle i
configuration space~determined by the drift fieldK) corre-
sponds to a closed loop on the hyperplanep50. @This hyper-
plane is just the two-dimensional plane (q1 ,q2) of the origi-
nal dynamical system.# The zero-energy Hamiltonian
trajectories determined by Eq.~10! emanate from this limit
set and form a two-dimensionalLagrangian manifold~LM !
@1~b!#, @40#. The LM lies in the zero-energy (H50) surface,
which is three dimensional. The LM is a sort ofruled sur-
face: the zero-energy Hamiltonian trajectories, i.e., extre
trajectories, provide a smooth flow on it.

Even though the extreme trajectories never intersect
the LM, except at the loop on thep50 plane from which
they emerge, the LM may have a complicated structure
general, it will have@40# singular projections onto thep50
plane, i.e., the (q1 ,q2) plane. A two-dimensional LM has
only two structurally stable types of singularities@39#: folds
andcusps, as illustrated in Fig. 1. Each cusp point gives ri
to a pair of folds, and in the case of monostable systems
folds can only begin or end at a cusp point or at infinity. T
projections of the folds onto theq plane are caustics. Caus

FIG. 1. Generic singularities of the pattern of extreme pat
The Lagrangian manifold~LM !, a two-dimensional submanifold o
the four-dimensional phase space, is traced out by the trajectori
the auxiliary Hamiltonian system that emanate from the limit cyc
Extreme paths are the projections of these trajectories onto
(q1 ,q2) plane ~i.e., thep50 plane!. The LM may have folds, in
which case the projections of these folds are caustics, from w
extreme paths are reflected. In the region enclosed by a pa
caustics and sufficiently close to the cusp from which they eman
three extreme paths pass through each point (q1 ,q2).
f

e
p-

-

e

n

n

he

tics areenvelopes of trajectories: they are formed by inter-
secting neighboring trajectoriesq5q(t). It is from the merg-
ing of caustics that cusp points are formed~see Fig. 1!. In the
event that the LM contains a fold, the top and bottom she
of the LM are traced out by Hamiltonian trajectories th
have not gone over the fold. After a trajectory goes ove
fold, it enters the middle sheet of the LM and stays there

In the sharp-tipped triangular region partially enclosed
caustics, the LM has three sheets and the action is th
valued. It was observed in Ref.@30# that the sheet with the
largest value ofS(q) is the middle sheet of the LM. This
sheet is formed by Hamiltonian trajectories that have go
over the fold; equivalently, the corresponding extreme traj
tories in theq plane have been ‘‘reflected’’ by one of th
caustics. So the minimum~physical! value of S(q), i.e.,
Smin(q), must be attained on one of the other two shee
which we may call the ‘‘lower’’ sheets. We provide a caref
proof of this fact in the Appendix.

The nonminimality of the action computed from the tr
jectories reflected from a caustic is a most important feat
of the topological theory of large fluctuations. It guarante
thatoptimalextreme trajectories never encounter caustics:
the time an optimal trajectory is reflected from a caustic
has ceased to be optimal. Indeed, the two lower sheets o
action surfaceS5S(q) must intersect, and by the time eithe
of these sheets approaches the fold~where it turns over, and
merges with the sheet formed by the trajectories reflec
from the caustic!, it has intersected the other lower sheet a
necessarily lies above it.

The curve in the (q1 ,q2) plane along which the lowe
sheets intersect is determined by the equation

S~1!~q1 ,q2!5S~2!~q1 ,q2!. ~16!

This curve starts at the cusp point and lies between the
lescing caustics@Fig. 1~b!#. Points that are a small distanc
away from the curve~16!, but lie on opposite sides of it, ar
reached along topologically different optimal paths~those
tracing out the two lower sheets!. It is for this reason that we
call the curve determined by Eq.~16! a switching line.
Switching lines can be observed using a technique@26#
where one investigates the probability distribution of pa
q(t) along which the system arrives at a specified end po
q8. If this distribution is measured for various positions
q8, its shape will change sharply onceq8 is moved across a
switching line. This is the physical significance of the sing
lar curves in the surfaceSmin5Smin(q) of the system.

The stationary probability density is regular in the vicini
of a switching line. In the event of multivaluedness, t
WKB approximation~7! may be refined to read

P~q!; (
i51,2

C~ i !~q!exp@2S~ i !~q!/D#, D→0 ~17!

„cf. @21~b!#, @30,35#…. A switching line is, therefore, a sort o
Stokes line, where asymptotic dominance switches from o
exponential term to another. We note in passing that
WKB prefactorsC( i )(q) are not singular on switching lines
They do, however, blow up whenq approaches a cusp poin
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An explicit form for the prefactor in the vicinity of a cus
point was obtained in Ref.@30# ~see also the scaling theor
of Ref. @41#!.

We emphasize that the caustics of a flow field of extre
paths, unlike its switching lines, are unobservable. They
hidden: as one varies the endpointq8, switching from one
optimal path to another occurs before the optimal path
minating atq8 encounters a causticen route. ~In contrast to
theD→0 limit of large fluctuation theory, causticsare en-
countered by the extreme paths occurring in the\→0 limit
of quantum mechanics.!

Topological arguments explainhow caustics are avoided
by optimal paths, and what are the observable singular
~switching lines and cusp points! of the pattern of optimal
paths. In general, two different types of pattern may oc
near a cusp point. One of them corresponds to the local
ture shown in Fig. 1~b!. In that figure the caustics go ‘‘awa
from’’ the cusp point rather than ‘‘towards’’ it~the direction
of a caustic, in our convention, is the direction of the extre
trajectories to which the caustic is tangent!. Extreme trajec-
tories that come from opposite sides of the cusp point fi
cross each other and only then encounter caustics~the paths
are observable, i.e., physically significant, up to the point
their intersection!. However, the flow of the trajectories ne
the cusp may also be in the opposite direction, i.e., the c
tics may go towards the cusp point, in which case the
treme paths first encounter caustics~after which time they
become nonoptimal, i.e., unobservable! and then cross eac
other. In what follows we shall refer to the two types of cu
points as type-I and type-II, respectively.

Clearly, there is no switching line emanating from
type-II cusp point. Unlike the type-I cusp points, the type
cusp points arehidden singularities. They lie on nonminimal
sheets of the action surfaceS5S(q).

It can be seen from the preceding arguments that a sw
ing line may not connect two cusp points. However tw
switching lines emanating from different cusp points m
end in a point where they intersect each other, with ano
switching line starting at this point. In this way there m
arise physically observabletrees of switching lines, with the
‘‘free’’ ends of the lines~i.e., the leaves of the tree! located
at observable cusp points. In Sec. VIIB we shall illustra
this with an example.

B. Monostable systems vs systems
with unstable stationary states

In any monostable noise-driven dynamical system,
physical grounds one expects that it is possible to reach
point (q1 ,q2) by traversing a smooth optimal path whic
emanates from the attractor and avoids all singularities.
flow field of extreme paths, both optimal and nonoptim
may include caustics. But optimal paths avoid them. T
flow field of optimal paths is qualitatively different in th
case when the dynamical system, in the absence of noise
unstable stationary states. Since unstable fixed points
critical points of the deterministic dynamics, they are sing
lar points of the flow field of optimal paths as well.

In the following sections we shall investigate the occ
rence of various singular features in the vicinity of an u
stable fixed point, contained within a stable limit cycle. W
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shall show that, except in the trivial case when radial a
angular fluctuations are independent of each other, the st
ture of the pattern of optimal paths is quite singular when
unstable fixed point is an unstable focus~the case when it is
an unstable node will be considered elsewhere!. This struc-
ture can be fully investigated analytically.

A key role in our analysis will be played by themost
probable hitting path~MPHP!. This is the optimal path along
which the system moves from the stable limit cycle to t
unstable fixed point. That is, in the limit of weak nois
(D→0), it becomes overwhelmingly likely that a large flu
tuation from the limit cycle to the unstable fixed point, whe
it finally occurs, will follow this path. Generically, there ca
be only one MPHP: the action for reaching the unstable fix
point along different extreme paths that might ‘‘hit’’ th
fixed point is different, and for the MPHP it must be a min
mum. The MPHP is aheteroclinic trajectoryof the associ-
ated Hamiltonian dynamical system in its four-dimension
phase space: it lies both in the unstable manifold of the sta
limit cycle, and in the stable manifold of the unstable fix
point. Optimal paths close to the MPHP, but lying on opp
site sides of it, will diverge from the MPHP in the vicinity o
the unstable fixed point. As we shall see, this causes
fluctuational behavior of the dynamical system to be ve
singular there. From a dynamical systems point of view, i
wild oscillationsof the Lagrangian manifold in the vicinity
of the unstable fixed point~cf. Graham and Te´l @21#! that
give rise to the singular structure we shall explore.

IV. EXTREME PATHS IN THE VICINITY
OF AN UNSTABLE FIXED POINT

A. The linear approximation

As we have discussed, the fluctuational behavior of
oscillating dynamical system is determined by the pattern
extreme paths that emanate from its stable limit cycle. In t
section we analyze the behavior of these paths, when
are prolonged to the vicinity of the unstable fixed point e
closed by the limit cycle. We choose the position of t
unstable fixed point to beq5(q1 ,q2)5(0,0). In this section
and Sec. V, we do not specialize to the case of an unst
focus; we allow the unstable fixed point to be either a foc
or a node. The drift field can be linearized at the unsta
point

K~q!'d̂q; di j[S ]Ki

]qj
D
q50

. ~18!

The matrixd̂ may be called a matrix of drift coefficients. I
the approximation~18! the Hamiltonian of the auxiliary sys
tem ~8! becomes quadratic inq andp

H~q,p!'pd̂q1 1
2 pQ̂p. ~19!

The corresponding linearized Hamilton’s equations of m
tion for the coordinates and momenta may be written in m
trix form as

S q̇
ṗ
D 5T̂S qpD , T̂5S d̂ Q̂

0 2d̂†
D . ~20!
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Here T̂ is a 434 matrix. Its first two eigenvalues coincid
with those of the matrixd̂, which we shall denotel1 and
l2. These eigenvalues have positive real part, by assump
The corresponding eigenvectors ofT̂ have their momentum
components identically equal to zero, whereas their posi
components are the eigenvectorsq1,2

D of the matrixd̂. Linear
combinations of these two eigenvectors,

S qD~ t !

