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Near a bifurcation point a system experiences a critical slowdown. This leads to scaling behavior of fluc-
tuations. We find that a periodically driven system may display three scaling regimes and scaling crossovers
near a saddle-node bifurcation where a metastable state disappears. The rate of activated escapeW scales with
the driving field amplitudeA as lnW~ sAc−Adj, whereAc is the bifurcational value ofA. With increasing field
frequency the critical exponentj changes fromj=3/2 for stationary systems to a dynamical valuej=2 and
then again toj=3/2. Theanalytical results are in agreement with the results of asymptotic calculations in the
scaling region. Numerical calculations and simulations for a model system support the theory.
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I. INTRODUCTION

Thermally activated transitions are at the root of many
physical phenomena: diffusion in solids, protein folding, and
nucleation are examples. It is important to understand how
transitions occur, particularly in systems away from thermal
equilibrium. Full understanding would include a description
of the underlying dynamics and the transition probabilities.
Owing to their exponential sensitivity, these probabilities
provide an important means of characterizing a system.
However, in many cases activation barriers are high, which
leads to very low transition rates and impedes precise experi-
mental studies.

The barrier for escape from a metastable state is reduced
when the system is close to a bifurcation(critical, or spin-
odal) point where the state disappears. For systems that dis-
play hysteresis such a bifurcation point corresponds to the
switching point on the hysteresis loop. The idea of bringing
the system close to the bifurcation point[1] has been used in
studying activated switching in Josephson junctions[2–5],
where it has become a standard technique for determining
the critical current. This idea is also used in studies of acti-
vated magnetization reversals in nanomagnets[6–8].

Experiments on nanomagnets and Josephson junctions are
often performed by ramping the control parameter(magnetic
field or current) and measuring the time distribution of es-
cape events[1]. In interpreting the data it is usually assumed
that, for sufficiently slow ramp rates, the system remains
quasi-stationary. In this approximation the barrier height, i.e.,
the activation energy of a transitionR, usually scales with the
control parameterh, measured from its critical(bifurca-
tional) valuehc=0, ash3/2 [9].

Scaling ofR near a bifurcation point is related to slowing
down of one of the motions[10], i.e., the onset of a “soft
mode.” The relaxation time of the systemtr diverges as the
control parameterh→0. Therefore, ifh depends on time,
even where this dependence is slow the assumption of quasi-
stationarity may become inapplicable for smallh.

In this paper a theory of activated transitions is developed
for periodically modulated systems. In such systems the no-
tion of a stable state is well-defined regardless of the modu-
lation rate, and the applicability of the quasistationary ap-
proximation can be carefully studied. Unexpectedly, near a

critical point this approximation breaks down, even where
the relaxation timetr is still much smaller than the driving
periodtF=2p /vF.

We show that an interplay between the critical slowdown
and the slowness of time-dependent modulation leads to a
rich scaling behavior of the transition rate and to crossovers
between different scaling regions. This behavior near a bifur-
cation point is system independent and has no counterparts in
stationary systems. We find three regions in which the acti-
vation energy scales asR~hj. As the parameters change, for
example with the increase of the modulation frequencyvF,
the critical exponentj varies from 3/2 to 2 and then again
to 3/2. Our numerical calculations and Monte Carlo simula-
tions for a model system agree with the general results. A
brief account of the theory was provided in Ref.[11].

Activated transitions in periodically driven systems were
investigated earlier in various contexts[12–21], stochastic
resonance and diffusion in modulated ratchets being recent
examples[22–24]. In this paper we study the previously un-
explored region of driving amplitudes close to critical and
reveal the universality that emerges.

A qualitative picture of motion near a bifurcation point
can be obtained if one thinks of the system as a particle in a
potential Usq,td that oscillates in time with periodtF; see
Fig. 1(a). Such particle has periodic stable and unstable
states,qastd andqbstd. In the adiabatic limitvF→0 they lie at
the minimum and local maximum of the potential in Fig.
1(a). As the modulation amplitudeA increases, the states
become close to each other for a portion of the periodtF; see
Fig. 1(b). The barrier height reaches its minimum during this
time, and this is when the system is most likely to escape
from the potential well. The driving amplitudeAc

ad for which
the barrier disappears in the limitvF→0 determines the
adiabatic bifurcation point.

However, for nonzerovF, asA approachesAc
ad the peri-

odic statesqa,bstd become distorted to avoid crossing and
may coexist even where the barrier has completely disap-
peared for a portion of a period; see Fig. 1(c) and 1(d). The
adiabatic approximation becomes inapplicable for such
modulation.

The parameter range where adiabaticity is broken can be
estimated by noticing that the adiabatic relaxation timetr (i)
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is a function of the instantaneous modulation phasef=vFt,
and (ii ) sharply increases near the bifurcation point. As a
consequence,tr sharply increases whenf approaches the
value whereqa,b are at their closest, because this corresponds
to approaching the bifurcation point. The quasistationary
(adiabatic) approximation requires thatu]tr /]tu!1. It is this
condition that limits the range of adiabaticity, rather than a
much less restrictive condition,trvF!1.

In the nonadiabatic region, a sufficiently large fluctuation
is still required to move the system away from the stable
periodic state. ForA*Ac

ad, the new scaling of the activation
energyR emerges. The control parameter is nowh~Ac−A,
whereAc is the “true” bifurcation value of the modulation
amplitude where the statesqastd andqbstd coalesce.

In the limit vFtr@1, the behavior near a bifurcation point
is in some sense simpler. In this caseqastd and qbstd come
close to each other everywhere on the cycle, not just for a
part of the period. The motion of the system in the vicinity of
qa,bstd is oscillations with a slowly varying amplitude. The
amplitude change can be described by averaging the com-
plete dynamics over the period. It is then mapped onto mo-
tion in an effectively stationary potential. Not surprisingly,
the scaling of the escape activation energyR with the dis-
tance to the bifurcation point is the same as for stationary
systems.

In Sec. II and Appendix A we provide a general formula-
tion of the problem of activated escape in periodically modu-
lated systems driven by Gaussian noise. In Sec. III A and
Appendix B we discuss the dynamics near a bifurcation point
in the adiabatic limitvFtr→0. In Sec. III B we consider the

strongly nonadiabatic dynamics that emerges where still
vFtr!1. In Sec. III C and Appendix C the dynamics near a
bifurcation point is described in the parameter range where
the field becomes effectively fast oscillating, i.e.,vFtr@1,
even though the relaxation time in the absence of modulation
tr
s0d may be&1/vF. The connection between the nonadia-

batic local theory of Sec. III B and the theory of Sec. III C is
discussed in Sec. III D. In Sec. IV the activation energy is
explicitly evaluated in the three regions discussed in Sec. III,
and the scaling laws for the activation energyR~ sAc−Adj in
these regions are obtained. The scaling crossovers are dis-
cussed. We also find nonadiabatic corrections to the escape
rate in the adiabatic region. In Sec. V we consider a periodi-
cally modulated Brownian particle. Numerical results for the
activation energy are compared to the results of Monte Carlo
simulations and to the predictions of Sec. IV. Section VI
contains concluding remarks.

II. ACTIVATED ESCAPE: GENERAL FORMULATION

We will adopt a phenomenological approach in which a
multidimensional system with dynamical variablesqstd is de-
scribed by the Langevin equation

q̇ = K sq;A,td + fstd, K sq;A,t + tFd = K sq;A,td. s1d

The functionK is periodic in time, with the modulation pe-
riod tF=2p /vF; A is a control parameter that characterizes
the modulation strength. For example, in the case of an over-
damped particle in a potentialU0sqd modulated by an addi-
tive periodic forceFstd, the vectorK becomes

K sq;A,td = − = U0sqd + Fstd s2d

(here and below,=;] /]q). In this caseA=maxuFu is the
modulation amplitude[note that the forceFstd=Fst+tFd
does not have to be sinusoidal].

The functionfstd in Eq. (1) is zero-mean Gaussian noise
with correlation matrix

wi jst − t8d = kf istdf jst8dl. s3d

The characteristic noise intensityD can be defined as the
maximal value of the power spectrum

D = maxFnnsvd, Fnmsvd =E dt eivtwnmstd. s4d

For noise from a thermal sourceD is ~kBT. The noise inten-
sity D is the smallest parameter of the theory. Smallness ofD
leads to the rate of noise-induced escapeW being much
smaller thantr

−1 andvF.
In the absence of noise, Eq.(1) may have different peri-

odic solutionsqper, which can be stable(attractors), unstable
(repellers), or hyperbolic(saddles). We are interested in the
parameter range where one of the stable periodic solutions
qastd=qast+tFd comes close to a saddle-type periodic solu-
tion qbstd with the same period(period 1, for concreteness).
For slow modulation, these states are sketched in Fig. 1.
They merge together at the saddle-node bifurcation pointA
=Ac. In what follows we will assume thatA is close to the
critical valueAc.

FIG. 1. (a) An oscillating potential barrier. In the limit of slow
modulation, the stable and unstable periodic statesqa andqb are the
instantaneous positions of the potential minimum and barrier top,
respectively.(b) For slow modulation, when the modulation ampli-
tude A is close to its adiabatic bifurcational valueAc

ad, the states
qa,bstd come close to each other once per period.(c) As A further
increases beyondAc

ad, the barrier ofU disappears for a portion of
the modulation period, but the system may still have coexisting
periodic statesqa,bstd. As seen in(d), they become skewed com-
pared to the adiabatic picture, to avoid crossing. In the critical
range, the form ofqa,bstd is model independent.
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Escape from a metastable stateqastd occurs as a result of
a large fluctuation. The fluctuational forcefstd has to over-
come the restoring forceK and drive the system away from
the basin of attraction toqastd [e.g., away from the potential
well in Fig. 1(a)]. We will assume that the required forcefstd
is much larger than the typical noise amplitude~D1/2.

