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Fluctuational phase-flip transitions in parametrically driven oscillators
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We analyze the rates of noise-induced transitions between period-two attractors. The model investigated is
an underdamped oscillator parametrically driven by a field at nearly twice the oscillator eigenfrequency. The
activation energy of the transitions is analyzed as a function of frequency detuning and field amplitude scaled
by the damping and nonlinearity parameters of the oscillator. Both fourth- and sixth-order nonlinearities are
taken into account. The parameter ranges where the system is bistable and tristable are investigated. Explicit
results are obtained in the limit of small damping, or equivalently, strong driving, including scaling near
bifurcation points[S1063-651X%98)15405-3

PACS numbe(s): 05.40+j, 02.50—r, 05.20-y, 32.80.Pj

I. INTRODUCTION functional gives the exponent in the expression for the es-
cape rate.
Nonlinear systems driven by a sufficiently strong periodic An advantageous feature of period doubling in an under-
field often display period doublin§l]. The two emerging damped oscillator is jth_at it occurs for comparapvely_ small
stable periodic states are identical, except that they ar mplitudesF of the driving force, where the nonlinearity of

shifted in time by the period of the field2 wg . This feature t'a? Zi(zlrlatoirslsniﬂgr?r?ea}s”s: Thi\r?ntzzrm:?rlrfo%?cr:t (c)n;%hez /p;oten-
is a consequence of the symmetry with respect to translatiof} gy Avre,

in time by 2ur/ and it attracted attention to such s Stemswhereq is the oscillator coordinate. In this case, the quanti-
y emlwg, al ) n sy ties of interest are the amplitude and phase of the vibrations
as elements of digital compute[&]. Period doubling has

e , ) X ) at the frequency /2~ wq. They vary only a little over the
found numerous applications, in particular in parametric amzjme ngl_ The corresponding dynamics is affected by

plifiers. In the presence of noise, there occur fluctuationakqrier components of the noise within a narrow band cen-

transitions between the period-two attractors, which corretered atw/2. Essentially, this means that, in the analysis of

spond to phase slip of the system hyIn spite of its impor-  the dynamics of slow variables, the noise may be assumed to

tance, the problem of phase-flip transitions remains largelype white. A similar situation arisgs€12] in the problem of

unexplored theoretically. On the experimental side, interestransitions between the stable states of forced vibrations of a

in such transitions has been renewed recently, because th&gsonantly driven underdamped oscillator.

were observed for electrons oscillating in a Penning [&p Below, in Sec. Il, we discuss the phase portrait of a driven

and also investigated, for an analog electronic cirpgftin ~ Puffing oscillator (with the fourth-order nonlinearityin the

the context of stochastic resonarf&a. rotating frame. We then d_erlv_e the properties of noise for
. : . slow variables. For low noise intensities, we formulate and

Motivated by these observations, in the present paper wi

devel h p f iod Solve numerically the variational problem for the activation
evelop a theory of escape rates from period-two attractorge gy of escape from period-two states. In Sec. Il explicit

The analysis is done for the simplest generic model that disaypressions are provided for the escape rates in the vicinities
plays period doubling: an underdamped oscillator parametripf the bifurcation points where there emerge period-two at-
cally driven by a force at nearly twice the oscillator eigen-tractors(a supercritical bifurcationor unstable period-two
frequencyw, [6]. This model applies, in particular, to axial states. The analysis in Sec. IV refers to comparatively strong
vibrations of an electron in a Penning trg®. Much work  driving, where the motion islow variables is underdamped.
on a parametrically excited oscillator has been done in th&xplicit analytical results for escape activation energies are
context of squeezed states of light; cf. R&f|. We analyze ©obtained in limiting cases and compared with numerical re-

escape due to classical fluctuations, which were substantigh!ts- In Sec. V the role of sixth-order nonlinearity is dis-
for the systems investigated in Ref8.4]. cussed, and the activation energies are found near bifurcation

A parametrically excited oscillator is an example of a sys-P2ints, and also in the range where sixth-order nonlinearity is
tem away from thermal equilibrium. Such systems usuallyStrond and the motion islow variables is underdamped.
lack detailed balancEs], they are not characterized by free Section VI contains concluding remarks.
energy, and escape rates depend on the system dynamics and || escaAPE RATES: GENERAL FORMULATION
the noise that gives rise to fluctuations in the system. In the
important and quite general case where the noise is Gaussian, A. Phase portrait in slow variables

there has been developed a technique which reduces the To set the scene, we will first discuss the phase portrait of
problem of calculating escape rates to a variational problera parametrically driven underdamped oscillator. A simple

[9]. The solution of this problem describes the optimal paﬂ‘phenomenological equation of motion is of the form
along which the fluctuating system is most likely to move ,
when it escapes. Such path is often calldd] the most d“q

dg_ 3
probable escape path. The minimal value of the variational W*ZFE“’O‘“ YA QF coswpt=¢(1). (1)
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Herel is the friction coefficient;y is the nonlinearity param-
eter, F is the amplitude of the regular force, agt) is a
zero-mean nois€,£(t))=0. We assume that the amplitudes
of the vibrations are not too large, and therefore only the
fourth-order term in the coordinatgis taken into account in
the oscillator potential energfthe Duffing model. In the
problem of period doubling, the effect of the cubic term
comes to renormalization of the parametefcf. Ref.[6]).
Generalization of the results to the case where, for special
reasong3,11], v is numerically small, and it is necessary to
allow for the term=q°® in the equation of motion, is dis-
cussed in Sec. V.

