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Scaling and crossovers in activated escape near a bifurcation point
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Near a bifurcation point a system experiences a critical slowdown. This leads to scaling behavior of fluc-
tuations. We find that a periodically driven system may display three scaling regimes and scaling crossovers
near a saddle-node bifurcation where a metastable state disappears. The rate of activatal! ssakgsewith
the driving field amplitude\ as InW= (A.—A)¢, whereA is the bifurcational value oA. With increasing field
frequency the critical exponertchanges fron€=3/2 for stationary systems to a dynamical valgre2 and
then again t&¢=3/2. Theanalytical results are in agreement with the results of asymptotic calculations in the
scaling region. Numerical calculations and simulations for a model system support the theory.
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I. INTRODUCTION critical point this approximation breaks down, even where

Thermally activated transitions are at the root of rnam,the_relaxation time, is still much smaller than the driving
period =27/ wg.

physical phenomena: diffusion in solids, protein folding, and ) »
nucleation are examples. It is important to understand how V& show that an interplay between the critical slowdown

transitions occur, particularly in systems away from thermafnd the slowness of time-dependent modulation leads to a
equilibrium. Full understanding would include a description”Ch scaling behavior of the transition rate and to crossovers
of the underlying dynamics and the transition probabilities.between different scaling regions. This behavior near a bifur-
Owing to their exponential sensitivity, these probabilitiescation pointis system independent and has no counterparts in
provide an important means of characterizing a systemstationary systems. We find three regions in which the acti-
However, in many cases activation barriers are high, whiclyation energy scales & 7*. As the parameters change, for
leads to very low transition rates and impedes precise expergxample with the increase of the modulation frequengy
mental studies. the critical exponeng varies from 3/2 to 2 and then again
The barrier for escape from a metastable state is reduce@ 3/2. Our numerical calculations and Monte Carlo simula-
when the system is close to a bifurcatigmitical, or spin-  tions for a model system agree with the general results. A
odal) point where the state disappears. For systems that di$rief account of the theory was provided in REF1].
play hysteresis such a bifurcation point corresponds to the Activated transitions in periodically driven systems were
switching point on the hysteresis loop. The idea of bringinginvestigated earlier in various contexts2—-21, stochastic
the system close to the bifurcation pojaj has been used in resonance and diffusion in modulated ratchets being recent
studying activated switching in Josephson junctigs5],  €xampleg22-24. In this paper we study the previously un-
where it has become a standard technique for determiningXplored region of driving amplitudes close to critical and
the critical current. This idea is also used in studies of actifeveal the universality that emerges.
vated magnetization reversals in nanomagi@tss). A qualitative picture of motion near a bifurcation point
Experiments on nanomagnets and Josephson junctions ggan be obtained if one thinks of the system as a particle in a
often performed by ramping the control parameteagnetic ~ potentialU(q,t) that oscillates in time with periody; see
field or current and measuring the time distribution of es- Fig. 1(@. Such particle has periodic stable and unstable
cape eventgl]. In interpreting the data it is usually assumed statesg,(t) andgy(t). In the adiabatic limiwg— 0 they lie at
that, for sufficiently slow ramp rates, the system remainghe minimum and local maximum of the potential in Fig.
quasi-stationary. In this approximation the barrier height, i.e.1(a). As the modulation amplitudé\ increases, the states
the activation energy of a transitid) usually scales with the become close to each other for a portion of the perigdee
control parameters, measured from its critica(bifurca-  Fig. 1(b). The barrier height reaches its minimum during this
tional) value 7,=0, as%*? [9]. time, and this is when the system is most likely to escape
Scaling ofR near a bifurcation point is related to slowing from the potential well. The driving amplitudt&sﬁ‘d for which
down of one of the motion§l10], i.e., the onset of a “soft the barrier disappears in the limibz—0 determines the
mode.” The relaxation time of the systeindiverges as the adiabatic bifurcation point.

control parametem— 0. Therefore, if» depends on time, However, for nonzeravwg, asA approaches!\ﬁ‘d the peri-
even where this dependence is slow the assumption of quasidic statesq, ,(t) become distorted to avoid crossing and
stationarity may become inapplicable for small may coexist even where the barrier has completely disap-

In this paper a theory of activated transitions is developegeared for a portion of a period; see Figc)land Xd). The
for periodically modulated systems. In such systems the noadiabatic approximation becomes inapplicable for such
tion of a stable state is well-defined regardless of the modumodulation.
lation rate, and the applicability of the quasistationary ap- The parameter range where adiabaticity is broken can be
proximation can be carefully studied. Unexpectedly, near astimated by noticing that the adiabatic relaxation timg)
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= - - strongly nonadiabatic dynamics that emerges where still
g B \, ,-’ \ , 7 wet,<1. In Sec. Il C and Appendix C the dynamics near a
- \,\ / \_\ 7a,(t) bifurcation point is described in the parameter range where
"/ -/ the field becomes effectively fast oscillating, i.est,>1,
even though the relaxation time in the absence of modulation
a,® t” may be<1/we. The connection between the nonadia-
Y batic local theory of Sec. Il B and the theory of Sec. lll C is
(a) : (b) discussed in Sec. Il D. In Sec. IV the activation energy is
= -~ P - explicitly evaluated in the three regions discussed in Sec. lll,
= N RN ,-q’(t) and the scaling laws for the activation eneRy (A.—A)¢ in
> v o these regions are obtained. The scaling crossovers are dis-
cussed. We also find nonadiabatic corrections to the escape
rate in the adiabatic region. In Sec. V we consider a periodi-
cally modulated Brownian particle. Numerical results for the
activation energy are compared to the results of Monte Carlo

simulations and to the predictions of Sec. IV. Section VI

© @ @ ort contains concluding remarks.

FIG. 1. (a) An oscillating potential barrier. In the limit of slow

modulation, the stable and unstable periodic stajendq, are the Il. ACTIVATED ESCAPE: GENERAL FORMULATION

instantaneous positions of the potential minimum and barrier top,

respectively(b) For slow modulation, when the modulation ampli-

tude A is close to its adiabatic bifurcational valug the states

Oap(t) come close to each other once per peri@l.As A further

increases beyonﬂﬂd the barrier ofU disappears for a portion of q=K(q;:A D +f(1), K(Q:AL+7)=K(q:;AL) (1)

the modulation period, but the system may still have coexisting ” ' v e

periodic statesy,(t). As seen in(d), they become skewed com- The functionK is periodic in time, with the modulation pe-

pared to the adiabatic picture, to avoid crossing. In the criticalriod 7==27/wg; A is a control parameter that characterizes

range, the form ofj,,(t) is model independent. the modulation strength. For example, in the case of an over-
damped particle in a potentiély(q) modulated by an addi-

is a function of the instantaneous modulation phasaoct, tive periodic forceF(t), the vectorK becomes

and (ii) sharply increases near the bifurcation point. As a

consequencet, sharply increases wheth approaches the K(q;At) == VUg(q) +F(t) 2

value whereg, , are at their closest, because this correspondenere and below¥ =a/4q). In this caseA=max/F| is the

to approaching the bifurcation point. The quasistationaryy,-quiation amplitude[note that the forceF(t)=F(t+x)

(adiabatig approximation requires thadt,/dt| <1. It is this does not have to be sinusoitlal F

condr:tllon thattllmtlts the rgr:ge of 2d1|abat|0|ty, rather than a The functionf(t) in Eq. (1) is zero-mean Gaussian noise
much less restrictive conditiofywr < with correlation matrix

In the nonadiabatic region, a sufficiently large fluctuation
is still required to move the system away from the stable @ (t=t") = (fi(OF; ). (3)
periodic state. FOA= Aad, the new scaling of the activation
energyR emerges. The control parameter is ngw A.— A,
where A; is the “true” bifurcation value of the modulation
amplitude where the stateg(t) andq,(t) coalesce. '
In the limit wet, > 1, the behavior near a bifurcation point D =max®,(w), Pppw)= f dt € nn(t). (4)
is in some sense simpler. In this caggt) and q,(t) come
close to each other everywhere on the cycle, not just for &or noise from a thermal sour@is «kgT. The noise inten-
part of the period. The motion of the system in the vicinity of sity D is the smallest parameter of the theory. Smallned3 of
Oap(t) is oscillations with a slowly varying amplitude. The leads to the rate of noise-induced escapebeing much
amplitude change can be described by averaging the consmaller thart and wg.
plete dynamics over the period. It is then mapped onto mo- In the absence of noise, E@L) may have different peri-
tion in an effectively stationary potential. Not surprisingly, odic solutionsg,, which can be stablattractors, unstable
the scaling of the escape activation eneRjith the dis-  (repellerg, or hyperbolic(saddles We are interested in the
tance to the bifurcation point is the same as for stationarparameter range where one of the stable periodic solutions
systems. ga(t)=q,(t+7z) comes close to a saddle-type periodic solu-
In Sec. Il and Appendix A we provide a general formula- tion g,(t) with the same periogperiod 1, for concreteness
tion of the problem of activated escape in periodically modu+or slow modulation, these states are sketched in Fig. 1.
lated systems driven by Gaussian noise. In Sec. Ill A and’hey merge together at the saddle-node bifurcation p®int
Appendix B we discuss the dynamics near a bifurcation pointA.. In what follows we will assume tha is close to the
in the adiabatic limitwgt,— 0. In Sec. lll B we consider the critical valueA..