The motion of the system during escape is random. How-
ever, different trajectories have exponentially different prob-
abilities. The system is most likely to move along a particu-
lar trajectory called the optimal pathqoptstd [25]. It is
determined by the most probable noise realizationfoptstd. In
the case of a periodically modulated 1D system driven by
stationary Gaussian noise, a way to find the optimal paths
was discussed earlier[19]. We now briefly outline a gener-
alization of the formulation to multidimensional systems,
following the arguments in Ref.[26] (more details are pro-
vided in Appendix A).

For a stationary Gaussian noise, the probability density of
realizations offstd is given by the functional(cf. Ref. [27])

Pffstdg = exps− R0ffstdg/Dd, s5d

whereR0 is quadratic inf

R0ffg =
1

2
E E dt dt8f istdFi jst − t8df jst8d. s6d

The matrixF̂ is the inverse ofwi jst− t8d /D

E dt8Fi jst − t8dw jkst8 − t9d = Ddikdst − t9d. s7d

We are interested in noise realizations that lead to escape,
and thereforefstd largely exceeds its root-mean-square value.
From Eq.(5), the probabilities of such noise realizations are
exponentially small and exponentially strongly depend on
the form offstd. As a consequence, escape trajectories should
form a narrow “tube” centered at an optimal pathfoptstd that
maximizesPffstdg, i.e., minimizesR0ffstdg. The minimum of
R0 should be found with the constraints that(i) the system
and noise trajectories,qoptstd and foptstd, are interrelated by
the equation of motion(1); (ii ) the pathqoptstd starts in the
vicinity of the stable stateqastd and ends behind or on the
boundary of the basin of attraction toqastd; and(iii ) the force
foptstd is equal to zero before the escape event happens and
becomes equal to zero once the system has escaped, so that,
asfoptstd decays, it does not drag the system back to the basin
of attraction toqa.

As explained in Appendix A, these conditions lead to
boundary conditions for optimal paths of the form

qoptstd → Hqastd for t → − `,

qbstd for t → `,

foptstd → 0 for t → ± ` s8d

[note thatqoptstd ends on the basin boundary, not on another
attractor].

The variational problem for optimal paths is thus reduced
to minimizing the functional

Rfq,fg = R0ffg

+E dt8lst8d · fq̇st8d − K sq;A,t8d − fst8dg s9d

with boundary conditions(8). The function lstd is a
Lagrange multiplier. The boundary condition for it islstd
→0 for t→±`.

It follows from Eqs.(8) and (9) and from the results of
Appendix A that the optimal trajectoriesqoptstd ,foptstd are
instanton-like[28]. The typical duration of motion is given
by the relaxation time of the systemtr and the noise correla-
tion time tcorr. In stationary systems instantons are transla-
tionally invariant with respect to time, i.e., ifqoptstd ,foptstd is
a solution, thenqoptst+td ,foptst+td is also a solution, for an
arbitrary t. In contrast, in periodically modulated systems
this is true only fort=tF. The instantons are synchronized
by the modulation: generally there is one instanton per pe-
riod that would provide a global minimum toR.

From Eq.(5), we obtain for the escape probability

W~ exps− R/Dd, R= min Rfq,fg. s10d

The activation energyR is equal to the value of the func-
tional R0ffoptg calculated for the optimal noise trajectory for
escape.

For small noise intensity, the escape rateW!vF. It peri-
odically depends on time. However, in the small-D limit this
dependence is seen only in the prefactor[16–18]. Here, we
are interested in the exponent, which gives the period-

averaged escape rateW̄. It is equal to the probability of es-
cape over the timetF divided bytF.

In the general case, the variational problem for the acti-
vation energy can be solved only numerically. Therefore, it is
particularly important to find model-independent properties
of R. So far they have been found for comparatively weak
modulation, where it was shown thatR has a term linear in
the modulation amplitude[19]. In this paper we analyze the
activation energyR in a previously unexplored region near a
bifurcation point, and show thatR displays a nontrivial scal-
ing behavior in this region.

III. DYNAMICS NEAR A BIFURCATION POINT

The dynamics near a saddle-node bifurcation point has
universal features related to the occurrence of a slow vari-
able, or a “soft mode”[10]. For periodically modulated sys-
tems, closeness to the bifurcation point in the parameter
space usually implies that the merging states are close to
each other in phase space throughout the modulation period.

If the modulation frequencyvF is small compared to the
reciprocal relaxation time in the absence of modulation
1/tr

s0d, a situation emerges where the stable and unstable
states come close to each other, but only for a portion of a
period. During this time, the system behaves as if it were
close to a bifurcation point. Then, it is possible to single out
a slow variable that controls the system dynamics. Escape
from a metastable state is most probable whenqastd andqbstd
are closest to each other.
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On the other hand, if the modulation frequencyvF

*1/tr
s0d, near the bifurcation point the statesqastd andqbstd

are close to each other throughout the modulation period.
Then, escape can occur with nearly the same probability at
any modulation phase, i.e., synchronization of escape by the
modulation is essentially lost.

Because the dynamics near a bifurcation point is slow, the
system filters out high-frequency components of the noise.
As a result, the noise becomes effectivelyd-correlated(we
will not consider here the situation where the noise power
spectrum has singular features at high frequencies). The re-
duction to one slow variable driven by white noise can be
done directly in the equations of motion. For slow modula-
tion svFtr

s0d!1d, this reduction is local in time(see Appendix
B); otherwise, it has to be done globally over the cycle(see
Appendix C). Alternatively, the dimensionality reduction can
be done directly in the variational problem for the optimal
escape path(see Appendix A).

A. The adiabatic approximation

In the limit of slow modulation, where the period of the
field tF is large compared to the system relaxation timetr

s0d, a
convenient starting point of the analysis is the adiabatic ap-
proximation. The adiabatic periodic states of the systemqper

ad

are given by the equation

K sqper
ad ;A,td = 0, s11d

which is obtained by disregardingq̇ and the noisef in the
equation of motion(1).

The adiabatic stable state(attractor) qa
ad;qa

adstd is the so-
lution qper

ad , for which the real parts of the eigenvalues of the
matrix m̂

mi j = s]Ki/]qjd,

are all negative. These eigenvalues give the “instantaneous”
relaxation rates, for a given phase of the modulationf
=vFt. For the periodic adiabatic saddle-type stateqb

adstd, one
of the eigenvalues ofm̂ has a positive real part.

In the adiabatic approximation, the saddle-node bifurca-
tion occurs in the following way. At the critical value of the
control parameterA=Ac

ad, the periodic trajectoriesqa
adstd and

qb
adstd given by (11) merge, but it happens only once per

period. One can picture this by looking at Fig. 1(b) and
imagining that the statesqastd andqbstd touch each other. We
set the corresponding instant of time equal tot=0 (or t
=ntF), i.e., we assume thatqa

ads0d=qb
ads0d for A=Ac

ad. Addi-
tionally, we setqa

ads0d=qb
ads0d=0.

At the adiabatic bifurcation pointA=Ac
ad,t=0 one of the

eigenvaluesm1 of the matrixm̂ is equal to zero, whereas all
other eigenvaluesmi.1 have negativereal parts. The adia-
batic approximation means that −Remi.1@vF, or equiva-
lently, that the relaxation time maxfuRemi.1u−1g is small
compared totF. This relaxation time is typically of the order
of tr

s0d.
We now write the dynamical variablesq in the basis of

the right eigenvectors of the matrixm̂ at the bifurcation point
and expandK in the equation of motion(1) in a series inq,

t, andA−Ac
ad. As shown in Appendix B, the motion described

by the variableq1 is much slower than the motion described
by the variablesqi.1. Over the time,tr

s0d they “adjust” to the
value ofq1, i.e., they followq1 adiabatically. The variableq1
is the soft mode. It satisfies the equation of motion

q̇1 = Ksq1;A,td + f1std,

K = aq1
2 + bdAad− ag2svFtd2. s12d

Here,dAad=A−Ac
ad; the parametersa ,b ,g are expressed in

terms of the derivatives ofK at the adiabatic bifurcation
point and are given by Eqs.(B3) and (B4).

The stable and unstable adiabatic periodic states in the
absence of noise exist forabdAad,0. For concreteness and
without loss of generality, we seta.0. For smalluvFtu the
adiabatic states can be found by settingK(sq1da,b

ad ;A,t)=0.
This gives

sq1da,b
ad = 7s2atr

add−1,

wheretr
ad is the instantaneous adiabatic relaxation time. It is

given by u]K /]q1u−1 evaluated forq1=sq1da
ad

tr
ad=

1

2
f− abdAad+ sagvFtd2g−1/2. s13d

1. Validity of the adiabatic approximation

The applicability of the adiabatic approximation requires
not only thatvFtr

ad!1, but alsou]tr
ad/]tu!1. If this latter

condition is not met, the system cannot follow the modula-
tion without delay; its state depends on how the parameters
were varying in time. From Eq.(13), near the bifurcation
point the time dependence oftr

ad is pronounced, so that

maxu]tr
ad/]tu = 3−3/2gvF/ubdAadu @ vFtr

ad.

Therefore, the inequalityu]tr
ad/]tu!1 is much stronger than

vFtr
ad!1. It holds if

tr
ad! tl , tl = sagvFd−1/2, s14d

i.e., vF! ubdAadu /g.
The inequality(14) restricts the range of validity of the

adiabatic approximation. It is the timetl rather than 1/vF
that imposes an upper bound on the adiabatic relaxation time
of a periodically driven system where this approximation
still applies. This time sets a new dynamical time scale. It
fully characterizes the dynamics beyond the adiabatic limit
in the rangevFtr!1, as discussed in Sec. III B.