We consider resonant driving, so that the oscillator eigen-
frequencywg is close towg/2,

F,|2w0—w,:|<wo. (2)

In this case it is convenienfcf. Ref. [6]) to analyze the
oscillator motion in the rotating frame. We change to slow
dimensionless time=TI't and slow dimensionless variables
g, andq,, respectively:

4ol \ Y wgt . wpt
a(t)=| 3| |91 C0S—~—dz Sin——1,

3|l
dqg wﬁr 12 . wget wrt
a—_(m d1 S|n7+q2 COST. (3)

Following the standard procedure of the method of aver-
aging (cf. Ref. [1]), and neglecting fast oscillating terms
which depend on the oscillator amplitude and contain a fac-
tor expinwgt/2) with n#0, one obtains the equations of
motion for g, andq, in the forms

. dg; a9
q15¥=—q1+&—qz+fl(ﬂr), =It,

(4)
- doy a9
92=5,; = "2~ Eﬂsz(T/F),
whereé, /(7/1") are random forces proportional &t), and

g(ql,q2>=%<q§+q%>m—%(qi+q%>sgny]+%g<q§—q%

9,

0

9

0

4

5203

(@)

In what follows we assume that>0; the casey<<0 can be

described by replacin@l— —Q andg;——qs_; (i=1 and
2).

FIG. 1. Trajectories and separatrices of the oscillator in the ab-
sence of noise in slow variableg andq, for (a) {=1.5 andQ
=0.5, where the stable states of the oscillator are period-two attrac-

Except for the random force, the motion of the oscillatortors; and(b) for {=1.5 andQQ=1.5, where the steady stage=0 is
as described by Eq#4) is characterized by two dimension- also stable. The positions of the stable states and the saddle points

less parameters: the scaled frequency detuiiingnd the
scaled fieldZ,

Q=[(wg2)— wolIT, ¢=F/20T. (6)

For <1 or for Q< —({?—1)Y2 the oscillator(4) in the
absence of noise has only one stable statesq,=0:
period-two oscillations are not excited. The valirel gives
the threshold field amplitudeé,= 2wgI" for their excitation.
The phase portrait of the oscillator in variabtpsandqs,, in

are denoted by the letteas ands, respectively(c) The dependence
of the dimensionless amplitude of the staelid line) and un-
stable(dashed ling period-two vibrations o) for {=5.0.

For ¢{>1, with the increasing) there first occurs a pitch-
fork bifurcation for )= —(¢2—1)2 This is a supercritical
period-doubling bifurcation: the stable statg=0[q
=(0q4,0)] becomes unstable, and there emerge two stable
statesq? which are symmetric with respect tg,=q,

=0; see Fig. 18). These states correspond to stable period-2

the range where the oscillations are excited, is shown in Figvibrations which are shifted in phase hy The vibrational

1.

amplitudea=|qg| increases monotonically with the increas-
ing Q [see
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Fig. 1(c)]. The results of the asymptotic analysis based omoise componentg;(t) and &,(t) are asymptotically inde-

Egs.(4) apply for not too large amplitudes, pendent of each other; one can also leave out the terms
«coSwet in the power spectra of the diagonal correlators.
I'a?,|wp—2wg|a?< w . (7) Corresponding analysis can be also done for a microscopic

model of noise resulting from coupling to a badee Ref.

As Q goes through the value;¥—1)"2 there occurs the [12]): rigorous mathematical results on the method of aver-
second pitchfork bifurcation of the staty=q,=0: this aging in noise-driven systems were discussed in R&i.
state becomes stable again, and there emerge two unstablelt follows from the arguments discussed above that the
statesqﬁl’z), which are also symmetric with respect to the random functionsé;(t) and &,(t) are asymptotically inde-
origin, and correspond to unstable period-two vibrations ofpendent zero-mean Gaussian white noises,
the oscillator. As seen from Fig(ld), the phase plane of the - ]
oscillator is such that, foﬁ;)((z— 1(;’2 the domains of at- (&(7ID)&('IT))=D 6(7—7"), 1=12, (10
traction to the stable stateg;’ andqg’ are separated by the _ 32
domain of attraction to the stable stafe: 0. D= (3[71/20El™) $(we/2).

The function?(x) is & like: it is large in a narrow domain
B. Fluctuations of slow variables |x|<1, and its integral is equal to 1.

In the presence of noise, the amplitude and phase of the It follows from Egs.(4) and (10) that the motion of the
oscillator are fluctuating. The fluctuations are determined byscillator on the slow time scale is Brownian, i.e., the slow
the noise&(t) in Eq. (1) that drives the oscillator. In many Variablesq, Jt) are components of a two-dimensional Mar-
cases of physical interest, this noise is Gaussian. It malfoV process. The quantify gives the characteristic intensity
originate from the coupling of the oscillator to a thermal bathof the noise in the equations of motion fgf andqs. If the
[which also gives rise to the friction force in E(l)], or it ~ Oscillator is coupled to a thermal bath with a correlation time
may be due to an external nonthermal source. A zero-meafuch smaller than &/, so that the oscillator performs a

Gaussian noise is characterized by its power spectrum  “truly” Brownian motion and the random forcé(t) in Eq.
(1) is & correlated, with intensity BkT, we have D

, _ I Y , =6|y|kT/wil'. We note, however, that the dynamics of
D, (&(t+t )’g(t))_d)(w)_J_wdt e (&t T)E(L). slow variabFIes can be described as Brownian motion even
(8) where this description does not apply to the motion of the
initial oscillator, i.e., where the correlation time of the ther-
For a stationary noise the power spectr(@nis independent mal bath is=1/w,. In this latter case, the friction force in
of time. In what follows we assume that the functi¢w) is  Eq. (1) is also retarded, but the retardation may be neglected
smoothnear the oscillator eigenfrequenay. in the equations of motion for the slow variabled. Ref.
Even though the noisé€(t) is stationary, the random [12]).
forcesé; (t) in Eq. (4), which give rise to fluctuations of the
slow variables, are nonstationary, generally speaking. From C. Variational problem for the escape rate
Egs.(1), (3), and(4), one obtains the following expressions |t the dimensionless noise intensiy is small, then most
for their power spectra: of the time the oscillator is fluctuating in a small vicinity of
3| 1 one or the other stable stag€” (in what follows we sen
D &(t+1),&(D)]= =03 > ¢( w— —awF) =1 and 2 for the stable states of period-two vibrations, and
4ol ak==1 2 n=0 for the stationary statg=0 where it is stablg Only
PRy . P occasionally does there occur a large fluctuation which re-
X[+ (- Dlexpiawet) (j=1.2), sults in a transition to another stable state. The probability
3i[v| 1 W, of such fluctuations is e_quner_ﬂially small, anc_i its_ depen-
D [E4(t+t), &)=~ 313 > aqS( w+ —awF) dence on the noise intensity is given by the activation law,
4wpl™ =31 2 W,xexp(—S,/D) (see Ref[9] for a review. In fact, to loga-
rithmic accuracyW,, is determined by the probability den-
sity of the least improbable realization of the forégr/T")
which results in the corresponding transition. Therefore, one
may expect that the quantity, is given by the solution of a