0 D[C1
DS q1D

0
D el1t1C2

DS q2D
0

D el2t, ~21!

describe deterministic trajectories of the system on
(q1 ,q2)-plane. @Recall thatp50 signifies a deterministic
nonfluctuational trajectory, satisfyingq̇5K(q).#

The other two eigenvalues of the matrixT̂ coincide with
those of the matrix2d̂†, and are equal to2l1 andl2. The
corresponding eigenvectors (q1,2

F ,p1,2
F ) will have both posi-

tion and momentum components nonzero. Linear comb
tions of these two eigenvectors, of the form

S qF~ t !pF~ t !D[C1
FS q1Fp1FD e2l1t1C2

FS q2Fp2FD e2l2t, ~22!

are ‘‘purely fluctuational’’ solutions of Eqs.~20!. Unlike the
deterministic trajectories, they approach the unstable p
q50 as t→`. An arbitrary zero-energy Hamiltonian trajec
tory satisfying Eq.~20! is a mixture, or superposition, of th
trajectories~21!–~22!, i.e., is of the form

S q~ t !p~ t ! D 5S qD~ t !1qF~ t !

pF~ t ! D . ~23!

In dynamical systems terms, the trajectories~21! and ~22!
trace out the unstable and stable manifolds of the fixed p
(q,p)5(0,0) of the auxiliary Hamiltonian system~19! in its
four-dimensional phase space~cf. @16,18,20,42#!. The un-
stable manifold, which is formed by the deterministic traje
tories, is simply the planep50, while the stable manifold
which is formed by the fluctuational trajectories of the for
~22!, is a ‘‘canted’’ plane of the form

p5Âq, ~24!

whereÂ is an appropriate 232 matrix. The explicit form of
Â will be discussed below. The form of the matrixT̂ of Eq.
~20!, and the zero-energy conditionH50, yield certain rela-
tions between the trajectories on the stable and unst
manifolds. In particular, since the eigenvectorsq1,2

D of the

matrix d̂ and eigenvectorsp1,2
F of the matrix2d̂† are or-

thogonal in the general casel1Þl2, i.e.,

qi
D
•p32 i
F [0, i51,2, ~25!

one can show that there is an invariant

qD~ t !ÂqF~ t !5const. ~26!
n.
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On the other hand, if one substitutesq5qF1qD,
p5pF1pD into H(q,p) and notes thatH(qF,pF)[0 and
H(qD,pD)[0, and thatd̂qD[q̇D, pFd̂[2ṗF, one obtains
from Eqs.~24! and ~25!

q̇D~ t !ÂqF~ t !5qD~ t !Âq̇F~ t !50. ~27!

Equations~26! and~27! can be viewed as a constraint on th
sorts of superposition of deterministic and fluctuational t
jectories that are allowed.

B. Caustics and cusp points

Every extreme trajectory emanating from the limit cyc
when prolonged to the vicinity of the unstable fixed po
contained within it, must be a superposition of the form~23!,
constrained by Eqs.~26! and ~27!. It was shown in Sec. IIB
that extreme trajectories, regarded as trajectories in the f
dimensional phase space, form a one-parameter
t°„q(t,m),p(t,m)…. The parameterm determines, in particu-
lar, the values of the coefficientsC1,2

F,D in Eqs. ~21!–~23!,
which describe the behavior of the extreme trajectories
extend to the vicinity of the unstable stationary stateq50. In
general, to find this dependence it is necessary to integ
Hamilton’s equations~10! from the stable limit cycle down
to the range of smallq. However, the singular features of th
pattern of the paths in the vicinity ofq50 can be found from
a local analysis. For a saddle point this was done in R
@30#. Here we shall generalize the technique of Ref.@30# to
study the pattern of extreme paths near an unstable focu

As mentioned in Sec. III B, we assume on physic
grounds that there exists a single most probable hitting p
~MPHP! along which the system preferentially fluctuates
the pointq50, in theD→0 limit. As a trajectory in phase
space, the MPHP is a heteroclinic trajectory along which
unstable Lagrangian manifold~LM ! of the limit cycle
q5q(cl)(t), p50 and the stable manifold of the poin
q5p50 intersect each other. We normalize our parametri
tion of extreme paths by requiring that the MPHP be t
extreme path withm50.

The LM is traced out by the extreme trajectoriesq(t,m),
p(t,m). The portion of the LM on whichumu is small, i.e., the
portion of the LM near the MPHP, is smooth. This implie
that the coefficientsC1,2

F ,C1,2
D in Eqs. ~21!–~23! for the ex-

treme trajectories are smooth functions ofm nearm50. In
other words, at any given instant of timet the values of the
coefficientsC1,2

F ,C1,2
D for the extreme pathsq(t,m), p(t,m),

with m small, are close to the values ofC1,2
F ,C1,2

D for the
MPHP q(t,0), p(t,0). They can be computed by expandin
C1,2
F ,C1,2

D in m. At m50, the ‘‘deterministic’’ coefficients
C1,2
D equal zero; in physical terms, the MPHP is purely flu

tuational.
The terms in Eq.~23! proportional to the deterministic

coefficientsC1,2
D are responsible for the tendency of the e

treme paths to diverge from the fixed pointq50, which is
why in the limitm→0 ~in which the extreme paths reduce
the MPHP!, these coefficients tend to zero. On the oth
hand, the coefficientsC1,2

F take on nonzero values atm50.
These values can be determined by integrating Eqs.~10!,
starting from the vicinity of the limit cycle. Therefore, wit
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account taken of Eqs.~23! and~24!, the extreme trajectorie
in the tube surrounding the MPHP close to the unstable fi
point must be given to leading order inm by expressions of
the form

q~ t,m!5X~ t !1mY~ t !, p~ t,m!5ÂX~ t !, ~28!

X~ t ![qF~ t !, Y~ t ![qD~ t !.

Here the m50 trajectory „X(t),ÂX(t)… is the incoming
MPHP, in the linear approximation. It is a fluctuational tr
jectory of the type~22!, whereas the termmY(t) allows for
admixture of some specific deterministic solutionY(t) of the
type ~21!. In Eq. ~28! we have neglected a linear ter
}mqF(t) in q(t) and retained only the linear termmqD(t).
The termmqF(t) decays in time whereasmqD(t) increases
exponentially with t. Therefore, even ifmqF(t0) and
mqD(t0) were of the same order of magnitude at some ins
t0, the termmqF(t) would be exponentially smaller tha
mqD(t) when exp@(l11l2)(t2t0)#@1. This is our justification
for neglecting the term proportional tomqF(t).

Even if the ‘‘deterministic’’ termmqD(t) is small com-
pared to the ‘‘fluctuational’’ termX(t) at some instant
t5t0, it will eventually become larger than it. Indeed, a
extreme trajectories withmÞ0 deviate increasingly from the
MPHP; in physical terms, they are repelled by the unsta
fixed point. However, as seen from Eqs.~21! and~23!, their
momentap(t,m), unlike their positionsq(t,m), do not con-
tain exponentially growing terms proportional toC1,2

D . In
fact, the momentum of any extreme trajectory withmÞ0
tends to zero exponentially ast→`. Recall thatp50 corre-
sponds to deterministic motion, i.e., toq̇5K(q). So we de-
duce that extreme trajectories withmÞ0, once they are re
pelled by the unstable focus, become increasin
deterministic.

We should comment on the extent to which the para
etrized extreme trajectoriesq(t,m), p(t,m) of Eq. ~28! are
locally determined, i.e., can be computed from the lineari
Hamiltonian ~19!. The ratio of coefficientsC1

F , C2
F in the

expression for the MPHPX(t), which determines the pat
taken by the MPHP on the stable manifold of the st
q5p50 as it approaches the unstable fixed point (q50), is
determined by the flow field of extreme trajectories far fro
the unstable fixed point. I.e., it is ‘‘global.’’ On the othe
hand the shape of the manifold nearq5p50 is ‘‘local’’: it is
determined by the coefficients of the linearized Hamilton
~19!. And the perturbing termY(t) in Eq. ~28!, it turns out, is
uniquely determined by the constraint equations~26! and
~27!.

Surprisingly, the linearized equations of motion allow o
to determine the singularities of the pattern of extreme pa
near the unstable fixed point. The simplest possible singu
ity is a caustic. A caustic is an envelope of the set of path
the form ~28! on the (q1 ,q2) plane, as shown in Fig. 1. Fo
a one-parameter set of trajectoriesq(t,m), the Jacobian of
the transformation from the variables (q1 ,q2) to (t,m) is
equal to zero on the caustic@34,35#. This condition can be
written in the form

]q~ t,m!

]t
`

]q~ t,m!

]m
50, A`B[A1B22A2B1 . ~29!
d
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Using this condition as well as Eq.~28!, one can find a rela-
tion between the values ofm and t on the caustic, and an
equation for the caustic in parametric form

m5mc~ t ![2
Ẋ~ t !`Y~ t !

Ẏ~ t !`Y~ t !
, ~30!

qc~ t ![q@ t,mc~ t !#5X~ t !1mc~ t !Y~ t !. ~31!

It will be shown below, using the explicit forms for the fluc
tuational componentX(t) and the deterministic componen
Y(t), thatmc(t) is never equal to zero. This is in agreeme
with our basic assumption that MPHP never touches a ca
tic.

The pattern of extreme paths in the vicinity of the u
stable fixed point may display a higher-order singularity
cusp. As shown in Fig. 1, a cusp is a point at which tw
branches of a caustic merge together, or, in a different ph
ing, the caustic stops, and starts moving in the opposite
rection. In the parametrization of Eqs.~30! and~31!, a point
on a caustic is a cusp if and only if

dqc
dt

50. ~32!

Equation~31! implies that the derivativedqc /dt is a sum of
two vectors, one of which,]q„t,mc(t)…/]t, corresponds to
the velocity along the extreme trajectory that touches
caustic at the instantt, with the other,ṁc(t)Y(t), arising
from the motion of the point of tangency along the caus
due to the dependence ofmc on t. But it follows from Eq.
~29!, the condition for a caustic, that these vectors are pa
lel to each other. Therefore they are also parallel toq̇c(t),
and condition~32! can be reduced to a scalar equation,

l ~ t !50, l ~ t ![q̇c~ t !•Y~ t !. ~33!

A point qc(t) on the parametrized caustic is a cusp if a
only if t satisfies Eq.~33!.

V. A CHANGE OF VARIABLES;
CHARACTERISTIC PARAMETERS

The Hamiltonian functionH, which is given in the linear
approximation near the unstable fixed point by Eq.~19!, con-
tains two 232 matrices,d̂ andQ̂, and, hence, seven param
eters~the matrixQ̂ is symmetric!. The actual number of pa
rameters that characterize the flow of extreme paths nea
unstable fixed point is smaller. To reveal the relevant para
eters we shall make a linear change of variables

q85F̂21q, p85F̂†p. ~34!

The form of the Hamiltonian in the new variables remai
the same as in Eq.~19! provided we define new variables

d̂85F̂21d̂F̂, Q̂85F̂21Q̂~F̂†!21. ~35!

The matrixÂ of Eq. ~24!, which describes the local shape
the stable manifold of the point (q,p)5(0,0), is transformed
to
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Â85F̂†ÂF̂. ~36!