B. Locally nonadiabatic regime

As A approachesAc
ad, the criterion(14) is violated. The

periodic stable and unstable states are pressed against each
other. Since they cannot cross, they become distorted, as
shown in Fig. 1(d). Ultimately they merge, but along a line
rather than at a point. From Eq.(12) one can see that this is
just a straight line, which is described by the equation

q1cstd = gvFt. s15d
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Equations(12) and (15) define the new nonadiabatic bi-
furcational value of the modulation amplitude for slow driv-
ing

Ac
sl = Ac

ad+ b−1gvF. s16d

The corrections toAc
sl of higher order invF are discussed in

Sec. III C.
The change of the bifurcation amplitude described by Eq.

(16) is somewhat similar to the effect of bifurcation delay
[29,30], which occurs when the bifurcation parameter is
ramped through the bifurcation point. Here, however, we
consider a periodically driven system where the bifurcation
is not delayed in time; rather, it is the bifurcational modula-
tion amplitude that is changed compared to the adiabatic
limit.

It is convenient to change to dimensionless variables in
Eq. (12) Q=atlq1 and t= t / tl, and to introduce the control
parameter

h = bsgvFd−1sAc
sl − Ad. s17d

We note thath is the only parameter of a slowly driven
system in the critical region. It describes both adiabatic and
nonadiabatic behavior, and gives the reduced distance to the
bifurcation point. Interestingly, the distance along the
modulation-amplitude axisAc

sl−A is scaled by the modula-
tion frequencyvF; both these quantities are supposed to be
small, but their ratioh can be arbitrary.

The equation of motion for the reduced variable takes the
form

dQ

dt
= GsQ,h,td + f̃std, G = Q2 − t2 + 1 −h. s18d

The functionf̃std=sgvFd−1f1stltd in Eq. (18) describes re-
duced noise. It is effectivelyd-correlated on the slow-time

scale,k f̃std f̃st8dl=2D̃dst−t8d, as explained in Appendix B.

The noise intensityD̃ is given by Eq.(B7).
The stable and unstable statesQa,bstd are given by the

equationdQ/dt=G. In the absence of noise this equation has
symmetryQ→−Q, t→−t. As a consequence, the stable and
unstable states are antisymmetric,Qbstd=−Qas−td. There-
fore, it suffices to find onlyQastd.

We start with the adiabatic approximation. It applies for
h@1. The adiabatic stable and unstable states in the reduced
variables are given by the equationG=0, and have the form

Qa,b
ad = 7ft2 + sh − 1d2g1/2. s19d

Each of these states is symmetric with respect tot=0, where
they are closest to each other. The adiabatic bifurcation point
is h=1, which corresponds toA=Ac

ad.
The regionh&1 is nonadiabatic, andh=0 sor A=Ac

sld is
the nonadiabatic bifurcation point for slow driving. At this
point Qa,bstd merge into the straight lineQcstd=t.

Close to the nonadiabatic bifurcation point, whereh!1,
one can findQa,bstd by perturbation theory in the whole
range −̀ ,t, uln hu1/2. The linearized equation for the dif-

ferencedQstd=Qastd−t has a formddQ/dt=2tdQ+h. By
solving it we obtain

Qastd = − Qbs− td < t − hE
−`

t

dt1 et2−t1
2
. s20d

In the region of large negativet, the function Qastd
=−Qbs−td has a simple formQastd<t+hs2td−1. The states
Qa andQb are closest to each other, with separation,h, in
the rangeutu, uln hu1/2. The interstate separation decreases as
h approaches the bifurcational valueh=0. At the same time,
the range oft whereQastd andQbstd stay close to each other
increases with decreasingh.

As t increases beyond<uln hu1/2, a sharp crossover occurs
from the nearly linear int solution for Qastd (20) to the
adiabatic solution(19), Qa ~−t. The functionsQa,bstd for a
specific value ofh are shown in Fig. 2.

The interval of the real timeutu& tr= tluln hu1/2, where the
statesQa,b are nearly linear int, should be much smaller than
1/vF in order for Eq.(12) to apply. This imposes a restric-
tion on h

h @ exps− Cuaug/vFd, C , 1. s21d

For smallerh~ uAc
sl−Au the local approximation, where the

coefficients are expanded about the adiabatic bifurcation
point, no longer applies. The relaxation timetr becomes
comparable to the modulation period, and the behavior of the
system during the whole cycle becomes important. It follows
from Eq. (21), however, that for low frequencies the local
approximation is extremely good.

On the whole, the locally nonadiabatic regime is limited
in h by the conditionh&1 and by Eq.(21). The width of the
amplitude rangeAc

sl−A imposed by the first condition lin-
early increases with the field frequency, in the approximation
(16). Therefore, locally nonadiabatic critical behavior is
more pronounced for higher frequencies. However, the ap-
propriate frequency range is limited from above by the con-

FIG. 2. Nonadiabatic stable and unstable statesQastd and
Qbstd=−Qas−td for slow modulation as given by the equation
dQ/dt=GsQ,h ,td for h=0.2. The functionsQa,bstd are strongly
asymmetric, in contrast to the adiabatic states(19) which are even
functions oft.
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dition (21). For highervF a crossover to a fully nonlocal
picture should occur, which is discussed in the next section.

C. Fast-oscillating field

Sufficiently close to the “true” critical value of the modu-
lation amplitudeAc, the relaxation time of the system be-
comes large compared to the modulation period even if
vFtr

s0d&1 far from the bifurcation point. The inequality
vFtr@1 defines the third region, in addition to the adiabatic
and locally nonadiabatic, where we could analyze the dy-
namics near a bifurcation point. The analysis of this region is
simplified by the fact that here the modulating field is effec-
tively fast oscillating.

For vFtr@1, near the bifurcation point the periodic stable
and unstable statesqastd and qbstd stay close to each other
throughout the cycle; see Fig. 3. ForA=Ac, they coalesce
into a periodic critical cycleqcstd=qcst+tFd. When A is
close toAc and q is close toqc, we can simplify the equa-
tions of motion(1) by expanding the functionK in dq=q
−qc anddA=A−Ac (cf. Ref. [10])

dq̇ = m̂dq +
1

2
sdq · = d2K + dA

]

]A
K + fstd. s22d

Here, as before,mi j ;mi jstd=]Ki /]qj, but all derivatives ofK
are now evaluated forA=Ac andq=qcstd. Therefore, all co-
efficients in Eq.(22) are periodic functions of time.

If the system is close toqcstd initially, its distance from
qcstd will oscillate with frequencyvF and with an amplitude
that slowly varies over the periodtF. This amplitude is a
slow variable,Qsmstd. The equation forQsmstd can be ob-
tained by an appropriate averaging method explained in Ap-
pendix C. After rescaling to dimensionless coordinateQ
~Qsm and timet~ t [see Eq.(C11)], this equation takes a
form which is similar to Eq.(18)

dQ

dt
= GsQ,hd + f̃std,

G = Q2 − h, h = b8sAc − Ad s23d

[in contrast to Eq.(18), the functionG here is independent of
time]. The coefficientb8 is given by Eq.(C7).

The parameterh in Eq. (23) is the scaled distance to the
bifurcation point. The stationary statesQa,b=7h1/2 exist for

h.0. They merge forh=0. The noisef̃std is effectively
white on the time scale that largely exceedsvF

−1 and the

noise correlation timetcorr. Its intensity D̃ is given by Eq.
(C12).

The results of this section and Appendix C refer to the
casevFtr@1, but arbitraryvFtr

s0d. Therefore, the problem is
different from the standard problem of slow motion in a fast-
oscillating field[31], where the smooth term in the oscillat-
ing coordinate is of interest. In contrast, here we are inter-
ested in the slowly varying oscillation amplitude. IfvFtr

s0d

@1, a transition to slow and fast variables can be made al-
ready in the original equation of motion(1), by separatingq
into slow and fast oscillating parts. The equation for the slow
part near the bifurcation point will again have the form(23),
but the expressions(C7) for a8 ,b8, will be simplified; in
particular, the factork11 in Eq. (C7) will be equal to 1.

D. Connection to the locally nonadiabatic regime

Equation(22) allows us to look from a different perspec-
tive at the locally nonadiabatic regime that emerges for
vFtr!1. In contrast to the approach of Sec. III B, where the
starting point was the adiabatic approximation, here we will
assume thatA is close to the true bifurcational value of the
amplitudeAc and thatqstd is close to the critical cycleqcstd,
at least for a part of the periodtF.

For vFtr!1, one can think of a local in time description
of the dynamics near the cycleqcstd. From Eq. (22), this
dynamics is determined by the eigenvaluesmnstd of the ma-
trix m̂std. In contrast to the analysis of Sec. III A, we consider
here the matrixm̂ calculated for the critical cycleqcstd rather
than the two similar matrices calculated separately for the
adiabatic stable and unstable states.

For much of the driving period the real parts ofmnstd are
all large, uRemnu,1/tr

s0d@vF. Then, when the system is in
the stable state, it follows the field adiabatically. The adiaba-
ticity is broken where one of the eigenvalues, saym1std, goes
through zero. As we will see, at this time the stable and
unstable states are closest to each other. We set the time
when it happens equal to zero, i.e.,m1s0d=0.

For smallutu!tF the analysis of the system dynamics is in
many respects similar to that in Sec. III B and Appendix C.
First, dqstd in Eq. (22) is written ason dqnens0d, whereens0d
are the normalized right eigenvectors of the matrixm̂s0d. The
componentdq1 of dq along the eigenvectore1s0d of m̂s0d
will be the slow variable, or the soft mode.