X[1+expiawet)]. 9

The dynamics of the slow variableg , is characterized
by the time scales-1/T', 1|wg—2wy|. We assume that the y < ° ‘
power spectrum@(w)=¢(—w) varies only slightly in the variational problem. This problem is of the forfof. Refs.
whole frequency range wherpw— wg/2]<I', wg—2wq| [12,13)

[and this range does not correspond to a deep minimum of,,, _ _ o _

&(w)]. It follows then from Eq(9) that for the characteristic Wn=C exp(=$/D),  Sp=min Sy(a(7)[a=(01,92)],
frequenciedw|=<T', |wg— 2w¢|, the spectra of the diagonal % . . .
correlatorg(£;(t) &(t')) have both time independent compo- Sq(Q(T))=f dr L(q,9), L(q,q)=3[q-K(q)]%
nents and components that oscillate quickly in time, whereas o (11
the power spectrum of the cross-correlatorégfand &, is
quickly oscillating in time. Therefore, in the analysis of the
effect of the noise on the slowly varying functiongs,, in where the components of the vectorare given by the right-
the spirit of the averaging method, one can assume that theand sides of the equations of motit4,

a(n—ql for r——x, q(r)—q, for r—o,



57 FLUCTUATIONAL PHASE-FLIP TRANSITIONS N.. .. 5205

Ky @)=~ 0t 2, Kyl = —tp 2. (12
1(q a1 a9y’ 2(q az 99

sk
The solution of the variational problerll) q(7) de- S

scribes the optimal, or most probable escape path from the
nth stable state. This path is instantonlifeze Ref[14]). It
starts at the stable statg? for 7— —, and for r—o it
approaches the unstable stgteon the boundary of the do- 1
main of attraction taq"’ (having reached the boundary, the
system makes a transition to another stable state with a prob- - - - .
ability ~32). It follows from Fig. 1 that, for—(£?—1)%2 0 3 5 ¢ o
<Q<(£2—1)Y2 where the only stable states are period-two
attractors, escape from one of them means a transition to the FIG. 2. Activation energie§=S, =S, for phase-slip transitions
other. For(2>(§2— 1)1/2' escape from one of the period-two between period-two attractors of a driven Duffing oscillator as ob-
attractors means a transition to the stationary state, whef@ined by solving numerically the variational problef) (solid
period-two vibrations are not excited, except in the case of"€S- The dependence o on the scaled field amplitudg
extremely small damping, where the separatrices in Rig. 1 F/2L_oFF is shown for four values of the dlmen5|onless frequency
come close to each other near saddle points, so that the digSlning 2 =[(wr/2)~wo]/T'. The dashed lines show the low-
tance between them is less than the diffusion length. Fro amping(large ) asymptotes.
the state where period-two vibrations are not excited, the
system makes fluctuational transitions into one or the othetively small nonlinearity(7), the oscillator may experience
period-two attractor. two bifurcations with the varying field frequency, as seen
The most probable realization of the noise is related to thérom Fig. 1. In the vicinity of a bifurcation point, one of the

optimal fluctuational path via Eqd), £7/I')=g—K. Opti- ~ motions of the system near the emerging stable ake-
mal fluctuational paths are physically real; they have beegomes slow: there arises a “soft mod¢I9]. Correspond-
observed in experimerisee Ref[15]). ingly, fluctuations near a bifurcation point have universal
The activation energie§,, as defined by Eq(11), de- features[20] (see also Ref[12]). For systems that display
pend on two dimensionless parameters of the driven oscillaR€eriod doubling, the analysis of dynamics near supercritical
tor: the scaled field strengthand the scaled frequency de- and subcritical bifurcation points was discussed earlier,
tuning Q (6). In the general caseS, may be calculated based on the normal form of the equation of motion for the
numerically as action of the conservative system with theslow variable with account taken of additional weak driving

LagrangianL(q,q). Direct algorithms based on the solution [Zle]rO;snc(zsz(rS:t?asReg[rizg{o?rc]:gnrstjeére; dcgr? tr:sfgl”;ogr-s

of the corresponding Hamiltonian equations were discusse” If ’the aF;ametersV\:)f the nonlinelar osciIIIator arepclgse io a
in Refs.[10,14 in the analysis of escape rates for fluctuating, . - paran ) N

systems of other types. For the system investigated in Ref llfurcatlon point, one can either solve the variational prob-

[12,16, an alternative algorithm, based on the initial guess.em (11) explicitly or reduce the system of equations of mo-

and subsequent iterations of the solution, was also used, ar}'&’r ?n(4) achhZII(?)qusat:)?\l f?Or ]ET]% Sr:(())\tlvo\ﬁlmiglee (Ian tgﬁe':]ct’mgai
the results on the transition rates were compared with analo » Wh WS : : y xp » U
experiments17]. In the present problem we used a direct so the prefactor in the expression for the escape rate, cf.

