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Topological features of large fluctuations to the interior of a limit cycle
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We investigate the pattern of optimal paths along which a dynamical system driven by weak noise moves,
with overwhelming probability, when it fluctuates far away from a stable state. Our emphasis is on systems that
perform self-sustained periodic vibrations, and have an unstable focus inside a stable limit cycle. We show that
in the vicinity of the unstable focus, the flow field of optimal paths generically displays a pattern of singulari-
ties. In particular, it contains switching linethat separates areas to which the system arrives along optimal
paths of topologically different types. The switching line spirals into the focus and has a self-similar structure.
Depending on the behavior of the system near the focus, it may be smooth, or have finite-length branches. Our
results are based on an analysis of the topology of the Lagrangian manifold for an auxiliary, purely dynamical,
problem that determines the optimal paths. We illustrate our theory by studying, both theoretically and nu-
merically, a van der Pol oscillator driven by weak white no[&1063-651X%97)02703-7

PACS numbes): 05.40:+j, 02.50—r, 05.20-y, 02.40—k

I. INTRODUCTION is due to many author¢see Refs[16—20 and the more

: L : .recent Refs[21-32). In spite of much effort a full analysis
_Many_nonlmea_r d|SS|p_at|ve systems dlsplay stable Pt these phenomena, in systems with stable limit cycles, has

odic oscillations, e., their state spaces_contam stable |Imlgeen obtained only c;Iose to a bifurcation point in param’eter

cycles[1]. Example.s include Iasefg], rqdmfrequency gen- space, where the phase and amplitude of the oscillations of

erators[1(a)], chemical[3(@)] and biologica[ 3(b)] systems. he system fluctuate independentR;8]. Corrections to the

I_n many cases the vibrations are nqnsmuso@al, as inamu stationary probability density distribution due to weak cou-
timode laser with strong mode couplifd], passive optically  jing petween angular and radial fluctuations are discussed
bistable elementfb], and various sorts of engineering struc- i, Ref. [17].

ture [6]. Large fluctuations in systems with stable limit cycles have
Fluctuationsin periodically oscillating systems play an several novel features, arising from the fact that there is often
extremely important role. They eventually destroy periodic-an unstable fixed point inside the cycle. For example, in the
ity of the self-sustained oscillations, so that the OSCi”atiOI"Isimplest case of a single-mode laser such a point corresponds
phase becomes random, and a stationary probability distribue the unstable stationary state where the system does not
tion in the state space of the system is formi@&dB]. This  generate light. If present, an unstable fixed point will be an
distribution reaches a maximum at the cycle, does not varynstable focus or nod@r perhaps a saddle point if the sys-
much along the cycle, and falls off rapidly in directions tem has more than two dynamical variableBhe stationary
transverse to the cycle. The shape of the maximum depengsobability density near the unstable fixed point is “built
on the character of small transverse fluctuations away fronup” by large fluctuations away from the limit cycle. The
the cycle. If the fluctuations are due to the system beingossibility of singularities occurring, @ —0, in the prob-
perturbed by weak noig@f intensityD), the transverse fall-  ability distribution of systems lacking detailed balance was
off will usually be approximately Gaussigi—9], with stan-  first pointed out by Graham and ITE21] (see also Jauslin
dard deviation proportional tB? asD—0. [22]). We shall show that in oscillating systems with such an
It was recognized long agd,10] that, for systems with unstable fixed point, the way in which fluctuations to its
stable limit cycles, it is of considerable interest to analyze thevicinity take place gives rise to a highly unusshgularity
way in which large, occasional fluctuations away from the structure of the stationary probability density thefa the
cycle take place. These fluctuations are responsible, e.g., ftimit of low noise intensityD).
switching between coexisting laser modd4-13, or be- From one point of view, singularities arise for the follow-
tween different photon occupation numbers of a single maseng reason. The stationary probability density in the immedi-
mode, as observed recently in REE4]. Another interesting ate vicinity of the limit cycle is determined by the dynamics
effect attributed to large fluctuations is a sudden transientf the system near the cycle, and is asymptotically Gaussian.
dropout in the intensity of a main mode due to power ex-Normally one would expect, by linearizing the motion of the
change between main- and submofEXa)]. Recent interest system near the unstable fixed point contained within the
in this problem is due to the application of lasers in opticallimit cycle, that the probability density there would be an
communicatior{15]. inverted Gaussian. The shape of this inverted Gaussian
The analysis of large fluctuations and switching betweerwould be determined by the locélinearized dynamics of
attractors, in systems with limit cycles, is similar in many the system. But it is by no means clear that two locally
ways to the analysis of the corresponding phenomena idefined functionga Gaussian and an inverted Gausgiail
other types of nonequilibrium system. Previous work on thismatch together smoothly. In fact, we shall see that the naive
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assumption of an inverted Gaussian distribution near the urpoints, and caustics, be determined analytici2§(b)], [29].
stable fixed point is incorrect. In the present paper we extend and generalize the analysis
Our approach to the problem of large fluctuations to theof Ref. [30] to any system with a stable limit cycle that
vicinity of an unstable fixed point makes heavy use of thecontains an unstable fixed point. In particular, we consider
optimal pathconcept. At least in the case of linear models,the case when the unstable fixed point is an unstable focus
the concept can be traced back to the work of Onsager an@o that in the absence of fluctuations, trajectories in the sys-

Machlup [33]. An optimal path (sometimes called an tem state space spiral away from. itWe shall show that
Onsager-Machlup optimal patis a path along which a dy- generically, the flow field of optimal paths near the unstable
namical system experiencing weak random perturbationfocus displays a self-similgpattern of singularitieginclud-
moves, with overwhelming probability, when it eventually ing a caustic, and under some circumstances an infinite se-
fluctuates away from the vicinity of an attractor to a specifiedquence of cusps The caustic is unobservable in the sense
remote point in its state space. This path provides a minithat optimal extreme paths are not incident on it. But the
mum to a certain action functional that describes the probpattern is accompanied by a self-similswitching line a
abilities of arrival to the specified point along different paths.curve that separates regions in state space that are reached
Each such probability becomes exponentially small awia topologically different sorts of optimal path, in the weak-
D—0, but the exponential falloff rate is path dependent, sgoise ©—0) limit. This curve spirals into the unstable fo-
that it becomes exponentially more probable for the systemgus, and its presence is responsible for the singular behavior
to move along a distinguished “optimal” trajectory than there(in the weak-noise limjtof the stationary probability
along other trajectories. The particular form of the actiondistribution.

functional depends on the nature of the random perturbations In Sec. Il we derive Hamilton’s equations of motion for
(fluctuations may be induced by external noise, or by théhe extreme pathén particular, for optimal pathsand find
number of molecules in a chemical system being finite).etc. initial conditions for these paths in the vicinity of the stable
We emphasize that optimal paths are real physical objectdéimit cycle. In Sec. lll we explain what topological singulari-
they have been experimentally obserf@é]. Note thatex- ties of the pattern of extreme paths can be like. In Sec. IV we
tremepaths, which provide extrema of the action functional,study the behavior of the extreme paths that extend to the
may not necessarily provide the absolute minimum. In thisvicinity of the unstable focus, by linearizing Hamilton’s
paper we shall study the singular properties of the flow fieldequations of motion there. We show that generically, there is
of extreme paths, both optimal and nonoptimal. a caustic that spirals down to the unstable focus, and begin

From a formal point of view, the analysis ofa—0 limit the task of determining the location of this caustic and its
in terms of optimal trajectories is similar to the analysis ofassociated cusp points, if any. In Sec. V, by reducing the
the #—0 limit of quantum mechanics in terms of the ex- equations for the extreme paths near an unstable fixed point
treme trajectories of semiclassical WKB theory. A well to a “normal form” (a set of uncoupled lower-order equa-
known feature of the pattern of extreme trajectories appeations), we identify the parameters that determine the local
ing in the semiclassical approximation is the presence oflynamics of the paths. In Sec. VI we obtain explicit equa-
caustics curves that are envelopes of trajectories, in thetions for the positions of the extreme paths, and the caustic,
sense that trajectories are reflected from tfid#35. Caus- near the unstable focus. A detailed topological analysis of
tics have in fact been discovered numerically in the flowthe so-calledLagrangian manifoldformed by the paths is
field of extreme paths of fluctuating systems of various typegiven, and features of the flow field of paths related to the
[22,27,29,3], [23(a)]. However, unlike a wave function in singular structure of manifold are discussed. We also discuss
quantum mechanics, the probability density in the theory othe switching line. In Sec. VII the results of Sec. VI are
large fluctuations, the asymptotic properties of which are deextended to the more difficult case when the caustic spiraling
termined by the flow of optimal paths, is non-negative defi-down to the unstable focus has an infinite sequence of cusp
nite. Normally a semiclassical approximation to a wave funcoints lying along it. In Sec. VIII we investigate numerically
tion acquires a phase factor when the WKB trajectory fromthe global pattern of extreme paths for a van der Pol oscilla-
which it is computed encounters a caustic. This suggests th&er, and analyze global and local singularities of this pattern.
in the asymptotic theory of fluctuating systenogtimalex- ~ Section IX contains concluding remarks.
treme trajectories are forbidden, by a sort of “censorship,”
from ever encountering caustics. By the time they reach
them, they have ceased to be optimal. This is a key differ- Il. EQUATIONS FOR THE EXTREME PATHS
ence between thB—0 limit of fluctuation theory and the OF A FLUCTUATING SYSTEM
fi—0 limit of quantum mechanics.

A topological analysis showing exactly how, in white-
noise driven systems, optimal paths automatically avoid For any dynamical system, a detailed picture of the fluc-
caustics was given in Reff30]. The analysis there was lim- tuations about an attractor, and the shape of the steady-state
ited to fluctuations in systems whose state spaces contaprobability distribution, requires a specification of the under-
only stable fixed points and saddle points; no other singularilying dynamics and the source of the fluctuations. However,
ties, such as limit cycles, were discussed. For models in thithe above-mentioned singular features of the distribution and
restricted class, it was shown that caustics can emanate, of the pattern of optimal paths occur very generally. There-
pairs, fromcusp points The location of cusp points, in the fore we shall consider the simplest model of a fluctuating
system state space, is determined by the global pattern sfystem that can display these features: a two-variable dy-
optimal paths; only occasionally can the location of cuspnamical system driven by white noise, with a stable limit

A. The eikonal approximation
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cycle containing an unstable focus or node. The equation dflamilton-Jacobi equation of aauxiliary Hamiltonian dy-

motion of such a system is of the form namical systemwith the HamiltonianH(q,p). In this inter-
pretationS(q) is aclassical action at zero energy
%=K(q)+f(t) 1) If the noise is weak, the probability densiB(q) will be
dt ' tightly peaked around the stable limit cycle. Moreover be-

. cause of phase diffusio[¥], the functionS(q) should be
with (f(t))=0 and constant on the limit cycle to leading orderinasD —0. It
VE W — A, SOt . follows [21(b)] that S(q) satisfies the following boundary
(fi(OF(t))=DQya(t-t), ij=1.2. @ conditions on the limit cycle:

Here g=(q,,q,) is a vector of dynamical variables, and (as

f(t) is white Gaussian noise with intensify [the matrix _)
9q/ ,_ 4ch
q=q((7)

Qij is non-negative definite, and we assume that

maxQ;|=0(1)]. The drift field K specifies the dynamics of . .

the system in the absence of noise. We choose it so that tHer all 7 (0,7). Herer has the meaning of elapsed time

system has a limit cycle, i.e., the equatibsydt=K(q) has a  for deterministic motion along the limit cycle.

solution ¢(®(t) satisfying qt"(t+ 7Ny =q(¢(t), where The Hamilton-Jacobi equatiof8) may be solved by the

7V is the period of oscillation. method of characteristics. The equations for the characteris-
A noise-driven van der Pol oscillat7], for example, fits ~ tics have the form

into this framework. In dimensionless variables the equation

) . X dq oH A
of motion of such an oscillator is B
at = ap ~ K@+, (108

=0, S(q°’(7))= const, (9)

X+ 27(x2—1)x+x=f(t 3
7( ) 1(t) (©)) dp M oK@ .
(where >0). If one letsq;=x andg,=x, and sets dt- g aq P (105

Ki=0gs, Ky= —q1—27;q2(q§— 1), Qij=476i29;2, and the evolution equation f@& along any characteristic is
4

ds .
then Eq.(1) reduces to Eq(3). Notice thatq=0 is an un- gt P (11
stable fixed point of the van der Pol oscillator; it is contained
within a stable limit cycle. We havK(0)=0, and Equations(10) are Hamilton’s equations of motion for the

auxiliary system. They describe the trajectories of this sys-
tem that give rise to extreme values of its action functional
[37,38. This action functional is of the form

de(&K,/&q]):0>0, (&K|/aq|):o>o (5)

(summation over repeated indices is understood

The stationary probability densify=P(q) of any system tmax . o
described by Egs(1) and(2) satisfies the time-independent ‘S[q(t)]=f [a(t)—K(a(t))]Q [ a(t) — K(g(t))]dt.
Fokker-Planck equation tmin

2 9 In general there will be many zero-energy trajectories that
[QijP(a)]— T[KiP(q)]=O. (6) begin on the stable limit cycle and terminate at a specified
Qi pointg’. As a consequence, the quant8{q’) is in general
In the limit of small noise intensityD one can seek an ap- mgltivalued One of th,ese trajectorie_s gives deastaction.
proximate solution of Eq(6) in an eikonal or WKB form  11iS least valueSy,(q') is the physical value of the zero-
[36] energy a_ctlon: the one th_at would appear in thc_e eikonal ap-
proximation(7) to the stationary probability densify at the
P(q)~C(q)exd —S(q)/D], D—0. (7)  pointq’.
Using a path-integral formulation of the problem of large
Equation(7) is a sort of asymptotic Maxwell-Boltzmann dis- fluctuations[20,26], [24(b)], or an equivalent probabilistic
tribution, with S(q) the “activation energy” of fluctuations formalism [16], one can show that the extreme trajectory
to the vicinity of the pointq in the system state space. qg(t) giving rise toS,,,(q’) is the optimal fluctuational tra-
C(q) is a WKB prefactor, which we shall not investigate in jectory of the original dynamical system that reachgs
any detail in this paper. If one substitutes the asymptotiaVhen a fluctuation to the vicinity of any poigt not on the
form (7) into Eq. (6), and keeps only the terms of lowest limit cycle occurs, in théd— 0 limit it becomes increasingly
order in D, one arrives at the following nonlinear partial likely that the fluctuation took place along the optimal tra-
differential equation for the functio§(q): jectory. The optimal trajectory of the system corresponds to
an optimal(most probablgrealization of the random force
f.

