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Noise-induced escape from a metastable state is studied for an overdamped periodically modulated system.
We develop an asymptotic technique that gives both the instantaneous and period-average escape rates, includ-
ing the prefactor, for an arbitrary modulation amplitude A. We find the parameter range where escape is
strongly synchronized and the instantaneous escape rate displays sharp peaks. The peaks vary with increasing
modulation frequency or amplitude from Gaussian to strongly asymmetric. The prefactor � in the period-
average escape rate depends on A nonmonotonically. Near the bifurcation amplitude Ac it scales as �� �Ac

−A��. We identify three scaling regimes, with �=1/4, −1, and 1/2.
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I. INTRODUCTION

Noise-induced escape from a metastable state is an inter-
esting effect of the interplay of nonlinear dynamics and fluc-
tuations that has been attracting much attention since the
Kramers paper �1�. Escape and the resulting interstate
switching are becoming increasingly more important for ap-
plications, particularly in nanotechnology where the size of
the system is small and fluctuations are comparatively large.
Recently much work on escape has been done for systems
driven by time-dependent fields. Examples include transi-
tions in modulated nano- and micromechanical oscillators
�2,3�, Josephson junctions �4–6�, and nanomagnets �7–9�.
Modulation changes the activation barrier. This enables both
efficient control of the escape rate and accurate measurement
of the system parameters �2,10�. Because in escape the sys-
tem moves far away from its metastable states, studying es-
cape provides an insight into the global dynamics of the
system.

The most frequently used types of modulation are ramp-
ing of a control parameter and periodic modulation. Ramping
is usually done slowly, and it is assumed that the system
remains quasistationary �11�. Periodic modulation is concep-
tually simpler as periodic metastable states are well defined
irrespective of the modulation frequency. However, a theory
of the escape rate is more complicated, because the system is
away from thermal equilibrium �12�. Recently significant at-
tention was attracted also to escape over a randomly fluctu-
ating barrier �13,14�.

In the present paper we study periodically modulated sys-
tems and extend to them the analysis of the escape rate done
by Kramers for systems in thermal equilibrium �1�. Our ap-
proach gives the full time-dependent escape rate W�t� as well

as the period-average rate W̄=� exp�−R /D�, where R is the
activation energy of escape and D is the noise intensity, D
=kBT for thermal noise. We find W�t� for an arbitrary modu-
lation amplitude A and an arbitrary interrelation between the
modulation frequency �F and the relaxation time of the sys-
tem tr. We show that the prefactor � depends on A strongly
and nonmonotonically. It displays scaling behavior near the
bifurcational modulation amplitude Ac where the metastable
state of the system disappears. Preliminary results of this
work were reported earlier �15�.

In the absence of modulation escape can happen at any
time with the same probability density. For systems in ther-
mal equilibrium, the activation energy equals the free energy
barrier height. The prefactor � is given by the generalized
attempt frequency and does not depend on D for not too
small damping �1�.

Even a comparatively weak driving can exponentially
strongly modulate the escape rate leading to strong escape
synchronization for small D �16�. This is easy to see for a
Brownian particle in a slowly modulated potential well �see
Fig. 1�a��: it is most likely to escape once per modulation
period when the barrier is at its lowest. The “time window”
for escape is diffusion broadened. Therefore the period-

average escape rate is W̄�D1/2 �17�.
For an overdamped Brownian particle a transition, with

increasing modulation amplitude A, from the D-independent
prefactor in the absence of modulation �1� to ��D1/2 was
discussed in Ref. �17�. However, the results were limited to
comparatively weak modulation, region I in Fig. 1�b�. The