; , . . Ref.[20].
method which combined algorithni$0,16. We note that, if . . .
the initial fluctuating system is away from thermal equilib- The equation for the slow variablehe variableQ) can be

rium, the pattern of extreme Hamiltonian paths of the auxil—der've_d from Eq.(4) by appropriately rotating the coordi-
iary problem(11) generically displays singularities; in par- nates:
ticular there arise caustics. However, physically meaningful
optimal fluctuational paths, which form a subset of the ex- Q=0, cos B+, sin P—— d. Sin B+ COS
treme paths, avoid caustif8]. In our numerical analysis of G COSB+Qz Sin B, Gy SN B+0z cosp,
extreme paths, we observed singularities which can be fully (13
understood based on the general topological refi#s and _ _
we will not discuss them in the present paper. tan 6=-0g", Qg=7({#-1)"2

The dependence &, =S, on ¢ for several values of) is
shown in Fig. 2. It follows from this figure that the activation
energy of escape increases with the increasing feld,
and S, ;¢ for large ¢. This behavior will be analyzed in
more detail below in Sec. IV.

Here Qg is the bifurcation value of the dimensionless fre-
quency detuning; see Fig(d.

For|Q —Qg|—0 the dimensionless relaxation time of the
variable Q goes to infinity, whereas that d® is 3, and
thereforeP () follows the slow variabl&€(r) adiabatically.

ll. ACTIVATION ENERGY OF ESCAPE IN VICINITIES Fluctuations inP can be neglected compared to fluctuations

OF BIFURCATION POINTS in Q. Using the adiabatic solution fd? (i.e., neglectingP

Explicit expressions for the activation energigscan be and the noise term in the equation fB, we obtain the
obtained in several limiting cases. In the range of comparafollowing equation forQ:
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. du VO B -
Q=—E+z(7), (BE(n)E(7"))y=Dé(r—1"), 14 L5
U(Q)=0p[3(2—Qp)Q*~3£7Q"], Q5|0 —Qp|<1. Y

It is seen from Eq(14) that, near the bifurcation point
Qg=—(£2—1)"2 the system has either one stable stée
0 <Qg) or two symmetrical stable statéfor (1>Qpg; cf.
Fig. 1). The escape rates from the symmetrical states are the
same, and are given by the Kramers expresdiags

W, = (vV2/m)|Qg|(2—Qg)expa(—S,/D) (n=1,2), L5 |
(15 ‘
Si=2[U(Q")—U(Q™)]=|Qg|(Q - Qg)?/2? -

QW= —-Q®@ andQM™ are the values of the coordinafein
the stable and unstable states; cleaBys S,). 2

Rate(15) is the rate at which there occur phase-slip tran-
sitions between the period-two stable states®oclose to
Qp=—(?—1)Y2 Equation (15) applies for exp{S,/D)
<1. The activation energ, is quadratic in the distance
| —Qg| to the bifurcation point along the axis of the scaled o |
driving field frequency({). For a givenQ —Qg|, the depen-
dence ofS,, on the dimensionless fielglis determined by the
factor ((%2—1)Y% 2.

For 0<Q — (£%>—1)Y?<1, Eq. (15) describes the rate of
transitions from the stable statg=0, Q=0 to any of the 2l
period-two stable states. The transitions occur via the appro-
priate unstable period-two statéhe one on the boundary
between the domain of attractions to the stable period-two

state and the statg=0). FIG. 3. Trajectories of the conservative motitk6) for (a) u
=0.5 and(b) ©=2.0. The values of the Hamiltonian function
IV. SMALL-DAMPING LIMIT G(X,Y) are shown near the trajectories. The dots show the posi-

tions of the elliptic and hyperbolic points.
A. Motion in the absence of dissipation

Of special interest, particularly from the viewpoint of ex- shape of the effective enerdgy(X,Y) for two different val-
periments on trapped electrof11], is the case where the ues ofu is shown in Fig. 4. The trajectories in Fig. 3 are just
scaled field amplitudé is large enough so that the dissipa- the cross sections of the surfaGX,Y) by the planesG
tion terms—q, and —q, in the right hand sides of the equa- =const. The extrema of the surfa@X,Y) are the fixed
tions for slow variableg4) are comparatively small. In the points of the system.
neglect of these terms and the random force, Edsde- For u<—1 the surfaces(X,Y) has one extremum. It is
scribe conservative motion of a particle with the coordinatdocated atX=Y =0, and corresponds, with dissipation taken
g, and momentuny,, and with the Hamiltonian function into account, to the stable state with no period-two vibrations
0(91,9,) [Eg. (5)]. This particle moves along closed trajec- excited. For —1<u<1, the function G(X,Y) has two
tories shown in Fig. 3. It is convenient to describe this mo-maxima atX=0, Y= *(u+ 1)¥? (they correspond to two

tion using scaled coordinate and momentdnandY: period-two attractops and a saddle point &=Y=0. For
3 o B " p>1, in addition to the above maxima the functi@X,Y)

X=q./{7 Y=0p/0, has a minimum akK=Y=0 (the maxima and the minimum
correspond to the stable states of the osciljatand two

ax_ oG dY G T=ir (1  saddle points aK= +(u—1)Y2 Y=0. The extreme values

dz Y d7 axX’ ’ of G, which correspond to the stable statesumerated by

the subscripta=0, 1, and 2 and the unstable periodic states
B 1 1 (denoted by the subscript), are given by the expressions
G(X,Y) = 2g(L"X, )= 5 (= D)X+ S (u+1)Y?

Gi=3(u+1)? G,=0 for u<i, a7

- %(X2+Y2)2, w= %
Go=0, Gi=i(p+t1)% Gy=3(p—1)* for u>1.
The conservative motioil6) depends only on one pa-
rameter,u=/{, which characterizes the interrelation be- We note that foru>1 the trajectories surrounding the states

tween the frequency detuning and the field strength. That X=0, Y=+ (u+1)"? in Fig. 3 become horse-shoe-
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(a) to the correctiorn<D (here the overline means an averaging
over the vibration period The diffusion coefficient fog is
given by D[(dg/dq,)%+ (d9/dq,)?]. The resulting first-
order equation forg can be solved to give the following
expression for the activation energy of escape from the state
n:

Gy M(G)
Sn:zgfen dGFG), M(G)ZJJA(G)C‘X dY,

(18)

—1 2
N(G) szA(G)dX dY V2G(X,Y).