The auxiliary dynamical system, being Hamiltonian, has
dynamical variablesd,p). What is the significance of the
Here the matrix operatd® corresponds to the diffusion ma- momentunrp for the original noise-perturbed dynamical sys-
trix Qj; in Eqg. (6). Equation(8) can be interpreted as the tem? Through the eikonal approximation, at any paint

= 9S
H(g,p)=K(q)-p+3:pQp=0, pEa—q- (8)
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along an optimal path the momentum determines the Wwhen|&,/<1. In what follows we shall sgp,~0, because
D—O0 limit of the logarithmic gradient of the stationary P, is of the same order of magnitude as the terms in the
probability density. Moreover, the momentum may be inter-equation forp,, that arise from the cubic-ig; corrections to
preted as a measure of the extent to which optimal trajectdhe action that were dropped in EG.2). The smallness of
ries move against the deterministic drit It is clear from P, as compared t@, has the following explanation. In con-
Hamilton’s equatior{10a thatp=0 only for trajectories sat- trast to the deterministic trajectories of the system in the
isfying g=K(q), i.e., deterministidnonfluctuational trajec- ab_sence of noise, the extreme trajectories near the I|m|F cycle
tories. spiralawayfrom the cycle; however, the direction of spiral-
ing is the same. Deterministic trajectories satisfy equations
of the form(10), with p=0, and therefore it is clear thaj is
small compared t@,, near the cycle.

The initial conditions for the extreme trajectories emanat- It follows from Egs.(14) that the initial conditions for
ing from the stable limit cycle, i.e., the zero-energy trajecto-zero-energy extreme trajectories emanating from the limit
ries satisfying Eq(10), follow from the behavior of the clas- cycle can be chosen in the following way. Suppose that at an
sical action functionS(qg) in the vicinity of the cycle. initial instantt, we chooseq(t,) to be close to the limit
Because the gradieMS(qg) vanishes on the cycle, near the cycle. We may then set
cycle one may seek aapproximately quadratisolution for .
the action, of the sort first considered by Ludwib8] (cf. p(to) =N(&)&nén, S(t@z%h(f.)éﬁ, (15
Refs.[9,25])

B. Initial conditions for extreme trajectories

where §=¢&,(q(tg)) and &,=£&,(q(tg)). Since the zero-
S(&,&n)~EN(&)E2. (120 energy trajectories satisfying E(LO) spiral away from the
cycle, it is clear that we shall describe one and the same path
The coordinat; is the distance along the limit cyclenea-  if the value of&,(q(t,)) differs by the increment of,, over
sured from an arbitrary pointThe other coordinate,,, is  one turn(or over several turns The entire flow of the zero-
the normal distance to the limit cycle. In the limit of small energy Hamiltonian trajectories emanating from the limit
noise intensity we have what is effectively one—dimensionabyc|e is therefore mapped onto the two intervalstpf(one
diffusion normal to the limit cycle, and Eq$7) and (12)  for positive and one for negativé,) that lie between the
describe the Gaussian distribution of the system in that dineighboring turns of a single path. In other words, the entire
rection. family of zero-energy extreme trajectories emanating from
The equation fog; as a function of the time of motion  the limit cycle can be parameterizedg(s$; ,), p(t; &,), with
along the cycle has the forah¢, /d7=wv,(7), wherev(7) is &, lying within one of the corresponding intervals, which
the speed along the cycle. One can vievin Eq. (12) as a  depend on the choice . This fact paves the way to a
function of the time variabler, rather than,. A Riccati  numerical analysis of the global flow. The numerical analysis
equation for\(7)=\[£(7)] can be obtained by substituting of a particular systenithe van der Pol oscillator mentioned
Eqg. (12 into the zero-energy Hamilton-Jacobi equati@®  in Sec. Il A), using this technique, will be given in Sec. VIII.
and taking the limitf,—0. It has the forn{25]

I1l. SINGULARITIES OF THE PATTERN
A. Many valuedness and the generation of singularities

dun

A2
¢

v,=K- %n, Qnn= %ann- A well known property of Hamiltonian trajectories is that
they may correspond to a local extremum rather than to the
global minimum of the action functional. On account of the
existence of local extrema, several extreme trajectories
d q(t,&,) with different values of the parametég may arrive

at the same poird. The actionS(t; ¢,)) as computed from the
differential equation(11) will be, in general, a multivalued
function of the end poing. If at each poingy one selects the
minimum value of S(q), then a single-valued surface of
minimum action S.,;,=Snin(q) will be defined piecewise.
The quantity S,,,(0q) determines the asymptoticD{(-0)

Here & and &, are orthogonal unit vectors that are locally
parallel and perpendicular to the limit cycle. $q is the
component of the velocityK normal to the cycle, an
DQ,, is the diffusion coefficient in the direction normal to
the cycle(clearly v,=0 on the cycle, i.e., at,=0). The
coefficientsdv,/d¢, and Q,,, are evaluated on the cycle.
They depend on the position along the cyéje or, equiva-
lently, on the timer. This dependence is periodic, and the
solutionA=\(7) should be periodic as well, which uniquely : ; B Gk o
determines it. Eq(13) can be reduced to a linear equation for iﬁgiﬂtehrenikgngeazg[é?(?ggﬂSLOEZ%II_IW distributidh=P(q)
the function 1X(7) and then solved, yielding an explicit ap- Generically, the surfac8,;,= Sm,(q) will contain curves
proximation to the actior§(q) near the limit cycle9,25]. (“switching lines™) at which different sheets &= S(q) in-
Since p=VS, Eq. (12) yields the following expressions tersect each other transversally, i.e., at a nonzero angle.
for th'e components of the momentyrparallel to and per- Along any such curve the first derivative 8f,,(q) in the
pendicular to the cycle transverse direction will be discontinuofil,22. However,
the resulting singularities of the distributio®(q) will be
P& &)~ E d_)‘gﬁ Pn(& L ED~N(ENE,, (14 smeared out at nonzero noise intendty They appear only
2 d§ asymptotically, aD—0.
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tics areenvelopes of trajectorieshey are formed by inter-
secting neighboring trajectories=q(t). It is from the merg-

ing of caustics that cusp points are formsde Fig. 1 In the
event that the LM contains a fold, the top and bottom sheets
of the LM are traced out by Hamiltonian trajectories that
have not gone over the fold. After a trajectory goes over a
fold, it enters the middle sheet of the LM and stays there.

In the sharp-tipped triangular region partially enclosed by
caustics, the LM has three sheets and the action is three
valued. It was observed in R€f30] that the sheet with the
largest value ofS(q) is the middle sheet of the LM. This
sheet is formed by Hamiltonian trajectories that have gone
over the fold; equivalently, the corresponding extreme trajec-
tories in theq plane have been “reflected” by one of the
caustics. So the minimuniphysica) value of S(g), i.e.,
Smin(@), must be attained on one of the other two sheets,
which we may call the “lower” sheets. We provide a careful
proof of this fact in the Appendix.

The nonminimality of the action computed from the tra-
jectories reflected from a caustic is a most important feature
of the topological theory of large fluctuations. It guarantees
thatoptimal extreme trajectories never encounter caustics: by

(O] the time an optimal trajectory is reflected from a caustic, it
has ceased to be optimal. Indeed, the two lower sheets of the

FIG. 1. Generic singularities of the pattern of extreme pathsaction surface&s=S(q) must intersect, and by the time either
The Lagrangian manifoldM), a two-dimensional submanifold of of these sheets approaches the felthere it turns over, and
the four-dimensional phase space, is traced out by the trajectories efierges with the sheet formed by the trajectories reflected
the auxiliary Hamiltonian system that emanate from the limit cycle.from the caustiy; it has intersected the other lower sheet and
Extreme paths are the projections of these trajectories onto thﬁecessarily lies above it.

(ql,qz) plane(le, thep=0 plane The LM may have fOldS, in The curve in the quqz) plane along which the lower
which case the projections of these folds are caustics, from whiclheets intersect is determined by the equation

extreme paths are reflected. In the region enclosed by a pair of

caustics and sufficiently close to the cusp from which they emanate, SY(ay,92)=5?(qy,9,). (16)
three extreme paths pass through each pajpid>).

Singularities may also appear on individual branches ofrhjs curve starts at the cusp point and lies between the coa-
the multivalued functior$(q). To investigate these singulari- |escing caustic§Fig. 1(b)]. Points that are a small distance
ties, and related singular features of the pattern of extremgway from the curvé€16), but lie on opposite sides of it, are
trajectories, one needs to study the generic topological progeached along topologically different optimal patfteose
erties of the auxiliary Hamiltonian system in its four- tracing out the two lower sheetst is for this reason that we
dimensional phase space. It follows from Hamilton's equacg|l the curve determined by Ed16) a switching line.
tions (10) that in this space, a stable limit cycle in Switching lines can be observed using a technifj2é]
configuration spacédetermined by the drift fiel&) corre-  where one investigates the probability distribution of paths
sponds to a closed loop on the hyperplare0. [This hyper-  q(t) along which the system arrives at a specified end point
plane is just the two-dimensional plang;(q,) of the origi- ¢’ If this distribution is measured for various positions of
nal dynamical system. The zero-energy Hamiltonian ¢’ its shape will change sharply ongé is moved across a
trajectories determined by E¢LO) emanate from this limit  switching line. This is the physical significance of the singu-
[1(b)], [40]. The LM lies in the zero-energyH=0) surface, The stationary probability density is regular in the vicinity
which is three dimensional. The LM is a sort mfled sur-  of a switching line. In the event of multivaluedness, the
face the zero-energy Hamiltonian trajectories, i.e., extremeyKB approximation(7) may be refined to read
trajectories, provide a smooth flow on it.