The matrixm̂std can be expanded aboutt=0 for small utu

FIG. 3. The stable and unstable states,qastd andqbstd, close to
the bifurcation point. ForvFtr@1 the states are close to each other
throughout the modulation period. The figure refers to a one-
dimensional overdamped particle in a potentialUsq,td= 1

4 q− 1
3 q3

−AqcossvFtd for sAc−Ad /Ac<0.01. The modulation is compara-
tively slow, vFtr

s0d=1, but for chosenA the relaxation time becomes
long, vFtr<9.8.
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m̂std < m̂s0d + ṁ̂s0dt, s24d

where the time derivative is taken fort=0. This derivative is
small; its matrix elements on the eigenvectorsēns0d ,en8

s0d
are uṁnn8

u,vF / tr
s0d! str

s0dd−2 [here,ēns0d are the normalized
left eigenvectors of the matrixm̂s0d].

With (24), Eq. (22) can be solved for the “fast” compo-
nents dqn.1. Over a short time,tr

s0d they approach their
quasistationary values for givendq1. Those are small, of or-
der dq1

2,dA,dq1vFt, and follow dq1 adiabatically. Noise-
induced fluctuations ofdqn.1 about the quasistationary val-
ues are also small for small noise intensity. Therefore, the
effect of dqn.1 on the dynamics ofdq1 can be disregarded.

The equation of motion fordq1 has a form of the Riccati
equation with a random force

dq̇1 = ṁ·1tdq1 + adq1
2 + bdA + f1std,

f1std = ē1s0d · fstd, ṁ1 = ē1s0dṁ̂s0de1s0d. s25d

Here,a=s1/2dse1s0d ·= d2K1, b=]K1/]A, with K1= ē1s0d ·K
now being the component ofK in the directione1s0d. All
derivatives ofK are calculated on the critical cycleqcstd for
t=0. Becauseuṁ1u is small, relaxation ofdq1 is slow com-
pared to relaxation ofdqn.1, for typical utu!tF.

Equation(25) describes the stable and unstable states of
the original equation of motion(1) in the regionutu!tF. It is
seen that these states,sdq1da and sdq1db, exist provided

ṁ1 . 0, ab dA , 0. s26d

In this range Eq.(25) is equivalent to Eq.(18). This can be
seen if, on the one hand, Eq.(18) is written for the deviation
dQ=Q−t of Q from its value on the critical cycleQc=t, and
on the other hand, in Eq.(25) one changes to scaled variables
dQ=as2/ṁ1d1/2dq1 andt=sṁ1/2d1/2t. The control parameter
h in (18) becomes

h = − 2abṁ1
−1dA. s27d

The analysis of Eq.(18) then applies to Eq.(25). In particu-
lar, the statement in the beginning of this subsection that the
stable and unstable states are at their closest fort=0 is an
immediate consequence of the explicit expression for these
states(20).

There is an important difference between this approach
and the approach of Sec. III B. Because we do not start here
from the adiabatic approximation, we have not formally
specified how small the difference is between the critical
amplitudeAc and its adiabatic valueAc

ad. In Eq. (16) we only
obtained the linear invFtr

s0d term in Ac−Ac
ad. In general,Ac

−Ac
ad also has higher-order terms. They can be obtained by

taking into account the dependence of the coefficientsa ,b ,g
in Eq. (B3) on A, which was previously disregarded. This is
illustrated for a particular model in Sec. V. It is for the renor-
malized critical amplitude, i.e., for the control parameter
given by Eq.(27), that the exponential limit(21) holds. The
inequality(21) indicates that, for small frequency, the critical

amplitude found from the local theory is exponentially close
to the exactAc. This is confirmed by numerical calculations
for a model discussed in Sec. V.

IV. ACTIVATION ENERGY OF ESCAPE

It follows from the results of Sec. III that, near a bifurca-
tion point, a periodically driven system has a soft modeQ,
and the noise that drives this mode is effectively white. The

equation of motion is of the formdQ/dt=G+ f̃std (18),
where the functionG is given byG=Q2+1−h−t2 for vFtr
!1 [cf. Eq. (18)] andG=Q2−h for vFtr@1 [cf. Eq. (23)].
The intensityD̃ of the noisef̃std has the form(B7) and(C12)
in these two cases.

For a white-noise driven system, the variational problem
(9) and (10) of calculating the period-averaged rate of acti-

vated escapeW̄ can be written in the form

W̄= const3 exps− R̃/D̃d, R̃= min R̃fQg,

R̃ =E dt LSQ,
dQ

dt
,tD, L =

1

4
SdQ

dt
− GD2

s28d

(cf. Appendix A). In contrast to the standard formulation
[32], the functionG here may depend on timet and is not
time periodic, in the actual range oft. The minimization is
carried out over the pathsQstd that start at the stable state
Qastd for t→−` and end at the unstable stateQbstd for t
→+`. The nonstationarity emerges for slow modulation,
where vFtr!1, and is related to the assumptions that(i)
escape is most likely to occur during a portion of the period
where the statesQa,b are close, and(ii ) the duration of mo-
tion along the optimal escape pathQoptstd is much less than
the modulation period.

We have solved the variational problem using the Hamil-
tonian equations of motion forQ andP=]L /]sdQ/dtd

]Q

]t
= 2P + G,

]P

]t
= − P

]G

]Q
. s29d

We then verified the assumptions made in obtaining Eqs.
(28) and (29).

Equations(29) were solved both analytically and numeri-
cally. In numerical calculations, we chose the initial condi-
tions on the optimal path close toQastd with large but finite
negativet. In this range Eqs.(29) can be linearized inQ
−Qastd. On the solution that goes away fromQa, the mo-
mentumP is linear inQ−Qa

P < fQ − Qastdg/sa
2std,

sa
2std = 2E

−`

t

dt8 expF4E
t8

t

dt9 Qast9dG . s30d

We used the shooting method: we sought such initialQ
−Qastd for given t that the trajectory approachesQbstd for
larget; cf. Ref. [19].

Numerical results for the activation energy in the whole
range of slow driving, wherevFtr!1, are shown below in
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Figs. 4 and 5 on linear and logarithmic scales, respectively.
Note that the activation energy is a function of a single con-
trol parameterh~Ac−A, and in this sense the results are
universal, i.e., system independent. In the rest of this section
we discuss analytical results and compare them with the nu-
merical results.

A. Activation energy in the adiabatic approximation

The adiabatic regime applies when the driving is slow,
vFtr!1, and the system is sufficiently far from the bifurca-
tion point, so thattr! tl [cf. Eq. (14)], or equivalently
udAadu;uAc

ad−Au@vFug /bu. The dimensionless control pa-
rameterh~Ac−A is large,h−1@1 [cf. Eq. (17); we note
that the actual parameter in the adiabatic range is noth but
h−1]. In this case we expect that escape occurs when the
adiabatic states(19) are closest to each other, i.e., fort=0.
Then, in the first approximation, the termt2 in the function
G in Eq. (18) can be disregarded, andG becomes

Gad= Q2 + 1 −h. s31d

The solution of Eq.(29) with G of the form(31) and with
boundary conditionsQstd→7sh−1d1/2 for t→ 7` is well
known. It is an instanton(kink)

Qopt
ad st,t0d = sh − 1d1/2 tanhfsh − 1d1/2st − t0dg, s32d

centered at an arbitraryt0.
The characteristic duration of motion along the path

Qopt
ad std in dimensionless time isDt,sh−1d−1/2, which cor-

responds toDt, tr in real time. SinceDt! sh−1d1/2, the
termt2 in the functionG [Eq. (18)] can be disregarded com-
pared toh−1, which justifies replacingG with Gad as long as
ut0u! sh−1d1/2.

The activation energy(28) calculated along the pathQopt
ad

is

R̃ad=
4

3
sh − 1d3/2 ~ sAc

ad− Ad3/2. s33d

This equation shows that the activation energy of escape
scales with the distance to the bifurcation point assAc−Adj

with j=3/2 in theadiabatic region.

B. Nonadiabatic correction to the activation energy

We now consider the lowest-order correction to the adia-
batic activation energy. Two factors have to be taken into
account. First is that, because of the nonzero duration of
motion along the escape pathDt, the equilibrium states
Qa,b

ad std change, which was disregarded in the analysis of Sec.

IV A. However, the corresponding correction toR̃ is expo-

nentially small. Indeed, if we considerR̃ as a function of the

end point Q on the optimal path, we haveu]R̃ /]Qu= uPu,
where P is the momentum on the optimal path. For an in-
stantonic solution, the momentum goes to zero asQopt
→Qa,b; see Eq.(30). Therefore, a small change ofQa,b af-
fects the activation energy very weakly.

The major nonadiabatic correction toR̃ comes from the
time-dependent term inG=Gad−t2 [cf. Eq. (18)]. This term
lifts the time invariance of the instantonQoptst ,t0d with re-
spect tot0,

To first order int2, i.e., to lowest order insh−1d−1, the

correctiondR̃ can be found from Eq.(28) by integrating the
term t2 along the zeroth-order trajectoryQopt

ad st ,t0d

dR̃= min
t0

E dt8
dQopt

ad st8,t0d
dt8

t82 s34d

(here, we useddQopt
ad /dt=−Gad). Minimization is done here

overt0, the center of the instanton. It is necessary becauseR̃

is the absolute minimum of the functionalR̃.