Here the values 06, (n=1 and 2 andG, are the extreme
values ofG(X,Y) [Eq. (17)]. The double integrals are taken
over the area#\(G) limited by the trajectorie§s(X,Y)=G
in Fig. 3 which surround thath center. The expressions for
M(G) andN(G) were obtained from the expressions for the
drift and diffusion coefficients fog using the Stocks theo-
rem, with account taken of Eq§16), as was done in Ref.
[12].

Using the explicit form ofG(X,Y) for the Duffing oscil-
lator (16), one obtains

N(G)=H dX dY w—2(X?+Y?)]. (19
A(G)

FIG. 4. The Hamiltonian functio®(X,Y) [Eq. (16)] (a) for u The ex :

B ) ) ) pressions fdvl (G) andN(G) [Egs.(18) and(19)]
_015’ where the funCt'on.; has two max'deh'Ch.co.rreS.pond 0 can be further simplified by changing to polar coordinates
period-two attractors, with account taken of dissipatiemd a _ S . >

i RV ~ X=R cos¢ and Y=R sin¢. Solving Eq. (16) for R in
saddle point atX=Y=0, and(b) for ©«=2.0 whereG has two fG and di . oR? h btai
maxima, a minimum aX=Y=0, and two saddles which corre- terms, 0iG ande, and integrating ov ' ongt en obtains

that, in the problem of escape from the period-two attractors

spond to unstable period-two vibrations, with account taken of dis- )
sipation. [n=1 and 2 in Eq(18)],

like for large enoughG,;—G, and also that for &€G=<G, M(G)Zf de f(G,¢),
there are coexisting “internal” and “external” trajectories
with the sameG.

N(G)=_fd<P(l-L_2 cos 2)f(G,¢), (20)
B. Escape rates

o . f(G,@)=[(n—cos 2)°~4G]"* (G=G,).
The effect of small dissipation in Eq#&) is to transform LCw ] !

the closed trajectories in Fig. 3 into small-step spirals whichlThe limits of the integrals ovep are determined from the
wind down to the corresponding stable statEsFig. 1). The  conditionsf(G, ¢)=0 andu—cos 2p>0.
motion can be described in a standard way in terms of slow In the problem of escape from the stable statg-ad for
drift over the energy toward the stable staief. Ref.[1]). u>1, we haveG=G, (see Fig. 4, and

The random force which drives the system away from the
stable state should “be_at” this drift. It would be expecteql M(G)= f”d(P RY(G, o),
that the optimal fluctuational path corresponds to energy dif- 0
fusion away from the stable state. A solution of the varia-
tional problem(11) for small dissipation was obtained in | 2 2
Ref.[12] for a different form of the functiomy(q;,q,). Al- N(G)_fo de RUG,@)lp—RYG,0)] (G=G.),
ternatively, one can use an approach of the type of that based (22
on the Fokker-Planck equation, and suggested by Kramers
[23] in the analysis of escape of underdamped thermal equi- ~ R*(G,¢)=p—c0s 2p—[(u—cos 2p)?—4G]*2
librium systems, and later appli¢@4] to the system inves-
tigated in Ref[12]. In this approach, one derives from Eqs.  C. Explicit expressions for escape rates in limiting cases

(4) an equation forg and then performs averaging of the  The expressions for the activation energies in the under-
dissipation and diffusion rates in this equation over the pedamped limit are simplified in several ranges of the single
riod of vibrations with a giverg in the absence of dissipation parameter of the system. We will start with u close, but
and noise. The dissipation rate gfis determined by the not too close, to the bifurcation points= = 1, so that damp-
expression—[q4(dg/dq,) +9.(dg/dg,) ], with an accuracy ing of the vibrations with a giveg [Eq. (16)] is small com-




5208 DYKMAN, MALONEY, SMELYANSKIY, AND SILVERSTEIN 57

pared to the vibration frequency |(wg/2)— wg| (we are '

talking here about vibrations of the slow variablgs and 6
q,, which are much slower than the vibrations at the oscil- 2 [ ]
lator eigenfrequencw,). We note that the dynamics of the ¢ 4 %

system in the corresponding parameter range is not describec#
by the theory of Sec. Ill, which applies much more closely to

the bifurcation points where the slow motion of the systemis 1
overdamped.

As the increasinge goes through the valug=—1, the
maximum of the functionG(X,Y) at X=Y=0 becomes a
saddle point from which there are split off two maxima®f 0
corresponding to period two attractqsee Fig. 4. With the
further increase inu, for w=1 the pointX=Y=0 becomes .

a minimum of G(X,Y) from which there are split off two -1 1 n 3
saddles ofG. Escape from the emerging stable states is de-
termined by small-radius orbiG(X,Y)=G. For such orbits FIG. 5. The dependence of the escape activation en&igy
M(G)/N(G)~1/u in Eq. (18), and therefore =S, (lines 1) and S; (lines 2 on thel sgaled frequengy detuning
pn=Q/{=2w¢[(we/2)— w]/F in the limit of comparatively large
S =S~{(u+ 1)%/2, O<p+1<1, 22 fields or small damping;>1.
So~{(pu—1)%2, 0<pm—1<1. two attractors arexponentially smallethan from the state

where the vibrations are not excited. As a consequence, the
For small|u|, the only stable states are period-two attrac-stationary population of the period-two attracters=w, is
tors, and foru=0 one obtains, after straightforward calcu- exponentially larger than the populatiam, of the steady
lations, state:

