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Optimal control of large fluctuations

V. N. Smelyanskiy and M. I. Dykman
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824

~Received 25 October 1996!

We consider the problem of optimal control of large fluctuations. Our approach is based on the concept of
the optimal fluctuational path along which the system is most likely to move when it fluctuates to a given state.
Optimal control requires double optimization: over realizations of the control field and fluctuational paths. We
formulate the appropriate variational problem. Using a white-noise-driven dynamical system as an example, we
show that even comparatively weak control fields, if applied in an optimal way, can exponentially strongly
reduce the probability of an undesirable fluctuation or increase the probability of a desirable one. Explicit
expressions are obtained for the cases of control by a spatially uniform time-dependent field and by a stationary
nonuniform field. We show that, in the problem of control, there generically occur singularities related to
topological singularities found in the problem of large fluctuations.@S1063-651X~97!09203-9#

PACS number~s!: 05.40.1j, 02.50.2r, 05.20.2y
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I. INTRODUCTION

Large infrequent fluctuations play a key role in a bro
range of physical processes, from cosmology and nuclea
at phase transitions to earthquakes and mutations in D
sequences. They are also of crucial importance for engin
ing as they are often responsible for failures of systems
devices. Therefore control of large fluctuations is a challe
ing and fundamental problem. Despite numerous efforts
generally accepted principles have been found that desc
the probabilities of large fluctuations in systems away fr
thermal equilibrium@1#, which include lasers and electron
devices, electron traps used in fundamental measurem
@2#, pattern forming systems@3#, biological systems, and sys
tems studied in engineering. At the same time there is
emerging understanding that not only is the problem of f
damental importance, but that large fluctuations can so
times play acreative role: they can strongly enhance a sign
in a nonlinear system and improve signal processing thro
stochastic resonance@4#; they can also give rise to a unid
rectional current in spatially periodic structures~ratchets! @5#.

Recently a very substantial progress has been mad
understanding large fluctuations by combining the phys
picture of the fluctuations with the path-integral techniq
and the results of nonlinear dynamics and catastrophe th
@6–8#. The modern approach to the problem is based on
optimal path concept. An optimal path is the path alon
which the system moves, with overwhelming probabili
when it fluctuates from the vicinity of the stable state~where
it spends most of its time! to a given state. Optimal paths a
real physical objects: they have been experimentally
served@9#. In the theory of large fluctuations, the pattern
optimal paths plays a role similar to that of the phase port
in nonlinear dynamics.

In this paper we consider the problem of controlling lar
fluctuations in anoptimal way. The theory of optimal contro
has been substantially developed recently, and the re
have been applied to controlling various physical phenom
@10# ~see Ref.@11# for a review!. In our analysis we combine
the results for large fluctuations with the ideas and te
niques of the modern theory of optimal control. In Sec. II w
551063-651X/97/55~3!/2516~6!/$10.00
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provide a general variational formulation of the problem u
ing a white-noise-driven system as an example. In Sec
we consider optimal control by comparatively weak field
Explicit expressions for exponentially strong change of
fluctuation probability by a spatially uniform time-depende
control field and by a stationary field optimally configured
space are discussed in Sec. IV. Section V contains conc
ing remarks.

II. GENERAL FORMULATION

The problem of optimal control of fluctuations can b
formulated in the following way: how to obtain a maxim
increase or decrease of the probability of a fluctuation t
given target state~or switching between coexisting stab
states! by driving the system with an external fieldE(r ,t),
for a minimal value of a certain penalty functionalF@E#. The
form of this functional depends on the specific problem@12#;
e.g., in the case of control by electromagnetic field it can
the total energy in a pulse.

A comparatively simple and powerful approach to op
mal control of large fluctuations is based on the idea
double optimization: one may consideroptimalcontrol of the
optimal~most probable! fluctuations. It has been shown the
retically and demonstrated in the experiment@9# that, in a
large fluctuation, the probability distribution of moving to
given state along different paths often peaksexponentially
sharplyat the optimal fluctuational path. Therefore the pro
lem of control is naturally reduced to affecting the motio
along this path and/or changing the path, and even a s
control field may produce strong effect on the fluctuation

To illustrate this approach we shall consider the m
simple but nontrivial and important problem: control of larg
fluctuations in a dynamical system driven by white Gauss
noise f(t). The equation of motion of the system is of th
form

ṙ5K „r;E …1f~ t !, ^ f n~ t ! f m~ t8!&5Ddmnd~ t2t8!. ~1!