FIG. 1. �Color online� �a� An oscillating potential barrier. In the
limit of slow modulation, the stable and unstable periodic states qa

and qb are the instantaneous positions of the potential minimum and
barrier top, respectively. The instantaneous escape rate is character-
ized by the current at an “observation point” located at a sufficiently
large distance Q from qb. �b� The dependence of the prefactor � in

the period-average escape rate W̄=� exp�−R /D� on the modulation
amplitude A �schematically�. For A→0, � is given by the Kramers
theory �1�. In regions II and III escape is synchronized and �
�D1/2, where D is the noise intensity. In region III, close to the
critical point Ac where the metastable state disappears, the prefactor
scales as �� �Ac−A�−1. In region IV �� �Ac−A�1/2 is independent
of D.
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range of intermediate modulation, region II, was discussed in
Refs. �18,19�. However, the obtained prefactor in the period-
average rate diverges for A→0. The approach of Ref. �18� is
inapplicable for slow modulation compared to the relaxation
time of the system. In contrast, the technique developed in
the present paper is free from these limitations. The scaling
regions III and IV and the strongly nonmonotonic behavior
of the prefactor have not been previously identified.

To find the instantaneous escape rate W�t� we relate it, in
the spirit of Kramers’ approach, to the current well behind
the boundary qb�t� of the basin of attraction to the initially
occupied metastable state �q is the system coordinate�. We
call the current away from the attraction basin the escape
current. In stationary systems and for the time t�W−1 the
escape current is independent of the coordinate and is the
same on the basin boundary and behind it. In periodically
modulated systems this is no longer the case. A particle that
crossed the boundary at one time may cross it back at a later
time, because the boundary itself is moving. In experiments
the position of the instantaneous basin boundary is not nec-
essarily known. The current is usually detected well behind
the boundary, for example, close to another metastable state.
The functional form of this current is qualitatively different
from that at qb�t� calculated in Refs. �18,19�.

The escape current can be obtained by relating the prob-
ability distributions of the system ��q , t� behind the boundary
qb�t� and close to the attractor qa�t� from which the system
escapes. We do this in two steps. First, we find the general
form of the current-carrying distribution ��q , t� in the bound-
ary layer about qb�t�, where the equation of motion of the
system can be linearized. Then we match it to the distribu-
tion inside the attraction basin but well outside the diffusion
layer around qb�t�. This distribution can be obtained in the
eikonal approximation for small D. It has singular features
�20�. The matching is performed using these singular fea-
tures.

In Sec. II we describe the model and give the general
form of the boundary-layer distribution. In Sec. III this dis-
tribution is used to obtain general expressions for the instan-
taneous and period-average escape rate. Matching of the in-
trawell and boundary-layer distributions is discussed in Sec.
IV. In Sec. V we study the pulse shape of synchronized es-
cape current in different regimes. Section VI provides a brief
discussion of the period-average escape rate in the regions I
and II in Fig. 1�b�. In Sec. VII we identify three different
types of the scaling behavior of the prefactor � close to the
bifurcation point and find the critical exponents. In Sec. VIII
the general results are compared with Monte Carlo simula-
tions for a specific system. In Sec. IX we summarize the
results and sketch a surprisingly rich map of different types
of escape behavior in the plane of modulation parameters.

II. THE MODEL AND THE BOUNDARY-LAYER
DISTRIBUTION

Escape from a metastable state of a periodically modu-
lated system is well characterized if the noise is weak, so that
the escape rate W� tr

−1 ,�F. In this case, over the relaxation
time tr the periodically modulated system will most likely

approach its periodic metastable state �attractor� with the co-
ordinate qa�t�=qa�t+�F� ��F=2	 /�F is the modulation pe-
riod�. Then most likely, it will be performing small fluctua-
tions about qa and will “forget” the initial state q�0�.
Eventually there will occur a large fluctuation in which the
system will go over the boundary qb�t� and leave the basin of
attraction, i.e., escape.

The instantaneous escape rate W�t� is characterized by the
current �q̇�t�� away from the metastable state. The current
has to be measured well behind the boundary qb�t�, so that
the system in practice does not return to the metastable state.

The probability distribution ��q , t� of a periodically
modulated overdamped Brownian particle is given by the
Fokker-Planck equation �FPE�

�t� = − �q�K�q,t��� + D�q
2� . �1�

Here, K�q , t� is the periodic force driving the particle,
K�q , t�=K�q , t+�F��−�qU�q , t�, where �F=2	 /�F is the
modulation period and U�q , t� is the instantaneous potential.