4 W1 =Wy =(Wo/2W1)wp, Wi/woexd (S;—S,)/D].
51=Sz=<;—1)§ (u=0). (23 (26)

. For larger frequency detunind)= u{), the steady state

Th's.’ case corresponds to the exact resonance between tB&:omes more populated, in agreement with the intuitive

dnvm_g f|eId_ freq_uenqy and dOUbqu frequency of small- physical argument that, as the field is detuned further away

amplitude eigenvibrations of the oscillatas: = 2w, . from the resonance, it is less likely that the period-two vi-
In the limit of large u, the activation energy of €sCape pations will be excited, for the same field intensity.

from period-two attractorgEq. (18)] is determined by orbits '

with G,=(u—1)44<G<G,,=(u+1)%4. These orbits

i V. EFFECTS OF SIXTH-ORDER NONLINEARITY
have a shape of narrow arcs on th¢ Y) plane. It is seen

from Eq. (20) that, for such orbitdV(G)/N(G)~1/u, and In the experimentg3], because of the structure of the
electrostatic field in the trap for an oscillating electron, the
$=5,~2f, w>1. (24)  sixth-order anharmonic term in the Hamiltonian of the elec-
tron vibrations could be relatively largén fact, the fourth-
One can also show from E1) that order term could be relatively smallwhile higher-order
So~im, ps1. (25) terms remain much smaller than both the fourth- and sixth-

order termg[11]. The advantage of suppressing the fourth-

In the general case of arbitrary values of the paramete?rder term is that the amplitL_Jde of the period-tW(_) yib_rations
w=0Q/¢, the activation energie§, =S, and S, could be becomes larger. When the sixth-order anharmonicity is taken

found by evaluating the integral$8), (20), and(21) numeri- into account, the equation of motion takes the form
cally. The results are shown in Fig. 5, and also by dashed d%q q
lines in Fig. 2. g + 20 g; T 0a+ v+ Aa°+F coswpt=(1).

It is seen from Fig. 5 tha%, =S, is quadratic in u+1) @7
for small x+1, and monotonically increases with the in-
creasingu. For largeu, the activation energ$, , saturates For model(27), the equations of motion in the rotating
at ~2{ [Eq. (24)]. On the other hand, for constaf=u¢,  frame are again of the forni4), but now the function
Sy, becomes linear as a function ¢ffor large {, with the  g(q,,q.,) is given by the expression
slope given by Eq(23); cf. Fig. 2. It is seen from the com-

parison of the asymptotic and exact results for the escape 1 2 2 1o 5,
rates in Fig. 2 that the small-damping, or equivalently large- 9(d1,92) = 5Q(a1+0a2) — 7 (A1+02)" sgny
field, limit applies starting with comparatively smdll
The scaled activation enerdyy/{ is quadratic inu—1 P oo aa L 5 5
for small x—1, and then monotonically increases with the - 6_§(Q1+ 92)°+ 5 (A2~ ap), (28)

increasingu. It is seen from Fig. 5 tha$,>S; for u<4.0.
Respectively, for suche the escape rates from the period- p=B5NF/9y2.
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We have neglected the renormalizatieny? of the nonlin-  responding to the period-two attractdcs. Fig. 3. They are
earity parametex: this renormalization is substantial when given by the real roots of the equation
is not small, in which case the role of the sixth-order anhar-

icity is insianifi imati 1 1
monicity is insignificant, or the whole approximation of —pRi+%Ri—§(M—cos ZP)R?_A—G:O,

small-amplitude vibrations does not apply. The dimension- 6

less parametep characterizes the “strength” of the sixth-

order nonlinearity. G1,>G>0 for u<l, G;,>G>G, for u>1.
For Q very close to the bifurcation values (£2—1)?, (32

escape from the small-amplitude stable sgtis determined . .
P b 8 HereG,=G, are the values d& in the period-two attractors

by motion with smallg?+q3. Clearly, this motion is deter- . S
mined by thdowest-orderanharmonicity, and therefore nei- g:gdlgsaég& ?:)G(X’Y)]’ and G =Gy, =Gy, are the
ther this motion nor the bifurcation values of the parameters e

are affected by the higher-order nonlinear terms. —[1+6p(p+1)]+[1+4p(u+1)]3?2
In what follows we will investigate the effect of the term G, o= oY .
<\ in Eq. (27) on the escape rates in the case of weak 4 (33

damping, which is of utmost interest for the experimigri]. _ _ 132
In the neglect of dissipation and fluctuations, the motion of G = [1+6p(p l)]+[21+4p('u“ 2l
the oscillator[Eq. (27)] in the rotating frame can be de- 24p

scribed by Eqs(16), with the effective energyz(X,Y) of

(u>1).

The limits of the integrals ovep in Eq. (31) are determined

the form from the condition that Eq(32) has two real rootsR_
1 1 <R, . The corrections to the functiond andN for weak

GX.Y)=5(u- )X+ St 1)Y?— Z(X2+Y2)2 sixth-order nonlinearity are discussed in the Appendix.

For the case of escape from the attractor with zero vibra-
1 U3 Q tion amplitude(q=0), the functionsM (G) andN(G) have
—gp(X +Y?)7, Mzz- (29 the forms
For p>0 [i.e., for yA>0 in Eqg. (27)], the phase portrait :;fz" 2

of the conservative motiofiEgs. (16) and (29)] remains M(G)=2 0 de RZ(G.e), (34

gualitatively the same as that shown in Figéa)3and 3b)

for p=0, as does the topological structure of the surface e

G(X,Y) in Fig. 4. The centers which correspond to the N(G):EJ’O de N-(G,9), w>1, G,>G>0,
period-two attractors lie on theé axis in Fig. 3, they are the

projections on theX, Y) plane of the maxima of the function where the function®_(G, ¢) andNV_(G, ¢) are defined by
G(X,Y). The saddle points 06(X,Y) correspond to the Eqgs.(31) and(32); in the range 8G<G, Eq.(32) has only

unstable states, and lie on tieaxis. one real rooR_ .
If the motion in the rotating frame is underdamped, then
the expression Eq18) for the activation energy of escafsg A. Activation energies near bifurcation points