Herer may be considered as a coordinate of the system~e.g.,
the position vector of a Brownian particle!, and K is the
2516 © 1997 The American Physical Society
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55 2517OPTIMAL CONTROL OF LARGE FLUCTUATIONS
regular force that drives the system in the absence of
noise f(t). The force K depends on the control fiel
E[E„r ;t). We assume thatK depends on time only in term
of the fieldE; generalization to the case whereK periodi-
cally depends on time even forE50 will be considered else
where. Various phenomenological and microscopic mod
described by Eq.~1! were discussed in@13#.

The probability densityP(r ) of a large fluctuation to a
point r far away from the stable state is known to displ
activation dependence on the noise intensityD ~in the simple
case of thermal equilibrium systemsD}T, whereT is tem-
perature!:

P~r !}exp@2S~r !/D#. ~2!

In thermal equilibrium systems the ‘‘activation energy
S(r ) is given by the appropriate free energy for the fluctu
tion to the pointr . In the general case it is given by th
minimal value of a certain functional. For model~1! this
functional is of the form@14#

S@r;E #5 1
2 E dt@ ṙ2K ~r;E !#2, S~r !5$minS@r ;E#%r ~ t ! .

~3!

The minimum in Eq.~3! is taken over the pathsr (t).
Equation~2! also applies to the probability of escape fro

a metastable state. With an appropriately modified functio
S@r;E #, it holds for systems driven by a nonwhite~color!
Gaussian noise~see@15# for a review!, as well as for birth-
death processes~in the latter caseD should be redefined!
@16,7b#.

For weak noise intensityD, even small variations in the
control fieldE can lead to a change in the activation ener
Swhich greatly exceedsD, and thus to a very strong chang
of the probabilityP. In the problem of optimal control of the
fluctuations it is advantageous therefore to analyze the a
vation energyS as ayield of the control processes. Thi
provides a unified approach to a broad class of problem

Effectiveness of control is determined by thepenalty
functional F@E(r ,t)# for the control field: a desired effec
should be achieved at a minimal ‘‘price.’’ This price is d
termined by the value ofF. We assumeF to be quadratic in
the fieldE ~cf. @12#!:

F@E~r ,t !#5 1
2 ~E,M̂E!

[ 1
2 E dr dr 8E dt dt8(

n,m
En~r ,t !

3Mnm~r ,r 8;t,t8!Em~r 8,t8!, ~4!

whereM̂ is a positive definite Hermitian operator.
For a given realization of the fieldE(r ,t), the probability

densityP(r ) for the system to reach a pointr is determined
by theminimumof the functionalS@r ;E#. Therefore optimal
control of large fluctuations is described by the solution
the following variational problem:

dR@r ;E#50, R@r ;E#5S@r ;E#1l~F@E#2F!. ~5!
e
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Herel is the Lagrange multiplier which allows for the fac
that realizations of the fieldE(r ,t) provide a given valueF
to the penalty functionalF ~cf. @17#!. The minimum is taken
with respect to the pathsr (t) along which the system move
to a given target stater f , and over realizations of the contro
field E(r ,t). Theboundary conditionsfor the extreme paths
r (t) which arrive at the stater f at a given instantt f follow
from the fact that, prior to the large fluctuation, the syste
spends a long time fluctuating about the attractorra , so that

r ~ t !→ra for t→2`, r ~ t f !5r f . ~6!

The overall result of the control processes is theoptimal
field Eopt(r ,t), the optimal path ropt(t) which is themost
probablepath to a stater f for the corresponding field real
ization, and also the optimal activation energy of the fluctu
tion to the pointr f :

Ropt~r f ,F!5S@ropt~ t !,Eopt~r ,t !#. ~7!

We emphasize that, depending on the sign of the Lagra
multiplier l in Eq. ~5!, the value ofRopt may beminimalor
maximal, for a given value of the penalty functionalF. These
two cases correspond, respectively, to the optimalenhance-
mentor suppressionof fluctuations to a given pointr f by the
control field~see Sec. III!. The possibility of controlling fluc-
tuations and cooperating with fluctuations in controlling t
dynamics of a system was considered recently by Vugm
ter and Rabitz@18# using the traditional formalism of optima
control theory in terms of target cost functional. Explicit r
sults were obtained for a one-variable linear system.