Even though the extreme trajectories never intersect on
the LM, except at the loop on the=0 plane from which - -
they emerge, the LM may have a complicated structure. In P(q)~i:2112 CU(qexd ~S"(q)/D], D=0 (17
general, it will have[40] singular projections onto the=0
plane, i.e., the ¢;,9,) plane. A two-dimensional LM has
only two structurally stable types of singularitigg9]: folds  (cf. [21(b)], [30,35). A switching line is, therefore, a sort of
andcusps as illustrated in Fig. 1. Each cusp point gives riseStokes linewhere asymptotic dominance switches from one
to a pair of folds, and in the case of monostable systems thexponential term to another. We note in passing that the
folds can only begin or end at a cusp point or at infinity. TheWKB prefactorsC((q) are not singular on switching lines.
projections of the folds onto thg plane are caustics. Caus- They do, however, blow up whepapproaches a cusp point.
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An explicit form for the prefactor in the vicinity of a cusp shall show that, except in the trivial case when radial and
point was obtained in Ref30] (see also the scaling theory angular fluctuations are independent of each other, the struc-
of Ref.[41)). ture of the pattern of optimal paths is quite singular when the
We emphasize that the caustics of a flow field of extremaunstable fixed point is an unstable fodtise case when it is
paths, unlike its switching lines, are unobservable. They aran unstable node will be considered elsewheféis struc-
hidden: as one varies the endpogit switching from one ture can be fully investigated analytically.
optimal path to another occurs before the optimal path ter- A key role in our analysis will be played by th@most
minating atg’ encounters a causti&n route (In contrast to  probable hitting patiMPHP). This is the optimal path along
the D—O0 limit of large fluctuation theory, caustiege en-  which the system moves from the stable limit cycle to the
countered by the extreme paths occurring in#he 0 limit  unstable fixed point. That is, in the limit of weak noise
of quantum mechanigs. (D—0), it becomes overwhelmingly likely that a large fluc-
Topological arguments explaimow caustics are avoided tuation from the limit cycle to the unstable fixed point, when
by optimal paths, and what are the observable singularitiei finally occurs, will follow this path. Generically, there can
(switching lines and cusp pointef the pattern of optimal be only one MPHP: the action for reaching the unstable fixed
paths. In general, two different types of pattern may occuipoint along different extreme paths that might “hit” the
near a cusp point. One of them corresponds to the local pidixed point is different, and for the MPHP it must be a mini-
ture shown in Fig. @). In that figure the caustics go “away mum. The MPHP is deteroclinic trajectoryof the associ-
from” the cusp point rather than “towards” ithe direction ated Hamiltonian dynamical system in its four-dimensional
of a caustic, in our convention, is the direction of the extremephase space: it lies both in the unstable manifold of the stable
trajectories to which the caustic is tangeriExtreme trajec- limit cycle, and in the stable manifold of the unstable fixed
tories that come from opposite sides of the cusp point firspoint. Optimal paths close to the MPHP, but lying on oppo-
cross each other and only then encounter cauétiespaths  site sides of it, will diverge from the MPHP in the vicinity of
are observable, i.e., physically significant, up to the point ofthe unstable fixed point. As we shall see, this causes the
their intersection However, the flow of the trajectories near fluctuational behavior of the dynamical system to be very
the cusp may also be in the opposite direction, i.e., the causingular there. From a dynamical systems point of view, it is
tics may go towards the cusp point, in which case the exwild oscillationsof the Lagrangian manifold in the vicinity
treme paths first encounter caustiedter which time they of the unstable fixed pointcf. Graham and Tle[21]) that
become nonoptimal, i.e., unobservabded then cross each give rise to the singular structure we shall explore.
other. In what follows we shall refer to the two types of cusp
points as type-l and type-II, respectively. IV. EXTREME PATHS IN THE VICINITY
Clearly, there is no switching line emanating from a OF AN UNSTABLE FIXED POINT
type-Il cusp point. Unlike the type-I cusp points, the type-II
cusp points ardéidden singularitiesThey lie on nonminimal
sheets of the action surfa@=S(q). As we have discussed, the fluctuational behavior of an
It can be seen from the preceding arguments that a switclescillating dynamical system is determined by the pattern of
ing line may not connect two cusp points. However twoextreme paths that emanate from its stable limit cycle. In this
switching lines emanating from different cusp points maysection we analyze the behavior of these paths, when they
end in a point where they intersect each other, with anothesire prolonged to the vicinity of the unstable fixed point en-
switching line starting at this point. In this way there may closed by the limit cycle. We choose the position of the
arise physically observabteees of switching lingswith the  unstable fixed point to bg=(q;,q,) =(0,0). In this section
“free” ends of the lines(i.e., the leaves of the treéocated and Sec. V, we do not specialize to the case of an unstable
at observable cusp points. In Sec. VIIB we shall illustratefocus; we allow the unstable fixed point to be either a focus

A. The linear approximation

this with an example. or a node. The drift field can be linearized at the unstable
point
B. Monostable systems vs systems o [ K
with unstable stationary states K(g)~dg;  dj :(0_(21, o (18)
q=

In any monostable noise-driven dynamical system, on
physical grounds one expects that it is possible to reach ariphe matrixd may be called a matrix of drift coefficients. In
point (g;,9,) by traversing a smooth optimal path which the approximatior{18) the Hamiltonian of the auxiliary sys-
emanates from the attractor and avoids all singularities. Theem (8) becomes quadratic ig andp
flow field of extreme paths, both optimal and nonoptimal,
may include caustics. But optimal paths avoid them. The H(q,p)~p8q+%pr. (19
flow field of optimal paths is qualitatively different in the

case when the dynamical system, in the absence of noise, hgfe corresponding linearized Hamilton’s equations of mo-

unstable stationary states. Since unstable fixed points akgn for the coordinates and momenta may be written in ma-
critical points of the deterministic dynamics, they are singu+rix form as

lar points of the flow field of optimal paths as well.

In the following sections we shall investigate the occur- q q d 0
rence of various singular features in the vicinity of an un- ( ):i—( ) ‘:( R ) (20)
stable fixed point, contained within a stable limit cycle. We 0 —df
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Here T is a 4x4 matrix. Its first two eigenvalues coincide On the other hand, if one substituteg=q"+q",

with those of the matrixd, which we shall denoté; and p=p"+p" into H(q,p) f‘nd notes thaH(qf,pf)EO and
\,. These eigenvalues have positive real part, by assumptioht (4”,p")=0, and thatdg”=q", p’d=—p”, one obtains
The corresponding eigenvectors bfhave their momentum from Egs.(24) and(25)

components identically equal to zero, whereas their position i ~ .

components are the eigenvecto, of the matrixd. Linear 9”()AG"(t) =a”(H)Ag’(t) =0. (27)

combinations of these two eigenvectors,

(| a7
( 0 )zcl(o

Equationg26) and(27) can be viewed as a constraint on the
D sorts of superposition of deterministic and fluctuational tra-
)e%zt, (21  jectories that are allowed.

eMt+C2

describe deterministic trajectories of the system on the B. Caustics and cusp points

(g1,9,)-plane. [Recall thatp=0 signifies a deterministic, Every extreme trajectory emanating from the limit cycle,
nonfluctuational trajectory, satisfying=K(q).] when prolonged to the vicinity of the unstable fixed point
The other two eigenvalues of the matiixcoincide with contained within it, must be a superposition of the fa@8),

At constrained by Eq€26) and (27). It was shown in Sec. IIB
those of the matrix-d’, and are iqual to-hy andhy. The  hat extreme trajectories, regarded as trajectories in the four-
corresponding eigenvectorsjy(,p; ) will have both posi-  gimensional phase space, form a one-parameter set

t@on and momentum components nonzero. Linear combinq—H(q(t'ﬂ)'p(t,M))_ The parameter determines, in particu-
tions of these two eigenvectors, of the form lar, the values of the coefficient8 in Egs. (21)—(23),
which describe the behavior of the extreme trajectories that
extend to the vicinity of the unstable stationary sigte0. In
general, to find this dependence it is necessary to integrate
Hamilton’s equationg10) from the stable limit cycle down

to the range of smali. However, the singular features of the
fpattern of the paths in the vicinity of= 0 can be found from

(qﬁt))ch( qf) it OF %
Py tpl 2\pd

)e)‘Z‘, (22)

are “purely fluctuational” solutions of Eqg$20). Unlike the
deterministic trajectories, they approach the unstable poi X , : :
q=0 ast—o. An arbitrary zero-energy Hamiltonian trajec- a local analysis. For a saddle point this was done in Ref.

tory satisfying Eq(20) is a mixture, or superposition, of the 30l Here we shall generalize the technique of R80] to
trajectories(21)—(22), i.e., is of the form study the pattern of extreme paths near an unstable focus.

As mentioned in Sec. llIB, we assume on physical
q(t) (1) + g7 (1) grounds that ther(_e exists a single most prpbable hitting path
( ) :( (23 (MPHP) along which the system preferentially fluctuates to
p(t) p’(t) the pointgq=0, in the D—O0 limit. As a trajectory in phase
space, the MPHP is a heteroclinic trajectory along which the
In dynamical systems terms, the trajectori@4) and (22) unstable Lagrangian manifoldLM) of the limit cycle
trace out the unstable and stable manifolds of the fixed poing=q¢"(t), p=0 and the stable manifold of the point
(a,p)=(0,0) of the auxiliary Hamiltonian systerfl9) in its  g=p=0 intersect each other. We normalize our parametriza-
four-dimensional phase spacef. [16,18,20,4). The un- tion of extreme paths by requiring that the MPHP be the
stable manifold, which is formed by the deterministic trajec-extreme path withu=0.

tories, is simply the planp=0, while the stable manifold, The LM is traced out by the extreme trajectoris, u),
which is formed by the fluctuational trajectories of the form p(t, ). The portion of the LM on whichu/| is small, i.e., the
(22), is a “canted” plane of the form portion of the LM near the MPHP, is smooth. This implies
that the coefficient€],,C7, in Egs. (21)—(23) for the ex-
p=Aqg, (24)  treme trajectories are smooth functionsofnear=0. In

other words, at any given instant of tinhghe values of the
coefficientsC7 ,,CY, for the extreme pathe(t,x), p(t,u),
with w small, are close to the values @f,,C7, for the

(20), and the zero-energy conditidth= 0, yield certain rela- MPHP (t,0), p(1,0). They can be computed by expanding

D . _ “ T ..
tions between the trajectories on the stable and unstabfé%z'cly2 I p. A_t '“_0,' the “deterministic goefnuents
manifolds. In particular, since the eigenvectafd, of the ~ C12€dual zero; in physical terms, the MPHP is purely fluc-

matrix d and eigenvectors’”. of the matrix —d’ are or- tuational.
o N the general catetny, Lo, e o The terms in Eq.(23) proportional to the deterministic
thogonal in the general cagg#\,, i.e.,

coefﬁcientscf2 are responsible for the tendency of the ex-
treme paths to diverge from the fixed poipt 0, which is
why in the limit w— 0 (in which the extreme paths reduce to
) ) ) the MPHB, these coefficients tend to zero. On the other
one can show that there is an invariant hand, the coefficient€7 , take on nonzero values at=0.
These values can be determined by integrating EtS),
qD(t)Aqf(t)=const. (26) starting from the vicinity of the limit cycle. Therefore, with

whereA is an appropriate 2 matrix. The explicit form of
A will be discussed below. The form of the matfixof Eq.

o’-ps_ =0, =12, (25)



2376 V. N. SMELYANSKIY, M. I. DYKMAN, AND R. S. MAIER 55

account taken of Eq$23) and(24), the extreme trajectories Using this condition as well as E8), one can find a rela-
in the tube surrounding the MPHP close to the unstable fixetion between the values gf andt on the caustic, and an

point must be given to leading order in by expressions of equation for the caustic in parametric form
the form

. _XMHAY()
q(t,m)=X(t)+uY(t), p(t,u)=AX(1), (28 M=Mc(t)=—w, (30
=7 =D
XO=a'1h, MOH=q1b. QD=0 o] =X+ u(OV(D). (3D

Here the u=0 trajectory (X(t),AX(t)) is the incoming
MPHP, in the linear approximation. It is a fluctuational tra-
jectory of the type(22), whereas the termu Y(t) allows for
admixture of some specific deterministic solutift) of the
type (21). In Eq. (28) we have neglected a linear term
«uq’(t) in q(t) and retained only the linear terpg”(t).
The termug’(t) decays in time whereagq®(t) increases
exponentially with t. Therefore, even ifuqg’(ty) and
1qP(ty) were of the same order of magnitude at some insta
to, the term ug”(t) would be exponentially smaller than
1P (t) when exp(h;+\,)(t—to)]>1. This is our justification

It will be shown below, using the explicit forms for the fluc-
tuational componenX(t) and the deterministic component
Y(t), that uc(t) is never equal to zero. This is in agreement
with our basic assumption that MPHP never touches a caus-
tic.

The pattern of extreme paths in the vicinity of the un-
stable fixed point may display a higher-order singularity: a
cusp. As shown in Fig. 1, a cusp is a point at which two
Mhranches of a caustic merge together, or, in a different phras-
ing, the caustic stops, and starts moving in the opposite di-
rection. In the parametrization of Eq80) and(31), a point

for neglecting the term proportional {oq”(t). on a caustic is a cusp if and only if
Even if the “deterministic” termug®(t) is small com-
pared to the “fluctuational” termX(t) at some instant da.
t=to, it will eventually become larger than it. Indeed, all oo (32

extreme trajectories witjp # 0 deviate increasingly from the

MPHP; in physical terms, they are repelled by the unstablgquation(31) implies that the derivativelg, /dt is a sum of
fixed point. However, as seen from E¢&1) and(23), their  two vectors, one of whichgq(t,u.(t))/dt, corresponds to
momentap(t, 1), unlike their positiongy(t,u), do not con-  the velocity along the extreme trajectory that touches the
tain exponentially growing terms proportional ;. In caystic at the instart, with the other, e (t)Y(t), arising
fact, the momentum of any extreme trajectory wii“0  from the motion of the point of tangency along the caustic
tends to zero exponentially &s-«. Recall thap=0 corre- e to the dependence pf, on t. But it follows from Eq.
sponds to deterministic motion, i.e., tp=K(g). So we de- (29), the condition for a caustic, that these vectors are paral-

duce that extreme trajectories with#0, once they are re- |g| 1o each other. Therefore they are also parallefii),

pelled by the unstable focus, become increasinglyang condition(32) can be reduced to a scalar equation,
deterministic.