We will adopt a phenomenological approach in which a
multidimensional system with dynamical variabtg$) is de-
scribed by the Langevin equation

The characteristic noise intensify can be defined as the
maximal value of the power spectrum
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Escape from a metastable stafgt) occurs as a result of R[q,f]="R[f]
a large fluctuation. The fluctuational for¢&) has to over-
come the restoring forck and drive the system away from +J dt'A(t) - [qt) - K(q;At) = f(t')] (9)
the basin of attraction tq4(t) [e.g., away from the potential
well in Fig. 1(a)]. We will assume that the required fortig)
is much larger than the typical noise amplitudB?.

The motion of the system during escape is random. How
ever, different trajectories have exponentially different prob-

abilities. The system is most likely to move along a particu- ) . . .
lar trajectory called the optimal patlye(t) [25]. It is Appendix A that the optimal trajectoriegoy(t)  fop(t) are

determined by the most probable noise realizafigyt). In instanton-like[28]. The typical duration of motion is given
: >py the relaxation time of the systetnand the noise correla-

stationary Gaussian noise, a way to find the optimal path%on tim_e teorr I st_ationary systems "FStaF“O”S are trgnsla-
was discussed earli¢l9]. We now briefly outline a gener- |onaIIy_ invariant with respect to t|_me, "e""fopt(t).’fopt(t) IS
alization of the formulation to multidimensional systems, & SOlUtion, there(t+7),fop(t+7) is also a solution, for an
following the arguments in Ref26] (more details are pro- ar_blt_rary 7. In contrast, in perl_odlcally modulated systems
vided in Appendix A. this is true only forr=7¢. The instantons are synchronized
For a stationary Gaussian noise, the probability density ofY the modulation: generally there is one instanton per pe-

realizations off(t) is given by the functionalcf. Ref.[27]) ~ fod that would provide a global minimum &.
From Eq.(5), we obtain for the escape probability
PLf(®)] = exp~ Rl f(H1/D), (5

with boundary conditions(8). The function A(t) is a
Lagrange multiplier. The boundary condition for it At)
— 0 for t— oo,

It follows from Egs.(8) and(9) and from the results of

W« exp(—- R/D), R=minR[q,f]. (10
whereR, is quadratic inf M f
1 The activation energyR is equal to the value of the func-
Rolf]= 5 f f dt dt' f;(t) 75 (t = t) f;(t"). (6) tional R[fop] calculated for the optimal noise trajectory for

escape.
For small noise intensity, the escape réfe< wg. It peri-
odically depends on time. However, in the smallimit this
dependence is seen only in the prefadtt8—-19. Here, we
f dt' Fj(t =t gyt = t") =D g ot - t"). (7)  are interested in the exponent, which gives the period-
averaged escape ra# It is equal to the probability of es-
We are interested in noise realizations that lead to escapgape over the time divided by 7.
and thereford(t) largely exceeds its root-mean-square value. |n the general case, the variational problem for the acti-
From Eq.(5), the probabilities of such noise realizations arevation energy can be solved only numerically. Therefore, it is
exponentially small and exponentially strongly depend omarticularly important to find model-independent properties
the form off(t). As a consequence, escape trajectories shouldf R. So far they have been found for comparatively weak
form a narrow “tube” centered at an optimal pagi(t) that ~ modulation, where it was shown thBthas a term linear in
maximizesP[f(t)], i.e., minimizesRy[f(t)]. The minimum of  the modulation amplitudgl9]. In this paper we analyze the
Ro should be found with the constraints th@t the system activation energyR in a previously unexplored region near a
and noise trajectories},p(t) andfg,(t), are interrelated by bifurcation point, and show tha& displays a nontrivial scal-
the equation of motioril); (i) the pathg,(t) starts in the ing behavior in this region.
vicinity of the stable statej,(t) and ends behind or on the
boundary of the basin of attraction gg(t); and(iii ) the force IIl. DYNAMICS NEAR A BIFURCATION POINT
fopdt) is equal to zero before the escape event happens and
becomes equal to zero once the system has escaped, so thatThe dynamics near a saddle-node bifurcation point has
asfop(t) decays, it does not drag the system back to the basidniversal features related to the occurrence of a slow vari-

The matrixF is the inverse ofp;;(t—t")/D

of attraction toq,. able, or a “soft mode(10]. For periodically modulated sys-
As explained in Appendix A, these conditions lead totems, closeness to the bifurcation point in the parameter
boundary conditions for optimal paths of the form space usually implies that the merging states are close to
each other in phase space throughout the modulation period.
da(t) for t— —oo, If the modulation frequencwy is small compared to the
qut(t)_’{ gp(t) for t— oo, reciprocal relaxation time in the absence of modulation

1/t£°), a situation emerges where the stable and unstable
8) states come close to each other, but only for a portion of a

period. During this time, the system behaves as if it were
[note thatg,,(t) ends on the basin boundary, not on anotherclose to a bifurcation point. Then, it is possible to single out

fop) — 0 for t — oo

attractof. a slow variable that controls the system dynamics. Escape
The variational problem for optimal paths is thus reducedrom a metastable state is most probable wigt) andq(t)
to minimizing the functional are closest to each other.
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On the other hand, if the modulation frequeneyx  t, andA—Aid. As shown in Appendix B, the motion described
zl/tﬁo), near the bifurcation point the statgg(t) and qy(t) by the variableg; is much slower than the motion described
are close to each other throughout the modulation perioddy the variablesj-.,. Over the time~t£°> they “adjust” to the
Then, escape can occur with nearly the same probability atalue ofqy, i.e., they followq, adiabatically. The variablg;
any modulation phase, i.e., synchronization of escape by this the soft mode. It satisfies the equation of motion
modulation is essentially lost.

Because the dynamics near a bifurcation point is slow, the G =KlaAD + (1),
system filters out high-frequency components of the noise. 5
As a result, the noise becomes effectivélgorrelated(we K = agf + BoAY ~ ary’(wet)?. (12)

will not consider here the situation where the noise powerHere, 5Aad=A—A§d, the parametera, 3, y are expressed in

spectrum has singular fgatures at high frequech_EIsae '€ terms of the derivatives oK at the adiabatic bifurcation
duction to one slow variable driven by white noise can be

. . . : “point and are given by EqéB3) and (B4).
d_one dlr(((a))ctly n the equat!ons_ of motllon.. For slow modyla The stable and unstable adiabatic periodic states in the
tion (wet,”<1), this reduction is local in timesee Appendix  psence of noise exist farBoA< 0. For concreteness and

B); otherwise, it has to be done globally over the cyslee \yinout loss of generality, we set>0. For small|wgt| the

Appendix Q. Alternatively, the dimensionality reduction can yiabatic states can be found by settitg(q,)2 : A, t)=0.
be done directly in the variational problem for the optimal g gives Va5

escape patlisee Appendix A
(ah= T (a7,
A. The adiabatic approximation wheret®is the instantaneous adiabatic relaxation time. It is
In the limit of slow modulation, where the period of the given by |dK/dg,|™ evaluated fory; = (g3
field 7¢ is large compared to the system relaxation thfﬂ)ea 1
convenient starting point of the analysis is the adiabatic ap- t29= 2= aBOAYM+ (arywpt)?] 2. (13)
proximation. The adiabatic periodic states of the sysﬁ@h
are given by the equation

" ~ . . . L
K(QSer,A,t) =0, (11 1. Validity of the adiabatic approximation

The applicability of the adiabatic approximation requires
not only thatwgt?®<1, but also|at®¥/at|<1. If this latter
condition is not met, the system cannot follow the modula-
tion without delay; its state depends on how the parameters
were varying in time. From Eq(13), near the bifurcation
point the time dependence tﬂd is pronounced, so that

which is obtained by disregarding and the noiséd in the
equation of motion(1).

The adiabatic stable statattractoy 2= g24t) is the so-
lution qgg,, for which the real parts of the eigenvalues of the
matrix u

wij = (9Kilagy),

are all negative. These eigenvalues give the “instantaneou
relaxation rates, for a given phase of the modulatipn
=wet. For the periodic adiabatic saddle-type stxq@?(t), one
of the eigenvalues oft has a positive real part. <t t = (aywp) 2 (14)

In the adiabatic approximation, the saddle-node bifurca-
tion occurs in the following way. At the critical value of the I-€-, wg<|BA /. _ o
control parameteA=A2, the periodic trajectorieg?4t) and The inequality(14) restricts the range of validity of the
qua) given by (11) merge, but it happens only once per adlapauc approximation. It is the tlnm.rathe.r than 1¢_bF _
period. One can picture this by looking at Figbl and that imposes an upper bound on the ad|ab§1t|c relaxa_tlon time
imagining that the statess,(t) andq,(t) touch each other. We of_ a perllodlcall'y erven system where th.IS approxmaﬂon
set the corresponding instant of time equaltted (or t still applies. This time sets a new dynamical time scale. It

- ; -2 — pad . fully characterizes the dynamics beyond the adiabatic limit
tigr:-;)”,yl.(3\;,ev;/2t(?§,d?g)rrlz;drzg1)gj(8) G5 10) for A=AZ". Add in the rangewgt, <1, as discussed in Sec. Il B.
L) a - b - .