A direct calculation shows that the minimum ofdR̃ is
reached fort0=0, and

dR̃=
p2

6
sh − 1d−1/2. s35d

The correctiondR̃ rapidly falls off with increasingh−1. On

the other hand, ash decreases and becomes,1, the termdR̃

FIG. 4. The activation energyR̃ vs h~Ac−A for slow driving,
vFtr!1. The thick solid line shows the numerical solution of Eq.

(28). The dashed line is the adiabatic activation energy(33), R̃ad

~ sh−1d3/2. The thin solid line shows the corrected adiabatic acti-

vation energyR̃ad+dR̃. It is close to the numerical result forh*3.

The correctiondR̃ diverges at the adiabatic bifurcation pointh=1.

FIG. 5. The activation energyR̃=−D̃ ln W̄ on a logarithmic and
linear scale(inset) vs h~Ac−A for slow modulation,vFtr!1.
Thick solid lines show the numerical solution of the variational
problem (28). It describes the crossover between different scaling
regions. The thin solid line shows the adiabatic scaling for largeh,

R̃~hj with j=3/2. Thefull result of the adiabatic approximation is
shown by the dashed line. The dash-dot line shows the nonadiabatic

result (38) that applies forh!1; here,R̃~hj with j=2.
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increases very quickly, which indicates a breakdown of the
adiabatic theory in this region.

The analytical results in the adiabatic region are compared

with the numerical solution for the activation energyR̃ in
Fig. 4. The corrected adiabatic theory works well in the
whole range where the control parameterh*3, but for
smallerh nonadiabatic effects are significant and have to be
taken into account in a nonperturbative way.

C. Activation energy in the locally nonadiabatic region

Standard techniques do not allow solving of Eqs.(29) for
the optimal path analytically in the general caseh,1. This
is because the functionG in Eq. (29) explicitly depends on
time t. However, a solution can be obtained close to the
bifurcation point, whereh~Ac−A is small, but not exponen-
tially small; cf. Eq.(21).

Unusual for an instanton-type problem, and because of
the strong time dependence ofG, the optimal path can be
found by linearizing the equations of motion(29) about the
critical stateQc=t. This gives

dQ̇ = 2tdQ − h + 2P, Ṗ = − 2Pt, s36d

where dQ;Q−t. The solution of these equations with
boundary conditionsQstd→Qa,bstd for t→ 7` is

Qoptstd = t − hE
0

t

dt8f1 −Î2e−t82
get2−t82

,

Poptstd = he−t2
/Î2, s37d

where we took into account the explicit form ofQa,bstd (20).
It is seen from Eq.(37) that the momentum on the optimal

path Popt has the shape of a Gaussian pulse centered att
=0, with width ,1. The coordinateQoptstd over the dimen-
sionless timet,1 switches between the equilibrium states
Qa,b. The typical duration of motion in real time istl.

From Eqs.(37), the nonadiabatic activation energy of es-
cape forvFtr!1 is

R̃nonad= sp/8d1/2h2 ~ sAc − Ad2. s38d

Here, the critical amplitudeAc is given by Eq.(16), to first
order invF.

It is seen from Eq.(38) that, in the locally nonadiabatic
region, the activation energy again displays scaling behavior,

R̃~ sAc−Adj. But, the scaling exponent isj=2; it differs from
the adiabatic exponentj=3/2 (33) that has been known for
stationary systems. This is a result of the complicated nona-
diabatic dynamics associated with avoided crossing of the
stable and unstable states; cf. Fig. 1. The onset of this scaling
behavior is the central result of this paper.

The predictedj=2 scaling is compared with the result of
the numerical calculation in Fig. 5. The analytical and nu-
merical results are in quantitative agreement in the whole
rangeh&2.

D. Activation energy for vFtr š1

It was shown in Sec. III C that, sufficiently close to a
bifurcation point, the conditionvFtr@1 holds, even where
the modulation frequency is less than the relaxation rate far
away from the bifurcation point,vFtr

s0d&1. Finding the acti-

vation energy of escapeR̃; R̃fast for vFtr@1 is formally
similar to that in the adiabatic approximation. The only dif-
ference is thath−1 in Eq.(31) should now be replaced byh.
This gives

R̃fast= s4/3dh3/2 ~ sAc − Ad3/2. s39d

Both the coefficientb8, that relatesh to Ac−A [see Eqs.

(23) and(C7)] and the noise intensityD̃ (C12) depend on the
arbitrary initial timeti. It enters the weighting factork11st ,tid,
which was used in obtaining the equation of motion for the
slow variable(23). A straightforward analysis shows thatti
drops out of the ratiob83/2/ D̃, which gives the escape rate

W̄~exps−R̃fast/ D̃d.
Equation(39) shows that the activation energy displays

scaling behavior with the distance to the bifurcation point in
the rangevFtr@1. The scaling exponent isj=3/2, as in the
adiabatic case.

E. Scaling crossovers near a critical point

Equations(33), (38), and (39) show the onset of three
regions where the activation energy of escape displays scal-

ing dependence on the modulation amplitude,R~ R̃~ sAc

−Adj. The adiabatic and locally nonadiabatic regions emerge
only if the modulation frequency is small compared to the
relaxation rate far from the bifurcation point,vFtr

s0d!1. In
this case, as seen from Fig. 5, as the bifurcation point is
approached, the system displays first the adiabatic scalingj
=3/2, which for smallerAc−A goes over into the scalingj
=2. As the bifurcation pointAc is approached even closer,
the fast-oscillating regime emerges wherej=3/2 again.

The widths of the regions of different scaling depend
strongly on the modulation frequency. For smallvFtr

s0d!1
the range of amplitudes where motion is effectively fast os-
cillating, vFtr@1, is exponentially narrow. However, this
range increases very rapidly with increasingvF. The particu-
lar way in which the widths of different scaling regions vary
with vF depends on the system dynamics, as illustrated in
Sec. V. Ultimately, forvFtr

s0d*1, the regime of effectively
fast oscillations becomes the only observable regime near a
bifurcation point.

V. SCALING CROSSOVERS FOR A MODEL SYSTEM

To test the occurrence of three scaling regions and the
scaling crossovers, we have studied activated escape for a
model system, an overdamped Brownian particle in a modu-
lated potential well. It is described by the Langevin equation

q̇ = −
]Usq,td

]q
+ fstd, kfstdfst8dl = 2Ddst − t8d,
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Usq,td = −
1

3
q3 +

1

4
q − AqcosvFt. s40d

The shape of the potentialUsq,td is shown schematically
in Fig. 1(a). In the absence of modulation,A=0, the system
has a metastable state at the bottom of the potential well,
qa=−1/2, and an unstable equilibrium at the barrier top,qb

=1/2. Therelaxation time istr
s0d=1/U9sqad=1. In the pres-

ence of modulation, the statesqa,b oscillate in time. As the
modulation amplitudeA increases to the critical valueAc (the
saddle-node bifurcation), the states merge, and then, for
A.Ac, disappear.

The frequency dependence of the critical amplitudeAc is
shown in Fig. 6. In the limitvF=0 we haveAc;Ac

ad=1/4.
The linear invF correction toAc can be obtained from Eq.
(16) by noticing that the adiabatic bifurcational value of the
coordinate isqc

ad=0, and the adiabatic bifurcation occurs for
t=0 (or equivalently,t=ntF). Near the adiabatic bifurcation
point we have

q̇ = q2 + dAad−
1

2
AvF

2t2 + fstd, s41d

with dAad=A−Ac
ad. This equation will have the same form as

Eq. (12) if we replace the factorA in AvF
2t2 with Ac

ad=1/4 [as
was done in Eq.(12)].

From Eq.(41) it follows that, for the model under consid-
eration, the parameters in Eq.(12) are a=b=1, g
=sAc

ad/2d1/2=2−3/2. Therefore, from Eq.(16), to first order in
vF the critical amplitude isAc

sl=1/4+2−3/2vF. It is shown in
the main part of Fig. 6 by the dashed line.

As discussed in Sec. III D, the local nonadiabatic theory
allows us to find higher-order terms in the critical amplitude.
This is done by noticing that the critical stateqcstd into which
the stable and unstable states merge at the bifurcation point is
linear in t for small t, i.e., qcstd−qc

ad~ t. By substituting this
solution into Eq.(41) (without noise), we obtain

Ac < f1 + vF
2 + vFsvF

2 + 2d1/2g/4, vFtr ! 1. s42d

This equation is in good agreement with the numerical data
for vFtr

s0d&0.5, as seen from the inset in Fig. 6. The differ-
ence between the numerical and analyticalAc decreases ex-
ponentially fast with decreasingvF.

We also evaluated for slow driving the time derivative of
the eigenvaluem1=2qcstd on the critical cycleqcstd. For the
model (41) the stable and unstable states are at their closest
for t=0. Equations(17) and (27) show that, at this time,
ṁ1=s2Acd1/2vF. This value agrees with the numerical values
of ṁ1 to better than 10% forvF,0.5.

In the high-frequency limit,vFtr
s0d@1, the motion of the

system(40) is a superposition of slow motion and fast oscil-
lations at frequencyvF. To lowest order invF

−1 we haveq
<Q+sA/vFdsinvFt. The equation for the slow variableQ
becomes

Q̇ = Q2 −
1

4
+

A2

2vF
2 + fstd. s43d

It shows that, for largevF, we haveAc<vF /Î2. This is in
good agreement with the numerical data in Fig. 6 forvF
*2.

In the intermediate range,vFtr
s0d&1, the motion may not

be separated into slow- and fast oscillating for weak modu-
lation, but separation becomes possible near a critical point,
vFtr@1. Here, the coefficients in the equation of motion for
the slow variable and the effective noise intensity(C7) and
(C12) are nonlocal and had to be evaluated numerically as
functions ofvF.