still applies in the presence of sixth-order nonlinearity, but . . i
now the functionsM (G) and N(G) have to be calculated For underdamped systems with sixth-order anharmonic-

with account taken of the explicit form dB(X,Y) in Eq. ity, the analysis of the activation energies of escape for pa-
(29). In particular rameter values close, but not too close to the bifurcation

points is similar to that in Sec. IV C. In the range<@. + 1
B s uo s U2 <1, the centers which correspond to the period-two attrac-
N(G)= fL(e)dx dY[u—2(X"+Y%) = 3p(X"+Y9)7]. tors are close to the saddle point at the origin. In this case
(30 R.<1in Egs.(32), and the terms wittx?+Y? in Eq. (30)
can be neglected. These terms can also be neglected in the
The functionsM(G) andN(G) can be written as single problem of escape from the stable stXte Y=0 for 0<pu

integrals over the polar anglef. Sec. IV B. In the problem  +1<1, since in this case the hyperbolic points are close
of escape from period-two attractors, we obtain that, similatp  the stable state. Therefore, in both cases,

to Eq. (20), M(G)/N(G)~1/u (cf. Sec. IV Q, and it follows from Eq.
(18) that the activation energies of escape are
_1 2 =Y
V(@)= [ delR2(G.0)-R2(G.0)]. S,=5,~2(G;, 0<p+1<l, o5

NG)=} [ delN,(G.e)-N (G.o)l, (3 HT2LCn O=pmisd
Here, we have taken into account tt&{0,0)=0.
N.(G,0)=puR%(G,¢)— Ri(G,qo)—pR‘i(G,go). It follows from the explicit expressions for the effective
N - N energiesG;=G, and G, [Eq. (33)] that, for weak sixth-
HereR. (G, ¢) are the external+) and internal—) radii of ~ order nonlinearityp<<1, or just very close to the bifurcation
the trajectories3(X,Y) =G which surround the centers cor- points, so thaip(u?—1)<1 (but the effects of dissipation
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are still small, expression$35) go over into the asymptotic

expressions for the activation energ{@€2), with the scaling

S (u?— 1)

Strong sixth-order nonlinearity

The activation energie€5) as functions of the distance
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’N('é)=—f de(2u—3 cos 2)[3(u
—cos 2p)]Y2 sin 6(G, ¢)/3].

For the trajectories that surround the zero-amplitude state

12—1 to the bifurcation points display an interesting behav-X=Y=0 we obtain, from Eqs34) and (40),

ior for large sixth-order nonlinearityp>1, in the range
whereu?—1<1 butp(u?—1)> 1. It follows from Eqgs.(33)
and (35) that in this range
S ~5u+ 1) u+l1<1, p(pt+1)>1,
(36)

So~58u—1)%%p 12 u—1<1, p(p—1)>1.

The dependence on the distance to the bifurcation point
u?—1, as given by Eq(36), is described by the power law
with the exponeng. In contrast, for weak sixth-order non-

linearity (22) the exponent is equal to 2. Equatiof¥3) and

— ™ G,
M(G)= 02 dcp[M—COSZp]l’zco{a(?,ﬂ

N@G)=— 027d<p(2ﬂ—3 cos 20) (42)

X[ u—cos 2p]? cos{a(G’sﬂ

+67G.

The expression for the escape activation energies

(35) describe both limiting behaviors and the crossover from’én: p'?S, has the same form as E€L8) for S,, with G,

one of them to the other.

B. Strong sixth-order nonlinearity: general case

For strong sixth-order nonlinearity>1 andp(u?—1)
>1, it is convenient to rescale the dynamical variables,

'\?=p1/4Y, ézpllze'
C=3(n=DX*+ 3 (u+ Y25 (X2 Y3,
and the noise intensit® [Eq. (10)],

~ 5\F)*2
D=p¥D= ;qb(wF/Z).

203T? (38

The maximal and saddle values Gf 61,2, andéu, re-
spectively, are given by the simple expressions

Gio=5(u+1)% (39

G,=0 for —1<u<1l, G,=3(pn—1)% for u>1,

M, andN in Eq. (18) replaced byG, M, andN, respec-
tively. The escape rate in the variables with tilde has the
same form as in Eq11),

S,=p's,. (43)

It follows from Eqgs.(28), (37), and(43) that, in the limit of
large sixth-order nonlinearity, the fourth-order nonlinearity
parametery drops out of the expressions for the activation
energiesS,, the reduced noise intensify, and the escape
rates. This is in agreement with E6), which shows ex-
plicitly that S, p~ Y2 for largep, and therefor&s, = p*2S, is
independent ofy.

For large frequency detuning,>1, it follows from Egs.
(18), (42), and(42) that the activation energieS; , and 'S,
are of the forms

W,=C exp— S, /D),

Si~in M2 Sp=iut? (u>1). (44)

It is clear from the asymptotic expressiof86) and (44)
that the activation energy of escape from the period-two at-

tractors'§1,2 is a nonmonotonicfunction of w, i.e., of the
frequency detuningr—2wy. The decrease (El,z for large

whereas the expressions for the trajectories in polar coordig, can be understood as follows. As we mentioned above, the

natesR, ¢ (whereR=pR) are of the forms

RZ(G,¢)=2(u—cos 2)'2 co

0(G,p)Fm
3

(40)
6(G, ¢)=arcco§3G/(u—cos 2p)%2].