At the adiabatic bifurcation poirA=A2%t=0 one of the
eigenvaluesu; of the matrixx is equal to zero, whereas all B. Locally nonadiabatic regime
other eigenvalueg;-., have negativereal parts. The adia-
batic approximation means that —lRg.;> wg, Or equiva-
lently, that the relaxation time mERe ;-] is small
con(10p))ared tore. This relaxation time is typically of the order
of t .

\;Ve now write the dynamical variables in the basis of
the right eigenvectors of the matrixat the bifurcation point
and expand in the equation of motioiil) in a series i, O1c(t) = yort. (15)

maxat?Yat| = 33 ywel| BOAY > wet?,

Sherefore, the inequalitypt® ot < 1 is much stronger than
wpt?9<1. It holds if

As A approachesAi‘d, the criterion(14) is violated. The
periodic stable and unstable states are pressed against each
other. Since they cannot cross, they become distorted, as
shown in Fig. 1d). Ultimately they merge, but along a line
rather than at a point. From E¢L2) one can see that this is
just a straight line, which is described by the equation
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Equations(12) and (15) define the new nonadiabatic bi-
furcational value of the modulation amplitude for slow driv-

ing

A=A By (16)
The corrections td\i' of higher order inwg are discussed in
Sec. Il C.

The change of the bifurcation amplitude described by Eg.
(16) is somewhat similar to the effect of bifurcation delay
[29,30, which occurs when the bifurcation parameter is
ramped through the bifurcation point. Here, however, we :
consider a periodically driven system where the bifurcation -2 0 2
is not delayed in time; rather, it is the bifurcational modula- T
tion amplitude that is changed compared to the adiabatic FIG. 2. Nonadiabatic stable and unstable stafgr) and

limit. Qp(7)=—Q(—7) for slow modulation as given by the equation

It is convenient to change to dimensionless variables ier,dT:G(Q 7,7 for 7=0.2. The functionsQ, ,(7) are strongly
Eq. (12 Q=atjq; and 7=t/t;, and to introduce the control ,qymmetric, in contrast to the adiabatic state® which are even

parameter functions of .

7= Blyor) (AL A). (17 ferencesQ(n)=Qy(n - r has a formdsQ,/dr=275Q+ 7. By

We note thaty is the only parameter of a slowly driven solving it we obtain
system in the critical region. It describes both adiabatic and
nonadiabatic behavior, and gives the reduced distance to the
bifurcation point. Interestingly, the distance along the
modulation-amplitude axi&$-A is scaled by the modula-
tion frequencywg; both these quantities are supposed to be |n the region of large negative, the function Q,(7)
small, but their ratiop can be arbitrary. =-Q,(-7) has a simple fornQ,(7) = r+ »(2n~L. The states

The equation of motion for the reduced variable takes theQa andQ, are closest to each other, with separatien, in
form the rangg s <|In 7|*2. The interstate separation decreases as

n approaches the bifurcational valge=0. At the same time,
aQ =G(Q, 7,7 +1(7), G= QP-2+1-7 (19 Fhe range ofr'whereQa(r.) andQy(7) stay close to each other
dr increases with decreasing

As rincreases beyong|In 7|2, a sharp crossover occurs
from the nearly linear inr solution for Q,(7) (20) to the
adiabatic solutior(19), Q, «—7. The functionsQ,,(7) for a
specific value ofy are shown in Fig. 2.

QA== =r-n| dne™t (20

The functionf(7) = (ywg)"*f,(t;7) in Eq. (18) describes re-
duced noise. It is effectively-correlated on the slow-time
scale(f(7)f(7'))=2D&(7—17'), as explained in Appendix B.
The noise intensit is given by Eq.(B7). The interval of the real timé|<t,=t|In 7|*?, where the

The stable and unstable Sta‘[@g’b(T) are given by the Stateg.gavb are nearly linear in, should b.e mUCh smaller than
equationdQ/dr=G. In the absence of noise this equation hasl/@r in order for Eq.(12) to apply. This imposes a restric-
symmetryQ— —Q, 7— —r. As a consequence, the stable and!lon on 7
unstable states are antisymmetri@,(7)=-Q,(-7). There-
fore, it suffices to find onlyQ(7).

We start with the adiabatic approximation. It applies for
7> 1. The adiabatic stable and unstable states in the reducétr smallery=|AS-A| the local approximation, where the
variables are given by the equati@+0, and have the form coefficients are expanded about the adiabatic bifurcation
point, no longer applies. The relaxation tinte becomes
comparable to the modulation period, and the behavior of the

system during the whole cycle becomes important. It follows

Each of these states is symmetric with respect+0, where  from Eq. (21), however, that for low frequencies the local
they are closest to each other. The adiabatic bifurcation poirgpproximation is extremely good.

7> exp(— Cla|ylog), C~ 1. (21)

Qb= F[7+(n- 17T (19

is =1, which corresponds t8=A2"
The regionnp=1 is nonadiabatic, ang=0 (or A=A§') is

On the whole, the locally nonadiabatic regime is limited
in 7 by the conditionp=<1 and by Eq(21). The width of the

the nonadiabatic bifurcation point for slow driving. At this amplitude rangeAS'-A imposed by the first condition lin-

point Q,(7) merge into the straight lin@(7)=1r.
Close to the nonadiabatic bifurcation point, where1,

early increases with the field frequency, in the approximation
(16). Therefore, locally nonadiabatic critical behavior is

one can findQ,u(7) by perturbation theory in the whole more pronounced for higher frequencies. However, the ap-
range << r<|In 7|*2. The linearized equation for the dif- propriate frequency range is limited from above by the con-
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1 d ~
d—Q =G(Q ) +T(»),
;

G=Q*-n =B (A-A (23)

[in contrast to Eq(18), the functionG here is independent of
d, time]. The coefficients’ is given by Eq.(C7).
The parameter in Eq. (23) is the scaled distance to the

bifurcation point. The stationary stat€ ,=+ 7"/ exist for

7>0. They merge forp=0. The noisef(7) is effectively

0 2 4'n white on the time scale that largely exceeds' and the
T

ot noise correlation timéeg,,. Its intensityﬁ is given by Eq.
(C12.

FIG. 3. The stable and unstable stamggf) andqy(t), close to The results of this section and Appendix C refer to the
the bifurcation point. Fotwgt,>1 the states are close to each other casewgt,>1, but arbitrarwat(o). Therefore, the problem is
throughput the modulation pc_erioo!. The ﬁgu.re referls tol a3 One'dif'ferentrfrorh the standard prroblem of slov;/ motion in a fast-
(i;negs_l(onatl) c;c\)/rer(d ar112')3/d pirgc(l)i Ir%r?eprgtoe;ﬂ?iézzié‘ ggn% qara_ oscillating field[31], where the smooth term in the oscillat-
A0S ) Ac A-=0.01. C P ing coordinate is of interest. In contrast, here we are inter-
tively slow, wet, =1, but for choser the relaxation time becomes ested in the slowlv varving oscillation amplitude d)f:t(o)
long, wet,=9.8. , y ying . P ’ r

>1, a transition to slow and fast variables can be made al-
. ) ready in the original equation of motiat), by separating)
dition (21). For higherwg a crossover to a fully nonlocal in slow and fast oscillating parts. The equation for the slow
picture should occur, which is discussed in the next sectlorbart near the bifurcation point will again have the fof23)
but the expressiongC7) for «’,B’, will be simplified; in
particular, the factok,; in Eqg. (C7) will be equal to 1.

-1

C. Fast-oscillating field

Sufficiently close to the “true” critical value of the modu-
lation amplitudeA,, the relaxation time of the system be-
comes large compared to the modulation period even if Equation(22) allows us to look from a different perspec-
wet?=<1 far from the bifurcation point. The inequality tive at the locally nonadiabatic regime that emerges for
wet > 1 defines the third region, in addition to the adiabaticy:t,< 1. In contrast to the approach of Sec. Ill B, where the
and locally nonadiabatic, where we could analyze the dystarting point was the adiabatic approximation, here we will
namics near a bifurcation point. The analysis of this region isassume tha is close to the true bifurcational value of the
simplified by the fact that here the modulating field is effec-amplitudeA, and thatqg(t) is close to the critical cycle(t),
tively fast oscillating. at least for a part of the periot}.

For ety >1, near the bifurcation point the periodic stable  For w:t, <1, one can think of a local in time description
and unstable states,(t) and qy(t) stay close to each other of the dynamics near the cyckg.(t). From Eq.(22), this
throughout the cycle; see Fig. 3. FA=A;, they coalesce dynamics is determined by the eigenvalygst) of the ma-
into a periodic critical cycleqc(t)=qc(t+7¢). When A'is  trix (). In contrast to the analysis of Sec. Il A, we consider
close toA; andq is close tog., we can simplify the equa- here the matrix calculated for the critical cyclg.(t) rather
tions of motion(1) by expanding the functioK in 64=q  than the two similar matrices calculated separately for the
—0c and SA=A-A. (cf. Ref.[10]) adiabatic stable and unstable states.