We should comment on the extent to which the param- /(1)=0, Z(1)=0qc(t)-Y(1). (33
etrized extreme trajectorieg(t,u), p(t,u) of Eq. (28) are
locally determined, i.e., can be computed from the linearizedh point g.(t) on the parametrized caustic is a cusp if and
Hamiltonian (19). The ratio of coefficient<?, Cf in the  only if t satisfies Eq(33).
expression for the MPHIX(t), which determines the path
taken by the MPHP on the stable manifold of the state V. A CHANGE OF VARIABLES:
g=p=0 as it approaches the unstable fixed poigpt0Q), is CHARACTERISTIC PARAMETERS

determined by the flow field of extreme trajectories far from o _ L . _
the unstable fixed point. l.e., it is “global.” On the other ~ The Hamiltonian functiorH, which is given in the linear

hand the shape of the manifold negsp=0is “local”: itis ~ @PProximation near the unstable fixed point by E), con-
determined by the coefficients of the linearized Hamiltoniantains two 2<2 matricesd andQ, and, hence, seven param-
(19). And the perturbing ternY(t) in Eq.(28), it turns out, is  eters(the matrixQ is symmetrig. The actual number of pa-
uniquely determined by the constraint equatid@6) and  rameters that characterize the flow of extreme paths near the
(27). unstable fixed point is smaller. To reveal the relevant param-
Surprisingly, the linearized equations of motion allow oneeters we shall make a linear change of variables

to determine the singularities of the pattern of extreme paths
near the unstable fixed point. The simplest possible singular- qg=®1g p=>. (34
ity is a caustic. A caustic is an envelope of the set of paths of
the form(28) on the @;,q,) plane, as shown in Fig. 1. For The form of the Hamiltonian in the new variables remains
a one-parameter set of trajectorigé,u), the Jacobian of the same as in Eq19) provided we define new variables
the transformation from the variables|;(,q,) to (t,w) is R A
equal to zero on the causti84,35. This condition can be d=0"1db, Q= Qd") (39
written in the form R

The matrixA of Eq. (24), which describes the local shape of

3Q(;tuu) A ﬁqg:u) _0, AAB=AB,~AB,. (29 tge stable manifold of the pointy(p) = (0,0), is transformed
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A'=dAd. (36)
In view of the particular importance of the matdxwe shall
choose the transformatich so that— A’ is the identity ma-
trix, i.e., A'=—1I.

To find the form of the matricesd’,Q’ for which
A’=—1, we first derive an equation tha& must satisfy. It

can be obtained from the zero-energy constraint by substitut-

ing EqQ. (24) into the quadratic Hamiltonian of E@19), and

2377

Since the matrixQ is Hermitian, a is real. We may also
assume thab is real, which corresponds to the transforma-

tion matrix @ being a real matrix. The signs afandb are
not uniquely determined. The sign afcan be changed by
performing the rotationg;—qs5, g,——d;, Whereas the
sign of b can be changed by performing a reflection. We
adopt the convention

sgra= sgrb (42

setting the coefficients gf;p; equal to zero. Assuming that i, what follows.

the inverse matriXA ™! exists we obtain the equation
dA~1+ A"+ Q=0. (37)

Equation(37) can be solved using a transformatiththat
diagonalizes the matrig, i.e.,

The matrixU will not necessarily be unitary. One can easily

see that

[0 2A 10N 1= - +AF) 0 2Q0N 15 .
(39

The parameters, a, andb fully characterize the fluctua-
tional dynamics of the system near the unstable fixed point.
The reason why the local fluctuational dynamics are charac-

terized by only three parameters is that the 2 matricesd
andQ together have four invariants, but one of thé¢rme.,

trQ) is irrelevant since it may be absorbed in a multiplicative
renormalization of the noise intensiB.
In what follows we assume that the change of variables
(34) has been performed, and remove the primes
qg=q, p'=p A=A d=d Q=Q 43
In terms of the newtransformed variables, the linearized
dynamics of the extreme trajectories becomes easy to ana-

Since the diffusion matrix) is symmetric and nonnegative 'yZe- It follows from Eqgs.(24) and(40) that the fluctuational
definite, and the eigenvaluas of d have positive real parts trajectories of the forni23) must satisfy
by assumption, it follows from Eq(39) that the matrices 0" (t)= — "

Y ; v = . . () =—q"(1).
—A™" and — A are positive definitda special, nongeneric
case wherQ is degenerate and is diagonalized by the samé/oreover, Hamilton’s equations of motion, which the MPHP

transformation agl will not be considered in the present X(t) and the admixed deterministic trajectort) must sat-
papel. These results could equally well be obtained from theisfy, in terms of the new variables simplify to yield

expression forA in the operator form obtained by Ludwig

(44

[18]; see alsd42]. X (:TX ——4'x, (;_Y —ay, (45)
A Hermitian matrixA can be diagonalized by a transfor- t t
mation of the form(36), containing a unitary matrisb. If the
) d Pt =~ X(1).

matrix & is nonunitary(i.e., it expands or compresses the

coordinate axgs both eigenvalues oA’ can be made equal That s, in terms of the new variables the equations of motion
to —1. Further unitary transformation will not change,  for X(t) andY(t) separate The constraint27) on the vec-
and it is convenient to choose them in such a way that théors X,Y takes the form

matrix Q' of Eq. (35) be diagonalized, i.eQi’jfxﬁij . It fol-

lows from Eq.(37) that if this is done, the matriced’, d’
will be in the form

Y-X=Y-X=0. (46)
This means that the basis in which the matixequals— I
has a simple physical interpretation. In this basis one of the

axes (5() is locally tangent to the MPHP and the other axis
(Y) is perpendicular to the MPHP.

If we parametrize the extreme trajectories in the vicinity
of the unstable fixed point byy and u as in Eq.(28), with
t measured from an instaty which we choose to be equal to
zero, the zero-energy classical acti®ras a function of po-
sition will be a function oft and w

n—a 0

0 n+a (40

~ (7T a
l d_( _b

Q=2 :
© ( nta
The relationship between the parametgrs, andb and the
eigenvalues\;, A, of the matrix of drift coefficientsl is

n=>3trd=3(\;+X,)>0, 41

7°—a?=1de(AQ)=0.

S= f p-qdt=S(t, ). (47)

Moreover, we have

n?—a2+b2=det=\;\,>0. With account taken of Eq$27), (28), (45) we have
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o 1
S(LM)=S(0,M)+fop'th=3(0.,u)—EXZ(t)- (48)

We shall compute the action relative to its value at the un-

stable fixed point, i.e., relative i8;=S(t=«,u=0). Since
dS/9q=p and q(0,u) —q(0,0)~ uY(0) [see Eq.(28)], Egs.
(45), (48) imply

s(0,u) = — uX(0)-Y(0), (49)
and
s(t,u)=—3X3(t)— #X(0)-Y(0), (50)
where
s(t,u)=S(t,u) = S (51)

is the normalized action. Equatios0) provides a simple
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i_
t 7 b+a\ 2 . \/5
=arctan —|, =|——| sgm, e,=
¢ ® Y=lb=a g 1,2 1
V2

(59

The two functionsX(t) and Y(t), when graphed, yieldpi-
rals: they wind in (i.e., toward the unstable focuand out
(i.e., away from the unstable focysespectively. The con-
verging spiralX(t), which is incident on the unstable focus
ast—oo, is the MPHP. The two spirals have the same angu-
lar frequencyw, and pitchest 7 that are of equal magnitude
and opposite sign. They have the same direction of rotation
about the focus; the direction is determined by ksghhe
shapeof the two spirals is determined by the periodic vector-
function R(6,y)=R(6+ 27, vy). This function is a paramet-
ric representation of an ellipse whose principal axes are di-
rected along the unit vectors ,. As a consequence, the
spirals are elliptic rather than circular. The ratio between the

explicit expression, valid in the vicinity of the unstable fixed length of the major axis and the minor axis of the ellipse is
point, for the action as a function of time, and of the variable| y| [according to Eqs(42) and (54], |y|>1). The quantity

u that indexes the extreme trajectories.

¢ can be viewed as a phase difference between the two

The functionS(t, ) is of course single valued. However, spirals.

the action as a function gfositionq is multiple valued, since

extreme trajectories|(t,u) with different {t,u) may cross
each other. The optimal path to a given paiptas we have

The quantityx in the equation foiX(t) is aglobally de-
termined parameteilt cannot be computed in the framework
of the linearized mode(18)—(20), and it distinguishes the

explained, is the extreme path with minimum action. It isMPHP from the other “fluctuational” solutions of the form

worth noting that this must be no greater th&n Indeed,

(22) that are incident on the focus and may also be described

from the unstable fixed poirg=0 the system can reach any by EQq.(53), with « ranging over the interval

point g without “building up” any additional action, merely

by moving along a deterministic trajectogy(t) of the form
given by Eq.(21).

VI. OPTIMAL PATHS IN THE ABSENCE
OF CUSP POINTS

Ki1eXp =27l w) <k <kq,

with x4 arbitrary.

Extreme paths other than the MPHP also spiral down to-
ward the unstable focus, but only initially. We may write
them in the “normal form” (28) with w#0, i.e., as

We can apply the linearized theory of Secs. IV and V toq(t,u)=X(t)+ xY(t). Such perturbations of the MPHP
the case when the unstable fixed point, near which the lingwhich hasw=0) will remain close to the MPHP on a time
earization is performed, is a focus. In this case the eigenvakcalet<1/(27)Inu 1. However, we saw in Sec. IVB that

ueshq, A, of the linearized drift matrixd are complex with
the samgpositive real part, and according to E(10),

A= 7nFiw, w?=b%—a’. (52

With account taken of the orthogonality conditi¢f6) that
the two fundamental trajectoriegt) andY(t) must satisfy,
we may solve Hamilton’s equatiorid5) to obtain

X(t)=kexp — nt)R(6,v), (53
Y(t)=exp gt)R(0+ ¢,y 1), (54
where

R(0,y)=e,cos— ye,sind.

Here 6= wt, and

extreme paths other than the MPHP eventually become “de-
terministic” rather than fluctuational. The contribution of the
unwinding spiraluY(t) increases as increases, and when
the extreme path reaches a distandg. «|*? from the focus

the contribution of the unwinding spiral becomes of the same
order of magnitude as the contribution of the inward spiral-
ing MPHP, uX(t). At that point the extreme path will begin
to spiral back out. At time$> »~In(«|u|) the termuY(t)
dominates, the motion of the extreme path becomes largely
“deterministic” and the actions(t,u) along the path ap-
proaches its asymptotic valueuX(0)Y(0)= — kucosp. In

the t—oo limit, the extreme path will spiral back into the
stable limit cycle, from which it emerged.

A. The caustic spiraling down to the unstable focus

The location of the caustic occurring in the flow field of
extreme paths can be found by substituting E&S) and
(54) into Egs.(30) and(31). The value of the parametgron
the caustic turns out to be



55 TOPOLOGICAL FEATURES OF LARGE FLUCTUATIONS ... 2379

t)= P PP t+

(56)

The caustic itself may be written in a parametric fofaf.
Eqg. (3))] as

0e(t) = X(t) + (D Y() = kexp( — pt) Zwt),  (57)

wherez(0) is a “locally determined” (rather than globally

determined, in the sense mentioned al)duaction that has

period 2. Equation(57) is the equation of a curve that

spirals down to the focus. It follows from E¢6) that u. is (@)

always nonzero, which is an important point: it proves self-

consistency of our assumption that the MPHe extreme

path with zerou) never encounters a caustic. We notice that

irrespective of the detailed form of the caustic, the function

gc(t) is self-similar: the amplitudé¢ < kexp(— 7t)] changes

from one turn to the next, but the shape of each successive

turn is the sameThe caustic is self-similar. q
In the remainder of Sec. VI we shall investigate the case

when there are no cusp points on the caustic in the vicinity of

the fixed pointgq=0 where the linear approximatiofi9)

applies. This means thgt(t) does not become equal to zero,
i.e., the quantity/(t)=Y(t)-q.(t) is never zero[see Eq.