In view of the particular importance of the matrixÂ we shall
choose the transformationF̂ so that2Â8 is the identity ma-
trix, i.e., Â852I .

To find the form of the matricesd̂8,Q̂8 for which
Â852I , we first derive an equation thatÂ must satisfy. It
can be obtained from the zero-energy constraint by subst
ing Eq. ~24! into the quadratic Hamiltonian of Eq.~19!, and
setting the coefficients ofpipj equal to zero. Assuming tha
the inverse matrixÂ21 exists we obtain the equation

d̂Â211Â21d̂†1Q̂50. ~37!

Equation~37! can be solved using a transformationÛ that
diagonalizes the matrixd̂, i.e.,

~ d̂Û! i j5l jÛi j . ~38!

The matrixÛ will not necessarily be unitary. One can eas
see that

@Û21Â21~Û†!21# i j52~l i1l j* !21@Û21Q̂~Û†!21# i j .
~39!

Since the diffusion matrixQ̂ is symmetric and nonnegativ
definite, and the eigenvaluesl i of d̂ have positive real parts
by assumption, it follows from Eq.~39! that the matrices
2Â21 and2Â are positive definite~a special, nongeneric
case whenQ̂ is degenerate and is diagonalized by the sa
transformation asd̂ will not be considered in the presen
paper!. These results could equally well be obtained from
expression forÂ in the operator form obtained by Ludwi
@18#; see also@42#.

A Hermitian matrixÂ can be diagonalized by a transfo
mation of the form~36!, containing a unitary matrixF̂. If the
matrix F̂ is nonunitary~i.e., it expands or compresses th
coordinate axes!, both eigenvalues ofÂ8 can be made equa
to 21. Further unitary transformation will not changeÂ8,
and it is convenient to choose them in such a way that
matrix Q̂8 of Eq. ~35! be diagonalized, i.e.,Qi j8 }d i j . It fol-

lows from Eq.~37! that if this is done, the matricesQ̂8, d̂8
will be in the form

Q̂852S h2a 0

0 h1aD , d̂85S h2a b

2b h1aD . ~40!

The relationship between the parametersh, a, andb and the
eigenvaluesl1, l2 of the matrix of drift coefficientsd̂ is

h5 1
2 trd̂5 1

2 ~l11l2!.0, ~41!

h22a25 1
4 det~ÂQ̂!>0.

Moreover, we have

h22a21b25detd̂5l1l2.0.
t-

e

e

e

Since the matrixQ̂ is Hermitian,a is real. We may also
assume thatb is real, which corresponds to the transform
tion matrix F̂ being a real matrix. The signs ofa andb are
not uniquely determined. The sign ofa can be changed by
performing the rotationq18°q28 , q28°2q18 , whereas the
sign of b can be changed by performing a reflection. W
adopt the convention

sgna5 sgnb ~42!

in what follows.
The parametersh, a, andb fully characterize the fluctua

tional dynamics of the system near the unstable fixed po
The reason why the local fluctuational dynamics are cha
terized by only three parameters is that the 232 matricesd̂
and Q̂ together have four invariants, but one of them~ i.e.,
trQ̂) is irrelevant since it may be absorbed in a multiplicati
renormalization of the noise intensityD.

In what follows we assume that the change of variab
~34! has been performed, and remove the primes

q8⇒q, p8⇒p, Â8⇒Â, d̂8⇒d̂, Q̂8⇒Q̂. ~43!

In terms of the new~transformed! variables, the linearized
dynamics of the extreme trajectories becomes easy to
lyze. It follows from Eqs.~24! and~40! that the fluctuational
trajectories of the form~23! must satisfy

pF~ t !52qF~ t !. ~44!

Moreover, Hamilton’s equations of motion, which the MPH
X(t) and the admixed deterministic trajectoryY(t) must sat-
isfy, in terms of the new variables simplify to yield

dX

dt
52d̂†X,

dY

dt
5d̂Y, ~45!

p~ t !52X~ t !.

That is, in terms of the new variables the equations of mot
for X(t) andY(t) separate. The constraint~27! on the vec-
torsX,Y takes the form

Ẏ•X5Y•Ẋ50. ~46!

This means that the basis in which the matrixÂ equals2 Î
has a simple physical interpretation. In this basis one of
axes (Ẋ) is locally tangent to the MPHP and the other ax
(Y) is perpendicular to the MPHP.

If we parametrize the extreme trajectories in the vicin
of the unstable fixed point byt andm as in Eq.~28!, with
t measured from an instantt0 which we choose to be equal t
zero, the zero-energy classical actionS as a function of po-
sition will be a function oft andm

S5E p•q̇dt5S~ t,m!. ~47!

With account taken of Eqs.~27!, ~28!, ~45! we have
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S~ t,m!5S~0,m!1E
0

t

p•q̇dt5S~0,m!2
1

2
X2~ t !. ~48!

We shall compute the action relative to its value at the
stable fixed point, i.e., relative toSf[S(t5`,m50). Since
]S/]q5p andq(0,m)2q(0,0)'mY(0) @see Eq.~28!#, Eqs.
~45!, ~48! imply

s~0,m!52mX~0!•Y~0!, ~49!

and

s~ t,m!52 1
2X

2~ t !2mX~0!•Y~0!, ~50!

where

s~ t,m![S~ t,m!2Sf ~51!

is the normalized action. Equation~50! provides a simple
explicit expression, valid in the vicinity of the unstable fixe
point, for the action as a function of time, and of the varia
m that indexes the extreme trajectories.

The functionS(t,m) is of course single valued. Howeve
the action as a function ofpositionq is multiple valued, since
extreme trajectoriesq(t,m) with different (t,m) may cross
each other. The optimal path to a given pointq, as we have
explained, is the extreme path with minimum action. It
worth noting that this must be no greater thanSf . Indeed,
from the unstable fixed pointq50 the system can reach an
point q without ‘‘building up’’ any additional action, merely
by moving along a deterministic trajectoryqD(t) of the form
given by Eq.~21!.

VI. OPTIMAL PATHS IN THE ABSENCE
OF CUSP POINTS

We can apply the linearized theory of Secs. IV and V
the case when the unstable fixed point, near which the
earization is performed, is a focus. In this case the eigen
uesl1, l2 of the linearized drift matrixd̂ are complex with
the same~positive! real part, and according to Eq.~40!,

l1,25h6 iv, v25b22a2. ~52!

With account taken of the orthogonality condition~46! that
the two fundamental trajectoriesX(t) andY(t) must satisfy,
we may solve Hamilton’s equations~45! to obtain

X~ t !5kexp~2ht !R~u,g!, ~53!

Y~ t !5exp~ht !R~u1f,g21!, ~54!

where

R~u,g![e1cosu2ge2sinu.

Hereu5vt, and
-

e

-
l-

f5arctanS h

v D , g5S b1a

b2aD
1/2

sgnb, e1,25S 6
1

A2

1

A2
D .
~55!

The two functionsX(t) andY(t), when graphed, yieldspi-
rals: they wind in ~i.e., toward the unstable focus! and out
~i.e., away from the unstable focus!, respectively. The con-
verging spiralX(t), which is incident on the unstable focu
ast→`, is the MPHP. The two spirals have the same an
lar frequencyv, and pitches6h that are of equal magnitud
and opposite sign. They have the same direction of rota
about the focus; the direction is determined by sgnb. The
shapeof the two spirals is determined by the periodic vecto
functionR(u,g)5R(u12p,g). This function is a paramet
ric representation of an ellipse whose principal axes are
rected along the unit vectorse1,2. As a consequence, th
spirals are elliptic rather than circular. The ratio between
length of the major axis and the minor axis of the ellipse
ugu @according to Eqs.~42! and ~54#, ugu.1). The quantity
f can be viewed as a phase difference between the
spirals.

The quantityk in the equation forX(t) is a globally de-
termined parameter. It cannot be computed in the framewor
of the linearized model~18!–~20!, and it distinguishes the
MPHP from the other ‘‘fluctuational’’ solutions of the form
~22! that are incident on the focus and may also be descri
by Eq. ~53!, with k ranging over the interval

k1exp~22ph/v!<k,k1 ,

with k1 arbitrary.
Extreme paths other than the MPHP also spiral down

ward the unstable focus, but only initially. We may wri
them in the ‘‘normal form’’ ~28! with mÞ0, i.e., as
q(t,m)5X(t)1mY(t). Such perturbations of the MPHP
~which hasm50) will remain close to the MPHP on a tim
scalet&1/(2h)lnm21. However, we saw in Sec. IVB tha
extreme paths other than the MPHP eventually become ‘
terministic’’ rather than fluctuational. The contribution of th
unwinding spiralmY(t) increases ast increases, and when
the extreme path reaches a distance;umku1/2 from the focus
the contribution of the unwinding spiral becomes of the sa
order of magnitude as the contribution of the inward spir
ing MPHP,mX(t). At that point the extreme path will begin
to spiral back out. At timest@h21ln(kumu) the termmY(t)
dominates, the motion of the extreme path becomes larg
‘‘deterministic’’ and the actions(t,m) along the path ap-
proaches its asymptotic value2mX(0)Y(0)52kmcosf. In
the t→` limit, the extreme path will spiral back into th
stable limit cycle, from which it emerged.

A. The caustic spiraling down to the unstable focus

The location of the caustic occurring in the flow field
extreme paths can be found by substituting Eqs.~53! and
~54! into Eqs.~30! and~31!. The value of the parameterm on
the caustic turns out to be
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mc~ t !52kexp~22ht !
11g2

2cosf S 11
g221

g211
cos2~vt1f! D .

~56!

The caustic itself may be written in a parametric form@cf.
Eq. ~31!# as

qc~ t !5X~ t !1mc~ t !Y~ t !5kexp~2ht !z~vt !, ~57!

wherez(u) is a ‘‘locally determined’’~rather than globally
determined, in the sense mentioned above! function that has
period 2p. Equation ~57! is the equation of a curve tha
spirals down to the focus. It follows from Eq.~56! thatmc is
always nonzero, which is an important point: it proves se
consistency of our assumption that the MPHP~the extreme
path with zerom) never encounters a caustic. We notice th
irrespective of the detailed form of the caustic, the funct
qc(t) is self-similar: the amplitude@}kexp(2ht)# changes
from one turn to the next, but the shape of each succes
turn is the same.The caustic is self-similar.

In the remainder of Sec. VI we shall investigate the ca
when there are no cusp points on the caustic in the vicinity
the fixed pointq50 where the linear approximation~19!
applies. This means thatq̇c(t) does not become equal to zer
i.e., the quantityl (t)[Y(t)•q̇c(t) is never zero@see Eq.
~33!#. Using the explicit expressions~54!, ~56! one can show
that

l ~ t ![Y~ t !•q̇c~ t !5
k

4g2cosf
@4g2111~g221!cos2u#

3$h~g211!1~g221!@hcos2~u1f!