_ 1 P For much of the driving period the real parts @f(t) are
89 = juéq + 5(5(1 - V)K + 5A£K +f(). (22 all large,|Rew,) ~1/t£°)>w,:. Then, when the system is in
the stable state, it follows the field adiabatically. The adiaba-
Here, as beforey;; = w;;(t)=dK;/dq;, but all derivatives oK ticity is broken where one of the eigenvalues, gaft), goes
are now evaluated foh=A; andg=q(t). Therefore, all co- through zero. As we will see, at this time the stable and

D. Connection to the locally nonadiabatic regime

efficients in Eq.(22) are periodic functions of time. unstable states are closest to each other. We set the time
If the system is close ta(t) initially, its distance from when it happens equal to zero, i.f4(0)=0.
q.(t) will oscillate with frequencywg and with an amplitude For small|t| < 7 the analysis of the system dynamics is in

that slowly varies over the periog-. This amplitude is a many respects similar to that in Sec. Il B and Appendix C.
slow variable,Q°"(t). The equation forQs™(t) can be ob-  First, &q(t) in Eq.(22) is written as>, 5q,e,(0), wheree,(0)
tained by an appropriate averaging method explained in Apare the normalized right eigenvectors of the majri®). The
pendix C. After rescaling to dimensionless coordin@e componentsq, of &g along the eigenvectoe;(0) of (0)

« QM and timerxt [see Eq.(C11)], this equation takes a will be the slow variable, or the soft mode.

form which is similar to Eq(18) The matrixu(t) can be expanded abotst 0 for small|t|
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A A amplitude found from the local theory is exponentially close
O = @0) + (0N, (24 to the exactA.. This is confirmed by numerical calculations

where the time derivative is taken for 0. This derivative is  for @ model discussed in Sec. V.
small; its matrix elements on the eigenvecteff0),e,,(0)
are |/:LW,| - w,:/tio)< ('[50))_2 [here,Ey(O) are the normalized IV. ACTIVATION ENERGY OF ESCAPE

left eigenvectors of the matrig(0)]. o It follows from the results of Sec. Il that, near a bifurca-
With (24), Eg. (22) can be SOW‘?S for the “fast” compo- tjon point, a periodically driven system has a soft megle
nents &9,~1. Overla shfort time~t, hthey approa?lh tfhelr and the noise that drives this mode is effectively white. The
quasistationary values for give®y;. Those are small, of or- ; P — LT
2 ; ) . guation of motion is of the forndQ/dr=G+f(7) (18),
der &q7,8A, 80 wet, and follow &g, adiabatically. Noise- where the functiorG is given byG=0Q%+1-7-7 for wet,

induced fluctuations 08q,-, about the quasistationary val- _ — 02 <
ues are also small for small noise intensity. Therefore, the<1 [_Cf' Eq_. (18] andG_ Q- for wety>1 [cf. Eq. (23)]
effect of 8,~, on the dynamics obg, can be disregarded. The intensityD of the noisef(7) has the form(B7) and(C12)

The equation of motion fobg, has a form of the Riccati N these two cases.

equation with a random force For a white-noise driven system, the variational problem
(9) and (10) of calculating the period-averaged rate of acti-
8, = figtéa, + a5qi+ BOA+f,(t), vated escap®V can be written in the form

. W= constx exp(— R/D), R=min ﬁ[Q],
f1(t) =€, (0) - f(t), uy=¢,(0)/(0)e(0). (25

2
Here, a=(1/2)(ey(0)- V)?K,, B=dK,/dA, with K;=¢;(0)-K R =f dr L(Q,d—Q,r>, L= 1<d—Q - G) (28)
now being the component &€ in the directione;(0). All dr 4\dr
derivatives ofK are calculated on the critical cyctg(t) for  (cf. Appendix A). In contrast to the standard formulation
t=0. Becausdyu,| is small, relaxation ofsg, is slow com-  [32], the functionG here may depend on timeand is not
pared to relaxation ofq,- 4, for typical |t| < 7¢. time periodic, in the actual range af The minimization is
Equation(25) describes the stable and unstable states ofarried out over the path®(7) that start at the stable state
the original equation of motiott) in the region|t| < 7. Itis  Q,(7) for 7— - and end at the unstable stafg(7) for 7

seen that these statésq,), and (8,)p, exist provided —+0, The nonstationarity emerges for slow modulation,
_ where wet, <1, and is related to the assumptions tliigt
#1>0, af 6A<0. (26)  escape is most likely to occur during a portion of the period

where the state®,, are close, andii) the duration of mo-

In this range Eq(25) is equivalent to Eq(18). This can be 5, along the optimal escape paliy,(7) is much less than

seen if, on the one hand, E@.8) is written for the deviation the modulation period.

m:hQ_ThOf % frc()jm. its vz;lue on thhe critical cycl?cg 7 a_ngl We have solved the variational problem using the Hamil-
on the other hand, in E¢25) one changes to scaled variables iz equations of motion fo@ and P=aL/a(dQ/d7)
Q=a(2/uy)"“89; and 7=(u,/2)*4t. The control parameter

7in (18) becomes @:2P+G, E:—Pﬁ. 29
" ar aT aQ
7= = 2apj; oA, (27)
We then verified the assumptions made in obtaining Egs.

The analysis of Eq(18) then applies to Eq25). In particu-  (28) and(29).
lar, the statement in the beginning of this subsection that the Equations(29) were solved both analytically and numeri-
stable and unstable states are at their closest=f0ris an  cally. In numerical calculations, we chose the initial condi-
immediate consequence of the explicit expression for thestions on the optimal path close @.(7) with large but finite
states(20). negativer. In this range Eqgs(29) can be linearized iQ

There is an important difference between this approachQ,(7). On the solution that goes away fro@,, the mo-
and the approach of Sec. Ill B. Because we do not start hergientumP is linear inQ-Q,
from the adiabatic approximation, we have not formally
specified how small the difference is between the critical P~[Q-Qun])o5(n),
amplitudeA. and its adiag;’;\tic vaIuAﬁd. In EQ.(16) we only
obtained the linear inogt'” term in A.—A2% In general A PP R T, ,
-AM also has higher-oraer terms. They can be obtained by a7 = zf_x dr exp[4J/ d Qa(f)]' (30
taking into account the dependence of the coefficienis, v !
in Eg. (B3) on A, which was previously disregarded. This is We used the shooting method: we sought such ini@al
illustrated for a particular model in Sec. V. It is for the renor- —Q,(7) for given r that the trajectory approaché€y,(r) for
malized critical amplitude, i.e., for the control parameterlarge 7; cf. Ref.[19].
given by Eq.(27), that the exponential limit21) holds. The Numerical results for the activation energy in the whole
inequality(22) indicates that, for small frequency, the critical range of slow driving, wheres:t, <1, are shown below in
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- The solution of Eq(29) with G of the form(31) and with
boundary condition®(7) — ¥ (7—1)Y2 for 7— F < is well
known. It is an instantoigkink)

Qim0 = (7= D2 tant(n - D*(r- )], (32

centered at an arbitrar,.

The characteristic duration of motion along the path
Qggt 7) in dimensionless time id 7~ (»—1)"Y2, which cor-
responds toAt~t, in real time. SinceAr<(y-1)Y? the

n term 72 in the functionG [Eq. (18)] can be disregarded com-
pared ton—1, which justifies replacing with G*®as long as

FIG. 4. The activation energi vs nA.~A for slow driving, || <(5-1)1/2
wet,<1. The thick solid line shows the numerical solution of Eq.  The activation energy28) calculated along the pa@ggt
(28). The dashed line is the adiabatic activation endi@f@), Rad is
= (7-1)%2. The thin solid line shows the corrected adiabatic acti-
vation energyR%+ R, It is close to the numerical result foy= 3. Rad= 4 (p-1)%2x (Aéc‘d— A)32, (33
The correctionsR diverges at the adiabatic bifurcation poipt 1. 3

This equation shows that the activation energy of escape
Figs. 4 and 5 on linear and logarithmic scales, respectivelyscales with the distance to the bifurcation point(As-A)¢
Note that the activation energy is a function of a single conwith £=3/2 in theadiabatic region.
trol parameterp<A.—A, and in this sense the results are
universal, i.e., system independent. In the rest of this section g Nonadiabatic correction to the activation energy

we discuss analytical results and compare them with the nu- ] ) )
merical results. We now consider the lowest-order correction to the adia-

batic activation energy. Two factors have to be taken into
o _ S o account. First is that, because of the nonzero duration of
A. Activation energy in the adiabatic approximation motion along the escape pathr, the equilibrium states

The adiabatic regime applies when the driving is slow,Q3%(7) change, which was disregarded in the analysis of Sec.
wet, <1, and the system is sufficiently far from the bifurca- IV A. However, the corresponding correction Ris expo-

tion point, so thatt, <t [cf. EQ. (14)], or equivalently pentially small. Indeed, if we consid& as a function of the

|6A29 = | A2 A|> we|y/ 8. The dimensionless control pa- . ) ~ ~
amelry's A A 5 lige 121 1 Eo. (7 we note (71 BOINC o1 e coumar et ve bR TR
that the actual parameter in the adiabatic range isynbtit . . P path.

stantonic solution, the momentum goes to zero (&g,

n—-1]. In this case we expect that escape occurs when th . '
adiabatic state¢l9) are closest to each other, i.e., for0. — Qqp: Se€ Eq(30). Therefore, a small change Qf,, af
fects the activation energy very weakly.

