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Optimal control of large fluctuations
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We consider the problem of optimal control of large fluctuations. Our approach is based on the concept of
the optimal fluctuational path along which the system is most likely to move when it fluctuates to a given state.
Optimal control requires double optimization: over realizations of the control field and fluctuational paths. We
formulate the appropriate variational problem. Using a white-noise-driven dynamical system as an example, we
show that even comparatively weak control fields, if applied in an optimal way, can exponentially strongly
reduce the probability of an undesirable fluctuation or increase the probability of a desirable one. Explicit
expressions are obtained for the cases of control by a spatially uniform time-dependent field and by a stationary
nonuniform field. We show that, in the problem of control, there generically occur singularities related to
topological singularities found in the problem of large fluctuatig®4.063-651X97)09203-9

PACS numbsgps): 05.40:+j, 02.50—-r, 05.20-y

[. INTRODUCTION provide a general variational formulation of the problem us-
ing a white-noise-driven system as an example. In Sec. Il
Large infrequent fluctuations play a key role in a broadwe consider optimal control by comparatively weak fields.
range of physical processes, from cosmology and nucleatioexplicit expressions for exponentially strong change of the
at phase transitions to earthquakes and mutations in DNAuctuation probability by a spatially uniform time-dependent
sequences. They are also of crucial importance for engineefontrol field and by a stationary field optimally configured in
ing as they are often responsible for failures of systems angPace are discussed in Sec. IV. Section V contains conclud-
devices. Therefore control of large fluctuations is a challenging remarks.
ing and fundamental problem. Despite numerous efforts no
generally accepted principles have been found that describe Il. GENERAL FORMULATION
the probabilities of large fluctuations in systems away from . ,
thermal equilibrium{1], which include lasers and electronic "€ problem of optimal control of fluctuations can be
devices, electron traps used in fundamental measuremerf@mulated in the following way: how to obtain a maximal
[2], pattern forming systeni8], biological systems, and sys- Increase or decrease of_ the_ probability of a flyc_tuatmn to a
tems studied in engineering. At the same time there is a§iVen target statdor switching between coexisting stable
emerging understanding that not only is the problem of fun-States by driving the system with an external fief(r,t),
damental importance, but that large fluctuations can somd®r & minimal value of a certain penalty functioriglE]. The
times play acreative role they can strongly enhance a signal form of this functional depends on the specific probferd;
in a nonlinear system and improve signal processing througf-9-» in the case _of control by electromagnetic field it can be
stochastic resonandd]; they can also give rise to a unidi- the total energy in a pulse. _
rectional current in spatially periodic structugatchet$[5]. A comparatively simple a}nd p_owerful approach_to opti-
Recently a very substantial progress has been made mal contrql (_)f Ia_rge fluctuations is ba_sed on the idea of
understanding large fluctuations by combining the physicaflouble optimizationone may considesptimalcontrol of the
picture of the fluctuations with the path-integral technique@Ptimal(most probablefluctuations. It has been shown theo-
and the results of nonlinear dynamics and catastrophe theof§tically and demonstrated in the experimé@i that, in a
[6—8]. The modern approach to the problem is based on th@rge fluctuation, thg probability distribution of moving to a
optimal pathconcept. An optimal path is the path along 9iven state along different p_aths often peakgponentially
which the system moves, with overwhelming probability, sharplyat the optlmal fluctuational path. Ther.efore the pr_ob—
when it fluctuates from the vicinity of the stable stéaere  lem of control is naturally reduced to affecting the motion
it spends most of its tin)do a given state. Optimal paths are @long this path and/or changing the path, and even a small
real physical objects: they have been experimentally Obgontrol_ field may produce strong effect on the_ fluctuations.
served[9]. In the theory of large fluctuations, the pattern of _ 10 illustrate this approach we shall consider the most
optimal paths plays a role similar to that of the phase portraifimple but nontrivial and important problem: control of large
in nonlinear dynamics. flugtuatlons ina dyna'mlcal system driven by white Gaussian
In this paper we consider the problem of controlling largenoisef(t). The equation of motion of the system is of the
fluctuations in aroptimal way The theory of optimal control  form
has been substantially developed recently, and the results .
have been applied to controlling various physical phenomena r=K(rE)+f(t), (f()fn(t'))=Donnd(t—t"). (1)
[10] (see Ref[11] for a review. In our analysis we combine
the results for large fluctuations with the ideas and techHerer may be considered as a coordinate of the system,
niques of the modern theory of optimal control. In Sec. Il wethe position vector of a Brownian partigleand K is the
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regular force that drives the system in the absence of thelere\ is the Lagrange multiplier which allows for the fact
noise f(t). The force K depends on the control field that realizations of the fiel&(r,t) provide a given valuer
E=E(r;t). We assume th& depends on time only in terms to the penalty functiondF (cf. [17]). The minimum is taken
of the field E; generalization to the case whefe periodi-  with respect to the pathgt) along which the system moves
cally depends on time even f&= 0 will be considered else- to a given target state , and over realizations of the control
where. Various phenomenological and microscopic modelsield E(r,t). The boundary conditiongor the extreme paths
described by Eq(l) were discussed ifil3]. r(t) which arrive at the state; at a given instant; follow
The probability densityP(r) of a large fluctuation to a from the fact that, prior to the large fluctuation, the system
point r far away from the stable state is known to displayspends a long time fluctuating about the attractgrso that
activation dependence on the noise intenBitin the simple
case of thermal equilibrium syster@s<T, whereT is tem- r(t)—ra for t——o, r(t)=ry. (6)