13vsin2~u1f!#%. ~58!

The condition forq̇c(t) not to become equal to zero is ther
fore of the form

g221

g211

Ah219v2

h
,1, orh.3uau, ~59!

when expressed in terms of the characteristic paramete
the model. An expression for the action on the caus
sc5sc(t), can be obtained from the equation

dsc
dt

5¹s„qc~ t !…q̇c~ t !52X~ t !q̇c~ t !, sc~ t ![sc„qc~ t !….

~60!

Clearly, the sign ofṡc changes at the cusp points on t
caustic, if any (q̇c50). Using Eqs.~53! and ~54!, and ~56!
one can show that if the condition~59! is satisfied, the de-
rivative ṡc is always negative. In this case the action on
caustic

sc~ t !5
k2

4
exp~22ht !$11g21~g221!

3@cos2vt12cos2~vt1f!#%, ~61!
-
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decreases monotonically with increasingt. In other words,
the action on the caustic always exceeds its value at
unstable fixed pointq50, and it increases monotonicall
away from this point.

By construction the caustic is tangent to extreme pa
q(t)5X(t)1mY(t) with nonzerom. The caustic is encoun
tered by an extreme pathX(t)1mY(t) if and only if the
equalitym5mc(t) is satisfied. At the tangency point the ve
locity on the pathq̇(t)5Ẋ(t)1mc(t)Ẏ(t) may be parallel or
antiparallel to the velocity of the causticqc(t). It turns out
that the vectorq̇(t) is antiparallel toq̇c(t) at the tangency
point, i.e.,q̇(t)•q̇c(t),0. This can be seen by comparing th
signs ofY(t)•q̇c(t) andY(t)•q̇(t); we omit the computation.

In models withk.0, g.1, the functionmc(t) of Eq.
~56! takes on only negative values. As a result, extreme
jectories withm,0 encounter~and are reflected from! the
caustic, whereas extreme trajectories withm.0 do not touch
the caustic. In Fig. 2~a! we show an initially narrow tube o
extreme trajectories that emanate from the limit cycle, a
spiral toward the unstable focus, but then encounter the c
tic, and spiral away from the focus.

In the absence of cusp points on the caustic~a possibility
that we consider in Sec. VII!, the vectorqc(t) will rotate in

FIG. 2. Extreme paths near the unstable focus atq50. The
parameters specifying local dynamics@see Eqs.~41! and ~52!# are
a50.13,v53.5, andh50.41. The axes are scaled by the para
eterk of Eq. ~53!. ~a! Paths withm/k,0; such paths are reflecte
from a caustic that spirals down to the focus.~b! The MPHP~most
probable hitting path!, which spirals down to the focus~in bold!,
and a path withm/k.0, which initially spirals in, but eventually
spirals out without encountering the caustic.
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2380 55V. N. SMELYANSKIY, M. I. DYKMAN, AND R. S. MAIER
the same direction asY(t) andX(t), and ast increases, the
direction of this rotation will not reverse. Most of the tim
extreme trajectoriesX(t)1mY(t) that are perturbations o
the MPHP rotate in this direction as well. However, in t
region of the system state space where the extreme traje
ries encounter the caustic, they make a loop, so that t
velocity is opposite to that of the caustic.

B. The self-similar topology of the Lagrangian manifold

In the linear approximation near the unstable focus,
Lagrangian manifoldp5p(q) is traced out by the extrem
trajectoriesX(t)1mY(t) with different values of the mixing
parameterm. It is given in parametric form, with paramete
(t,m), by

q~ t,m!5X~ t !1mY~ t !, ~62!

p~ t,m!52X~ t !. ~63!

Here the inward and outward spirals,X(t) andY(t), are de-
fined in Eqs.~53! and ~54!. It follows from Eqs.~62! and
~63! that the LM is invariant with respect to a transformati
which includes a rotation of coordinates byp radians, and a
simultaneous rescaling of variables. In polar coordina
(q,Q) defined by

q15qcosQ, q25qsinQ, ~64!

such a transformation would alter the angular coordinateQ
according to

Q°Q7p sgnb. ~65!

In terms of the phase space coordinatesq andp, the trans-
formation would take the form

q°2expS 7
ph

v Dq, ~66a!

p°2expS 7
ph

v Dp. ~66b!

The transformation law~66! can be understood from the fa
that at a given instant of time all point
q(t,m)[X(t)1mY(t) on the (q1 ,q2) plane, regardless o
the value ofm, have their momenta equal to2X(t). Over
half the periodp/v, the vectorX(t)1mY(t) rotates around
the point q50 by an angle2p sgnb. As a result of the
rotation, each point q(t,m) goes over into
q„t1p/v,mexp(22ph/v)…. The only Hamiltonian trajectory
that remains invariant under the transformation~66! is the
MPHP ~for which m50).

All extreme trajectories lie on the zero-energy surface
phase space, i.e., satisfy the zero-energy constr
H(q1 ,q2 ,p1 ,p2)50. But the Hamiltonian functionH of Eq.
~19! is quadratic inp1 and p2. Therefore, at each specifie
q1 ,q2 ,p1, the momentum componentp2 takes one of two
possible values compatible with the conditionH50. The
shape of the Lagrangian manifoldp5p(q1 ,q2) can be un-
derstood from an analysis of the surfacep15p1(q1 ,q2).
Portions of this surface are shown in Fig. 3~a!. The values of
to-
ir

e

s

n
int

p2(p1 ,q1 ,q2) on the intersecting sheets ofp1(q) are differ-
ent: in general, the LM is not self-intersecting in the fou
dimensional phase space whose coordinates
q1 ,q2 ,p1 ,p2. One can think of the surfacep15p1(q) as an
infinitely long sheet that is first folded, and then twisted
such a way that the fold is wound into a curve that spir
down to the pointq5p50. This spiral is shown in Fig. 3~b!.

The projection of the fold on theq plane is the caustic
and the equation for the spiral in Fig. 3~b!, in parametric
form, isq5X(t)1mc(t) Y(t), p52X(t). We note that self-
intersections of the surfacep15p1(q) arise not only from
the nonmonotonic dependence of the ‘‘height’’ of the fo
p1 on the radiusq[uqu; there are also self-intersections
the sides of the sheetp1(q) on opposite sides of the fold
which make Fig. 3~a! look as complicated as it does. Alte
natively, the surfacep15p1(q) may be compared to a whor
that spirals down to the pointq50, p150. The whorl is
unusual; its turns go up and down, and the step size stea
decreases with the number of turns.

FIG. 3. ~a! A turn ~two branches on opposite sides of a fold! of
the surfacep15p1(q) near the unstable fixed pointq50. Parameter
values area50.03,v53.9, andh50.41. ~b! The position of the
fold in the surfacep15p1(q).
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55 2381TOPOLOGICAL FEATURES OF LARGE FLUCTUATIONS . . .
Additional insight into the structure of the surfac
p15p1(q) can be gained from a Poincare´ section by a ver-
tical half-plane.~See Fig. 4; for convenience we choose t
half-plane to beq25const,q1>0.! Successive branches o
the cross section are partly ‘‘nested’’ into one another. T
pattern of branches is self-similar: any branch can be
tained from any other by~repeatedly! applying transforma-
tions of the form ~66!. We note that outside the small-q
range, where a linearized treatment is not valid, the trans
mation law ~66! must be modifed. So the surfac
p15p1(q), like the caustic, is really onlyasymptoticallyself-
similar. Incidentally, the sheets of the surfacep5p(q), which
appear separate at smallq, are connected to each other
largeq. To study the way in which they are connected, o
would have to go beyond the linear approximation.

The surfacep2(q) is similar to the surfacep1(q), so that
the Lagrangian manifoldp5p(q) is a two-dimensionalheli-
coidal surfacep5p(q) in the four-dimensional phase spac
On this surface, the fold„qc(t),2X(t)… spirals down to the
unstable fixed point. The behavior of the extreme trajecto
q(t) on theq plane can be qualitatively understood from t
behavior of the trajectories„q(t),p(t)… on one of the surface
pi5pi(q) ( i51 or 2). One such trajectory i
„qF(t),pF(t)…; its projection is the MPHP. For this trajector
p52q, i.e., the trajectory corresponds to the intersection
the surfacep15p1(q1 ,q2) and the planep152q1 in the
three-dimensional (q1 ,q2 ,p1) space. We note that the LM i
the unstable manifold of the limit cycle@the periodic orbit
q5q(cl)(t), p50#, whereas the hyperplanep52q is the
stable manifold of the fixed pointq5p50. The trajectory
„qF(t),pF(t)… is the heteroclinic trajectory along which th
two manifolds intersect.

FIG. 4. Cross sections of two turns of the surfacep15p1(q) of
Fig. 3~a!. Hereq250. The turn II is the turn I after one revolutio
over thep1 axis, i.e., withQ of Eq. ~66! increased by 2p. Param-
eters are the same as in Fig. 3. The successive intersections o
MPHP with theq250 plane are shown with filled circles. Over th
revolution, the extreme trajectory 1 passes through the fold~its
projection is reflected by the caustic!, and goes from the lower to
the upper sheet ofp1(q). Trajectory 2 always stays on the sid
opposite to the caustic with respect to the MPHP. The solid line
starts at the origin and passes through the filled circles is the c
section of the stable manifold of the fixed point to which MPH
belongs.
e
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The behavior of the remaining Hamiltonian trajectories
the surfacep15p1(q) is easy to analyze. It follows from
Eqs. ~28! that trajectories „q5X(t)1mY(t),p1(t)
52X1(t)… with opposite signs ofm deviate from the hetero
clinic trajectory „qF(t),p1

F(t)… in opposite directions. The
Hamiltonian trajectories that go toward the fold of the su
facep15p1(q) are those with negativem @their projections
X(t)1mY(t) go toward the caustic#. They spiral around the
point q50 and approach it, then they go over the fold~at
which time their projections are reflected from the caus!
and spiral away from the axisq50. @The behavior of their
projections is shown in Fig. 2~a!#. None of the trajectories
passes through the fold more than once. Indeed, the fol
only passed whenm5mc(t), wheremc(t) is given by Eq.
~56!. In the range~59!, the functionmc(t) is a monotonic
function of t, so the equationm5mc(t) cannot have more
than a single solution.

The Hamiltonian trajectories q(t)5X(t)1mY(t),
p1(t)52X1(t) with positivem deviate from the heteroclinic
trajectory„qF(t),p1

F(t)… in the direction opposite to the fold
therefore they never cross over the fold. At comparativ
small t they spiral around the axisq50 and approach it, as
does „qF(t),p1

F(t)…, but then, as the amplitude of th
outward-spiraling componentmY(t) increases, they begin to
spiral away fromq50. The behavior of the projection
q5q(t) of these trajectories is shown in Fig. 2~b!.