(33)]. Using the explicit expressior{s4), (56) one can show q
that (b) 1
_ K FIG. 2. Extreme paths near the unstable focugja. The
/(=Y G() = 72— [4y*+1+(¥*—1)cos] parameters specifying local dynamicgee Eqs(41) and (52)] are
4y“cosp a=0.13,w=3.5, andy»p=0.41. The axes are scaled by the param-
% 24 1)+ (v2— 1) ncosA 6+ eter « of Eq. (53). (a) Paths withu/k<0; such paths are reflected
Unly )+ ly )L ncos2 ¢) from a caustic that spirals down to the focds. The MPHP(most
+3wsin2(6+ @) 1}. (59 probable hitting path which spirals down to the focugn bold),

and a path withu/«>0, which initially spirals in, but eventually

The condition forg,(t) not to become equal to zero is there- spirals out without encountering the caustic.

fore of the form decreases monotonically with increasihgln other words,

the action on the caustic always exceeds its value at the
2__ [..2 2
72 Ly H9 1, or 7>3|a] (59  unstable fixed poing=0, and it increases monotonically
Y +1 7 ’ ' away from this point.

By construction the caustic is tangent to extreme paths
when expressed in terms of the characteristic parameters qft) =X(t)+ w«Y(t) with nonzerou. The caustic is encoun-
the model. An expression for the action on the caustictered by an extreme pati(t)+ wY(t) if and only if the
s.=S¢(t), can be obtained from the equation equality u= uc(t) is satisfied. At the tangency point the ve-
locity on the pathg(t) = X(t) + w.(t) Y(t) may be parallel or
antiparallel to the velocity of the caustig(t). It turns out
that the vector(t) is antiparallel tog(t) at the tangency
point, i.e.,q(t) - g.(t)<0. This can be seen by comparing the
. signs ofY(t) - q.(t) andY(t) - q(t); we omit the computation.
Clearly, the sign ofs; changes at the cusp points on the gm moée)lsqS\EitLK>0,( ))/>q§,)the function,uc(t)pof Eq.
caustic, if any ¢.=0). Using Eqgs.(53) and (54), and(56)  (56) takes on only negative values. As a result, extreme tra-
one can show that if the conditio®9) is satisfied, the de- jectories withu<0 encountertand are reflected fropthe
rivative éc is always negative. In this case the action on thecaustic, whereas extreme trajectories witk 0 do not touch

d . .
= VS = XD, 5:()=5:(a(1).

(60)

caustic the caustic. In Fig. @) we show an initially narrow tube of
extreme trajectories that emanate from the limit cycle, and
K2 spiral toward the unstable focus, but then encounter the caus-
Sc(t)= -exp(—27t){1+ Y+ (¥ =1) tic, and spiral away from the focus.

In the absence of cusp points on the cau&ipossibility
X[cos2wt+2cos2 wt+ @)1}, (61)  that we consider in Sec. VilIthe vectorg.(t) will rotate in
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the same direction a¥(t) and X(t), and ast increases, the
direction of this rotation will not reverse. Most of the time,
extreme trajectorieX(t) + 1 Y(t) that are perturbations of
the MPHP rotate in this direction as well. However, in the
region of the system state space where the extreme trajecto-
ries encounter the caustic, they make a loop, so that their
velocity is opposite to that of the caustic.

B. The self-similar topology of the Lagrangian manifold

In the linear approximation near the unstable focus, the
Lagrangian manifoldo=p(q) is traced out by the extreme
trajectoriesX(t) + . Y(t) with different values of the mixing
parametep. It is given in parametric form, with parameters

(t,p), by
qt, p) = X() + ¥(1), (62)

p(t, p)=—X(1). (63

Here the inward and outward spirabs(t) andY(t), are de-
fined in Egs.(53) and (54). It follows from Egs.(62) and
(63) that the LM is invariant with respect to a transformation pl
which includes a rotation of coordinates lyradians, and a ﬂ
simultaneous rescaling of variables. In polar coordinates

(q,0) defined by

gi=qcoPd, ,=asino, (64)

such a transformation would alter the angular coordit@te
according to

q
0—0 ¥ 7 sgrb. (65) 2
In terms of the phase space coordinageand p, the trans-
formation would take the form
(b) 4

a
g—>-— exﬁ{ I—n) a, (663
@ FIG. 3. (a) A turn (two branches on opposite sides of a jobd
the surface, = p,(qg) near the unstable fixed poigt=0. Parameter
pﬁ—ex;{ Iﬂ) . (660) values area=0.03, w=3.9, andz=0.41. (b) The position of the
w fold in the surfacep;=p1(Q).

The transformation law66) can be understood from the fact p»(p1,d:,d2) on the intersecting sheets pf(q) are differ-

that at a given instant of time all points ent: in general, the LM is not self-intersecting in the four-
g(t,u)=X(t)+uY(t) on the @;,0,) plane, regardless of dimensional phase space whose coordinates are
the value ofu, have their momenta equal te X(t). Over  q;,d,,p1,p2. One can think of the surfage, = p,(q) as an

half the periodn/w, the vectorX(t) + wY(t) rotates around infinitely long sheet that is first folded, and then twisted in
the pointq=0 by an angle— 7 sgrb. As a result of the such a way that the fold is wound into a curve that spirals
rotation, each point q(t,u) goes over into down to the poing=p=0. This spiral is shown in Fig.(®).

q(t+ 7/ w, uexp(—2mylw)). The only Hamiltonian trajectory The projection of the fold on thg plane is the caustic,
that remains invariant under the transformati@6) is the and the equation for the spiral in Fig(3, in parametric
MPHP (for which = 0). form, is q= X(t) + wc(t) Y(t), p=—X(t). We note that self-

All extreme trajectories lie on the zero-energy surface inintersections of the surface,=p;(q) arise not only from
phase space, i.e., satisfy the zero-energy constrainhe nonmonotonic dependence of the “height” of the fold
H(g1,42,p1,P2) =0. But the Hamiltonian functioM of Eq.  p; on the radiusq=|q|; there are also self-intersections of
(19 is quadratic inp; andp,. Therefore, at each specified the sides of the shegqt;(g) on opposite sides of the fold,
d:,9-,p1, the momentum componeim, takes one of two which make Fig. 8) look as complicated as it does. Alter-
possible values compatible with the conditibh=0. The natively, the surfac@;=p;(q) may be compared to a whorl
shape of the Lagrangian manifoft=p(qg;,q,) can be un- that spirals down to the poig=0, p;=0. The whorl is
derstood from an analysis of the surfape=p.(q;,ds). unusual; its turns go up and down, and the step size steadily
Portions of this surface are shown in FigaB@ The values of decreases with the number of turns.
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The behavior of the remaining Hamiltonian trajectories on
S - the surfacep,=p4(q) is easy to analyze. It follows from
N Egs. (28 . that t.rajegtories (q=.X(t)+,uY(t),p1(t)

w TN = —X,(t)) with opposite signs of. deviate from the hetero-
5 = 5 5 clinic trajectory (qf(t),pf(t)) in opposite directions. The
e\ Hamiltonian trajectories that go toward the fold of the sur-

XN face p;=p4(q) are those with negative [their projections
§ X(t) + wY(t) go toward the caust]c They spiral around the
N point g=0 and approach it, then they go over the fqut
N which time their projections are reflected from the caustic
and spiral away from the axig=0. [The behavior of their
projections is shown in Fig.(8)]. None of the trajectories
0 q, passes through the fold more than once. Indeed, the fold is
only passed whem = u.(t), where u.(t) is given by Eq.
FIG. 4. Cross sections of two turns of the surfage= p;(g) of  (56). In the range(59), the functionu(t) is a monotonic
Fig. 3(@). Hereq,=0. The turn Il is the turn | after one revolution function of t, so the equationu= u¢(t) cannot have more
over thep; axis, i.e., with® of Eq. (66) increased by 2. Param-  than a single solution.
eters are the same as in Fig. 3. The successive intersections of the The ~ Hamiltonian  trajectories q(t)=X(t)+ wY(t),
MPHPIWith theg,=0 plane ?.I’E shown with filled circles. Over the p1(t) = —X;(t) with positive u deviate from the heteroclinic
revglut!on,_the extreme trajectory _l passes through the fixéd trajectory(qf(t),pf(t)) in the direction opposite to the fold,
projection is reflected by the caustiand goes from the lower to therefore they never cross over the fold. At comparatively

the upper sheet op,(q). Trajectory 2 always stays on the side . . .
opposite to the caustic with respect to the MPHP. The solid line tha?maIIt tpey salral around the axig=0 and approach It, as
(t),p1(t)), but then, as the amplitude of the

starts at the origin and passes through the filled circles is the cro&does (q P1 _ _
section of the stable manifold of the fixed point to which MPHP outward-spiraling componentY(t) increases, they begin to
belongs. spiral away fromg=0. The behavior of the projections

g=q(t) of these trajectories is shown in Figtb2
Successive positions of points on trajectories wits 0,

Additional insight into the structure of the surface O .
p,=p4(q) can be gained from a Poinéasection by a ver- u<0, and u>0, on t.he 'Pomcar(.sectlo.n of the surface
tical half-plane.(See Fig. 4; for convenience we choose theP1~ pl_(Q), are shown in Fig. 4by filled circles, and empty
half-plane to beg,=const,q,;=0.) Successive branches of circles; 1'_1 'and 2,2, respectlve!y . . . .
the cross section are partly “nested” into one another. The In the limit of_Iarget Fh? Hamlltonlar_1 trajectques W'th
pattern of branches is self-similar: any branch can be ob'f‘>0 andu =0 display similar asymptotic behavior. In this

tained from any other byrepeatedly applying transforma- limit the momenturrp(t) = — X(t) tends to zero, and the tra-

. : jectories approach deterministic trajectories of the form
tions of the form(66). We note that outside the smajl- J Bl . - L

range, where a linearized treatment is not valid, the transforgﬁt)xtY(t)’ p_ 0, which W'r(;q a\INay from lthte pOlrﬂIth 0. 1;he
mation law (66) must be modifed. So the surface Sneets ofp;=py(q) accordinglyaccumulatenear the plane

P1= p1(0), _|ike the caustic, is really onlgsymptoticallysc_elf— 1'_I'hé topology of the surfacp,=p,(q) explains why in-
similar. Incidentally, the sheets of the surfgzzep(q), which finitely many extreme pathg(t) pass through any poin in

appear separate at smal) are c_onnected to each other at ihe vicinity of g=0, as shown in Figs. (2), 2(b). Different
largeq. To study the way in which they are connected, ONepathsq(t) lie on different sheets gb; = p,(q), and some of

would have to go beyond the linear approximation. the paths(those withu<0) start spiraling away from the
The surfacep,(q) is similar to the surfac@(q), so that  point q= 0 after they encounter the caustic, and are reflected
the Lagrangian manifolgp=p(q) is a two-dimensionaheli-  from it (i.e., when the Hamiltonian trajectories pass through

coidal surfacep=p(q) in the four-dimensional phase space. the fold), whereas the otherghose withy>0) do so with-

On this surface, the foldq.(t), —X(t)) spirals down to the out encountering the caustic. A natural question is, which of
unstable fixed point. The behavior of the extreme trajectoriethe extreme paths that are incident on a given pqints

q(t) on theq plane can be qualitatively understood from the physically observablei.e., is optimal. To answer this ques-
behavior of the trajectorie@|(t),p(t)) on one of the surfaces tion, we must determine for which of the extreme paths the
pi=pi(d) (i=1 or 2). One such trajectory is actionis a minimum.

(a”(1),p”(t)); its projection is the MPHP. For this trajectory
p=—q, i.e., the trajectory corresponds to the intersection of
the surfacep;=p1(q:1,9,) and the planegp,=—q; in the
three-dimensionald; ,q,,p1) space. We note that the LM is The value of the normalized actiea= S— S; is unique for
the unstable manifold of the limit cyclghe periodic orbit a given extreme path, and therefarés uniquely defined as
g=0q°"(t), p=0], whereas the hyperplanp=—q is the a function on the Lagrangian manifold. The Lagrangian
stable manifold of the fixed poinj=p=0. The trajectory manifold, as a two-dimensional surface in the four-
(9”(1),p’(t)) is the heteroclinic trajectory along which the dimensional phase space whose coordinatescap, (is de-
two manifolds intersect. fined by the functiorp=p(q). Since this function is multi-

C. The multivalued action and the switching line
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S(q)>0, see EQq.(12)]. The cross section of the surface
Smin(@) is shown in bold in Fig. 5. This figure provides an
intuitive picture of the structure of the surface of minimum
action as consisting of sections that correspond to sections of
different sheets of the LM. Quantitative analysissgf,(q) is
facilitated by the fact that at any point along the MPHP,
minimum action is achieved if the system moves along the
MPHP. This fact can be verified as follows. The condition
that an extreme path intersect with another extreme path is of
the form

a(ty,me)=0q(ty, mp). (69)

! Equation (68) has a countable set of solutions for each

t1,41). For a point on the MPHPy(;=0) we have
FIG. 5. A cross section of the action surfae S(q,,q,) near Atz ) P Ha=0)

the unstable focug=0. Hereg,=0, andS; is the action at the

focus. The surface of minimum actioByi,= Syin(d1.05), is shown X(t) =X(t2) + u2Y(t2). (69)
in bold. The nonoptimal pieces of the action surface are shown

dashed. Parameter values are the same as in Fig. 3. The cusp poikising the expressio(60) for the actions(t, ) and the iden-
of the multivalued functiorS=S(q;,0) are cross sections of the tity

spinode edge 08(q;,q,), which corresponds to the caustic. These

cusp points are located _at t_he values qf at_ \A_/h_ich the slope X(t)- Y(t) = kcosp (70)
dp4(g,,0)/dq,, as plotted in Fig. 4, becomes infinite.

that follows from Eqgs.(53), (54), one can easily compute

valued (the manifold may fold over on itself, as we have from Eq.(69) that the difference between the actions for the
seen, if s is viewed as a function off, then it too will be  MPHP and an alternative path satisfies
multivalued.