erature: . .
P > The overall result of the control processes is tptimal

field Eqp(r,t), the optimal pathr,,(t) which is the most
probablepath to a state; for the corresponding field real-

S e ization, and also the optimal activation energy of the fluctua-
In thermal equilibrium systems the “activation energy tion to the pointr :

S(r) is given by the appropriate free energy for the fluctua-

P(r)«cexd —S(r)/D]. 2

tion to the pointr. In the general case it is given by the Ropt(1't +F) = T opi( 1), Eqpd 1, D] (7)
minimal value of a certain functional. For modél) this
functional is of the forn{14] We emphasize that, depending on the sign of the Lagrange

multiplier X in Eq. (5), the value ofR,,; may beminimal or
. ) ) ) maxima] for a given value of the penalty functional These
S[Y;E]=§f difr—K(E)]%  S(r)={minS[r;E]} - two cases correspond, respectively, to the optiemance-
€) mentor suppressiorof fluctuations to a given point; by the
control field(see Sec. I). The possibility of controlling fluc-
The minimum in Eq(3) is taken over the pathgt). tuations and cooperating with fluctuations in controlling the
Equation(2) also applies to the probability of escape from dynamics of a system was considered recently by Vugmeis-
a metastable state. With an appropriately modified functionajer and Rabit18] using the traditional formalism of optimal
S[r:E], it holds for systems driven by a nonwhiteolon ~ control theory in terms of target cost functional. Explicit re-
Gaussian noisésee[15] for a review, as well as for birth- sults Werelobyamed for a one-varlz-able linear system.
death processeén the latter caseD should be redefined The activation energiRo,(r, %) might be expected to be a
[16,78. smooth function of the state of the system However, this
For weak noise intensit, even small variations in the IS not always the case. In fad,, has generic singularities.
control fieldE can lead to a change in the activation energy! heir occurrence is a consequence of the occurrence of caus-
S which greatly exceed®, and thus to a very strong change tics in the sets of extreme paths for variational problems of
of the probabilityP. In the problem of optimal control of the YP€ (5. However, in contrast to extreme paths in quantum

fluctuations it is advantageous therefore to analyze the actfechanics and optics, optimal fluctuational padbsnoten-
vation energyS as ayield of the control processes. This counter caustics. This is related to the fact that optimal fluc-

provides a unified approach to a broad class of problems. tuational paths describe a nonn-egative quantity, the prob-

Effectiveness of control is determined by tienalty —2bility density to reach a given state. _
functional FE(r,t)] for the control field: a desired effect ~ Generic singularities of the set of optimal paths are
should be achieved at a minimal “price.” This price is de- SWitchings[8]: when the final point of the path; changes

termined by the value df. We assumé to be quadratic in (by @ small but finite distance, for finit®), the pathr
the fieldE (cf. [12)): changes discontinuously, to a totally different solution of

problem(3) which provides the absolute minimum 8fry)
for a givenE(r,t) (not just an extremum Switchings of