Then, in the first approximation, the term in the function ) _ - _
G in Eq. (18) can be disregarded, ari@ becomes The major nonadiabatic correction B comes from the

time-dependent term iG=G2- 72 [cf. Eq. (18)]. This term

G¥=Q*+1-7. (31 lifts the time invariance of the instantd@qp( 7, o) With re-
spect tor,

To first order in7?, i.e., to lowest order in{»—1)"%, the

correctiondR can be found from Eq.28) by integrating the

term 72 along the zeroth-order trajecto@ﬁgt(f, 70)

- d d r,
5R:mian7-’ Lol ™.70) 2

70 d’T’

(here, we usednggt/drz -G2%. Minimization is done here
over 7, the center of the instanton. It is necessary bec&ise
is the absolute minimum of the function&l.

FIG. 5. The activation energg=-D In W on a logarithmic and A direct calculation shows that the minimum oR is
linear scale(inseh vs nxA.—A for slow modulation, wgt,<1. reached forr,=0, and
Thick solid lines show the numerical solution of the variational
problem(28). It describes the crossover between different scaling SR= 12( — )12 (35)
regions. The thin solid line shows the adiabatic scaling for layge "6 K ’
R 7¢ with £=3/2. Thefull result of the adiabatic approximation is ~
shown by the dashed line. The dash-dot line shows the nonadiabatide correctionsR rapidly falls off with increasingy—1. On

result(38) that applies forp<1; here,Re 7 with £=2. the other hand, ag decreases and becomeg, the termsR

(34)
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increases very quickly, which indicates a breakdown of the D. Activation energy for wgt, >1

adiabatic theory in this region. _ It was shown in Sec. Il C that, sufficiently close to a
The analytical results in the adiabatic region are Cf’mpareﬂifurcation point, the conditionuet,>1 holds, even where
with the numerical solution for the activation eneryin  the modulation frequency is less than the relaxation rate far

Flg 4. The corrected adiabatic theory works well in theaway from the bifurcation pointhtf’O)Sll F|nd|ng the acti-
whole range where the control parametgke 3, but for vation energy of escapézﬁfast for wet,>1 is formally
smaller» nonadiabatic effects are significant and have to beSimilar to that in the adiabatic approxi?nration. The only dif-

taken into account in a nonperturbative way. ference is thaty—1 in Eq.(31) should now be replaced by.
This gives
C. Activation energy in the locally nonadiabatic region

_ | Rst= (413) %2 o (A= A2 (39)
Standard techniques do not allow solving of E@®) for
the optimal path analytically in the general cage 1. This Both the coefficiens’, that relates to A;~A [see Eqgs.
is because the functio® in Eq. (29) explicitly depends on (23) and(C7)] and the noise intensitp (C12) depend on the
time 7. However, a solution can be obtained close to thearbitrary initial timet;. It enters the weighting factoe; (t,t;),
bifurcation point, whereyp A.—A is small, but not exponen- which was used in obtaining the equation of motion for the
tially small; cf. Eq.(21). slow variable(23). A straightforward analysis shows thet

Unusual for an instanton-type proble_m, and because Oérops out of the rati$r3/2/5, which gives the escape rate
the strong time dependence @f the optimal path can be —

. = . : We exp(-R@SY D)
found bylinearizing the equations of motio29) about the , ) I .
critical stateQ.=. This gives Equation(39) shows that the activation energy displays

scaling behavior with the distance to the bifurcation point in
the rangewgt, > 1. The scaling exponent &=3/2, as in the

0Q=276Q - 7+2P, P=-2Pr, (36)  adiabatic case.
where Q=Q-7. The solution of these equations with
boundary condition(7) — Qqp(7) for 7— = is E. Scaling crossovers near a critical point
T - " Equations(33), (38), and (39) show the onset of three
Qopl(7) =7- nf dr'[1-v2e" ]e’z'T , regions where the activation energy of escape displays scal-
0

ing dependence on the modulation amplitues Rec (A,
-A)¢. The adiabatic and locally nonadiabatic regions emerge
Popl(7) = ne-fz/&, (37) only if the modulation frequency is small compared to the
relaxation rate far from the bifurcation poimFt£O)<1. In
where we took into account the explicit form @ ,(t) (20).  this case, as seen from Fig. 5, as the bifurcation point is
It is seen from Eq(37) that the momentum on the optimal approached, the system displays first the adiabatic scéling
path Py, has the shape of a Gaussian pulse centered at =3/2, which for smallerA.—A goes over into the scaling

=0, with width ~1. The coordinat&,,(7) over the dimen- =2. As the bifurcation poinf is approached even closer,
sionless timer~1 switches between the equilibrium statesthe fast-oscillating regime emerges where3/2 again.

Q.- The typical duration of motion in real time tg The widths of the regions of different scaling depend
From Eqgs.(37), the nonadiabatic activation energy of es- strongly on the modulation frequency. For SmaHtE°)<l
cape forogt, <1 is the range of amplitudes where motion is effectively fast os-

cillating, wgt,>1, is exponentially narrow. However, this
Rnonad— (mI8) Y277 = (A, - A)2. (38) range increases very rapidly with increasing The particu-

lar way in which the widths of different scaling regions vary

Here, the critical amplitudé is given by Eq.(16), to first with wg de!oends on the (%;/stem dynamics, as iIIust_rated in
order in w. Sec. V. .Ultl.mately, forwet,” =1, the regime of effgctlvely
It is seen from Eq(38) that, in the locally nonadiabatic fa}st osglllatlons becomes the only observable regime near a
region, the activation energy again displays scaling behavioPifurcation point.
R (A.—A)¢. But, the scaling exponent & 2; it differs from
the adiabatic exponert=3/2 (33) that has been known for
stationary systems. This is a result of the complicated nona-
diabatic dynamics associated with avoided crossing of the To test the occurrence of three scaling regions and the
stable and unstable states; cf. Fig. 1. The onset of this scalingcaling crossovers, we have studied activated escape for a
behavior is the central result of this paper. model system, an overdamped Brownian particle in a modu-
The predictedt=2 scaling is compared with the result of |ated potential well. It is described by the Langevin equation
the numerical calculation in Fig. 5. The analytical and nu-
merical results are in quantitative agreement in the whole g= _MJr f(t), (FOF(t'))=2D8t-t'),
rangen=2. %,

V. SCALING CROSSOVERS FOR A MODEL SYSTEM
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Ac=[1+02+ o0l +2Y2/4, ot <1, (42)

This equation is in good agreement with the numerical data
for w,:tﬁo)sO.S, as seen from the inset in Fig. 6. The differ-
ence between the numerical and analytidgldecreases ex-
ponentially fast with decreasingg.

We also evaluated for slow driving the time derivative of
the eigenvalueu;=2q.(t) on the critical cycleg.(t). For the
model(41) the stable and unstable states are at their closest
for t=0. Equations(17) and (27) show that, at this time,
11=(2A.)Y2we. This value agrees with the numerical values

FIG. 6. The critical amplitudé as a function of the modulation of 1y t0 be.tter than 10% f_OﬁfF<(()6)5' .
frequencywg for the system(40). Numerical results are shown by In the high-frequency limitwgt, ™ > 1, the motion of the
thick solid lines. The dashed line shows the lineawinnonadia- ~ System(40) is a superposition of slow motion and fast oscil-
batic correction toA, described by Eq(16). The thin solid line in  lations at frequencyw. To lowest order inw;' we haveq
the inset describes a correction obtained from the self-consisterit Q+(A/ wg)sin wet. The equation for the slow variabl®
local analysis, Eq.(42). The dash-dot line describes the high- becomes
frequency asymptotic that follows from E@3).

- 1 A2
1 1 Q:QZ_Z+F+f(t). (43
U(g,t) = - 3 qd+ 24" Aq COSwgt. (40) “F
_ _ . It shows that, for largeve, we haveA.~ wg/+2. This is in
The shape of the potentidl(qg,t) is shown schematically good agreement with the numerical data in Fig. 6 dgr
in Fig. 1(a). In the absence of modulatioA=0, the system =2

has a metastable state at the bottom of the potential well, ; ; (0) ;
p In the intermediate rangeyet,” < 1, the motion may not

0.=—1/2, and an unstable e%whbrlum at the barrier @p, e separated into slow- and fast oscillating for weak modu-
=1/2. Therelaxation time istt”=1/U"(qy)=1. In the pres- |ation, but separation becomes possible near a critical point,
ence of modulation, the stategg, oscillate in time. As the (.t > 1. Here, the coefficients in the equation of motion for
modulation amplitudé\ increases to the critical valug (the  the slow variable and the effective noise intengi®7) and
saddle-node bifurcation the states merge, and then, for (C12) are nonlocal and had to be evaluated numerically as

A> A, disappear. functions of wg.
The frequency dependence of the critical amplitédes

shown in Fig. 6. In the limitwg=0 we haveAcEA§d=1/4. o
The linear inwg correction toA. can be obtained from Eq. A. Activation energy