A cross section of the surface=s(q), corresponding to _ 2 2
the cross section of the surfape=p,(q) shown in Fig. 4, is S(t1,0) = 8(tz,2) = = w2 Y(H)"<0. 7D
shown in Fig. 5. The multivaluedness is obvious. The sam
half-plane q,=0, q;=0, is used as in Fig. 4, but more
branches are displayed. The cusps in the grap+af(q), as

shown in Fig. 5, arise from extrema of the curvesqzlo'. | h : | . he MPHP
p1=p1(qy) of Fig. 4, i.e., from points where p; /dd, = . t is clear that pointg] very close to points on the

These are points that lie on the caustic. As computed prevflere reached preferentially along extreme paths very close to

ously, the value of on the caustic is the positive quantity the MPHP, i.e., extreme paths witl Y(t)| <[X(t)|. How-

denoteds,., which increases monotonically away from the ever, t.he MPHP is a spiral. Whe_n one moves transverse to
the spiral one goes from the vicinity of one turn to the vicin-

q’his proves that the MPHP is indeed the optimal path to
every point along its extent, including the unstable focus

caustic. ity of the next(or formep turn. Clearly, somewhere along
; The value ofs(qy) on each branch is given by the expres- the way there should occur a transition between the paths
sion : > ) " LM
that provide minimum action. The condition for switching is
that the actions for the two paths coming to a given point be
@ =s+ [ p(ay.am00dey, 67 euakie
where the superscriptenumerates the cusp poiriis., the Sty 1) = S(t2, 42). (72

airs of branches , and the subscriph=1,2 enumer- . L i
gtes the branchggl) that merge atmthe point wherQ_Ne emphasize that it is thel_nlrr_lumvalues ofs(t,u) for a
dp,/dgy=cc. given q=lq(t,,u) that must coincidé. _

It is clear from Fig. 5 that the surface ofinimumaction Equations(68), (72) can be solved fo, . using Egs.
Smin=Smin() is only piecewise smooth. The existence of a(°0): @nd(53) and(54). One obtains
minimum action at eacly follows from the fact that, al-
though the number of extreme patirs g(t) passing through mi=M(t t), 1=1.2, (73
any given pointg’ is infinite, the normalized action function
s(g)=5(g)—S; is bounded from below by-S; [since where

{R(wt”,y)—exgd — n(t' —t") IR(wt’, )} \R(wt"+ ¢,y 1)
R(wt'+ ¢,y HAR(wt"+ ¢,y 1) '

M(t',t")=xexd — 7(t’ +1")]

(74)
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Substituting the expressions far, , into Eq.(72), we obtain
an algebraic equation that relatesandt,. Using Eqs.(50)
and(70), one can write this equation in the form

S(ty,t) =S(ty,t1), (79

where
St 1" =—1k2exp(— 27t )R (wt’,y) — kM (t',t")cosp.

Here s(t;,t;) is the minimum value of the action
s(t1,M(ty,tp)) for a given q=q(t;,M(t,t5)). Equation
(75), which is the condition for switching, yields

Os(ty) =q(ty,M(ty,t5(t1)))

=X(ty)+M(ty,t5(t1))Y(ty) (76)

as the parametric equation of the switching line.

We note briefly that at some instatif , the algebraic
equation(75) may have two solutions for the same minimum
value of the action. In such a casleree distinct optimal
paths are incident on a single point, rather than tasin the
case of a conventional switching linéNe mentioned this
possibility briefly in Sec. 1l A. At such a point two switching
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polar coordinates a@(t),®(t)) [with the extended angular
variable, O (t+ 27/ w)=0(t) +27], then the paths with
0,<0(t)<0,;+27 and u>pu(t) cannot intersect each
other for any®,. However, there mayand does occur
switching between the projections of the trajectories
q(t),p(t) that lie ondifferentturns, and have phaséd(t)
that differ by a multiple of 2r. As emphasized previously,
the MPHP is surrounded on either side by optimal péses
Fig. 6). It is clear from Fig. 6 that, since the MPHP spirals
down to the pointg=0, intersection of optimal paths, and
switching, may occur only between paths that lie on opposite
sides of the MPHP and differ i® by 27. So the signs of

pu must be opposite for crossing optimal paths, i.e.,
H1p2<0.

The switching line spirals down to the poigt=0 along
with the MPHP and the caustitot shown in Fig. § and
these three spirals never intersect one another. The pattern of
switching we have just deduced corresponds to the form of
the cross section &,i,= Smin(d) shown in Fig. 5. Switching
occurs between sections ®f s(q) that correspond to neigh-
boring turns of the LM, and, as a consequence of this switch-
ing, the gradient o&,,,(q) is discontinuous at the switching
line.

lines intersect meet each other and terminate, and a third

switching line begins. We shall refer to this phenomenon as

a “branched,” or “multibranched” switching line.

D. Self-similarity of the minimum action surface
and the switching line

Both the switching line whose position is given by Eg.
(76), and the surface of minimum actia@,,=Smin(d), are
self-similar, as is the Lagrangian manifoldee Eqs(66)].
Self-similarity of s,;,(d) is a consequence of the self-
similarity of the whole surfacs=s(q). The latter follows
from Eqgs.(53), (54) if one notices that the transformation
t—tx7w/ow, u—exp@EF2wy/w) transforms the point
g=X(t) + nY(t) into —gexp(+27n/w), ands(t, ) as given
by Eq. (50) into s(t,u)exp(+2my/w). Similarly, it follows
from Egs.(54), (73) that if botht’ andt” are shifted by
*7lw, the function M(t',t") is multiplied by
exp(r 27 y/w). Therefore, ift,(t;) is a solution of Eq(75),
thent,(t;= 7w/w) =t,(t,) = m/ . The pair of equations

(77
(78)

Smin(QeXp( = 77/ w))=exp( 27 7/ @) Smin( — q),

Os(t1 % 7/ w) = —exp(F 77/ ) 0s(ty)

expresses the covariance of the action function, and the lo-

cation of the switching line, with respect to the similarity
transformations.

We now address the problem of determining the optimal

VIl. OPTIMAL PATHS IN THE PRESENCE
OF CUSP POINTS

Our topological approach to the analysis of extreme paths
makes it possible to investigate the more complicated case
when there are cusp points lying along the caustic that spiral
down to the unstable focus g 0. It follows from Egs.(41)
and (59) that this phenomenon occurs in any model whose
characteristic parameters satisfy the condition

la|<n<3|al. (79
In this parameter range the velocity of the caustig(t),
periodically becomes equal to zero. According to EsB)

trajectories between which there occurs switching. In models

whose parameter values satisfy E89), the caustic spiraling
down to the unstable focu$=0 does not have cusp points

FIG. 6. Optimal paths near the unstable foqus0, at parameter
valuesa=0.33, w=4.1, and»=0.45. The MPHP is dashed, and

lying along it. So there cannot occur an intersection of thene switching lines are solid. Between the MPHP and the nearest
projections q=q(t) of the Hamiltonian trajectories gmajler-radius turn of the switching line lie paths with k<0
(q(t),p(t)) that lie on one and the same turn of the M., (these paths are eventually reflected from the caudaths with
with t;<t<t,+27/w, see Fig. 89)] and that have not en- />0 lie on the opposite side of the MPHP. They cross the
countered the foldi.e., q(t) has not been reflected from the switching line having made one extra turn compared to the paths
caustid. In other words, if we describe the pathgét) in with u/k<0, to which the system switches.
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FIG. 7. The shape of the caustic spiralling down to the unstable
focusg=0, in a model in which the caustic contains cusp points.
Parameter values are the same as in Fig. 6. The caustic is self-
similar, and the cusps lie on the dashed lines that pass through the
focus. The numbers on the dashed lines indicate cusps of types |
and Il (see the text; for the parameter values chosen, the cusps are FIG. 8. A portion of the surfac@,=p;(q), showing folding.

not “observable’). Arrows indicate the direction of motion of ex- Cusp points on the caustic are the projections of points on this
treme paths that are reflected from the caustic. surface at which folds begin or end.

this happens four times per periodrfv, at the instants fold of a torus. It is known from catastrophe theory that a
tD andt® n=0+1+2 defined by plane projection of the internal fold of a torus may contain
n n 1 1 1— P |

cusp points[39]. A portion of a turn of the surface

1 1+ 42 o+® 7 1 p.=p1(0) in the case when cusp points are present is shown
tﬁ,l)z—arcsir< 25in2(1)) — +—|n+ =], schematically in Fig. 8. The cusp points arise if the fold is
2w 1-vy w ® 2 bent, and makes a sufficiently small angle with the normal to

the projection plane. One can picture the fold and the cusp

1l 1+y? i it by thinking of a dough Il angl
@y =7 ; . points on it by thinking of a doughnut seen at a small angle.
=12 arcsw( 1- yzsmzq)”' (80 |5 contrast to the surface of a doughnut, the integral surface

p1=p1(q) [or p,=p»(Q)] is not closed, but on the whole,
Here the fold winds around the axig=0. Therefore one would
expect to have four cusp points per turn, as in the case of a
1 7 doughnut. This is in agreement with Eq81), (56), (80),
¢= sarctang —. which give the positions of the cusp points explicitly.
In Sec. IIlA we pointed out that cusp points should be
The velocity of the caustic equaling zero is the sign of adistinguished depending on whether extreme trajectdfies
cusp. It can be shown from Eq®1), (56) that the positions first enter the interior of the cusp and then hit the caustic, or
of the cusp pointsqc(tﬂ)), form two self-similar setsthey (2) first hit the segment of the caustic that contains the cusp
satisfy point, and then leave the area delimited by the caustic. We
shall now establish which of these two typégoes | and I,
0o LAV respectively occurs at the instant$") andt? of Eq. (80).
Ge(tnte) = —€Xp — "o Q(th’), i=12. (8D The direction in which the two branches of the caustic
extend from a cusp point is given by the vecipr[cf. Fig.
The shape of the caustic, in the parameter rafd@®, is  1(b).] It is clear that if at a cusp point the extreme path
shown in Fig. 7. The caustic spirals down to the unstabley(t) that hits the cusp point satisfies the inequality
focus atq=0, but now it has four cusp points per turn. As in d.-dg/dt>0, then this path will stay inside the region be-
models without cusp points along the caustic, the caustic itveen the branches of the caustic. So if the inequality holds,
self-similar: it is invariant with respect to the similarity trans- the cusp will be of type I. If the opposite inequality holds,

formationsg— — gexp(+ 77/ w). then the cusp will be of type II.
As mentioned above, at the point where an extreme path
A. The Lagrangian manifold touches(and is reflected fromthe caustic, the vectorg(t)

A better insight into the shape of the caustic and the flom}and q(t) are antiparallel, i.e.y(t)-o(t) <0, whfareasY(t)
field of extreme trajectories can be gained from an analysig§nd d.(t) are parallel. Clearly, at the cusp poini¢t) and
of the two-dimensional Lagrangian manifold, in the four- G:(t) are parallel or antiparallel. Since at this point
dimensional phase space, that is traced out by the trajectaH/dt=d(Y-q.)/dt=Y-q,, it is clear that the type of cusp
ries. We note that the internal part of the integral surface irpoint is determined by the sign afi/dt. So we have at the
Fig. 3@ (which includes the foldis basically the internal cusp point
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dl <0, fortypel

/)=0, 7= >0, fortype Il.

(82

It follows from Eq. (82) and from the explicit formula for
/(t) [Eq. (58)] that the cusp points encountered at the in-
stantstztﬁl’ are of type |, whereas those occurring at the
instantst=t(? are of type Il. So type | and type Il cusps 2
occur alternately, two pairs per turn of the LM.

The presence of cusp points does not change qualitatively
the behavior of the flow of Hamiltonian trajectories on the
Lagrangian manifold, compared to what it would be in the
absence of cusps. The fact that the optimal pgth= X(t)

(the MPHB spirals all the way down to the unstable point
g=0 does not changglt is no longer smooth, of course.
The fact that the extreme trajectoriggt) =X(t) + uY(t)

with ©>0 do not encounter the caustic also does not change.
However, the projection of some of these trajectories onto
the (1,9,)-plane(i.e., thep=0 plane is now qualitatively
changed.