Successive positions of points on trajectories withm50,
m,0, and m.0, on the Poincare´ section of the surface
p15p1(q), are shown in Fig. 4~by filled circles, and empty
circles; 1, 18 and 2, 28, respectively!.

In the limit of large t the Hamiltonian trajectories with
m.0 andm,0 display similar asymptotic behavior. In thi
limit the momentump(t)52X(t) tends to zero, and the tra
jectories approach deterministic trajectories of the fo
q(t)}Y(t), p50, which wind away from the pointq50. The
sheets ofp15p1(q) accordinglyaccumulatenear the plane
p150.

The topology of the surfacep15p1(q) explains why in-
finitely many extreme pathsq(t) pass through any pointq8 in
the vicinity of q50, as shown in Figs. 2~a!, 2~b!. Different
pathsq(t) lie on different sheets ofp15p1(q), and some of
the paths~those withm,0) start spiraling away from the
point q50 after they encounter the caustic, and are reflec
from it ~i.e., when the Hamiltonian trajectories pass throu
the fold!, whereas the others~those withm.0) do so with-
out encountering the caustic. A natural question is, which
the extreme paths that are incident on a given pointq8 is
physically observable, i.e., is optimal. To answer this ques
tion, we must determine for which of the extreme paths
action is a minimum.

C. The multivalued action and the switching line

The value of the normalized actions[S2Sf is unique for
a given extreme path, and therefores is uniquely defined as
a function on the Lagrangian manifold. The Lagrangi
manifold, as a two-dimensional surface in the fou
dimensional phase space whose coordinates are (q,p), is de-
fined by the functionp5p(q). Since this function is multi-
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2382 55V. N. SMELYANSKIY, M. I. DYKMAN, AND R. S. MAIER
valued ~the manifold may fold over on itself, as we hav
seen!, if s is viewed as a function ofq, then it too will be
multivalued.

A cross section of the surfaces5s(q), corresponding to
the cross section of the surfacep15p1(q) shown in Fig. 4, is
shown in Fig. 5. The multivaluedness is obvious. The sa
half-plane q250, q1>0, is used as in Fig. 4, but mor
branches are displayed. The cusps in the graph ofs5s(q), as
shown in Fig. 5, arise from extrema of the curv
p15p1(q1) of Fig. 4, i.e., from points wheredp1 /dq15`.
These are points that lie on the caustic. As computed pr
ously, the value ofs on the caustic is the positive quanti
denotedsc , which increases monotonically away from th
caustic.

The value ofs(q1) on each branch is given by the expre
sion

sn
~ i !~q1!5sc

~ i !1E pn
~ i !~q1 ,q250!dq1 , ~67!

where the superscripti enumerates the cusp points~i.e., the
pairs of branches ofp1), and the subscriptn51,2 enumer-
ates the branches that merge at the point wh
dp1 /dq15`.

It is clear from Fig. 5 that the surface ofminimumaction
smin5smin(q) is only piecewise smooth. The existence of
minimum action at eachq follows from the fact that, al-
though the number of extreme pathst°q(t) passing through
any given pointq8 is infinite, the normalized action functio
s(q)5S(q)2Sf is bounded from below by2Sf @since

FIG. 5. A cross section of the action surfaceS5S(q1 ,q2) near
the unstable focusq50. Here q250, andSf is the action at the
focus. The surface of minimum action,Smin5Smin(q1 ,q2), is shown
in bold. The nonoptimal pieces of the action surface are sho
dashed. Parameter values are the same as in Fig. 3. The cusp
of the multivalued functionS5S(q1,0) are cross sections of th
spinode edge ofS(q1 ,q2), which corresponds to the caustic. The
cusp points are located at the values ofq1 at which the slope
dp1(q1,0)/dq1, as plotted in Fig. 4, becomes infinite.
e
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re

S(q).0, see Eq.~12!#. The cross section of the surfac
smin(q) is shown in bold in Fig. 5. This figure provides a
intuitive picture of the structure of the surface of minimu
action as consisting of sections that correspond to section
different sheets of the LM. Quantitative analysis ofsmin(q) is
facilitated by the fact that at any point along the MPH
minimum action is achieved if the system moves along
MPHP. This fact can be verified as follows. The conditi
that an extreme path intersect with another extreme path
the form

q~ t1 ,m1!5q~ t2 ,m2!. ~68!

Equation ~68! has a countable set of solutions for ea
q(t1 ,m1). For a point on the MPHP (m150) we have

X~ t1!5X~ t2!1m2Y~ t2!. ~69!

Using the expression~50! for the actions(t,m) and the iden-
tity

X~ t !•Y~ t !5kcosf ~70!

that follows from Eqs.~53!, ~54!, one can easily compute
from Eq. ~69! that the difference between the actions for t
MPHP and an alternative path satisfies

s~ t1,0!2s~ t2 ,m2!52m2
2Y~ t !2,0. ~71!

This proves that the MPHP is indeed the optimal path
every point along its extent, including the unstable foc
q50.

It is clear that pointsq very close to points on the MPHP
are reached preferentially along extreme paths very clos
the MPHP, i.e., extreme paths withumY(t)u!uX(t)u. How-
ever, the MPHP is a spiral. When one moves transvers
the spiral one goes from the vicinity of one turn to the vici
ity of the next ~or former! turn. Clearly, somewhere alon
the way there should occur a transition between the pa
that provide minimum action. The condition for switching
that the actions for the two paths coming to a given point
equal, i.e.,

s~ t1 ,m1!5s~ t2 ,m2!. ~72!

@We emphasize that it is theminimumvalues ofs(t,m) for a
givenq5q(t,m) that must coincide.#

Equations~68!, ~72! can be solved form1,2, using Eqs.
~50!, and~53! and ~54!. One obtains

m i5M ~ t i ,t32 i !, i51,2, ~73!

where

n
ints
M ~ t8,t9![kexp@2h~ t81t9!#
$R~vt9,g!2exp@2h~ t82t9!#R~vt8,g!%`R~vt91f,g21!

R~vt81f,g21!`R~vt91f,g21!
. ~74!
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55 2383TOPOLOGICAL FEATURES OF LARGE FLUCTUATIONS . . .
Substituting the expressions form1,2 into Eq.~72!, we obtain
an algebraic equation that relatest2 and t1. Using Eqs.~50!
and ~70!, one can write this equation in the form

s̃~ t1 ,t2!5 s̃~ t2 ,t1!, ~75!

where

s̃~ t8,t9![2 1
2k2exp~22ht8!R2~vt8,g!2kM ~ t8,t9!cosf.

Here s̃(t1 ,t2) is the minimum value of the action
s„t1 ,M (t1 ,t2)… for a given q5q„t1 ,M (t1 ,t2)…. Equation
~75!, which is the condition for switching, yields

qs~ t1!5q~ t1 ,M „t1 ,t2~ t1!…!

5X~ t1!1M „t1 ,t2~ t1!…Y~ t1! ~76!

as the parametric equation of the switching line.
We note briefly that at some instantt1* , the algebraic

equation~75! may have two solutions for the same minimu
value of the action. In such a casethree distinct optimal
paths are incident on a single point, rather than two~as in the
case of a conventional switching line!. We mentioned this
possibility briefly in Sec. III A. At such a point two switchin
lines intersect meet each other and terminate, and a t
switching line begins. We shall refer to this phenomenon
a ‘‘branched,’’ or ‘‘multibranched’’ switching line.

D. Self-similarity of the minimum action surface
and the switching line

Both the switching line whose position is given by E
~76!, and the surface of minimum actionsmin5smin(q), are
self-similar, as is the Lagrangian manifold@see Eqs.~66!#.
Self-similarity of smin(q) is a consequence of the sel
similarity of the whole surfaces5s(q). The latter follows
from Eqs. ~53!, ~54! if one notices that the transformatio
t°t6p/v, m°exp(72ph/v) transforms the point
q5X(t)1mY(t) into 2qexp(72ph/v), ands(t,m) as given
by Eq. ~50! into s(t,m)exp(72ph/v). Similarly, it follows
from Eqs. ~54!, ~73! that if both t8 and t9 are shifted by
6p/v, the function M (t8,t9) is multiplied by
exp(72ph/v). Therefore, ift2(t1) is a solution of Eq.~75!,
then t2(t16p/v)5t2(t1)6p/v. The pair of equations

smin„qexp~6ph/v!…5exp~2ph/v!smin~2q!, ~77!

qs~ t16p/v!52exp~7ph/v!qs~ t1! ~78!

expresses the covariance of the action function, and the
cation of the switching line, with respect to the similari
transformations.

We now address the problem of determining the optim
trajectories between which there occurs switching. In mod
whose parameter values satisfy Eq.~59!, the caustic spiraling
down to the unstable focusq50 does not have cusp point
lying along it. So there cannot occur an intersection of
projections q5q(t) of the Hamiltonian trajectories
„q(t),p(t)… that lie on one and the same turn of the LM@i.e.,
with t1<t,t112p/v, see Fig. 3~a!# and that have not en
countered the fold@i.e., q(t) has not been reflected from th
caustic#. In other words, if we describe the pathsq(t) in
ird
s

o-

l
ls

e

polar coordinates as„q(t),Q(t)… @with the extended angula
variable, Q(t12p/v)5Q(t)12p#, then the paths with
Q1<Q(t),Q112p and m.mc(t) cannot intersect each
other for anyQ1. However, there may~and does! occur
switching between the projections of the trajector
q(t),p(t) that lie ondifferent turns, and have phasesQ(t)
that differ by a multiple of 2p. As emphasized previously
the MPHP is surrounded on either side by optimal paths~see
Fig. 6!. It is clear from Fig. 6 that, since the MPHP spira
down to the pointq50, intersection of optimal paths, an
switching, may occur only between paths that lie on oppo
sides of the MPHP and differ inQ by 2p. So the signs of
m must be opposite for crossing optimal paths, i.
m1m2,0.

The switching line spirals down to the pointq50 along
with the MPHP and the caustic~not shown in Fig. 6!, and
these three spirals never intersect one another. The patte
switching we have just deduced corresponds to the form
the cross section ofsmin5smin(q) shown in Fig. 5. Switching
occurs between sections ofs5s(q) that correspond to neigh
boring turns of the LM, and, as a consequence of this swit
ing, the gradient ofsmin(q) is discontinuous at the switchin
line.

VII. OPTIMAL PATHS IN THE PRESENCE
OF CUSP POINTS

Our topological approach to the analysis of extreme pa
makes it possible to investigate the more complicated c
when there are cusp points lying along the caustic that sp
down to the unstable focus atq50. It follows from Eqs.~41!
and ~59! that this phenomenon occurs in any model who
characteristic parameters satisfy the condition

uau<h,3uau. ~79!