A. Activation energy

For a periodically modulated overdamped Brownian par-
ticle described by Eq.(40), the activation energy of escapeR
can be found from the variational problem(9) and (10) or,
equivalently(28) [19]. The variablesQ,P,t, and the func-
tion G in the LagrangianL (28) and the Hamiltonian equa-
tions (29) should be changed toq,p,t, and −]Usq,td /]q,
respectively. As explained in Sec. II, there is one optimal
path per modulation period. The initial condition for the mo-
mentump on the optimal path is given by Eq.(30), with
Qastd replaced byqastd [the expression forsa

2 can be further
simplified taking into account the periodicity ofqastd]. Then,
Eqs.(29) can be solved numerically.

The obtained activation energyR as a function of the
modulation amplitude for four characteristic values ofvF is
shown in Fig. 7. The solid lines on this plot correspond to the
results of the numerical solution of the variational problem.
The dashed lines in the panels forvF=0.1,0.25(remember-
ing that tr

s0d=1) show the adiabatic approximation

Rad= minfU„qbstd… − U„qastd…g =
4

3
S1

4
− AD3/2

.

The dash-dot lines in all panels show the locally nonadia-
batic approximation near the bifurcation point, which gives

FIG. 6. The critical amplitudeAc as a function of the modulation
frequencyvF for the system(40). Numerical results are shown by
thick solid lines. The dashed line shows the linear invF nonadia-
batic correction toAc described by Eq.(16). The thin solid line in
the inset describes a correction obtained from the self-consistent
local analysis, Eq.(42). The dash-dot line describes the high-
frequency asymptotic that follows from Eq.(43).
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Rnonad= Sp

8
D1/2S 2

ṁ1
D1/2

sAc − Ad2.

In plotting this expression we used the values ofAc and ṁ1
found numerically(they were very close to the analytical
expressions given above).

Finally, the dashed lines in Fig. 7 in the panels forvF
=0.5,1 show scaling for the effectively fast-oscillating re-
gime near the bifurcation point, with

Rfast=
4

3
b83/2D

D̃
sAc − Ad3/2.

The coefficientsb8 andD̃, as given by Eqs.(C7) and(C12),
were obtained numerically.

It is seen from Fig. 7 that, for smallvF, the adiabatic
approximation applies over a broad region of driving ampli-
tudes. Near the bifurcation point it gives scalingR~ sAc

−Adj, with j=3/2 (cf. the panel forvF=0.1). However, close
to the bifurcation point this scaling does not work. Instead,
the nonadiabatic dynamic scaling withj=2 emerges. For
vF=0.1 the range of the nonadiabatic scaling is compara-
tively narrow.

As the frequency increases, the amplitude range charac-
terized by thej=2 scaling dramatically increases. ForvF
=0.25 this is practically the only scaling seen near the bifur-
cation point.

With further increase ofvF, close to the bifurcation point
a region of the fast-oscillation scalingR~ sAc−Adj emerges
where againj=3/2. Thepanel forvF=0.5 shows a cross-
over from the scalingj=3/2 very close to the bifurcation
point to the scalingj=2 further away fromAc. Note that the

frequencyvF=0.5 is neither small nor large, and therefore
there is a noticeable difference in the coefficients atsAc

−Ad2 obtained from the full variational problem forR and
from the locally nonadiabatic theory near the bifurcation
point.

WhenvFtr
s0d*1 we do not expect to see scaling for either

the adiabatic or locally nonadiabatic regime. The only scal-
ing to be expected near the bifurcation point is the fast-
oscillation one, withj=3/2.This is indeed seen in the panel
for vF=1 in Fig. 7. We note that the global fast-oscillation
approximation(43) does not apply forvFtr

s0d=1.

B. Simulations

An additional test of the results can be obtained by di-
rectly simulating the Brownian dynamics described by Eq.
(40). We conducted such simulations using the second-order
integration scheme of stochastic differential equations devel-
oped in Ref.[33]. As a result of the simulations we obtained
the probability distribution of the dwell time in the meta-
stable statepdwstd. It gives the probability density(over time)
for a system prepared att=0 close to the attractor to stay in
the basin of attraction until timet and leave at that time.

The dwell time distribution is simply related to the time-
dependent escape probabilityWstd, which gives the probabil-
ity current from the attraction basin at timet if the system
were in the stable state att=0 [16]

pdwstd = WstdexpF−E
0

t

dt8Wst8dG . s44d

The average escape rate is given by the mean dwell time

FIG. 7. The activation energy
of escapeR vs. modulation ampli-
tudeA on the logarithmic and lin-
ear (inset) scales for a Brownian
particle in a modulated potential
(40). The values ofvF are indi-
cated on each panel. The thick
solid lines show the results of the
numerical solution of the varia-
tional problem forR. The dashed
lines for vF=0.1,0.25 show the
adiabatic approximation, whereas
for vF=0.5,1.0 they show the ap-
proximation of effectively fast os-
cillations: in both cases the scal-
ing exponent isj=3/2 (for vF

=0.1 this asymptotic scaling is
shown by the thin solid line). The
dash-dot lines show thej=2 scal-
ing (38). The dots show the results
of numerical simulations of Eq.
(40).
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W̄= FE
0

`

dt tpdwstdG−1

. s45d

We studied small noise intensities so thatW̄!vF; then, W̄
was independent of the position of the “observation” pointq.

In practice, we calculatedpdwstd by detecting the system
at time t at a pointq that lies well beyond, but not too far
from, the oscillating boundaryqbstd. In most simulations the
system was prepared initially at the stable stateqastd; we

found thatW̄ was independent of the initial state provided it
was close toqastd.

The dwell-time distribution for a particular set of param-
eter values in Eq.(40) is shown in Fig. 8. The data refer to
modulation at a comparatively low frequency and with com-
paratively small amplitude. The functionpdwstd is strongly
modulated in time, with periodtF. This means that escape
events are strongly synchronized by the modulation, in
agreement with the analytical results forWstd obtained for
the same model in Ref.[16].

The average escape rateW̄ was found from the data of the
type shown in Fig. 8 by calculating the mean dwell time(45)
and also from an exponential fit of the envelope ofpdwstd.
These two approaches gave the same result. For each set of
A,vF ,D we observed,105 escape events. Then,D was
changed. The activation energy of escape was found from

ln W̄ for 2–4 values ofD. We tested that it was independent
of D in the rangeR/D*6.

The data of simulations are shown in Fig. 7 by dots. For
all parameter values they are in excellent agreement with the
results of the numerical solution of the variational problem
(9).

VI. CONCLUSIONS

In conclusion, we have identified three regions near a bi-
furcation point where the activation energy of escape dis-
plays scaling behavior as a function of the amplitude of pe-
riodic modulation. The main results refer to slow

modulation, wherevFtr!1. We showed the emergence of
nonadiabatic behavior in this region. The nonadiabaticity
leads to a crossover from the scaling with exponentj=3/2,
previously found for stationary systems, to a new dynamical
scaling with j=2. The j=2 region first emerges near the
bifurcation point and then expands with increasing modula-
tion frequency. With further increase ofvF the crossoverj
=2 to j=3/2 can beobserved. Again, the effectively fast-
oscillating region withj=3/2 scaling first emerges near the
bifurcation point. Even though the widths of the regions of
different scaling depend on the parameters of a system, the
phenomenon of scaling crossovers should be universal.

The onset of thej=2 scaling is a consequence of the
slowdown of motion near a bifurcation point. The adiabatic
relaxation time of the systemtr strongly depends on the dis-
tance to the bifurcation point,tr~ sAc−Ad−1/2. The non-
adiabatic scaling emerges wheretr becomes,ftFtr

s0dg1/2. For
smalleruAc−Au the dependence oftr on Ac−A becomes weak,
while tr still largely exceeds the modulation periodtF. This
is associated with avoided crossing of the stable and unstable
states, which occurs with decreasingAc−A as these states are
pressed against each other when the system approaches the
adiabatic bifurcation point; see Fig. 2.

In both the adiabatic regime and the nonadiabatic regime
for vFtr!1, escape is most likely to occur while the equilib-
rium states are close to each other. The escape rate is there-
fore determined by the behavior of the system for a small
portion of the modulation period, i.e., locally in time.

The regime of effect fast oscillations near the bifurcation
point emerges forvFtr@1. It can arise even where the modu-
lation period tF exceeds the relaxation time far from the
bifurcation point. In this regime the motion is controlled by a
slow variable, but the dynamics of this variable is no longer
determined by local(in time) characteristics. The relevant
characteristics are obtained by averaging the appropriate pa-
rameters along the critical periodic trajectory of the system
into which the stable and unstable periodic cycles merge at
the bifurcation point.

We have developed a general formulation of escape of
periodically modulated systems driven by colored Gaussian
noise. Near a bifurcation point slow motion of the system
filters out high-frequency components of the noise spectrum
and makes the noise effectively white. From the theoretical
point of view it is interesting that, in the locally nonadiabatic
regime ofj=2 scaling, the instanton-like optimal escape path
can be found fromlinear equations of motion.