The activation energyRopt(r ,F) might be expected to be
smooth function of the state of the systemr f . However, this
is not always the case. In fact,Ropt has generic singularities
Their occurrence is a consequence of the occurrence of c
tics in the sets of extreme paths for variational problems
type ~5!. However, in contrast to extreme paths in quantu
mechanics and optics, optimal fluctuational pathsdo noten-
counter caustics. This is related to the fact that optimal fl
tuational paths describe a nonn-egative quantity, the pr
ability density to reach a given state.

Generic singularities of the set of optimal paths a
switchings@8#: when the final point of the pathr f changes
~by a small but finite distance, for finiteD), the pathropt
changes discontinuously, to a totally different solution
problem~3! which provides the absolute minimum ofS(r f)
for a givenE(r ,t) ~not just an extremum!. Switchings of
optimal paths have been recently observed in experim
@9#~b!.

The effect of switching occurs also in optimal trajectori
of the control fieldEopt(r ,t) @19#, as illustrated in Sec. IV for
the case of comparatively weak control fields. The gene
analysis of the singularities of the pattern of optimal realiz
tions of a control field is based on the results of the theory
Lagrangian manifolds and catastrophe theory and will
given elsewhere.

III. CONTROL BY A WEAK FIELD

A simple explicit solution of the problem of optimal con
trol may be obtained in the important case where the cont
ling field E(r ,t) is weak compared to the driving forceK
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2518 55V. N. SMELYANSKIY AND M. I. DYKMAN
away from the fixed points of the system~whereK50). In
this case we write the forceK in Eq. ~1! as a superposition o
the forceK (0) in the absence of the control field and th
control field itself,

K ~r ;E!5K ~0!~r !1E~r ,t !. ~8!

It is well known from variational calculus that, to the fir
order in the fieldE, the expression for the activation energ
S(r ) ~3! can be evaluated along the optimal fluctuation
trajectoryropt

(0)(t) in the absence of the control field:

S~r f !'S@ropt
~0!~ t !;E„ropt

~0!~ t !,t…#

5S~0!~r f !2E dt fopt~ t !•E„ropt
~0!~ t !,t…, ~9!

S~0!~r f ![S@ropt
~0!~ t !;0#, fopt~ t !5 ṙopt

~0!2K ~0!~ropt
~0!!.

It is straightforward now to perform optimization over th
field E with the penalty functional~4!. If the integral opera-
tor M̂ in Eq. ~4! has a reciprocal operatorM̂21, the formal
solution of the variational problems~5! and ~9! for the opti-
mal field can be written as

Eopt~r ,t !5l21M̂21w~r ,t !, w~r ,t !5fopt~ t !d„r2ropt
~0!~ t !….

~10!

@the functionw(r ,t) is equal to zero fort lying outside the
interval where the system moves to the target state along
optimal pathropt

(0)(t)].
Substituting solution~10! into the expression for the func

tionalF ~4!, and setting the value of the functional equal to
given valueF, we obtain two values of the Lagrange mul
plier l, with opposite signs, and the final expression for
increment of the activation energy of the optimal fluctuati
~7! takes on the form

Ropt~r f ,F!'S~0!~r f !6DS, DS5~2F!1/2~w,M̂21w!1/2.
~11!

It is seen from Eq.~11! that indeed, even for a weak contr
field E, the field-induced change of theexponent2Ropt/D in
the expression for the probability of fluctuations to a giv
state r f can greatly exceed unity forF1/2@D. This means
that even a weak control field may give rise to anexponen-
tially strongdecrease or increase@for the plus or minus signs
in Eq. ~11!, respectively# of the fluctuation probability.

IV. RESULTS FOR SPECIAL TYPES
OF A CONTROL FIELD

A. Coordinate-independent field

The general expression~11! for the change of the activa
tion energy of a large fluctuation due to a weak control fi
is simplified for special types of control. We shall start wi
the analysis of the case where the control fieldE is indepen-
dent of the coordinates of the system, so that the pen
functional can be written as
l

he

e

lty

F@E#5 1
2 E

t i

t f
E2~ t !dt. ~12!

In the case of control by a laser field, form~12! corresponds
to optimization over the total energy of a radiation pulse,
a given spatial distribution of the radiation, and the insta
t i and t f correspond to the beginning and end of the puls

It follows from Eqs.~10! and ~11! that the optimal real-
ization of the control field and the correction to the activati
energy are of the forms

Eopt~ t !57~2F!1/2fopt~ t !F E
t i

t f
dt fopt

2 ~ t !G21/2

,

DS5~2F!1/2F E
t i

t f
d fopt

2 ~ t !G1/2. ~13!