Extreme trajectories withu<<O now split into three
groups, depending on which of the three branches of the
caustic(two coming in and out of the pair of cusp points, and q
one connecting the cusp points, see Figs. 7 anthéy hit.

The corresponding three types of Hamiltonian trajectories

are shown in Fig. 8. To make the description more conve-

nient we have labeled the parts of the surfage=p,1(q) in

the following way: partsa and c are both facing upward;

they coincide, except thatincludes the “invisible” part of

the upfacing sheet that is hidden behind the fAld; parts ) q

b andd are both facing downwar@‘invisible” parts of the 1

trajectories are shown dasheth Fig. 8, trajectory 1 comes FIG. 9. A multibranched switching lingbold), in a model in
from parta, a_ln_d then 9065 over the folB to partb and . which the caustic spiraling down to the unstable focus contains
becomes invisible. Trajectory 2 goes around the cusp poiyseryahle cusp points. Optimal paths that cross the switching line
B from parta to partc, and then goes over the foBIC 10 are shown with thin solid lines. Parameter values are0.855,
partb. Trajectory 3 also goes around the cispo partc of =153, andy=0.9. (a) The local structure of the switching line.
the surface, but then it goes over the f@C to partd. The caustic is shown dashed. The sec starts at the observ-
able cusp poinB. (b) A lower-resolution plot, showing the self-
similar structure of optimal paths and switching lines. The switch-
ing line spirals down to the unstable focus at the origin, like the

It is clear from Fig. 8 that, in the presence of cusp pointscaustic. The structure close to the focus is not resolved.
the extreme pathg(t) = X(t) + «Y(t) with <0 cross each
other before they encounter the caustic. Therefore, ong,

would expect to find a switching line not only between paths tersectbefore they encounter the branches of the caustic
with ©<0 andu>0, but also between different paths with that emanates from the type-1 cusp pditThis cusp point

<0 (for some such paths, at leasiThe wo types of may be observable. If so, there is a switching line between

switching compete with each other: by the time the path hﬁ traje-ct(r)]nes I'l aqd Zr’] Wh'C.h eg angtes fr<r)]m It.heBp(B)lnt
with £ <0 cross each other they may have become “invis- is switching line is shown in Fig.(®) as the lineBO.

ible” because the system has switched to the paths witlgea”y’ the switching line lies inside the triangle formed by

u>0, on account of the latter having lesser action. In thisthe caustigwhere the prOJ?Ct'OnS of the pa!asandc of the .
p.1(q) surface on which the trajectories 1 and 2 lie,

case the pattern of switching is exactly the same as that anf1~
lyzed in Sec. VI, for models without cusp points on the caus®Veran- : .
tic. We now consider the case when switching between the 1€ switching line that starts @ is described by the
paths with «<0 is in fact observable. We shall find the Selution (l())f Eq. (79 ta=1y(ty). (1')” the “cusp point
parameter range where this occurs. t;=t,=t;”’ and away from itt;<t;’<t,. The end point
Insight into the possible sorts of switchings can be gained® Of the switching line is determined by the valtfewhere
from Figs. 8, 9a), 9(b). In Fig. 8 the paths 2 and 3 intersect EQ. (75) has two rootd; ", t3” such that the three optimal
after encountering the caustic. They are nonoptimal at thgaths that come to the poi@ at the instantsy , t3', t3”
intersection point, so there is no switching line associatedhave the same classical action. The third fatht shown in
with their intersection. This corresponds to the cusp poinfrig. 8) is a pathq(t) = X(t) + wY(t) with &>0. It makes an

C being of type Il. The paths 1 and 2, on the other handadditional turn around the unstable focus compared to the

(@)

B. Switching lines
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the time they cross. One can imagine that by varying the
parameters of the dynamical system, one could force the
point O in Fig. 9a) to coincide with the poinB. In this case

the switching lineBO would disappear, and there would
remain only the smooth switching lin®,0,. In fact, the
pointsB and O will coincide provided

st uc(t)=s(t’,p),

XM + p ) YAM) =X(t) + pY(t'),  p>0,
(84)

uc(t) being given by Eq(56). Clearly, because of the self-
FIG. 10. The actior8=S(q) near the unstable focus, in a model similarity of the switching line, Eq(84) holds for the whole
in which the switching line is multibranched. The parameters areswitching line, i.e., for every.
the same as in Fig. 9. The “edges” &(q) [the curves where Equation(84) gives a sufficient condition for occurrence
VS(q) is discontinuousproject to the switching linegcf. Fig. 9. of a multibranched switching line. Aecessancondition is
“Vertic_es”_of S_(q) (one is shown as a bold dadre points at which  that the normalized actiosc(t,ﬂl)) at the type-I cusp points
the switching line branches. be negativdotherwise there would be an extreme path with
a smaller normalized actiors=0, which would consist of
paths of type 1 and 2. All three optimal paths terminating athe MPHP followed by a deterministic trajectogy=q”(t)
O are shown in Fig. @). Eq. (21) extending to the specified end pdinthe action on
The intersections of the optimal paths of types 1 and Zhe causticsy(t) Eq. (61) has minima at'?), and it follows

with the optimal paths withu>0 gives rise to the switching om Eq.(61) thatsc(tgl))<0 provided that the characteristic
lines OO; andOO,, respectively. At the poin© the three parameters of the model satisfy

switching linesBO, O0O,;, and OO, intersect each other,

which is an illustration of théoranching of switching lines Y2—1 [ 7?+90?| 12 T
mentioned briefly in Sec. llIA. In the present case this situ- P e s >1, or|a|<p<(8a’—w*)'~

ation is explicitly characterized by Eq$73), (75), which (85)
were used to obtain Figs(#® and 9b).
The surface of minimum actiosy,,= Smin(g) correspond- (We have used the explicit expression of E&S5) for
ing to the pattern of optimal paths in Figsa@and 9b) is  tang.) It can easily be seen that(t{?)>0, which again
defined piecewise, in the regions separated by switchinggrees with the general conclusion that the cusp points of
lines. It is continuous, but the slopésyx(0) is discontinu-  type 11 are unobservable.
ous on the switching lines. The surfasg,= Smin(d) has a Although the condition(85) is necessary rather than suf-
so-called vertex at the poir®. A vertex is a new generic ficient, it follows from a numerical analysis of E(B4) that
type of singularity of the classical action. In contrast to athe condition(85) provides a reasonably good estimate of the
cusp point, the WKB prefactor in the stationary probability parameter range where the cusp is observable. The reason is
density is not expected to blow up at a vertex. N@arthe  that the paths with.<0, to which the system switches from
probability distribution is given by the well-behaved asymp-the paths withu<0, make an extra turn around the unstable
totic expression point g=0. Therefore the term- X?(t’) in the action for
these paths has an extra facteexp(—277/w). In the pa-
P(@~ > Ci(qexdi—S(q/D], D—0, (83 rameter range(85), exp(-2mryw)<exp(-2m/7"%)~0.09,
=123 and therefore switching to the paths wjih>0 occurs com-
paratively far from the MPHP. This tends to make the cusp
where the action§;(q), i=1,2,3, arise from extreme trajec- Points observable.
tories on the three sheets of the surface of minimum action,
and the coefficientE; are the WKB prefactors for each of VIll. EXTREME PATHS
the sheets. FOR A van der POL OSCILLATOR
The above analysis dealt only with a single pair of cusp
points. The global pattern of switching lindse., of the
multibranched switching lineis shown in Fig. ®). This As we mentioned in Sec. Il, one example of a fluctuating
multibranched line is self-similar, as is the switching line in system with a stable limit cycle is a noise-driven van der Pol
the absence of cusps, cf. E7). The corresponding surface oscillator. The preceding analysis of singularities of the pat-
of minimum actions,;,=Smin(0) is shown in Fig. 10. This tern of extreme paths near an unstable focus fully applies to
surface is self-similar as well, and satisfies Eg7). The this model. In this subsection we consider local features of
condition for a multibranched switching line to occur is that this pattern, and in Sec. VIII B we provide numerical data on
the action at the cusp poil evaluated along the paths with the global pattern of extreme paths.
©#>0 be larger than that for the paths wijih<0. Otherwise The dimensionless coordinatg, and the velocityg, of
the extreme paths witjp <0 that cross each other along the the van der Pol oscillator of Eq§3), (4) may be defined so
line BO in Fig. 9(a) will have ceased to be optimal paths by that near the unstable fixed poipt O they coincide with the

A. A local analysis
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canonical variableg,=q; andg,=q; of Egs.(34) and(43).
The parametera andb in Egs. (40), (41) that characterize
the motion neag= 0 will then satisfy

a=7, b=1. (86)

The unstable fixed poirg=0 of the van der Pol oscillator is
an unstable focus, rather than an unstable node, provided that
7n<1, which we assume to be the case.

In this model the pattern of extreme paths emanating from
the limit cycle, when prolonged to the vicinity of the un-
stable focus ag=0, has some unusual features, due to the

diffusion matrixQ of Eq. (4) being degenerate. It turns out
that extreme paths other than the MPHP can go through the

point g=0. Indeed, ifQ is degenerate, the condition that the
guadratic Hamiltoniari19) be equal to zero aj=0 does not
require thatboth components of the momentumy, ,p, be
equal to zero wheg=0. In the present case, whepy;=0
we must havep,=0 atq=0, but p; may be finite.

The following analysis confirms that the MPHP is not the
only extreme path that reaches the unstable focus. For char-
acteristic parameters of the for(86), the explicit expres-
sions(53), (54) for the MPHPX(t) (the optimal trajectory
that asymptotically approacheg=0 ast—o) and for the
deterministic pathy(t) [which is “mixed” with the MPHP
to yield extreme paths of the fordd(t) + wY(t)] become

FIG. 11. (a) A portion of the surfacep;=p1(qg), and (b) the

X4(1) corresponding section of the caustic near the unstable focus of a van
X(t)= X (t der Pol oscillator. Parameter values are »=0.45, andw=4.1.
2(1) At the focusq,; =qg,=0 the caustic touches thg axis, and at this
ke~ [ cog wt— ¢) + sinwt point the curvature of the corresponding folds of the surface
= ) , (87 p.(q) diverges.
cosp | coq wt+ ¢) —sinwt
Yq(t) (87), (88 that q(tP)=X,(t)+uY,(t{P)=0, ie., the
(t)= Y, (1) velocity of the paths points along tlig axis at the instants

t{") . On the other hand, it follows from Hamilton's equa-
tions of motion (200 that the velocity component

,=(dg),+p, equals zero whem=0. Thereforeq=0 at
g=0. It can be shown that the cusp@t 0 points along the
where g, axis.

It is straightforward to check using E@56) [or, more
simply, using the parametric equation30)] that

t follows from Egs.(87), (88) that the componentéo(t) A4+ = e(ti), ie., the poinig=0lies on the caustic. Since

andY,(t) become equal to zero at the same instants of timé€ caustic is self-similar, it passes through the post0
t(P) | defined by the condition infinitely many times, and the caustic is parabolic near
n H

g=0. It follows from Eqgs.(79) and(86) that, for the van der

et (cos(wt+¢)+sin(wt+2¢), 69

- 1+sing cog wt+ ¢) — sinwt

w=(1-7%Y2 ¢=arcsim. (89)

cog wtP + ¢) —sin(wtP) = 0. (90)  Pol oscillator, near the poimt=0 the caustiaj.(t) has four
cusp points over each period of revolutionr/2o. When
This means that all extreme trajectories 7>8 Y2 half of these cusp points may be observafile.,
q(t)=X(t)+ xY(t), irrespective of the value of the mixing Physically significant as explained in Sec. VIIB.
parameteru, cross the axisg,=0 at the instantstgp). The shape of the caustic and thg shape of the surface
Clearly, extreme trajectories whose parameteequals one P1=P1(Q) can be understood from Figs. 11 and 12. In Fig.
of the values 11 we show a part of the surfapg=p,(q) and of the caus-
tic, as generated by a half-period of revolution of the extreme
wtPl ==X, (1P 1y, (1P (91)  paths At=m/w). The general picture can be obtained from
what is shown by using the similarity transformati¢66)
will pass through the poing=0. [the global shape of the caustic is seen in FiglbiR It is

On account of this crossing, in the van der Pol model theclear from Fig. 11 that the caustic is tangent to the axis
unstable fixed poing=0 is itself a cusp point of the flow q,=0 at g=0, and that the caustic has two cusp points
field of extreme trajectories. Indeed, it follows from Egs. within the time interval@/w. Figure 11 shows also the be-
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width of the tube increases rapidly with the number of turns.
We note, however, that as the paths approach the limit cycle
| they are “pressed against” the cycle, and the tube is nar-
rowed down again. This is in agreement with the results of
Secs. VI and VII: as the paths go away from the focus they
become ever closer to deterministic trajectofibe trajecto-
ries that the dynamical system would follow in the absence
of noise; such trajectories asymptotically approach the limit
cycle ast— oo,