We expect that the newj=2 scaling and the scaling cross-
overs can be seen in various systems. Examples are modu-
lated Josephson junctions, nanomagnets, and optically
trapped Brownian particles, where escape in the presence of
modulation has been studied already experimentally, albeit in
different regimes.
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FIG. 8. The scaled probability density of the dwell timep̃dwstd
=pdwstdtF obtained by numerical simulations of a Brownian particle
in a modulated potential, Eq.(40). The parameters areA=0.1, D
=0.05,vF=0.25(solid line). The dashed line shows the exponential

fit of the envelope with decrementW̄tF=0.008.
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APPENDIX A: VARIATIONAL EQUATIONS FOR THE
ESCAPE PROBLEM

We will consider here the optimal trajectory that the sys-
tem is most likely to follow in escape,qoptstd, and the ran-
dom forcefoptstd that drives the system during this motion.
The trajectoriesqoptstd ,foptstd provide the absolute minimum
to the functionalRfq ,fg (9). The variational equations have
the form

E dt8 F̂st − t8dfst8d − lstd = 0, sA1d

l̇ = − = sl ·K d, sA2d

q̇ − K sq;A,td − fstd = 0, sA3d

(here and below we use the caret symbol to indicate a matrix;
=;] /]q).

From Eqs.(7) and (A1) it follows that the optimal noise
realization is expressed in terms of the Lagrange multiplierl
and the matrix of the noise correlation functionsŵ (3) as

fopt = D−1E dt8ŵst − t8d lst8d. sA4d

Therefore, for the optimal path, the activation energy func-
tional (6) is

R =
1

2
D−1E E dt dt8lstdŵst − t8dlst8d, sA5d

[note that the noise intensityD drops out fromR, because
the correlation functionswi jstd are proportional to the noise
intensity themselves].

From the structure of the functional(A5) (integration over
time goes from −̀ to ` and the integrand is non-negative),
and from the fact that the system is initially in the vicinity of
a stable state, one immediately derives the boundary condi-
tion (8) for t→−`. We show this by generalizing to periodi-
cally driven systems the analysis of Ref.[26] for stationary
system.

Close to a periodic stable stateqastd time evolution of
lstd can be described using the matrixm̂astd=s]Ki /]qjda,
where the derivatives are evaluated for the stateqastd. Be-
cause of the periodicity ofqastd, the matrix m̂astd is also
periodic in time. It determines the monodromy matrix

M̂astd = Tt expFE
t

t+tF

dt1 m̂ast1dG ,

whereTt is the operator of chronological ordering(cf. Ap-

pendix C). The matrixM̂a shows how the distance between a
point q and the cycleqastd varies over the modulation period
in the absence of noise for smalluq−qastdu

qst + tFd − qastd = M̂astdfqstd − qastdg.

From the condition thatqastd is a stable state, the eigenvalues

of the matrixM̂a are all less than 1 in absolute value: in this

case the distance betweenq andqastd decreases with increas-
ing time.

It is seen from Eq.(A2) that the monodromy matrix forl

is the inverse transpose ofM̂a. Therefore, its eigenvalues are
all larger than 1 in absolute value. Hence, if the system is in
the stable stateqastd for t→−`, then lstd→0 for t→−`,
and from(A1) fstd→0, too.

For the periodic saddleqbstd on the boundary of the at-
traction basin, one of the eigenvalues of the corresponding
monodromy matrix exceeds 1 in absolute value. This saddle-
type boundary, that can merge with an attractor at a saddle-
node bifurcation, is the one in which we are interested. One
eigenvalue of the matrix that describes time evolution ofl is
,1, respectively. Ifl is pointing along the corresponding
eigenvector, it will decay ast→`. Then,fstd will decay, too,
from Eq. (A1). This means that the system may asymptoti-
cally approach a saddle-type state. Note that there are no
optimal paths that would go from one stable state to another,
because the conditionl→0 for t→` is not satisfied there.
This explains the boundary condition(8) for t→`.

Because the functionK is periodic in time, Eqs.
(A1)–(A3) with boundary conditions(8) have a periodic set
of solutions. Ifqstd ,fstd ,lstd is a solution, thenqst+tFd ,fst
+tFd ,lst+tFd is a solution, too. These solutions are hetero-
clinic orbits: they connect the statesqastd ,f =l=0 and
qbstd ,f =l=0, which are also solutions of Eqs.(A1)–(A3).
Generally, only one heteroclinic orbit per period provides the
minimum to the functionalR (9).

1. Escape in systems with a slow variable

Equations(A1)–(A3) are largely simplified if one of the
motions in the system is slow and all other variables follow
this motion adiabatically, i.e., their relaxation timetr

s0d is
much smaller than the relaxation time of the slow variabletr,
at least for a part of the modulation period near a bifurcation
point. We will assume that slow motion is described byq1;
the variableq1 itself may be a periodic function modulated
by a slowly varying factorQ1, as in the case discussed in
Sec. III C. In this case we will be interested primarily in the
factor Q1.

Over a time,tr
s0d, the variablesqi.1 reach their equilib-

rium valuesqi8sq1,td for given q1,t or sQ1,td. They are de-
termined by the equation

q̇i8 = Kisq1,qi.18 ;A,td + f i si . 1d. sA6d

In the absence of noise,f i =0, the solutions of these equa-
tions are periodic. As we will see below, the termsf i here are
small and give small corrections.

It is important that the periodic solutionsqi.18 with f i.1
=0 be stable. From this condition and Eq.(A2) it follows
immediately thatli.1=0, otherwise the componentsli.1
would exponentially grow in time, leading to the onset of a
large force that would drive the system away from the state
(A6) with given q1.

The nonzero component of the Lagrange multiplierl1 is
determined by the component of the optimal forcef1. The
latter should overcome the restoring force on the slow vari-

SCALING AND CROSSOVERS IN ACTIVATED ESCAPE… PHYSICAL REVIEW E 69, 061102(2004)

061102-13



ableq1 and drive it from the stable to the unstable state. But,
the slowness ofq1 means that the restoring force is small,
and therefore the forcef1 should be small, too. It is smaller
than the force that would be needed to overcome the restor-
ing force for the fast variables by at least a factor,tr

s0d / tr.
Therefore,l1 is small as well.

For a givenl1std we can find all componentsf i.1 from
Eq. (A4). They are all~1/tr, and therefore to lowest order in
tr
s0d / tr they can be disregarded in the solution of Eq.(A6) for

qi.1.
The problem of escape is therefore reduced to a one-

dimensional problem for the variableq1, the forcef1, and the
Lagrange multiplierl1. In Eq.(A3) for q1, the functionsqi.1
should be replaced byqi.18 calculated forf i =0.

Further simplification occurs if the noise spectrum is
smooth. The analysis here is different for the cases of slow
and fast modulation, i.e., whethervFtr is small or large. The
casevFtr@1 is discussed in Appendix C. Here and in Ap-
pendix B we consider the casevFtr!1. The major effect of
noise on the slow variableq1 comes from the noise spectral
components at frequenciesv&1/tr. If the noise spectrum is
flat for such frequencies, the noise can be assumed to be
white on the “slow” time scale. In other words, the correla-
tion functionw11std can be replaced by 2Ddstd [in this situ-
ation it is convenient to chooseD from this condition rather
than to define it by Eq.(4)]. Then,F11std= 1

2dstd.
For a 1D system driven by white noise of intensityD,

Eqs.(A1)–(A3) have a solution

f1std = 2l1std = q̇1 − K1,

R =
1

4
E dtsq̇1 − K1d2. sA7d

This reduces the variational problem of finding the optimal
path to the known formulation for white-noise driven sys-
tems[32].

APPENDIX B: REDUCED EQUATION OF MOTION FOR
SLOW DRIVING

In this Appendix we derive simplified equations of motion
for the case of slow driving, where the relaxation timetr
!tF and the motion can be described in the adiabatic ap-
proximation. We will consider the vicinity of the adiabatic
bifurcation pointq=0,t=0,A=Ac

ad. A convenient basis forq
is provided by the set of the right eigenvectors of the matrix
m̂=s]Ki /]qjd, where the derivatives are evaluated at the adia-
batic bifurcation point. In this basis the equation of motion
(1) has the form

q̇i < miqi +
1

2o j ,k
Ki; jkqjqk + Ki;AdAad+ Ki;tt

+
1

2
Ki;ttt

2 + o j
Ki; jtqjt + f istd. sB1d

Here,Ki; jk=]2Ki /]qj ]qk, Ki;A=]Ki /]A, etc., with all deriva-
tives calculated at the adiabatic bifurcation point, anddAad

=A−Ac
ad. Since the functionK depends ont only in terms of

the modulation phasef=vFt, we haveKi;t~vF. The expan-
sion in t in (B1) is, in fact, an expansion invFt.

Because the eigenvaluem1 is equal to zero, for smalluqu
relaxation ofq1 is much slower than relaxation ofqi.1. In the
absence of noise, over the relaxation timetr

s0d the variables
qi.1 approach their quasistationary values for givenq1 and
f=vFt. They can be obtained from the equations of motion
(B1) for qi.1, in which q̇i and f istd are disregarded

qi < − mi
−1fKi;tt + Ki;11q1

2 + Ki;AdAad+ ¯ g si . 1d.

sB2d

Here, the major term is linear invFt. The full expression is a
series inq1,vFt, anddA, and the omitted terms are of higher
order in these variables. Because of the noise,qi.1 will ad-
ditionally perform small fluctuations with amplitude~D1/2.

The dynamics of the slow variableq1 on times exceeding
tr
s0d is given by Eq.(B1) with i =1, in whichqi.1 are replaced

with their quasistationary values. To lowest order inq1, dAad,
andvFt, only the linear int term should be kept in Eq.(B2).
This gives

q̇1 = aq1
2 + bdAad− ag2svFtd2 + f1std,

a = 1
2K1;11, b = K1;A, sB3d

with

g2 = − K1;11
−1 vF

−2sK1;tt + oi,j.1
mi

−1m j
−1K1;i jKi;tKj ;t

− 2o j.1
m j

−1K1;jtKj ;td . sB4d

Note that the coefficientg is independent ofvF.
Equation(B3) reduces the multidimensional problem of

random motion near a bifurcation point to a one-dimensional
problem. It was derived earlier in Refs.[34,35] for the case
of a one-dimensional overdamped system driven by an addi-
tive periodic force. Besides the noise term, it differs from the
equation of motion for stationary systems in the vicinity of a
saddle-node bifurcation point[10] in that it has a term
~svFtd2.