1 7
FLE(r,0]=2(E,ME) optimal paths have been recently observed in experiment

[9](b).
E%f drdr’ dtdt’E E,(r,t) The effect of switching occurs also in optimal trajectories
mm of the control fieldE(r,t) [19], as illustrated in Sec. IV for
X M1, 1 4t ) E(r',t1), (4)  the case of comparatively weak control fields. The general

analysis of the singularities of the pattern of optimal realiza-
tions of a control field is based on the results of the theory of
Lagrangian manifolds and catastrophe theory and will be
given elsewhere.

whereM is a positive definite Hermitian operator.

For a given realization of the field(r,t), the probability
densityP(r) for the system to reach a pointis determined
by theminimumof the functionalS[r; E]. Therefore optimal
control of large fluctuations is described by the solution of
the following variational problem: A simple explicit solution of the problem of optimal con-

trol may be obtained in the important case where the control-
OR[r;E]=0, R[r;E]=9r;E]+N(F[E]-F). (5 ling field E(r,t) is weak compared to the driving forde

Ill. CONTROL BY A WEAK FIELD
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away from the fixed points of the systefwhereK=0). In (Y,
this case we write the ford¢ in Eq. (1) as a superposition of FLE]=2: ¢ E*(1)dt. (12
the forceK(® in the absence of the control field and the '

control field itself, .
In the case of control by a laser field, forfh2) corresponds

K(r:E)=KO(r)+E(rt). ®) to o_ptimizati(_)n oyer_the_total energy (_)f a radiation pu_lse, for
a given spatial distribution of the radiation, and the instants
t; andt; correspond to the beginning and end of the pulse.
It follows from Eqgs.(10) and (11) that the optimal real-
ization of the control field and the correction to the activation
energy are of the forms

It is well known from variational calculus that, to the first
order in the fieldE, the expression for the activation energy
S(r) (3) can be evaluated along the optimal fluctuational
trajectoryr (J)(t) in the absence of the control field:

—-1/2
S(r)~S[rin(t); E(rin(t),b] Eopt(t)=I(Zf)llzfop((t){f:fdtfﬁpt(t)} ,

:s<0>(rf)—f dt fopt) - EQroni(t), 1), 9

t 1/2
| AS=(2F)1’Z“_fd fgpt(t)} . (13
SOr)=Srga(t);0,  fo(t) =g KO(rg). .

It is straightforward now to perform optimization over the Here, the sign in the expression fig,(t) is opposite to the
field E with the penalty functional4). If the integral opera-  sign of the correction t&® in the expression Eqa11) for
tor M in Eq. (4) has a reciprocal operatdl 1, the formal  the activation energy of the fluctuatid®yy; the sign+ in
solution of the variational problents) and(9) for the opti-  EQ. (13) corresponds to the decreaseRyf, by the optimal

mal field can be written as control field(13). . _
In deriving Eqs.(13), we assumed thdt is the instant of

time at which the system arrives at a target statelt is

clear that, for a time-dependent control field, a natural goal

would be to bring the system to a given point by the end of

the pulse, i.e., just for=t;. Respectively, the optimal force

fap(t) should be evaluated for the optimal fluctuation in
hich the system arrives tq at the instant; .

Eop(T.D)=N"IM 7 2ea(r,1),  e(r,t) =fop(1) 3(r —r {2 (1)).
(10

[the function¢(r,t) is equal to zero fot lying outside the
interval where the system moves to the target state along t
optimal pathr )(t)].

Substituting solutiorf10) into the expression for the func-
tional F (4), and setting the value of the functional equal to a
given valueF, we obtain two values of the Lagrange multi-  Special consideration is required in the problem of opti-
plier X, with opposite signs, and the final expression for themal control ofswitchingfrom a metastable state. In this case,
increment of the activation energy of the optimal fluctuationa natural formulation would be to ask what is the most ap-

Controlling switching probability

(7) takes on the form propriate temporal shape of a pulse of the control field
which, for the penalty functional of forr(iL2), results in the
Ropd T F)~SO(r)£AS, AS=(25) YoM 1)1 most probable switching of the system?