It follows from the analysis of the preceding sections that,
close to the unstable focus, the extreme paths display one of
two types of behavior depending on which side of the MPHP
(a) q1 they lie on(the MPHP, one recalls, is the extrerfia fact

optimal] path that asymptotically approaches the focus,

rather than being repell@dPaths on one side of the MPHP
should spiral away from the focus after they are reflected
from the caustic that asymptotically approaches the foclus
Fig. 2(a)]. Paths on the other side of the MPHP should be

-0.002 - repelled by the focus, and should spiral away from it, with-
q out ever encountering the caustic. These two types of behav-
ior are indeed seen in Figs. @3, 13(c). In these figures we
show portions of the tube of paths in Fig.(4Bat high reso-

0
lution.
By examination, the paths shown in Fig.(fBform four

0.002 | | segments of a cusped caustic that spirals into the ur_]stable

’ -0.002 0 0.002 focus. These segments come together at fo_ur cusp points, so

the structure of the caustic is the same as in Figéh)ldnd
(b) q 12(b). Two segments of the caustic are nearly “vertical” and
1 two are nearly “horizontal.” The horizontal sections pass

fthrough the pointg;=q,=0 [only a portion of the upper
horizontal section near the upper right cusp point is seen in
unstable focus, and the two caustics emerging from it. One of thesglg' 13b)]. The lower right anq upper left cusp pOInf[S may
caustics spirals down to the focus, while the other moves away fror! generalbe observablg{cf. Fig. 8 and the dISC_USSIOn 'r,]
it. (b) A zoomed plot of the caustic, showing the interior of the Sgc. Vi B)'_ (For the particular parameters used in preparing
dashed rectangle ita). The caustic is self-similar in the vicinity of Fi9- 13b), it happens that the cusps are not observable; we

the focus and has infinitely many cusp points. omit the proof) _ _
The paths in Fig. 1@) are self-intersecting although they

do not encounter a caustic. Their behavior is completely
havior of the surface;=p,(q) in the vicinity of the cusp  analogous to the generic behavior shown in Figp) 2
points, and how the surfage,=p;(q) behaves as moves We now discuss the global structure of caustics that is
away from the vicinity of the fixed poing=0. shown in Fig. 12. Caustics can be found numerically
from the condition [34,35 that the JacobianJ
=|d(q1,9,)/d(t, )| equal zero at a timewhen an extreme
path encounters a caustic. Heweis the parameter that in-

A global analysis of the pattern of extreme paths can balexes the extreme paths. As mentioned above, we choose
performed by numerically solving Hamilton’s equations u to be proportional to the initial value of,, the normal
(10), accompanied by the initial conditionid3), (15). The distance to the limit cycle at the time we begin our numerical
results of such an analysis for the van der Pol oscillépr  integration. The Jacobian can be evaluated from a set of
(4) are shown in Figs. 1@)-13(c). Different extreme paths first-order differential equations that must be integrated nu-
were obtained by varying, (the initial distance from the merically along with Hamilton’s equations for an extreme
limit cycle, at a certain point along the cyglén this way the  path (cf. [29,41,423). In finding caustics numerically, we
flow field of extreme paths was built up. searched only for “primary” caustics, i.e. the caustics first

A low-resolution plot is shown in Fig. 18). The paths encountered by extreme patteaustics touched by extreme
begin by winding away from the cycle. We show a tube ofpaths that have already encountered a caustic are of no physi-
paths that start near the cycle and approach the unstable foal interest, since the extreme paths can no longer be optimal
cus enclosed by the cycle. Close to the limit cycle, this tubeafter they have been reflected from a caystic
is extremely narrow(separate paths in the tube cannot be Itis clear from Fig. 12a) that there are two primary caus-
resolved visually. In the vicinity of the unstable focus, the tics that start inside the limit cycle. One spirals down to the
width of the tube increases dramatically; the paths are “reunstable focus; the other spirals away from it, and heads
pelled,” and they begin to spiral away from the focus. Thetoward the limit cycle. It is the first caustic the occurrence of

004 -

-0.04 -

-0.08 - N
l I 1

-0.02 0 002 004

0.004 - .

FIG. 12. The caustics of the van der Pol oscillator. The value o
the single parameten, is 0.171.(a) A cusp point far away from the

B. The global structure of caustics and extreme paths
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FIG. 13. Extreme paths for the van der Pol oscillator, with the
same parameter value as in Fig. @.A tube of extreme paths that
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which was predicted, and the behavior of which near the
unstable focus was investigated in the present paper. In
agreement with general topological expectations, the two
caustics join together at a cusp poiwf. Ref.[30]). This
cusp point lies away from the region near the focus where
the linear approximation used in this paper applies.

The structure of the caustic near the focus is shown in Fig.
12(b). In agreement with the results of Sec. VII, the shape of
the caustic is self-similar close to the focus, the caustic has
four cusp points per turn, and, as a consequence of the de-
generacy of the diffusion matrix, touches the focus twice per
turn (cf. Fig. 12).

It is interesting to note that the infinite set of cusp points
in the vicinity of the focus is separated from the cusp point
from which the caustic emerges by a substantial distance,
over which the caustic is smooth. We mentioned previously
that observabléor potentially observabjeand unobservable
cusp points are encountered alternately, as one moves along
the caustic. The cusp far away from the focus is obviously
observable, and therefore the first cusp in the vicinity of the
focus should be unobservable. This agrees with the pattern of
cusp points in Fig. 1®) discussed above.

One would like to investigate the switching line of the van
der Pol model, as well as the pattern of cusps and caustics.
Figure 12 provides some insight into the global structure of
the switching line. We did not attempt to estimate its position
numerically, but it is clear from topological arguments that it
starts at the cusp point remote from the focus. It spirals
smoothly down to the focus, and its behavior in the vicinity
of the focus is described by the results of Sec. VII.

IX. CONCLUSIONS

The central result of the present paper is an analysis of the
pattern of optimal fluctuational paths in the vicinity of an
unstable focus of a periodically oscillating dynamical sys-
tem. We have shown that this pattern generically displays
singular behavior, and have analyzed this behavior. We have
also established topological features of tiebal pattern of
optimal fluctuational paths, in the interior of the limit cycle
of the system.

Our approach was based on an investigation of the La-
grangian manifolcp=p(q) of an auxiliary Hamiltonian sys-
tem. The classical trajectories of this systeysq(t), pro-
vide extrema of its action functional, whereas its zero-energy
classical actiors= S(q) determines the exponential falloff of
the stationary probability density of the original fluctuating
system in the weak-noise limiOptimal fluctuational paths
of the original system are a special case of the zero-energy
trajectories of the auxiliary system: the extreme paths of
least action On any such trajectory, the values taken by the
spatial variableg of the auxiliary system coincide with the
values taken by the dynamical variables of the original sys-

start near the limit cycle, initially spiral toward the unstable focus att€M. as it moves along an optimal fluctuational path. Addi-
the origin, and then spiral away from it. The tube is greatly broad-tionally, the momentum variablgs of the auxiliary system
ened near the focugb) Paths that are reflected from the caustic, atare related to optimal realizations of the nof¢€), which

points close to the focus, and then spiral back ¢gjt.Paths that

drives the dynamical system along its optimal path. Both

spiral toward the focus and then spiral back out, without ever enoptimal paths and optimal realizations of the noise are physi-

countering the caustic.

cally observable.
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We have shown that, near an unstable focus in the spadbat were previously suppressed come into play, and there
of dynamical variables of the original system={0), the occurs a transier(tvith duratione|InD|, asD—0) increase
Lagrangian manifolgp=p(q) has a novel topological struc- in their intensity.
ture. It is many sheeted, and the surfapes p;(q), i=1,2,
have a complicated helicoidal shape, with folds spiralling
down to the focus. The projection of each fold onto the APPENDIX
plane is a caustic: an envelope of extreme paths, from which

extreme paths are ‘reflected’. Normally one associates caus- In this appendix we provide a proof that the action com-
i neé p . S Y . : uted from an extreme trajectory that has been reflected from
tics with the crossing of trajectories, but an interesting an

unexpected consequence of the helicoidal structure of tha qaustic Is larger than the action computed.from an extreme
surfacesp; = pi(q) is that extreme paths on theplane can ﬁaject_ory that has nofthis statement was given without a
o i . : proof in Ref.[30]). Near a caustic it is convenient to choose
crosseach other, and themselvesgithout first encountering ) U i -~
a caustic. coprdmatesql,qz in s.uchiyvay thgt the unit vectaxll
Generically, a caustic spirals into the unstable focus. Thigoints along the caustic, amg is the distance to the caustic.
makes the problem qualitatively different from the problem This implies that
of fluctuations in a periodically driven system, which was )
investigated by Graham and IM@1]. Depending on the pa- g=0q,/q, at g,=0.
rameters of the system the caustic may be smooth or may
have four cusp points per turn. However, caustics are noAs shown in Fig. 1, the coordinat, is quadratic in the
observable, in the sense that optimal pattiet is, least- momentum componerg, transverse to the caustic. So this
action extreme pathsnever reach them. By the time an ex- momentum component, as a function of positirhas two
treme path reaches the caustic and is reflected from it, it hdsranches, i.e.,
ceased to be optimal.
The physically'observgblt'a sin.gularities are switching lines 5 (91.02)~P2(91,0) = [u(9y) 0] 2 Jg,l<1. (A1)
rather than caustics. Switching lines are the curves that sepa-
rate the regions in state space to which the system arfives The sign ofu determines whether the extreme trajectories

the weak-noise limjtalong topologically different optimal that are reflected from the caustic lie on the>0 side (for
paths. We have shown that generically, a switching line spiy>0) or on theq,<0 side(for u<0).

rals into the unstable focus. In the case when the caustic The actionS=S(q) also has two branches near the caus-

spiraling down to the focus has cusp points lying along it, thejc. The quantity of interest is the difference between the
switching line may be multibranched: it may have segmentsgjyes ofS on its two sheets, at the same paiptt follows
that branch off. The minimum zero-energy action functionfrom the evolution equatiofll) for the actionS along the
Shin(Q) of the associated Hamiltonian system has a SinQUIar'Hamiltonian trajectories thad(t) = [p(t) - g(t)dt. Therefore

ity of a special type, a "vertex,” at each such branching the difference between the values®6n the two sheets may

point. .
Even if there are no cusp points along the caustic spiralingbe written as

down to the unstable focus, the functi®,= Smin(d) near _ _

the unstable focus is not quadratic_ in the distance_to the S<+>(q)_5(f>(q):f_q2 Bgﬂdg_ J;qz ng)da_

focus, except very approximately. Figure 5 makes this very =0 =0

clear. The cross section 08,,=Smn(q) by a plane (A2)

a,q;+ayg,=const with arbitrarya, ,a, is the envelope of a ) . )

discrete set of curves, each curve arising from a distinctt follows from Hamilton's equations(10), with account

branch of the multivalued functio. This envelope is a taken of(Al) and of the fact that on the caustic the trans-

jagged approximation to a parabola, rather than being a trugerse velocity componeny, is zero, that near the caustic

parabola. As a consequence of this nonquadratic behavior,

the stationary probability density at poirgsnear the focus, ) A o) A o e N A

which includes an exponential factor éxg(q)/D], will in Az = Q2 P2 (A1,02) ~P2(A1. 0], Q2=0Q0% (A3)

the weak-noise—0) limit be considerably more compli-

cated than a stralghtf(_)rward mverteq Gaussian. From this equation and the conditi@y,>0 (the case where
One way of observing the novel singular features that we— ) ) .

have derived would be to investigate the stationary probabilQ22= O_(_+;S_ nongeneric it follows that  sgm,

ity density, or, in more depth, to measure the distribution of= S9MP2 *(d1,d2) —P2(d1,0)]. It follows then from Eq.

the fluctuational paths themselves, by using, e.g., the exper/2) that the smaller action corresponds to the trajectories

mental technique of Ref26]. The importance of oscillating thatapproachthe causti¢for which q,/q,<0), whereas the

dynamical systems in physical applications would make suclaction for the trajectories that have been reflected from the

an analysis particularly valuable. An additional motivation caustic is larger, at the same point (g;,05).

for conducting such an analysis arises from the fact that, in In Fig. 1 therefore the sheet with the largest value of

many cases, a fluctuating system displays “hidden” degree$(q) is formed by paths that have been “reflected” by one

of freedom when brought to the vicinity of an unstable fixedof the causticsthese paths lie in the middle sheet of the

point. This may for example happen in a lagE8]: when the  LM). The physical value 08(q), i.e., Syn(Q), must be at-

intensity of the dominating mode drops down, other modedained on one of the other two sheets.
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