Here, the sign in the expression forEopt(t) is opposite to the
sign of the correction toS(0) in the expression Eq.~11! for
the activation energy of the fluctuationRopt; the sign1 in
Eq. ~13! corresponds to the decrease ofRopt by the optimal
control field ~13!.

In deriving Eqs.~13!, we assumed thatt f is the instant of
time at which the system arrives at a target stater f . It is
clear that, for a time-dependent control field, a natural g
would be to bring the system to a given point by the end
the pulse, i.e., just fort5t f . Respectively, the optimal force
fopt(t) should be evaluated for the optimal fluctuation
which the system arrives tor f at the instantt f .

Controlling switching probability

Special consideration is required in the problem of op
mal control ofswitchingfrom a metastable state. In this cas
a natural formulation would be to ask what is the most a
propriate temporal shape of a pulse of the control fi
which, for the penalty functional of form~12!, results in the
most probable switching of the system?

For systems driven by Gaussian noise, the probability
switching is determined, to logarithmic accuracy, by t
probability to reach an unstable stationary state~or an un-
stable limit cycle! on the boundary of the basin of attractio
to a stable state from which the system escapes@15#, and this
unstable state is reached fort f→` in Eq. ~6!. The corre-
sponding path in the absence of the control fie
ropt
(0)(t)5 r̃opt

(0)(t2t0) is an instanton: the system moves e
tremely slowly near the stable state, then it makes a ‘‘lea
to the vicinity of the unstable state where its motion ag
becomes infinitely slow. The duration of the leap is of t
order of the relaxation time, and byt0 we denoted an instan
of time somewhere in the middle of the leap~e.g., where the
force ufoptu is maximal!. The activation energy of escape
independent oft0: this is the well-known translational invari
ance of instanton solutions.

In the problem of control of the escape rate, the shape
the pulse of the control field

Eopt~ t !}fopt~ t ![ f̃opt~ t2t0! ~14!
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55 2519OPTIMAL CONTROL OF LARGE FLUCTUATIONS
should be found for theoptimal time t0, with respect to the
beginning t i and the endt f of the field pulse. The corre-
sponding condition reads

f̃opt
2 ~ t f2t0!5 f̃opt

2 ~ t i2t0! ~15!

The field-induced change in the activation energy of the
cape rate is then given by Eq.~13! with the integral
* t i
t fdt f̃opt

2 (t2t0) evaluated for the correspondingt0: Eq. ~15!

is the condition for this integral to be maximal with respe
to t0.

We note that, in the general case, the algebraic equa
~15! may have several roots, and it is necessary to take
root which provides a global maximum to the above integr
Switching from one root to another is a sort of a critic
phenomenon in the problem of control, which is to som
extent similar to a first order phase transition.

Equations~13!–~15! provide an explicit solution of the
problem of optimal control of the escape rates. They a
make it possible to investigate how the effectiveness of
control, which is determined by the value ofDS, Eq. ~13!,
depends on specific features of the system dynamics. I
clear from Eq.~13! that, for the penalty functional of the
form ~12!, the modulation of the escape rateincreaseswith
the increasing duration of a pulset f2t i , for a given value of
F. This dependence saturates when the duration of the p
noticeably exceeds the relaxation time of the system. Fo
simple model this dependence is shown in Fig. 1.

B. Optimal control by a stationary field

We shall now investigate the case where the control fi
E(r ) is time independent. We limit ourselves to the mo
simple case of an ‘‘isotropic’’ control field where the matri
Mnm in Eq. ~4! is proportional to a unit matrix, and we as

FIG. 1. The reduced changeDs5DS/(2F)1/2 of the activation
energy for escape from a metastable state as a function of the
ration of the control field pulse. The data refer to a system with o
dynamical variablex, andK (0)(x)5x2x3.
s-
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sume that this matrix depends only on thedifferenceof the
spatial argumentsr2r 8. In this case the penalty functiona
becomes

F@E~r !#5
1

2E dr dr 8M ~r2r 8!E~r !•E~r 8! ~16!

@again, one may think of the penalty functional~16! as of the
energy of an electric field#.

Variation over the control fieldE in functionals~5!, ~9!,
and ~16! can be conveniently performed in the Fouri
respresentation. The formal solution~10! can be then written
in the explicit form as

Eopt~r !5l21E
2`

0

dtE dk

~2p!d
M k

21fopt~ t !