(16) by nOtiCing that the adiabatic bifurcational value of the For a periodica”y modulated overdamped Brownian par-
coordinate isch=0, and the adiabatic bifurcation occurs for tjcle described by Eq40), the activation energy of escape
t:Q (or equivalentlyt=nr). Near the adiabatic bifurcation ¢an pe found from the variational proble(®) and (10) or,
point we have equivalently(28) [19]. The variablexQ,P, 7, and the func-
tion G in the LagrangiarL (28) and the Hamiltonian equa-
tions (29) should be changed tq,p,t, and -U(q,t)/dq,
q=qt + 5Aad—lAw,%t2+f(t), (41) respectively. As _explain_ed in Se_c._ _II, there_ _is one optimal
2 path per modulation period. The initial condition for the mo-
mentump on the optimal path is given by Eg30), with
Q.(7) replaced byg,(t) [the expression fos? can be further
with 5A%=A-AZ% This equation will have the same form as simplified taking into account the periodicity q(t)]. Then,
Eq.(12) if we replace the factoA in Aw|2:t2 with Agd: 1/4]as Egs.(29) can be solved numerically.
was done in Eq(12)]. The obtained activation energy as a function of the
From Eq.(41) it follows that, for the model under consid- modulation amplitude for four characteristic valuessgfis
eration, the parameters in Eql2) are a=p=1, y  shown in Fig. 7. The solid lines on this plot correspond to the
=(AX12)Y/2=2732, Therefore, from Eq(16), to first order in  results of the numerical solution of the variational problem.
wr the critical amplitude i\'=1/4+232w¢. It is shown in  The dashed lines in the panels fog=0.1,0.25(remember-

the main part of Fig. 6 by the dashed line. ing thatt'”=1) show the adiabatic approximation
As discussed in Sec. Il D, the local nonadiabatic theory

allows us to find higher-order terms in the critical amplitude. 41 312

This is done by noticing that the critical stajgt) into which R = min[U(q,(t)) - U(ga(t)] = 3 <4_1 - A) )

the stable and unstable states merge at the bifurcation point is

linear int for smallt, i.e., qc(t)—qf;‘doct. By substituting this The dash-dot lines in all panels show the locally nonadia-
solution into Eq.(41) (without noisg, we obtain batic approximation near the bifurcation point, which gives
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FIG. 7. The activation energy
of escapeR vs. modulation ampli-
tude A on the logarithmic and lin-
ear (inse) scales for a Brownian
particle in a modulated potential
(40). The values ofwg are indi-
cated on each panel. The thick
solid lines show the results of the
numerical solution of the varia-
tional problem forR. The dashed
lines for wg=0.1,0.25 show the
adiabatic approximation, whereas
for wg=0.5,1.0 they show the ap-
proximation of effectively fast os-
cillations: in both cases the scal-

/
-4 .

-

ing exponent isé=3/2 (for wg
=0.1 this asymptotic scaling is
shown by the thin solid line The
dash-dot lines show th&=2 scal-
ing (38). The dots show the results
‘°|==1 of numerical simulations of Eg.
(40).
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frequencywg=0.5 is neither small nor large, and therefore
there is a noticeable difference in the coefficients(/at
-A)? obtained from the full variational problem fd&® and
In plotting this expression we used the valuesfgfand i,  from the locally nonadiabatic theory near the bifurcation
found numerically(they were very close to the analytical point.
expressions given aboye When wFtﬁo)z 1 we do not expect to see scaling for either
Finally, the dashed lines in Fig. 7 in the panels far  the adiabatic or locally nonadiabatic regime. The only scal-
=0.5,1 show scaling for the effectively fast-oscillating re-ing to be expected near the bifurcation point is the fast-
gime near the bifurcation point, with oscillation one, witht=3/2. This is indeed seen in the panel
for og=1 in Fig. 7. We note that the global fast-oscillation
Rfast= g g'3/22 (A.—A)®2. approximation(43) does not apply fomFtEO)z 1.
D

o ~ . B. Simulations
The coefficientsd’” andD, as given by Eq(C7) and(C12),
were obtained numerically. An additional test of the results can be obtained by di-

It is seen from Fig. 7 that, for smalb, the adiabatic _rectly simulating the Brownian dynamics described by Eq.
approximation applies over a broad region of driving ampli-(40). We conducted such simulations using the second-order
tudes. Near the bifurcation point it gives scalify< (A, integration scheme of stochastic differential equations devel-
-A), with £=3/2(cf. the panel forwg=0.1). However, close 0oped in Ref[33]. As a result of the simulations we obtained
to the bifurcation point this scaling does not work. Instead 1€ probability distribution of the dwell time in the meta-
w:=0.1 the range of the nonadiabatic scaling is comparafor & system prepared &t0 close to the attractor to stay in
tively narrow. the basin of attraction until timeand leave at that time.

As the frequency increases, the amplitude range charac- The dwell time distribution is simply related to the time-
terized by the¢=2 scaling dramatically increases. Fop ~ dependent escape probabilit), which gives the probabil-
=0.25 this is practically the only scaling seen near the bifurity current from the attraction basin at tintef the system
cation point. were in the stable state &0 [16]

With further increase olvg, close to the bifurcation point
a region of the fast-oscillation scalirge= (A.—A)¢ emerges
where againé=3/2. Thepanel for wg=0.5 shows a cross-
over from the scalingt=3/2 very close to the bifurcation
point to the scaling=2 further away fromA.. Note that the

t
pdw(t):W(t)EXp|:— J dt’W(t’)]. (44)

0

The average escape rate is given by the mean dwell time
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P, modulation, wherewgt,<1. We showed the emergence of
A=0.1 nonadiabatic behavior in this region. The nonadiabaticity
0.44 |\ 0.=0.25 leads to a crossover from the scaling with exponén8/2,
\ D=0.05 previously found for stationary systems, to a new dynamical
scaling with §=2. The £=2 region first emerges near the
bifurcation point and then expands with increasing modula-
tion frequency. With further increase ai- the crossoveg
=2 to £=3/2 can beobserved. Again, the effectively fast-
oscillating region with¢=3/2 scaling first emerges near the
bifurcation point. Even though the widths of the regions of
different scaling depend on the parameters of a system, the
phenomenon of scaling crossovers should be universal.
The onset of theé=2 scaling is a consequence of the
slowdown of motion near a bifurcation point. The adiabatic

=pgw(t) 7= Obtained by numerical simulations of a Brownian particle relaxation time of the systep strongly depends on the dis-

in a modulated potential, Eq40). The parameters ard=0.1, D tar?ce t_o the. bifurcation pointt, = (A.~A v (To)he nhon-
=0.05,wp=0.25(solid line). The dashed line shows the exponential @diabatic scaling emerges wheydecomes~[ 7t~ 12 For
v smaller|A.-A| the dependence ¢fon A.—A becomes weak,
while t, still largely exceeds the modulation periagl This
" . is associated with avoided crossing of the stable and unstable
W= [ f dt tpdw(t):| _ (45) states, wh|ch_ occurs with decreasiig-A as these states are
0 pressed against each other when the system approaches the
_ __adiabatic bifurcation point; see Fig. 2.
We studied small noise intensities so tWit< wg; then, W In both the adiabatic regime and the nonadiabatic regime
was independent of the position of the “observation” pgint  for wet, <1, escape is most likely to occur while the equilib-
In practice, we calculatefy,(t) by detecting the system rium states are close to each other. The escape rate is there-
at timet at a pointq that lies well beyond, but not too far fore determined by the behavior of the system for a small
from, the oscillating boundargj,(t). In most simulations the portion of the modulation period, i.e., locally in time.

30
t/TF

FIG. 8. The scaled probability density of the dwell tifag,(t)

fit of the envelope with decremekli¥7==0.008.

system was prepared initially at the stable statét); we The regime of effect fast oscillations near the bifurcation
found thatw was independent of the initial state provided it POInt emerges fowet, > 1. It can arise even where the modu-
was close tay(t). lation period 7 exceeds the relaxation time far from the

The dwell-time distribution for a particular set of param- Pifurcation point. In this regime the motion is controlled by a
eter values in Eq(40) is shown in Fig. 8. The data refer to slow ve}rlable, but thg dynamlcs of thls_vgrlable is no longer
modulation at a comparatively low frequency and with Com_determlngd'by localin Flme) character'lstlcs. The releyant
paratively small amplitude. The functioy,(t) is strongly ~ characteristics are obtained by averaging the appropriate pa-
modulated in time, with periods. This means that escape rameters along the critical periodic trajectory of the system
events are strongly synchronized by the modulation, irinto which the stable and unstable periodic cycles merge at

agreement with the analytical results f8f(t) obtained for thev\t/)ifur:catiog poilnt. q |t lati ¢ ¢
the same model in Ref16]. e have developed a general formulation of escape o

periodically modulated systems driven by colored Gaussian
The average escape ratéwas found from the data of the y5ise Near a bifurcation point slow motion of the system
type shown in Fig. 8 by calculating the mean dwell ti#8)  fijters out high-frequency components of the noise spectrum
and also from an exponential fit of the envelopepgf(t).  and makes the noise effectively white. From the theoretical
These two approaches gave the same result. For each setfint of view it is interesting that, in the locally nonadiabatic
A,or,D we observed~10> escape events. Thel was  regime of¢=2 scaling, the instanton-like optimal escape path
changed. The activation energy of escape was found frorgan pe found frominear equations of motion.
In W for 2—4 values oD. We tested that it was independent  We expect that the ne~=2 scaling and the scaling cross-
of D in the rangeR/D = 6. overs can be seen in various systems. Examples are modu-
The data of simulations are shown in Fig. 7 by dots. Forlated Josephson junctions, nanomagnets, and optically
all parameter values they are in excellent agreement with thgapped Brownian particles, where escape in the presence of
results of the numerical solution of the variational problemmodulation has been studied already experimentally, albeit in
9). different regimes.