In this parameter range the velocity of the caustic,q̇c(t),
periodically becomes equal to zero. According to Eq.~58!

FIG. 6. Optimal paths near the unstable focusq50, at parameter
valuesa50.33,v54.1, andh50.45. The MPHP is dashed, an
the switching lines are solid. Between the MPHP and the nea
smaller-radius turn of the switching line lie paths withm/k,0
~these paths are eventually reflected from the caustic!. Paths with
m/k.0 lie on the opposite side of the MPHP. They cross t
switching line having made one extra turn compared to the pa
with m/k,0, to which the system switches.
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this happens four times per period 2p/v, at the instants
tn
(1) and tn

(2) , n50,61,62, . . . , defined by

tn
~1!5

1

2v
arcsinS 11g2

12g2sin2F D2
f1F

v
1

p

v S n1
1

2D ,
tn
~2!5tn

~1!1
1

v Fp2 2arcsinS 11g2

12g2sin2F D G . ~80!

Here

F[
1

2
arctan

h

3v
.

The velocity of the caustic equaling zero is the sign o
cusp. It can be shown from Eqs.~31!, ~56! that the positions
of the cusp points,qc(tn

( i )), form two self-similar sets: they
satisfy

qc~ tn11
~ i ! !52expS 2

hp

v Dqc~ tn~ i !!, i51,2. ~81!

The shape of the caustic, in the parameter range~79!, is
shown in Fig. 7. The caustic spirals down to the unsta
focus atq50, but now it has four cusp points per turn. As
models without cusp points along the caustic, the causti
self-similar: it is invariant with respect to the similarity tran
formationsq°2qexp(7ph/v).

A. The Lagrangian manifold

A better insight into the shape of the caustic and the fl
field of extreme trajectories can be gained from an anal
of the two-dimensional Lagrangian manifold, in the fou
dimensional phase space, that is traced out by the traje
ries. We note that the internal part of the integral surface
Fig. 3~a! ~which includes the fold! is basically the interna

FIG. 7. The shape of the caustic spiralling down to the unsta
focusq50, in a model in which the caustic contains cusp poin
Parameter values are the same as in Fig. 6. The caustic is
similar, and the cusps lie on the dashed lines that pass throug
focus. The numbers on the dashed lines indicate cusps of typ
and II ~see the text; for the parameter values chosen, the cusp
not ‘‘observable’’!. Arrows indicate the direction of motion of ex
treme paths that are reflected from the caustic.
e

is

is

to-
n

fold of a torus. It is known from catastrophe theory that
plane projection of the internal fold of a torus may conta
cusp points @39#. A portion of a turn of the surface
p15p1(q) in the case when cusp points are present is sho
schematically in Fig. 8. The cusp points arise if the fold
bent, and makes a sufficiently small angle with the norma
the projection plane. One can picture the fold and the c
points on it by thinking of a doughnut seen at a small ang
In contrast to the surface of a doughnut, the integral surf
p15p1(q) @or p25p2(q)# is not closed, but on the whole
the fold winds around the axisq50. Therefore one would
expect to have four cusp points per turn, as in the case
doughnut. This is in agreement with Eqs.~31!, ~56!, ~80!,
which give the positions of the cusp points explicitly.

In Sec. III A we pointed out that cusp points should
distinguished depending on whether extreme trajectories~1!
first enter the interior of the cusp and then hit the caustic
~2! first hit the segment of the caustic that contains the c
point, and then leave the area delimited by the caustic.
shall now establish which of these two types~types I and II,
respectively! occurs at the instantstn

(1) and tn
(2) of Eq. ~80!.

The direction in which the two branches of the caus
extend from a cusp point is given by the vectorq̈c @cf. Fig.
1~b!.# It is clear that if at a cusp point the extreme pa
q(t) that hits the cusp point satisfies the inequal
q̈c•]q/]t.0, then this path will stay inside the region b
tween the branches of the caustic. So if the inequality ho
the cusp will be of type I. If the opposite inequality hold
then the cusp will be of type II.

As mentioned above, at the point where an extreme p
touches~and is reflected from! the caustic, the vectorsY(t)
and q̇(t) are antiparallel, i.e.,Y(t)•q̇(t),0, whereasY(t)
and q̇c(t) are parallel. Clearly, at the cusp pointsY(t) and
q̈c(t) are parallel or antiparallel. Since at this poi
dl/dt[d(Y•q̇c)/dt5Y•q̈c , it is clear that the type of cusp
point is determined by the sign ofdl/dt. So we have at the
cusp point

le
.
lf-
the
s I
are FIG. 8. A portion of the surfacep15p1(q), showing folding.
Cusp points on the caustic are the projections of points on
surface at which folds begin or end.
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l ~ t !50,
dl

dt
5H ,0, for type I

.0, for type II.
~82!

It follows from Eq. ~82! and from the explicit formula for
l (t) @Eq. ~58!# that the cusp points encountered at the
stantst5tn

(1) are of type I, whereas those occurring at t
instantst5tn

(2) are of type II. So type I and type II cusp
occur alternately, two pairs per turn of the LM.

The presence of cusp points does not change qualitati
the behavior of the flow of Hamiltonian trajectories on t
Lagrangian manifold, compared to what it would be in t
absence of cusps. The fact that the optimal pathq(t)5X(t)
~the MPHP! spirals all the way down to the unstable poi
q50 does not change.~It is no longer smooth, of course!
The fact that the extreme trajectoriesq(t)5X(t)1mY(t)
with m.0 do not encounter the caustic also does not chan
However, the projection of some of these trajectories o
the (q1 ,q2)-plane~i.e., thep50 plane! is now qualitatively
changed.

Extreme trajectories withm,0 now split into three
groups, depending on which of the three branches of
caustic~two coming in and out of the pair of cusp points, a
one connecting the cusp points, see Figs. 7 and 8! they hit.
The corresponding three types of Hamiltonian trajector
are shown in Fig. 8. To make the description more con
nient we have labeled the parts of the surfacep15p1(q) in
the following way: partsa and c are both facing upward
they coincide, except thatc includes the ‘‘invisible’’ part of
the upfacing sheet that is hidden behind the foldAB; parts
b andd are both facing downward~‘‘invisible’’ parts of the
trajectories are shown dashed!. In Fig. 8, trajectory 1 comes
from parta, and then goes over the foldAB to partb and
becomes invisible. Trajectory 2 goes around the cusp p
B from parta to partc, and then goes over the foldBC to
partb. Trajectory 3 also goes around the cuspB to partc of
the surface, but then it goes over the foldDC to partd.

B. Switching lines

It is clear from Fig. 8 that, in the presence of cusp poin
the extreme pathsq(t)5X(t)1mY(t) with m,0 cross each
other before they encounter the caustic. Therefore,
would expect to find a switching line not only between pa
with m,0 andm.0, but also between different paths wi
m,0 ~for some such paths, at least!. The two types of
switching compete with each other: by the time the pa
with m,0 cross each other they may have become ‘‘inv
ible’’ because the system has switched to the paths w
m.0, on account of the latter having lesser action. In t
case the pattern of switching is exactly the same as that
lyzed in Sec. VI, for models without cusp points on the ca
tic. We now consider the case when switching between
paths withm,0 is in fact observable. We shall find th
parameter range where this occurs.

Insight into the possible sorts of switchings can be gain
from Figs. 8, 9~a!, 9~b!. In Fig. 8 the paths 2 and 3 interse
after encountering the caustic. They are nonoptimal at
intersection point, so there is no switching line associa
with their intersection. This corresponds to the cusp po
C being of type II. The paths 1 and 2, on the other ha
-

ly
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-
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s
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-
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e
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intersectbefore they encounter the branches of the caus
that emanates from the type-I cusp pointB. This cusp point
may be observable. If so, there is a switching line betwe
the trajectories 1 and 2, which emanates from the pointB.
This switching line is shown in Fig. 9~a! as the lineBO.
Clearly, the switching line lies inside the triangle formed
the caustic@where the projections of the partsa andc of the
p15p1(q) surface on which the trajectories 1 and 2 li
overlap#.

The switching line that starts atB is described by the
solution of Eq. ~75!: t25t2(t1). At the cusp point
t15t25tn

(1) and away from it,t1,tn
(1),t2. The end point

O of the switching line is determined by the valuet1* where
Eq. ~75! has two rootst2* 8 , t2* 9 such that the three optima
paths that come to the pointO at the instantst1* , t2* 8 , t2* 9
have the same classical action. The third path~not shown in
Fig. 8! is a pathq(t)5X(t)1mY(t) with m.0. It makes an
additional turn around the unstable focus compared to

FIG. 9. A multibranched switching line~bold!, in a model in
which the caustic spiraling down to the unstable focus conta
observable cusp points. Optimal paths that cross the switching
are shown with thin solid lines. Parameter values area50.855,
v51.53, andh50.9. ~a! The local structure of the switching line
The caustic is shown dashed. The sectionBO starts at the observ-
able cusp pointB. ~b! A lower-resolution plot, showing the self
similar structure of optimal paths and switching lines. The switc
ing line spirals down to the unstable focus at the origin, like t
caustic. The structure close to the focus is not resolved.
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paths of type 1 and 2. All three optimal paths terminating
O are shown in Fig. 9~b!.

The intersections of the optimal paths of types 1 and
with the optimal paths withm.0 gives rise to the switching
linesOO1 andOO2, respectively. At the pointO the three
switching linesBO, OO1, andOO2 intersect each other
which is an illustration of thebranching of switching lines
mentioned briefly in Sec. III A. In the present case this si
ation is explicitly characterized by Eqs.~73!, ~75!, which
were used to obtain Figs. 9~a! and 9~b!.

The surface of minimum actionsmin5smin(q) correspond-
ing to the pattern of optimal paths in Figs. 9~a! and 9~b! is
defined piecewise, in the regions separated by switch
lines. It is continuous, but the slope“smin(q) is discontinu-
ous on the switching lines. The surfacesmin5smin(q) has a
so-called vertex at the pointO. A vertex is a new generic
type of singularity of the classical action. In contrast to
cusp point, the WKB prefactor in the stationary probabil
density is not expected to blow up at a vertex. NearO, the
probability distribution is given by the well-behaved asym
totic expression

P~q!; (
i51,2,3

Ci~q!exp@2Si~q!/D#, D→0, ~83!

where the actionsSi(q), i51,2,3, arise from extreme trajec
tories on the three sheets of the surface of minimum act
and the coefficientsCi are the WKB prefactors for each o
the sheets.