3exp„ik@r2ropt
~0!~ t !#…, ~17!

M k5E dr M ~r !exp~2 ik•r !.

Here d is the number of components of the vectorr . We
have assumed that the system moves along the optimal
ropt
(0)(t) with the time origin chosen in such a way that
arrives at the target state fort f50. In the problem of escape
integration over time in Eq.~17! should be performed from
2` to `.

With account taken of Eq.~17!, expression~11! for the
change of the activation energy due to the control field
comes

DS5~2F!1/2E E
2`

0

dt dt8E dk

~2p!d
M k

21

3fopt~ t !•fopt~ t8!exp„ik@ropt
~0!~ t !2ropt

~0!~ t8!#…. ~18!

It is interesting to analyze the form of the control field
given by Eq.~17! in an important case where the effectiv
correlation lengthl c of the field is small compared to th
characteristic length of the optimal trajectory, in particu
with the distance from the attractor to the target state. T
reciprocal lengthl c

21 characterizes the range ofk over which
the functionM k varies.

It follows from Eq. ~17! that, for small l c , the field
Eopt(r ) peaks sharply on theoptimal pathropt

(0) along which
the system moves to a given target state in the absence o
control field. This is in agreement with simple qualitativ
arguments that the effect on fluctuations would be expec
to be most pronounced if the control field is concentrated
the optimal path. Equation~17! shows alsohow the field
should be distributed along the optimal path. The width
the tube of the control field is determined by the correlat
length l c , for l c greatly exceeding the width of the tube o
the fluctuational paths}D1/2.

Spatial location of the optimal control field for fluctua
tions to different target pointsr f is illustrated in Fig. 2. In
this figure, dashed lines are caustics in the pattern of extr
fluctuational paths. The occurrence of caustics is a gen
feature of the solutions of the variational problems~5! and
~6! for systems away from thermal equilibrium. Causti

u-
e
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2520 55V. N. SMELYANSKIY AND M. I. DYKMAN
start either at unstable fixed points@8# or emanate, in pairs,
from cusp points@20#. Caustics arenot encountered byopti-
mal fluctuational paths. As mentioned above, before an ex
treme path reaches a caustic it ceases to be optimal: the c
responding area is reached along topologically differen
paths. The line that separates the areas reached along dif
ent optimal paths is the switching line.

FIG. 2. Generic singularities of the pattern of the optimal time
independent control fieldE in systems with two dynamical vari-
ablesx andy. Smeared lines show schematically the field configu
rations for optimal control of fluctuations of the system. The targe
states are at the ends of the field tubes~the stable state of the system
is at the origin!. For comparatively smallE, the tubes are centered
at the optimal fluctuational trajectories forE50. The width of the
tubes is determined by the correlation length of the field. The loca
tion of the control field changes nearly discontinuously if the targe
state crosses the switching line, which is shown by a bold line; fo
points close to the switching line, two geometries of the contro
field are nearly equally effective. Dashed line show caustics in th
pattern of the extreme paths of the variational problem~5! and~6!.
J.

E.
D
L

-
or-
t
fer-

To the lowest approximation in the amplitude of the co
trol field, the optimal field is located along the optimal flu
tuational paths in the absence of the field. Therefore
switching line for the fluctuational paths also separates
areas in which the optimal control field has a different spa
structure, as shown in Fig. 2. For higher fields the shape
the optimal paths depends on the field. However, the to
logical structure of singularities in the pattern of the cont
field remains the same.

V. CONCLUSIONS

It follows from the results of the present paper that eve
weak control field may exponentially strongly affect th
probability of a large fluctuation to a given target state,
well as the probability of escape from a metastable st
Depending on the goal, fluctuation probabilities can be
creased or decreased. The optimal control field can be fo
from a variational problem. This same problem also d
scribes optimal fluctuational paths in the presence of the c
trol field. In fact, this problem provides mutually interrelate
optimal realizations of the control field and noise that, act
together, bring the system to a given state. The solution
this problem can be obtained numerically in the general ca
For an arbitrary nonlinear fluctuating system we have fou
this solution in an explicit form in the case of a compar
tively weak control field.

The optimal control field depends on the type of the pe
alty functional and on the features of the system dynam
The optimal form of the field in space, as well as the shape
the field pulse, differ dramatically for target states which a
close to each other in the state space of the system but li
the opposite sides of the switching lines~hypersurfaces!; the
positions of the switching lines are given by the solution
the variational problem for fluctuational paths and cont
field.
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