VI. CONCLUSIONS
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APPENDIX A: VARIATIONAL EQUATIONS FOR THE case the distance betwegrandq,(t) decreases with increas-
ESCAPE PROBLEM ing time.

We will consider here the optimal trajectory that the sys-. It |s_seen from Eq(A2) Ehat the monod_rom.y matrix fox
tem is most likely to follow in escapej,(t), and the ran- is the inverse trapspose bf,. Therefore, its §|genvalues are
dom forcefy(t) that drives the system during this motion. all larger than 1 in absolute value. Hence, if the system is in
The trajectorieg]o(1) , fop(t) provide the absolute minimum the stable state|,(t) for t— -, thenA(t)—0 for t— -,

to the functionalR[q,f] (9). The variational equations have @nd from(Al1) f(t) -0, too.
the form For the periodic saddlg,(t) on the boundary of the at-

traction basin, one of the eigenvalues of the corresponding
monodromy matrix exceeds 1 in absolute value. This saddle-
type boundary, that can merge with an attractor at a saddle-
node bifurcation, is the one in which we are interested. One
. eigenvalue of the matrix that describes time evolution $
A=-V(A-K), (A2) <1, respectively. If\ is pointing along the corresponding
eigenvector, it will decay as— <. Then,f(t) will decay, too,
g-K(q;At) —f(t)=0, (A3)  from Eg.(Al). This means that the system may asymptoti-
cally approach a saddle-type state. Note that there are no
)ijptimal paths that would go from one stable state to another,
because the condition— 0 for t— o is not satisfied there.
This explains the boundary conditig8) for t— oo,
Because the functionK is periodic in time, Egs.
(A1)—(A3) with boundary conditiong8) have a periodic set
of solutions. Ifq(t),f(t),A(t) is a solution, thery(t+7¢),f(t
fopt= D_lf dt’o(t—t") A(t"). (A4)  +77),A(t+7) is a solution, too. These solutions are hetero-
clinic orbits: they connect the states,(t),f=A=0 and
Therefore, for the optimal path, the activation energy funcy(t),f=A=0, which are also solutions of EqgA1)—~(A3).
tional (6) is Generally, only one heteroclinic orbit per period provides the
1 minimum to the functionalR (9).

R=ED‘1ffdt dt' A(t)p(t —t)A(L), (A5)

fdt' Flt-t)f(t") - A() =0, (A1)

(here and below we use the caret symbol to indicate a matri
V=94/dq).

From Egs.(7) and (Al) it follows that the optimal noise
realization is expressed in terms of the Lagrange multiplier
and the matrix of the noise correlation functiopg3) as

1. Escape in systems with a slow variable
[note that the noise intensiy drops out fromR, because
the correlation functiong;(t) are proportional to the noise
intensity themselvds

Equations(A1){A3) are largely simplified if one of the
motions in the system is slow and all other variables follow
From the structure of the functioné5) (integration over this motion adiabatically, ie., thglr relaxation t|m§,—’§. is

time goes from = to = and the integrand is non-negatjye much smaller than the relaxation time of the slow variaple
and from the fact that the system is initially in the vicinity of at least for a part of the modulation period near a bifurcation

a stable state, one immediately derives the boundary condpPint: We will assume that slow motion is describedday
tion (8) for t— —oc. We show this by generalizing to periodi- the variableq; itself may be a periodic function modulated

cally driven systems the analysis of RE26] for stationary LY @ Slowly varying factorQy, as in the case discussed in
system. Sec. Il C. In this case we will be interested primarily in the

Close to a periodic stable statg(t) time evolution of ~[@ctorQu. o _ _ 3
A(t) can be described using the matrix(t)=(K;/ic])., ' Over at|mIe~t, , the yarlablesqi>l reach their equilib-
where the derivatives are evaluated for the stpf¢). Be- ~1um valuesg; (q.,1) for givenqy,t or (Q.,1). They are de-
cause of the periodicity ofj,(t), the matrix fi,(t) is also  termined by the equation

periodic in time. It determines the monodromy matrix o =Ki(qug-p A+ (> 1). (AB)
tions are periodic. As we will see below, the terfnbere are

Ma(t) =T, exp{f
t
_ _ _ small and give small corrections.
whereT; is the operator of chronological orderirgf. Ap- It is important that the periodic solutioreg. ; with f;~;
pendix Q. The matrixM, shows how the distance between a=0 be stable. From this condition and E@2) it follows
pointq and the cycley,(t) varies over the modulation period immediately thath;.;=0, otherwise the components. ;

E In the absence of noisd;,=0, the solutions of these equa-

dtl ﬁa(tl)] ’

in the absence of noise for sméii—q,(t)| would exponentially grow in time, leading to the onset of a
A large force that would drive the system away from the state
A(t+ 76) — Ga(t) = Ma(O[G(t) — qa(t)]. (A6) with given .

- ) ) The nonzero component of the Lagrange multipheris
From the condition thad,(t) is a stable state, the eigenvalues getermined by the component of the optimal fofge The

of the matrixl\A/Ié1 are all less than 1 in absolute value: in this latter should overcome the restoring force on the slow vari-
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ableq; and drive it from the stable to the unstable state. Butthe modulation phasé=wgt, we haveK;..« wg. The expan-
the slowness ofj; means that the restoring force is small, sion int in (B1) is, in fact, an expansion imgt.
and therefore the forcg should be small, too. It is smaller Because the eigenvalye is equal to zero, for smaly|
than the force that would be needed to overcome the restorelaxation ofg, is much slower than relaxation gf- ;. In the
ing force for the fast variables by at least a facfoﬁfo)/tr. absence of noise, over the relaxation tirﬁ’é the variables
Therefore,\; is small as well. 0i-1 approach their quasistationary values for givgnand
For a given\,(t) we can find all componentf., from $=wet. They can be obtained from the equations of motion
Eq.(A4). They are alk<1/t,, and therefore to lowest order in (B1) for g;~1, in which g; and f;(t) are disregarded
tﬁo)/tr they can be disregarded in the solution of E&6) for
ot O = = aty TR + K10 + K a0A%+ -+ ] (1> 1),
The problem of escape is therefore reduced to a one- (B2)
dimensional problem for the variabdg, the forcef,, and the
Lagrange multipliei ;. In Eq.(A3) for q;, the functionsyi~;  Here, the major term is linear iagt. The full expression is a
should be replaced by, calculated forf;=0. series ingy, wet, and SA, and the omitted terms are of higher
Further simplification occurs if the noise spectrum isorder in these variables. Because of the naoige, will ad-
smooth. The analysis here is different for the cases of slowditionally perform small fluctuations with amplitudeD2.
and fast modulation, i.e., whethext, is small or large. The The dynamics of the slow variabtg on times exceeding
casewt,>1 is discussed in Appendix C. Here and in Ap- tEO) is given by Eq(B1) with i=1, in whichg;-, are replaced
pendix B we consider the casgt, <1. The major effect of  with their quasistationary values. To lowest ordeqjn A2,

noise on the slow variablg, comes from the noise spectral andwgt, only the linear int term should be kept in E¢B2).
components at frequencies< 1/t;. If the noise spectrum is This gives

flat for such frequencies, the noise can be assumed to be

white on the “slow” time scale. In other words, the correla- 0= CYQ§ + BOA— oy (wgt)? + (1),
tion function ¢4;(t) can be replaced by25(t) [in this situ-

ation it is convenient to chood® from this condition rather

_1 —
than to define it by Eqe4)]. Then, Fy; (1) =2 a(1). a=3Ki1 B=Kya, (B3)
For a 1D system driven by white noise of intensidy with
Egs.(A1)«A3) have a solution
f1(0 =200 =G - Ky, 7= = Khaor Ky + 2 oy 2705 K K
- 22j>1 'U“J'_lKl;J'tKj;t)- (B4)

1 .
R= 2 f dt(c, — Kp)2. (A7)
_ o o ~ Note that the coefficieny is independent of.
This reduces the variational problem of finding the optimal  Equation(B3) reduces the multidimensional problem of
path to the known formulation for white-noise driven sys-random motion near a bifurcation point to a one-dimensional

tems[32]. problem. It was derived earlier in Refi84,35 for the case
of a one-dimensional overdamped system driven by an addi-
APPENDIX B: REDUCED EQUATION OF MOTION FOR tive periodic force. Besides the noise term, it differs from the
SLOW DRIVING equation of motion for stationary systems in the vicinity of a

. . . L . . saddle-node bifurcation pointlQ] in that it has a term
In this Appendix we derive simplified equations of motion o (wet)2.

for the case of slow driving, where the relaxation tifme Depending on the sign ofA% Eq. (B3) has either two

< 7 and the motion can be described in the adiabatic aPz diabatic solutions '

proximation. We will consider tdhe vicinity of the adiabatic

bifurcation pointg=0,t=0,A=A2% A convenient basis foq ad _ — _ ad 21112

is provided by the set of the ;?g]ht eigenvectors of the matrix (Aap = sgrt@)= (Bla) SA™+ (yoe) T, (BS)

1= (JK;/oq)), where the derivatives are evaluated at the adiapr none. For concreteness, we assume that the adiabatic so-
batic bifurcation point. In this basis the equation of motion|ytions exist forsA29< 0, i.e.,a8>0. The solutions are even

(1) has the form functions of time. They touch each other tat0 for A2
1 =0. We assume that the periodic adiabatic stqﬁl’%ﬁt) exist
O~ wid + Ezj'k Ki.jkdjdk + Ki a0A%+ K.t for all times providedsA2d<0.