The above analysis dealt only with a single pair of cu
points. The global pattern of switching lines~i.e., of the
multibranched switching line! is shown in Fig. 9~b!. This
multibranched line is self-similar, as is the switching line
the absence of cusps, cf. Eq.~77!. The corresponding surfac
of minimum actionsmin5smin(q) is shown in Fig. 10. This
surface is self-similar as well, and satisfies Eq.~77!. The
condition for a multibranched switching line to occur is th
the action at the cusp pointB evaluated along the paths wit
m.0 be larger than that for the paths withm,0. Otherwise
the extreme paths withm,0 that cross each other along th
line BO in Fig. 9~a! will have ceased to be optimal paths b

FIG. 10. The actionS5S(q) near the unstable focus, in a mod
in which the switching line is multibranched. The parameters
the same as in Fig. 9. The ‘‘edges’’ ofS(q) @the curves where
¹S(q) is discontinuous# project to the switching lines~cf. Fig. 9!.
‘‘Vertices’’ of S(q) ~one is shown as a bold dot! are points at which
the switching line branches.
t

2

-

g

-

n,

p

t

the time they cross. One can imagine that by varying
parameters of the dynamical system, one could force
pointO in Fig. 9~a! to coincide with the pointB. In this case
the switching lineBO would disappear, and there woul
remain only the smooth switching lineO1O2. In fact, the
pointsB andO will coincide provided

s„tn
~1! ,mc~ tn

~1!!…5s~ t8,m!,

X~ tn
~1!!1mc~ tn

~1!!Y~ tn
~1!!5X~ t8!1mY~ t8!, m.0,

~84!

mc(t) being given by Eq.~56!. Clearly, because of the self
similarity of the switching line, Eq.~84! holds for the whole
switching line, i.e., for everyn.

Equation~84! gives a sufficient condition for occurrenc
of a multibranched switching line. Anecessarycondition is
that the normalized actionsc(tn

(1)) at the type-I cusp points
be negative@otherwise there would be an extreme path w
a smaller normalized action,s50, which would consist of
the MPHP followed by a deterministic trajectoryq5qD(t)
Eq. ~21! extending to the specified end point#. The action on
the causticsc(t) Eq. ~61! has minima attn

(1) , and it follows
from Eq.~61! thatsc(tn

(1)),0 provided that the characteristi
parameters of the model satisfy

g221

g211 S h219v2

h21v2 D 1/2.1, or uau,h,~8a22v2!1/2.

~85!

~We have used the explicit expression of Eq.~55! for
tanf.! It can easily be seen thatsc(tn

(2)).0, which again
agrees with the general conclusion that the cusp points
type II are unobservable.

Although the condition~85! is necessary rather than su
ficient, it follows from a numerical analysis of Eq.~84! that
the condition~85! provides a reasonably good estimate of t
parameter range where the cusp is observable. The reas
that the paths withm,0, to which the system switches from
the paths withm,0, make an extra turn around the unstab
point q50. Therefore the term2 1

2X
2(t8) in the action for

these paths has an extra factor;exp(22ph/v). In the pa-
rameter range~85!, exp(22ph/v),exp(22p/71/2)'0.09,
and therefore switching to the paths withm.0 occurs com-
paratively far from the MPHP. This tends to make the cu
points observable.

VIII. EXTREME PATHS
FOR A van der POL OSCILLATOR

A. A local analysis

As we mentioned in Sec. II, one example of a fluctuati
system with a stable limit cycle is a noise-driven van der P
oscillator. The preceding analysis of singularities of the p
tern of extreme paths near an unstable focus fully applie
this model. In this subsection we consider local features
this pattern, and in Sec. VIII B we provide numerical data
the global pattern of extreme paths.

The dimensionless coordinateq1, and the velocityq2 of
the van der Pol oscillator of Eqs.~3!, ~4! may be defined so
that near the unstable fixed pointq50 they coincide with the

e
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canonical variablesq1[q18 andq2[q28 of Eqs.~34! and~43!.
The parametersa andb in Eqs. ~40!, ~41! that characterize
the motion nearq50 will then satisfy

a5h, b51. ~86!

The unstable fixed pointq50 of the van der Pol oscillator is
an unstable focus, rather than an unstable node, provided
h,1, which we assume to be the case.

In this model the pattern of extreme paths emanating fr
the limit cycle, when prolonged to the vicinity of the un
stable focus atq50, has some unusual features, due to
diffusion matrix Q̂ of Eq. ~4! being degenerate. It turns ou
that extreme paths other than the MPHP can go through
point q50. Indeed, ifQ̂ is degenerate, the condition that th
quadratic Hamiltonian~19! be equal to zero atq50 does not
require thatboth components of the momentump1 ,p2 be
equal to zero whenq50. In the present case, whenQ1150
we must havep250 atq50, but p1 may be finite.

The following analysis confirms that the MPHP is not t
only extreme path that reaches the unstable focus. For c
acteristic parameters of the form~86!, the explicit expres-
sions ~53!, ~54! for the MPHPX(t) ~the optimal trajectory
that asymptotically approachesq50 as t→`) and for the
deterministic pathY(t) @which is ‘‘mixed’’ with the MPHP
to yield extreme paths of the formX(t)1mY(t)# become

X~ t ![SX1~ t !

X2~ t !
D

5
ke2ht

cosf S cos~vt2f!1sinvt

cos~vt1f!2sinvt D , ~87!

Y~ t ![SY1~ t !

Y2~ t !
D

5
eht

11sinf S cos~vt1f!1sin~vt12f!

cos~vt1f!2sinvt D , ~88!

where

v5~12h2!1/2, f5arcsinh. ~89!

It follows from Eqs. ~87!, ~88! that the componentsX2(t)
andY2(t) become equal to zero at the same instants of t
tn
(P) , defined by the condition

cos~vtn
~P!1f!2sin~vtn

~P!!50. ~90!

This means that all extreme trajectori
q(t)[X(t)1mY(t), irrespective of the value of the mixin
parameterm, cross the axisq250 at the instantstn

(P) .
Clearly, extreme trajectories whose parameterm equals one
of the values

mn
~P![2X1~ tn

~P!!/Y1~ tn
~P!! ~91!

will pass through the pointq50.
On account of this crossing, in the van der Pol model

unstable fixed pointq50 is itself a cusp point of the flow
field of extreme trajectories. Indeed, it follows from Eq
hat

e

he

ar-

e

e

.

~87!, ~88! that q̇1(tn
(P))[Ẋ1(tn

(P))1mẎ1(tn
(P))50, i.e., the

velocity of the paths points along theq2 axis at the instants
tn
(P) . On the other hand, it follows from Hamilton’s equa
tions of motion ~20! that the velocity componen

q̇25(d̂q)21p2 equals zero whenq50. Thereforeq̇50 at
q50. It can be shown that the cusp atq50 points along the
q2 axis.

It is straightforward to check using Eq.~56! @or, more
simply, using the parametric equation~30!# that
mn
(P)5mc(tn

(P)), i.e., the pointq50 lies on the caustic. Since
the caustic is self-similar, it passes through the pointq50
infinitely many times, and the caustic is parabolic ne
q50. It follows from Eqs.~79! and~86! that, for the van der
Pol oscillator, near the pointq50 the causticqc(t) has four
cusp points over each period of revolution 2p/v. When
h.821/2 half of these cusp points may be observable~i.e.,
physically significant!, as explained in Sec. VIIB.

The shape of the caustic and the shape of the sur
p15p1(q) can be understood from Figs. 11 and 12. In F
11 we show a part of the surfacep15p1(q) and of the caus-
tic, as generated by a half-period of revolution of the extre
paths (Dt5p/v). The general picture can be obtained fro
what is shown by using the similarity transformation~66!
@the global shape of the caustic is seen in Fig. 12~b!#. It is
clear from Fig. 11 that the caustic is tangent to the a
q250 at q50, and that the caustic has two cusp poin
within the time intervalp/v. Figure 11 shows also the be

FIG. 11. ~a! A portion of the surfacep15p1(q), and ~b! the
corresponding section of the caustic near the unstable focus of a
der Pol oscillator. Parameter values area5h50.45, andv54.1.
At the focusq15q250 the caustic touches theq1 axis, and at this
point the curvature of the corresponding folds of the surfa
p1(q) diverges.
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2388 55V. N. SMELYANSKIY, M. I. DYKMAN, AND R. S. MAIER
havior of the surfacep15p1(q) in the vicinity of the cusp
points, and how the surfacep15p1(q) behaves asq moves
away from the vicinity of the fixed pointq50.

B. The global structure of caustics and extreme paths

A global analysis of the pattern of extreme paths can
performed by numerically solving Hamilton’s equatio
~10!, accompanied by the initial conditions~13!, ~15!. The
results of such an analysis for the van der Pol oscillator~3!,
~4! are shown in Figs. 13~a!–13~c!. Different extreme paths
were obtained by varyingjn ~the initial distance from the
limit cycle, at a certain point along the cycle!. In this way the
flow field of extreme paths was built up.

A low-resolution plot is shown in Fig. 13~a!. The paths
begin by winding away from the cycle. We show a tube
paths that start near the cycle and approach the unstabl
cus enclosed by the cycle. Close to the limit cycle, this tu
is extremely narrow~separate paths in the tube cannot
resolved visually!. In the vicinity of the unstable focus, th
width of the tube increases dramatically; the paths are ‘
pelled,’’ and they begin to spiral away from the focus. T

FIG. 12. The caustics of the van der Pol oscillator. The value
the single parameter,h, is 0.171.~a! A cusp point far away from the
unstable focus, and the two caustics emerging from it. One of th
caustics spirals down to the focus, while the other moves away f
it. ~b! A zoomed plot of the caustic, showing the interior of th
dashed rectangle in~a!. The caustic is self-similar in the vicinity o
the focus and has infinitely many cusp points.
e
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width of the tube increases rapidly with the number of tur
We note, however, that as the paths approach the limit c
they are ‘‘pressed against’’ the cycle, and the tube is n
rowed down again. This is in agreement with the results
Secs. VI and VII: as the paths go away from the focus th
become ever closer to deterministic trajectories~the trajecto-
ries that the dynamical system would follow in the absen
of noise!; such trajectories asymptotically approach the lim
cycle ast→`.

It follows from the analysis of the preceding sections th
close to the unstable focus, the extreme paths display on
two types of behavior depending on which side of the MP
they lie on ~the MPHP, one recalls, is the extreme@in fact
optimal# path that asymptotically approaches the foc
rather than being repelled!. Paths on one side of the MPH
should spiral away from the focus after they are reflec
from the caustic that asymptotically approaches the focus@cf.
Fig. 2~a!#. Paths on the other side of the MPHP should
repelled by the focus, and should spiral away from it, wi
out ever encountering the caustic. These two types of beh
ior are indeed seen in Figs. 13~b!, 13~c!. In these figures we
show portions of the tube of paths in Fig. 13~a! at high reso-
lution.