Depending on the sign ofdAad, Eq. (B3) has either two
adiabatic solutions

sq1da,b
ad = 7sgnsadf− sb/addAad+ sgvFtd2g1/2, sB5d

or none. For concreteness, we assume that the adiabatic so-
lutions exist fordAad,0, i.e.,ab.0. The solutions are even
functions of time. They touch each other att=0 for dAad

=0. We assume that the periodic adiabatic statesqa,b
ad std exist

for all times provideddAad,0.
The termK1;tt in Eq. (B1) has to be equal to zero, other-

wise the bifurcation point will be far fromdAad= t=0. On the
other hand, the equation of motion(B3) may contain the
term Cq1vFt, whereC is a sum ofK1;1t and appropriately
weighted productsK1;1iKi;t. This term can be eliminated by a
linear transformationq1→q1+CvFt /2a and renormaliza-
tions dAad→dAad+CvF /2ab, g2→g2+sC/2ad2. The renor-
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malizedg2 should be positive, if the stable and unstable adia-
batic periodic states touch each other only fordAad= t=0 and
only once per period.

The term ~q1vFt does not arise in the important case
where the modulation is performed by an additive periodic
force Fstd; see Eq.(2). Here, the adiabatic statesqa,b

ad std cor-
respond to the minimum and maximum of the potential
U0sqd−Fstd ·q; cf. Fig. 1(a). They merge first with increasing
modulation amplitudeA when the field componentuF1u is at
its maximum overt. This means that]tK =]qt

2 K =0 at the
bifurcation point.

As explained in Sec. III, the typical relaxation time near
the bifurcation point does not exceedtl =sagvFd−1/2. If the
correlation time of the noisef1std is much less thantl ,tr

ad, and
the power spectrum of the noise does not have singular fea-
tures for high frequencies, then the dimensionless noise

f̃std ; sgvFd−1f1std st = t/tld, sB6d

is effectivelyd-correlated as a function of the “slow” timet,

with k f̃std f̃s0dl=2D̃dstd. From Eqs.(B6), the effective noise
intensity is

D̃ = ua/4u1/2sgvFd−3/2E
−`

`

dt w11std. sB7d

APPENDIX C: REDUCED EQUATION OF MOTION FOR
FAST DRIVING

In this section we consider the case where modulation
near the bifurcation point is effectively fast, so thatvFtr
@1. Here, throughout the modulation cycle the stable and
unstable statesqa,bstd stay close to each other and to the
critical cycleqcstd into which they merge at the bifurcation
point A=Ac. Therefore, the equation of motion(1) can be
expanded indq=q−qcstd, A−Ac, leading to Eq.(22). The
expansion coefficients are periodic in time.

It is convenient to start the analysis by simplifying the
part of Eq.(22)

dq̇ = m̂dq, m̂ = m̂st + tFd,

that describes motion in the linear approximation indq. We
introduce the matrixk̂st ,tid such that

k̂st,tid = Tt expSE
ti

t

dt1m̂st1dD , sC1d

whereTt is the operator of chronological ordering. This ma-
trix satisfies the equation]k̂st ,tid /]t=m̂stdk̂st ,tid and gives

the monodromy matrixM̂

M̂std ; M̂st + tFd = k̂st + tF,td.

The eigenvaluesMn of the matrixM̂ determine the evolution
of dqstd in linear approximation. Over the periodtF, the
coefficients of the expansion ofdqstd in the right eigenvec-

tors enstd of M̂ change inMn times (we use Greek letters to
enumerate eigenvalues and eigenvectors; they should be dis-

tinguished from the vector components, likeqi). The eigen-
valuesMn are independent of time because of periodicity of

M̂std ,m̂std. They are simply related to the Floquet exponents
for the periodic stateqcstd.

At the saddle-node bifurcation, where stable- and saddle-
type states coalesce, one of the eigenvalues(for example,
M1) becomes equal to 1, whereasuMn.1u ,1. This means
that the system is attracted toqcstd in all directions except for
the critical directione1std; the distance fromqcstd alonge1std
does not change over the period, in linear approximation. In
what follows we choosee1 to be real.

For smalldA of an appropriate sign, the stateqcstd splits
along e1std into a stable and an unstable state. The system
approaches the vicinity of these states along the directions
en.1 over a short timetF maxf1/ulnuMn.1uug, tr

s0d. In con-
trast, the motion alonge1 is slow.

The e1 component ofdq is the soft mode. We are inter-
ested in its dynamics in long times compared totr

s0d ,tF. The
analysis is simplified by the fact that, fort− ti
@ utF / lnuMn.1uu, the matrixk̂st ,tid projects any vectordqstid
on the vectore1std. In particular

k̂st,tide1stid < k11st,tide1std. sC2d

This is a consequence of the transitive propertyk̂st ,tid
= k̂st ,t8dk̂st8 ,tid and the fact that, for an arbitrary vectordq,

we haveM̂nstddq→Ce1std for n→`. The functionk11 in Eq.
(C2) is given by the expression

k11st,tid = ē1std · k̂st,tide1stid.

Here, ē1 is the left eigenvector of the matrixM̂, which cor-
responds to the eigenvalueM1=1, and we use the normaliza-
tion ē1std ·e1std=1. The matrix elementk11st ,tid is periodic,
k11st+tF ,tid=k11st ,tid.

The equation of motion fork11st ,tid for larget− ti follows
from Eq. (C1)

]

]t
fk11st,tide1stdg = m11stdk11st,tide1std,

m11std = ē1std · m̂stde1std. sC3d

Close to the bifurcation point, the component ofdq along
the vectore1std has a slowly varying factor. In contrast, the
components ofdq along the vectorsen.1 are “fast.” Over
time *tr

s0d they reach quasiperiodic values for a given value
of the slow component, and then fluctuate with amplitude
~D1/2. From (22), the quasiperiodic values are quadratic in
the slow component, and therefore small. As a consequence,
the slow motion is indeed one-dimensional

dqstd < Q1stdk11st,tide1std. sC4d

The instantti here is arbitrary;Q1std contains a multiplicative
factor that depends onti [but dqstd is independent ofti]. The
time ti drops out of all final expressions; see Sec. IV.

The equation forQ1std is obtained by substituting Eq.
(C4) into Eq. (22) and then multiplying Eq.(22) by the vec-
tor ē1std from the left. This gives
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k11st,tidQ̇1 = KsQ1,td + ē1std · fstd,

KsQ1,td = 1
2k11

2 st,tidQ1
2se1std · ¹ d2K1 + dAs]AK1d,

sC5d

whereK1= ē1·K .
In the absence of noise, the solution of Eq.(C5) is a sum

of smooth and oscillating parts,Q1std=Qsmstd+Qosc. The
term Qsm remains nearly constant on the time scaletF,

whereasQ̇osc,vFQosc. It is seen from Eq.(C5) that Qosc

~dA. The termQsm is much larger. An equation forQsm can
be obtained by averaging Eq.(C5) over time. It has the form

Q̇sm= a8sQsmd2 + b8dA + f8std. sC6d

The coefficientsa8 ,b8 in Eq. (C6) are given by the ex-
pressions

a8 =
1

2
kk11st,tidse1std · = d2K1lt,

b8 = kk11
−1st,tid ] K1/] Alt, sC7d

wherek·lt means period-average centered at timet

kGlt = tF
−1E

t−tF/2

t+tF/2

dt8 Gst8,tid. sC8d

The result of the averaging(C8) is independent oft for time-
periodic G, as in the case of the coefficientsa8 ,b8. There-
fore, a8 ,b8 are independent oft.

The functionf8std in Eq. (C6) is a random force

f8std = kk11
−1st,tidē1std · fstdlt. sC9d

Equation(C6) has the same form as the equation for the
soft mode in the adiabatic limit(12) in the absence of the
term~svFtd2. For a8b8dA,0 the system has a stable and an
unstable stationary solutionQa,b

sm. These solutions are given
by an equation similar to Eq.(19)

Qa,b
sm = 7 sgnsa8ds− b8dA/a8d1/2, sC10d

(in what follows, without loss of generality we seta8.0).
Typical values ofQsm are ~udAu1/2, as seen from Eq.

(C10). They largely exceed the amplitude of the fast vari-
ables indq, which are all~dA, in the neglect of noise. The
relaxation time ofQsm is tr= u2aQa

smu−1~ udAu−1/2. It is much
larger thantF close to the bifurcation point. The condition
vFtr@1 was the major approximation made in the derivation
of Eqs. (C5) and (C6), besides the condition of the weak
noise.

A transformation fromQsm,t to reduced variables

Q = a81/2Qsm, t = a81/2t, sC11d

allows us to write Eq.(C6) in the compact form(23). The

random force f̃std= f8sa81/2td, is effectively d-correlated.
From Eqs.(3) and (C9), its intensity is

D̃ = ua8/4u1/2E
−`

`

dt1 kk11
−1st + t1,tidk11

−1st + t2,tid

3 ē1st + t1d · ŵst1 − t2dē1st + t2dlt. sC12d

Here,ŵ is the matrix of the noise correlation functions(3).
As a result of the period averaging overt, in Eq.(C12) the

integrand becomes a function oft1− t2, and therefore the in-
tegral overt1 is independent oft2. Still, it depends onti, but
this dependence will drop out of the final expressions for
observable quantities, in particular the activation energy of
escape.
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