The termK .t in Eq. (B1) has to be equal to zero, other-
1 5 wise the bifurcation point will be far frordA29=t=0. On the
+5Ki;ttt +Ej Kijeait + fi(t). (B1)  other hand, the equation of motiqiB3) may contain the
term Coywet, whereC is a sum ofK,.;; and appropriately

Here,Ki;jk:&ZKi/aqj 0k Ki.a=dK;/dA, etc., with all deriva-  weighted product&;.;;K;.;. This term can be eliminated by a
tives calculated at the adiabatic bifurcation point, ai#d® linear transformationg; — q;+Cwet/2« and renormaliza-
=A-A2 Since the functiork depends o only in terms of  tions SA%— 5A%+ Cwg/2aB, y*— ?+(Cl2a)?. The renor-
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malizedy? should be positive, if the stable and unstable adiatinguished from the vector components, ligg. The eigen-
batic periodic states touch each other only ##=t=0 and  valuesM, are independent of time because of periodicity of
only once per period. M(t), u(t). They are simply related to the Floguet exponents
The termoq;wet does not arise in the important case for the periodic state(t).
where the modulation is performed by an additive periodic ¢ the saddle-node bifurcation, where stable- and saddle-
force F(t); see Eq(2). Here, the adiabatic stategi,(t) cor- type states coalesce, one of the eigenvalies example,
respond to the minimum and maximum of the potentialyy,) pecomes equal to 1, wherefd,-,| <1. This means
Uo(@)-F(t)-q; cf. Fig. 1(@. They merge first with increasing  that the system is attracteddg(t) in all directions except for
modulation amplitudé when the field componeny| is at  the critical directioney(t); the distance frong(t) alonge; (t)
its maximum overt. This means thapK =K =0 at the  goes not change over the period, in linear approximation. In
bifurcation point. _ o what follows we choose, to be real.
As. expla!ned in Sec. lll, the typical relaxatltig time near  kor smallSA of an appropriate sign, the stadg(t) splits
the bifurcation point does not excede (aywe) ™% If the 510046 (1) into a stable and an unstable state. The system

. . . . ad
correlation time of the noisg(t) is much less thaf, ", and  nhraches the vicinity of these states along the directions
the power spectrum of the noise does not have singular feqe-

. . ; _ ! ,~1 over a short timerz max{1/[In|M,-4|[]~t?. In con-
tures for high frequencies, then the dimensionless noise trast, the motion along, is slow.
(7 = (yop) Mi(t) (r=thy), (B6)

The e; component ofsq is the soft mode. We are inter-
ested in its dynamics in long times compared% 7. The

is effectively 5-correlated as a function of the “slow” time  analysis is simplified by the fact that, fort—t

with (f(nf(0))=2D&(7). From Egs(B6), the effective noise > |7e/In|M,~.4]|, the matrixk(t,t) projects any vectosq(t)

intensity is on the vectore,(t). In particular
~ = k(t,t)et) = k(t,t)e(t). (C2
D = /a2 yoor) 2 f dt e (1) ®7) R )

o This is a consequence of the transitive propekiy,t;)
=k(t,t")k(t’,t,) and the fact that, for an arbitrary vectéu,
we haveM"(t) 5g — Ce,(t) for n— <. The functionk,; in Eq.

APPENDIX C: REDUCED EQUATION OF MOTION FOR (C2) is given by the expression
FAST DRIVING

In this section we consider the case where modulation u(tt) = e(l) - k(L 1)e(t). i
near the bifurcation point is effectively fast, so thait,  Here, e, is the left eigenvector of the matriM, which cor-
>1. Here, throughout the modulation cycle the stable angesponds to the eigenvali; =1, and we use the normaliza-
unstable states|,p(t) stay close to each other and to the tion e(t)-e,(t)=1. The matrix elemenk,(t,t;) is periodic,
critical cycleq(t) into which they merge at the bifurcation ., (t+7¢,t,)=ky(t,t).
point A=A.. Therefore, the equation of motiarl) can be The equation of motion foky4(t,t;) for larget—t; follows
expanded indq=q-dc(t), A=A, leading to Eq(22). The  from Eq.(C1)
expansion coefficients are periodic in time. ;
pa:’: (I)Sf Igg.n(\éezguent to start the analysis by simplifying the E[Kll(tvti)el(t)]zﬂll(t)Kll(t:ti) ey(t),

89 =y, o= pult+ 1),

that describes motion in the linear approximationsqn We
introduce the matrix(t,t;) such that

m1a(t) = eq(t) - mt)ey(t). (C3

Close to the bifurcation point, the componentdgfalong
the vectore,(t) has a slowly varying factor. In contrast, the
. vt components ofsg along the vectore,., are “fast.” Over
K(tt) =Teex Jt dtyu(ty) | (CD time ztio) they reach quasiperiodic values for a given value
' of the slow component, and then fluctuate with amplitude
whereT, is the operator of chronological ordering. This ma- «D2, From (22), the quasiperiodic values are quadratic in
trix satisfies the equationk(t,t;)/dt=pu(t)k(t,t;) and gives the slow component, and therefore small. As a consequence,
the monodromy matrisml the slow motion is indeed one-dimensional

M(t) = |\7|(t + 1) = R(t +1e,1). 5Q(t) =~ Ql(t)Kll(trti)el(t)- (CH

. S ] . The instant; here is arbitraryQ,(t) contains a multiplicative
The eigenvaluedl, of the matrixM determine the evolution  ¢5cto that depends an[but &q(t) is independent of]. The
of 44(t) in linear approximation. Over the periott, the  ina ¢ drops out of all final expressions: see Sec. IV,

coefficients of the expansion &(t) in the right eigenvec- The equation forQ,(t) is obtained by substituting Eq.

torse,(t) of M change inM, times(we use Greek letters to (C4) into Eq.(22) and then multiplying Eq(22) by the vec-
enumerate eigenvalues and eigenvectors; they should be dier e;(t) from the left. This gives
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K1t 5)Qr = K(Qut) +&(t) -f(1),
K(Qqut) = Kll(t t)QI(ex(t) - V)Ky + SA(9aKy),
(CH)
whereK,;=¢; -K.
In the absence of noise, the solution of EG5) is a sum

of smooth and oscillating partsQ(t)=Q™(t)+Q°¢ The
term Q°™ remains nearly constant on the time scaje

whereasQ°S°~ weQ%E It is seen from Eq(C5) that Q°s°
o« SA. The termQ®™is much larger. An equation f@@s™ can
be obtained by averaging E@C5) over time. It has the form

QM=o (QM2+ B SA+f'(1). (C6)

The coefficientsa’, 8’ in Eq. (C6) are given by the ex-
pressions

1
a' = §<K11(tati)(el(t) - V%K),

B’ = {k1(t,t) IK I A),, (C7)
where(-); means period-average centered at time
t+7e/2
(G =1¢ f dt’ g(t'.t). (C8)
t=7¢/2

The result of the averaging?8) is independent aof for time-
periodic G, as in the case of the coefficients,38’. There-
fore, o', B’ are independent df

The functionf’(t) in Eq. (C6) is a random force

£ (1) = (K73t tey(t) - F(1)),. (C9)

PHYSICAL REVIEW E 69, 061102(2004

Equation(C6) has the same form as the equation for the
soft mode in the adiabatic limitl2) in the absence of the
term«(wgt)?. Fora’ B’ SA<0 the system has a stable and an
unstable stationary solutio@3}. These solutions are given
by an equation similar to Eq19)

Qb= + sgna’)(- B/ sAa)*?,

(in what follows, without loss of generality we set > 0).
Typical values of Q™ are «|sA|Y2, as seen from Eq.
(C10. They largely exceed the amplitude of the fast vari-

ables in&g, which are all<SA, in the neglect of noise. The
relaxation time ofQ™ is t,=|2aQ3™ e |6A|"Y2. It is much
larger than: close to the bifurcation point. The condition
wet, > 1 was the major approximation made in the derivation
of Egs. (C5) and (C6), besides the condition of the weak
noise.

A transformation fromQ™,t to reduced variables

Q=o' 2™ 7= o'V, (C1y

allows us to write Eq(C6) in the compact form23). The

random forcef(r)=f'(a'Y2), is effectively s-correlated.
From Egs.(3) and(C9), its intensity is

(C10)

5:|a,/4|l/2f dty (kyp(t+1ty, ) rp(t+t,t)

X ey(t+1ty) - @ty —tp)ey(t+ 1)) (C12

Here, ¢ is the matrix of the noise correlation functio(®.

As a result of the period averaging ouem Eq.(C12) the
integrand becomes a function gf-t,, and therefore the in-
tegral overt; is independent of,. Still, it depends or;, but
this dependence will drop out of the final expressions for
observable quantities, in particular the activation energy of
escape.
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