For systems driven by Gaussian noise, the probability of
switching is determined, to logarithmic accuracy, by the
| probability to reach an unstable stationary state an un-
stable limit cycle on the boundary of the basin of attraction

- P . . __to a stable state from which the system esc@pBk and this
the expression for the probability of fluctuations to a glvenunstable state is reached for in Eq. (6). The corre-

i 1/25 i
stater; can greatly exceed unity faf **>D. This means sponding path in the absence of the control field

that even a weak control field may give rise to@wponen- ") “" ) . . Cth

tially strongdecrease or increasfer the plus or minus signs opi(t) =Top(t—to) IS an instanton: the system moves ex-

in Eq. (11), respectively of the fluctuation probability. tremely _sl_oyvly near the stable state, then |t.makes. a Ieap
to the vicinity of the unstable state where its motion again

becomes infinitely slow. The duration of the leap is of the

It is seen from Eq(11) that indeed, even for a weak contro
field E, the field-induced change of tiexponent-R,,/D in

IV. RESULTS FOR SPECIAL TYPES order of the relaxation time, and ly we denoted an instant
OF A CONTROL FIELD of time somewhere in the middle of the le@pg., where the
A. Coordinate-independent field force |fo,{ is maxima). The activation energy of escape is

_ . independent ofy: this is the well-known translational invari-
The general expressidd 1) for the change of the activa- gnce of instanton solutions.

tion energy of a large fluctuation due to a weak control field |, the problem of control of the escape rate, the shape of
is simplified for special types of control. We shall start with i, pulse of the control field

the analysis of the case where the control figleés indepen-

dent of the coordinates of the system, so that the penalty ~

functional can be written as Eopt(1) = fopt) =foplt—to) (14)
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sume that this matrix depends only on tiéerenceof the
' , spatial arguments—r'. In this case the penalty functional
becomes

F[E(r)]z%f drdr’'M(r—r")E(r)-E(r'") (16
As

[again, one may think of the penalty functioriab) as of the
0s | | energy of an electric field

Variation over the control fieldE in functionals(5), (9),
and (16) can be conveniently performed in the Fourier
respresentation. The formal soluti¢t0) can be then written
in the explicit form as

%0 2 4 6 1’ dk_\p-1
Eopr) =\ 7wdt WMk fopt(t)
t-t,
£ X explik[r —r9n)7), (17
FIG. 1. The reduced changes=AS/(2F)? of the activation _
energy for escape from a metastable state as a function of the du- M= J' dr M(r)exp(—ik-r).
ration of the control field pulse. The data refer to a system with one
dynamical variablex, andK ©(x) =x—x. Hered is the number of components of the vectorwe

have assumed that the system moves along the optimal path
should be found for theptimal time ty, with respect to the rf)%)t(t) with the time origin chosen in such a way that it
beginningt; and the end; of the field pulse. The corre- arrives at the target state for=0. In the problem of escape,

sponding condition reads integration over time in Eq(17) should be performed from
—© to .
- - With account taken of Eq(17), expression(11) for the
fopt—to) =fop(ti—to) (15  change of the activation energy due to the control field be-
comes
The field-induced change in the activation energy of the es- 0 dk
cape rate is then given by Eq13) with the integral AS:(Zf)l’ZJ f dt dt’f WMgl
f:fdt fgp[(t—to) evaluated for the corresponding Eq. (15) o 7
is the condition for this integral to be maximal with respect X fopi(1) - fopdt ) EXpU K[ r(1) —r2(t")]). (18)
to to.