By examination, the paths shown in Fig. 13~b! form four
segments of a cusped caustic that spirals into the unst
focus. These segments come together at four cusp point
the structure of the caustic is the same as in Figs. 11~b! and
12~b!. Two segments of the caustic are nearly ‘‘vertical’’ an
two are nearly ‘‘horizontal.’’ The horizontal sections pa
through the pointq15q250 @only a portion of the upper
horizontal section near the upper right cusp point is seen
Fig. 13~b!#. The lower right and upper left cusp points ma
in generalbe observable~cf. Fig. 8 and the discussion in
Sec. VIIB!. ~For the particular parameters used in prepar
Fig. 13~b!, it happens that the cusps are not observable;
omit the proof.!

The paths in Fig. 13~c! are self-intersecting although the
do not encounter a caustic. Their behavior is complet
analogous to the generic behavior shown in Fig. 2~b!.

We now discuss the global structure of caustics tha
shown in Fig. 12. Caustics can be found numerica
from the condition @34,35# that the Jacobian J
[u](q1 ,q2)/](t,m)u equal zero at a timet when an extreme
path encounters a caustic. Herem is the parameter that in
dexes the extreme paths. As mentioned above, we ch
m to be proportional to the initial value ofjn , the normal
distance to the limit cycle at the time we begin our numeri
integration. The Jacobian can be evaluated from a se
first-order differential equations that must be integrated
merically along with Hamilton’s equations for an extrem
path ~cf. @29,41,42#!. In finding caustics numerically, we
searched only for ‘‘primary’’ caustics, i.e. the caustics fir
encountered by extreme paths~caustics touched by extrem
paths that have already encountered a caustic are of no p
cal interest, since the extreme paths can no longer be opt
after they have been reflected from a caustic!.

It is clear from Fig. 12~a! that there are two primary caus
tics that start inside the limit cycle. One spirals down to t
unstable focus; the other spirals away from it, and he
toward the limit cycle. It is the first caustic the occurrence
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FIG. 13. Extreme paths for the van der Pol oscillator, with the
same parameter value as in Fig. 12.~a! A tube of extreme paths that
start near the limit cycle, initially spiral toward the unstable focus a
the origin, and then spiral away from it. The tube is greatly broad
ened near the focus.~b! Paths that are reflected from the caustic, a
points close to the focus, and then spiral back out.~c! Paths that
spiral toward the focus and then spiral back out, without ever en
countering the caustic.
which was predicted, and the behavior of which near
unstable focus was investigated in the present paper
agreement with general topological expectations, the
caustics join together at a cusp point~cf. Ref. @30#!. This
cusp point lies away from the region near the focus wh
the linear approximation used in this paper applies.

The structure of the caustic near the focus is shown in F
12~b!. In agreement with the results of Sec. VII, the shape
the caustic is self-similar close to the focus, the caustic
four cusp points per turn, and, as a consequence of the
generacy of the diffusion matrix, touches the focus twice
turn ~cf. Fig. 11!.

It is interesting to note that the infinite set of cusp poin
in the vicinity of the focus is separated from the cusp po
from which the caustic emerges by a substantial distan
over which the caustic is smooth. We mentioned previou
that observable~or potentially observable! and unobservable
cusp points are encountered alternately, as one moves a
the caustic. The cusp far away from the focus is obviou
observable, and therefore the first cusp in the vicinity of
focus should be unobservable. This agrees with the patter
cusp points in Fig. 13~b! discussed above.

One would like to investigate the switching line of the va
der Pol model, as well as the pattern of cusps and caus
Figure 12 provides some insight into the global structure
the switching line. We did not attempt to estimate its positi
numerically, but it is clear from topological arguments tha
starts at the cusp point remote from the focus. It spir
smoothly down to the focus, and its behavior in the vicin
of the focus is described by the results of Sec. VII.

IX. CONCLUSIONS

The central result of the present paper is an analysis of
pattern of optimal fluctuational paths in the vicinity of a
unstable focus of a periodically oscillating dynamical sy
tem. We have shown that this pattern generically displ
singular behavior, and have analyzed this behavior. We h
also established topological features of theglobal pattern of
optimal fluctuational paths, in the interior of the limit cyc
of the system.

Our approach was based on an investigation of the
grangian manifoldp5p(q) of an auxiliary Hamiltonian sys-
tem. The classical trajectories of this system,q5q(t), pro-
vide extrema of its action functional, whereas its zero-ene
classical actionS5S(q) determines the exponential falloff o
the stationary probability density of the original fluctuatin
system in the weak-noise limit.Optimal fluctuational paths
of the original system are a special case of the zero-ene
trajectories of the auxiliary system: the extreme paths
least action. On any such trajectory, the values taken by t
spatial variablesq of the auxiliary system coincide with th
values taken by the dynamical variables of the original s
tem, as it moves along an optimal fluctuational path. Ad
tionally, the momentum variablesp of the auxiliary system
are related to optimal realizations of the noisef(t), which
drives the dynamical system along its optimal path. Bo
optimal paths and optimal realizations of the noise are ph
cally observable.
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We have shown that, near an unstable focus in the sp
of dynamical variables of the original system (q50), the
Lagrangian manifoldp5p(q) has a novel topological struc
ture. It is many sheeted, and the surfacespi5pi(q), i51,2,
have a complicated helicoidal shape, with folds spiralli
down to the focus. The projection of each fold onto theq
plane is a caustic: an envelope of extreme paths, from wh
extreme paths are ‘reflected’. Normally one associates c
tics with the crossing of trajectories, but an interesting a
unexpected consequence of the helicoidal structure of
surfacespi5pi(q) is that extreme paths on theq plane can
crosseach other, and themselves,without first encountering
a caustic.

Generically, a caustic spirals into the unstable focus. T
makes the problem qualitatively different from the proble
of fluctuations in a periodically driven system, which w
investigated by Graham and Te´l @21#. Depending on the pa
rameters of the system the caustic may be smooth or
have four cusp points per turn. However, caustics are
observable, in the sense that optimal paths~that is, least-
action extreme paths! never reach them. By the time an e
treme path reaches the caustic and is reflected from it, it
ceased to be optimal.

The physically observable singularities are switching lin
rather than caustics. Switching lines are the curves that s
rate the regions in state space to which the system arrive~in
the weak-noise limit! along topologically different optima
paths. We have shown that generically, a switching line s
rals into the unstable focus. In the case when the cau
spiraling down to the focus has cusp points lying along it,
switching line may be multibranched: it may have segme
that branch off. The minimum zero-energy action functi
Smin(q) of the associated Hamiltonian system has a singu
ity of a special type, a ‘‘vertex,’’ at each such branchi
point.

Even if there are no cusp points along the caustic spira
down to the unstable focus, the functionSmin5Smin(q) near
the unstable focus is not quadratic in the distance to
focus, except very approximately. Figure 5 makes this v
clear. The cross section ofSmin5Smin(q) by a plane
a1q11a2q25const with arbitrarya1 ,a2 is the envelope of a
discrete set of curves, each curve arising from a dist
branch of the multivalued functionS. This envelope is a
jagged approximation to a parabola, rather than being a
parabola. As a consequence of this nonquadratic beha
the stationary probability density at pointsq near the focus,
which includes an exponential factor exp@2S(q)/D#, will in
the weak-noise (D→0) limit be considerably more compli
cated than a straightforward inverted Gaussian.

One way of observing the novel singular features that
have derived would be to investigate the stationary proba
ity density, or, in more depth, to measure the distribution
the fluctuational paths themselves, by using, e.g., the exp
mental technique of Ref.@26#. The importance of oscillating
dynamical systems in physical applications would make s
an analysis particularly valuable. An additional motivati
for conducting such an analysis arises from the fact that
many cases, a fluctuating system displays ‘‘hidden’’ degr
of freedom when brought to the vicinity of an unstable fix
point. This may for example happen in a laser@13#: when the
intensity of the dominating mode drops down, other mod
ce
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that were previously suppressed come into play, and th
occurs a transient~with duration}u lnDu, asD→0) increase
in their intensity.

APPENDIX

In this appendix we provide a proof that the action co
puted from an extreme trajectory that has been reflected f
a caustic is larger than the action computed from an extre
trajectory that has not~this statement was given without
proof in Ref.@30#!. Near a caustic it is convenient to choo

coordinatesq̄1 ,q̄2 in such a way that the unit vectorq̂̄1
points along the caustic, andq̄2 is the distance to the caustic
This implies that

q̇5 q̂̄1u q̇̄u, at q̄250.

As shown in Fig. 1, the coordinateq̄2 is quadratic in the
momentum componentp̄2 transverse to the caustic. So th
momentum component, as a function of positionq, has two
branches, i.e.,

p̄2
6~ q̄1 ,q̄2!' p̄2~ q̄1,0!6@u~ q̄1!q̄2#

1/2, uq̄2u!1. ~A1!

The sign ofu determines whether the extreme trajector
that are reflected from the caustic lie on theq̄2.0 side~for
u.0) or on theq̄2,0 side~for u,0).

The actionS5S(q) also has two branches near the cau
tic. The quantity of interest is the difference between t
values ofS on its two sheets, at the same pointq. It follows
from the evolution equation~11! for the actionS along the
Hamiltonian trajectories thatS(t)5*p(t)•q̇(t)dt. Therefore
the difference between the values ofS on the two sheets may
be written as

S~1 !~q!2S~2 !~q!5E
q̄250

q̄2
p̄2

~1 !dq̄22E
q̄250

q̄2
p̄2

~2 !dq̄2 .

~A2!

It follows from Hamilton’s equations~10!, with account
taken of ~A1! and of the fact that on the caustic the tran

verse velocity componentq̇̄2 is zero, that near the caustic

q̇̄2
~6 !'Q̄22@ p̄2

~6 !~ q̄1 ,q̄2!2 p̄2~ q̄1,0!#, Q̄22[ q̂̄2Q̂q̂̄2 .
~A3!

From this equation and the conditionQ̄22.0 ~the case where

Q̄2250 is nongeneric! it follows that sgnq̇̄2
5 sgn@ p̄2

(6)(q̄1 ,q̄2)2 p̄2(q̄1,0)#. It follows then from Eq.
~A2! that the smaller action corresponds to the trajecto
thatapproachthe caustic~for which q̇̄2 /q̄2,0), whereas the
action for the trajectories that have been reflected from
caustic is larger, at the same pointq5(q̄1 ,q̄2).

In Fig. 1 therefore the sheet with the largest value
S(q) is formed by paths that have been ‘‘reflected’’ by o
of the caustics~these paths lie in the middle sheet of th
LM !. The physical value ofS(q), i.e., Smin(q), must be at-
tained on one of the other two sheets.
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