With account taken of Eq40), expressiong31) for the
functionsM = p~¥2M, N=p~ YN in the problem of trajec-

effective reciprocal “temperature” of the distribution of the
system over the enerdy, which is given byM/N=M/N, is
determined by the ratio of the rates of the drift and diffusion
of the oscillator ovelG (for a Brownian particle this ratio is
indeed equal to kT). The drift coefficient is linear in the

characteristic velocitieX andY of the oscillator in the ro-
tating frame, whereas the diffusion coefficient is quadratic in
this velocity. Therefore when the velocity is large, the ratio
M/N becomes small. This happens for largesince here
the characteristic time scale for the motion with a gi&is

tories which surround the period-two attractors take the fornset by the reciprocal frequency detuningeld— 2wy|, and

m(6)=f<1|90[3(ﬂ—005 )12 sin 0(G,)/3], (4D

thus the ratioM /N« 1/|wg— 2wg| %< 1/w. On the other hand,
the energy intervaG,— G, for large u is increasing withu
sublinearly if the sixth-order nonlinearity is dominatitend
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1.6 ' ' globally stable state for largg is the period-one states,

004 >s,=s5,, whereas for smallet. the system is most likely to

1 be in the period-two states. For parameter values close to the
bifurcation points ug==*1 the functionss,(x) for the

- emerging stable states are equal to{ug)?/2.

0 For strong sixth-order nonlinearity, the exponeBtgD

08 T T, T ' 1  scale with the field amplitude and frequency s, (u)/D,
with effective temperatur® =p?DxF¥?D. Close to the

1 bifurcation points, the functions () are given by the ex-
pression 2f— ug)¥%3. In contrast to the case where the

sixth-order nonlinearity is small, the functiors,(u)

0 ‘ ' ='s,(u) is nonmonotonic.
-1 1 3 3 7 It follows from the above results that there is a broad
range of the amplitude and frequency of the driving field
FIG. 6. The dependence of the escape activation enefgjies Where the stationary populations of the period-two states are
=3, (line 1) and’S, (line 2) on the scaled frequency detunipg ~ Much larger than the population of the period-one state, even
=0/ =20 (0p/2)— wo]/F in the limit of comparatively large though this latter state may be dynamically stable. There is a
fields or small damping> 1, for large sixth-order nonlinearity narrow(with a width ~D) line in the parameter space where
>1. Inset:'S; near the bifurcation point; the asymptotic behavior the activation energieS, =S, andS, are close to each other,
(36) is shown by the dashed line. and therefore the stationary populations of all states are of
the same order of magnitude. To some extent, this line is
similar to the line of first-order phase transition in extended
systemg(cf. Ref.[12]). An interesting feature of the present
linearly, if the fourth-order nonlinearity is dominating system is that, because of the symmetry of period-two states,
Therefore, for large andu, the activation energy decreases gt the corresponding dynamical “phase transition” there are
with the increasing.. _ threerather thartwo equally populated states. New types of
The position of the maximum db, , and the overall de- dynamical “critical” effects may be expected in the corre-
pendence o5, on u can be obtained by numerical integra- sponding parameter range.
tion of Egs.(18), (41), and (42). The results are shown in We note that the symmetry of period two attractors can be
Fig. 6. It follows from the data in Fig. 6 and E(®6) that, in  lifted if the system is additionally driven by a field with
the rangeu>1, the period-two attractors are populated morefrequency close to the oscillator eigenfrequengy~ wg/2.
than the coexisting stable state=0 up to u~2.3. For As a result, relative populations of the attractors can be sig-
higher u the probability to find the system in the state of pificantly changed even by a comparatively weak field. This
period-two vibrations is exponentially small. suggests that in a broad range of the scaled parameters of the
strong field and(), a parametrically driven nonlinear oscil-
lator should display stochastic resonance with respect to a
VI. CONCLUSIONS field at frequency close teg/2.
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In the present paper we considered the rates of fluctua-
tional transitions between coexisting vibrational states of an
underdamped oscillator driven parametrically at nearly twice
its eigenfrequency. Activation energi€s, have been ob-
tained for the transitions from period-two attractgrs=1 . .
and 2, and also from the stable state of period-one vibrations e are grateful to D. Enzer, G. Gabrielse, and L. Lapidus
(n=0) where this state coexists with stable period-onefor stlmqlatlng discussions and a critical reading of the
states. We have analyzed numerically the dependenég of manuscript. M.1.D. acknowledges support from NSF Grant
(S,=S,) on the dimensionless parameters of the system, thB0. PHY-9722057. The research of C.M.M. and M.S. was
scaled field amplitudé=F/F,, and the frequency detuning supported through the REU program at Michigan State Uni-
Q=[(wp/2)— wo]/T (the threshold value df for the onset  Versity-
of period doubling ig,=2wel).

For comparatively large field amplitudes or small damp-
ing I', the appropriately scaled activation energies become
functions of one dimensionless parameter. For weak sixth- APPENDIX: WEAK SIXTH-ORDER NONLINEARITY
order nonlinearity the exponen®, /D in the expression for
the transition rates scale @s,(x)/D, with u=Q/. The For p{<1 the zeroth-order irp{ valuesM©(G) and
functions; (1) =s,(x) is seen from Fig. 5 first to increase, N(©(G) of the functionsM(G) andN(G) in Egs.(31) and
and then saturate with the increasingwhereassy(u) is a  (34) are given by Eq920) and(21), respectively. In the case
monotonically increasing function. Therefore in the limit of of period-two attractors, to the first order gg the functions
small noise intensitysmall effective temperatureD, the M andN have the forms
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~M (0 (1) ~N(© (1)
MG =M FMTLE). - NE=NTHETNTHE). N&“(G):%gf¢2d<p{2[(R<f><G,<p>>7+(R<£’><G.<p>)7]
4p¢ (2 1 (A1) “

MEG)== 5 | de 7G4 (09 %) — 1LRY(G,¢)%+ RO(G,0)PTHf(G,0).

X[(u—cos 2p)?—3G],

HereR®) are the radii of the orbits with a give®d evalu-
ated forp=0. The anglesp, , in Egs. (Al) and (A2) are
o calculated to zeroth order iw’, and are given by the zeros of
NY(G)= —4ng do f(G,e)[(—cos 20)2—G], the functionf(G, ¢) defined in Eq.(20).

o (A2)

N®(G)=N{"(G)+N(G),
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