We note that, in the general case, the algebraic equatiol is interesting to analyze the form of the control field as
(15 may have several roots, and it is necessary to take thgiven by Eq.(17) in an important case where the effective
root which provides a global maximum to the above integralcorrelation lengthl, of the field is small compared to the
Switching from one root to another is a sort of a critical characteristic length of the optimal trajectory, in particular
phenomenon in the problem of control, which is to somewith the distance from the attractor to the target state. The
extent similar to a first order phase transition. reciprocal length_ * characterizes the range lofover which

Equations(13)—(15) provide an explicit solution of the the functionM, varies.
problem of optimal control of the escape rates. They also It follows from Eg. (17) that, for smalll., the field
make it possible to investigate how the effectiveness of the (r) peaks sharply on theptimal pathr(()%)t along which
control, which is determined by the value AfS, Eq. (13),  the system moves to a given target state in the absence of the
depends on specific features of the system dynamics. It igontrol field. This is in agreement with simple qualitative
clear from Eq.(13) that, for the penalty functional of the arguments that the effect on fluctuations would be expected
form (12), the modulation of the escape ratereaseswith  to be most pronounced if the control field is concentrated on
the increasing duration of a pulse-t;, for a given value of  the optimal path. Equatiofil7) shows alschow the field
F. This dependence saturates when the duration of the pulsghould be distributed along the optimal path. The width of
noticeably exceeds the relaxation time of the system. For ¢he tube of the control field is determined by the correlation
simple model this dependence is shown in Fig. 1. lengthl,, for |, greatly exceeding the width of the tube of
the fluctuational paths D2,

Spatial location of the optimal control field for fluctua-
tions to different target points; is illustrated in Fig. 2. In

We shall now investigate the case where the control fieldhis figure, dashed lines are caustics in the pattern of extreme
E(r) is time independent. We limit ourselves to the mostfluctuational paths. The occurrence of caustics is a generic
simple case of an “isotropic” control field where the matrix feature of the solutions of the variational problef$ and
M,m in Eq. (4) is proportional to a unit matrix, and we as- (6) for systems away from thermal equilibrium. Caustics

B. Optimal control by a stationary field
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To the lowest approximation in the amplitude of the con-
trol field, the optimal field is located along the optimal fluc-
tuational paths in the absence of the field. Therefore the
switching line for the fluctuational paths also separates the
areas in which the optimal control field has a different spatial
structure, as shown in Fig. 2. For higher fields the shape of
the optimal paths depends on the field. However, the topo-
logical structure of singularities in the pattern of the control
field remains the same.

V. CONCLUSIONS

It follows from the results of the present paper that even a
weak control field may exponentially strongly affect the
probability of a large fluctuation to a given target state, as
well as the probability of escape from a metastable state.
Depending on the goal, fluctuation probabilities can be in-
creased or decreased. The optimal control field can be found

X from a variational problem. This same problem also de-
scribes optimal fluctuational paths in the presence of the con-
trol field. In fact, this problem provides mutually interrelated
optimal realizations of the control field and noise that, acting

FIG. 2. Generic singularities of the pattern of the optimal time-together, bring the system to a given state. The solution of
independent control fiel& in systems with two dynamical vari- this problem can be obtained numerically in the general case.
ablesx andy. Smeared lines show schematically the field configu- For an arbitrary nonlinear f|uctuating System we have found
rations for optimal control of fluctuations of the system. The targetihjs solution in an explicit form in the case of a compara-
states are at the ends of the field tultee stable state of the system tively weak control field.
is at the origin. For comparatively smalt, the tubes are centered The optimal control field depends on the type of the pen-
at the optimal fluctuational trajectories f&r=0. The width of the alty functional and on the features of the system dynamics.
tubes is determined by the correlation length of the field. The Ioca-l_he optimal form of the field in space, as well as the shape of
tion of the control field changes nearly discontinuously if the targetthe field pulse, differ dramatically for,target states which are

state crosses the switching line, which is shown by a bold line; for . .
: LS . close to each other in the state space of the system but lie on
points close to the switching line, two geometries of the control

field are nearly equally effective. Dashed line show caustics in théhe opposite sides of the switching linég/persurfaces the

pattern of the extreme paths of the variational prob{&jnand (6). pOSItlor!S ,Of the switching lines are given by the solution of
the variational problem for fluctuational paths and control

. ' . . . field.
start either at unstable fixed poiri8] or emanate, in pairs,

from cusp pointd 20]. Caustics areot encountered bypti-

mal fluctuational paths. As _m(_antioned above, bejore an ex- ACKNOWLEDGMENTS
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