The equation of motion of the particle in the absence of
noise is q̇=K�q , t�. The metastable state qa�t�, from the vi-
cinity of which the system escapes due to noise, and the
basin boundary qb�t� are the stable and unstable periodic so-
lutions of this equation, respectively.

We will assume that the noise intensity D is small. Then

in a broad time range tr� t�1/W̄ the distribution ��q , t� is
nearly periodic in the basin of attraction to qa�t�. The current
away from this basin and thus the escape rate W�t� are also
periodic.

A. Motion near periodic states

The distribution � is maximal at the metastable state qa�t�
and falls off exponentially away from it. In the presence of
periodic driving it acquires singular features as D→0 �20�,
some of which have counterparts in wave fields �21�, with D
playing the role of the wavelength. The singularities accumu-
late near qb�t�. In order to find W�t� one has to understand
how they are smeared by diffusion.

In the absence of noise the motion of the system close to
the periodic states qi�t� �i=a ,b� is described by the equation
q̇=K with K linearized in 
q=q−qi�t�:


q̇ = �i�t�
q, �i�t� = �i�t + �F� � ��qK�qi�t�
. �2�

The evolution of 
q�t� is given by 
q�t�=�i�t , t��
q�t��,
where

�i�t,t�� = exp�	
t�

t

d� �i���
 �i = a,b� . �3�

Over the period �F the distance 
q decreases �for i=a� or
increases �for i=b� by the Floquet multiplier

Mi = �i�t + �F,t� � exp��̄i�F� ,

where �̄i is the period-average value of �i�t�, with �̄a0,
�̄b�0.
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For weak noise the linearized force K can be used to find
��q , t� near qa,b�t�. Near the metastable state qa, the distribu-
tion � is Gaussian �22�,

��q,t� =
1

�2	D�a
2�t�

exp�−
�q − qa�t��2

2D�a
2�t�  . �4�

The time-periodic variance is

�i
2�t� = 2�Mi

−2 − 1�−1	
0

�F

dt1�i
−2�t + t1,t� �5�

with i=a; in the absence of modulation �a
2=1/ ��a�.

B. Distribution near the unstable state

The periodic distribution near the unstable state qb�t�, i.e.,
the boundary-layer distribution, is substantially non-
Gaussian. It corresponds to a periodic current away from the
attraction basin. The distribution can be found from Eq. �1�
using the Laplace transform, similar to the weak-driving
limit �17�:

��q,t� = 	
0

�

dp e−pQ/D�̃�p,t�, Q = q − qb�t� . �6�

We assume that Q is small, �Q��mint�qb�t�−qa�t��. Using the
expansion K= q̇b�t�+�b�t�Q, we obtain from the FPE �1� a
first-order equation for the Laplace transform �̃�p , t�

�t�̃ = �b�t�p�p�̃ + �p2/D��̃ . �7�

This equation can be solved by the method of characteristics,
giving

�̃�p,t� = ED−1/2 exp�− �s��� + p2�b
2�t�/2�/D� . �8�

In Eq. �8�, E is a constant and s��� is an arbitrary zero-mean
periodic function, s��+2	�=s���. They have to be found by
matching ��q , t� �6� to the distribution inside the attraction
basin. The function �b

2�t� in Eq. �8� is given by Eq. �5� with
i=b, and the factor D−1/2 is singled out for convenience.

The phase of the function s is ����p , t�,

��p,t� = �F ln�p�b�t,t��/�̄blD� . �9�

Here,

�F = �F/�̄b � 2	/ln Mb

is the reduced field frequency, lD= �2D / �̄b�1/2 is the typical
diffusion length, and t� determines the initial value of �.
From Eq. �9�, ��p , t+�F�=��p , t�+2	.

III. INSTANTANEOUS AND PERIOD-AVERAGE ESCAPE
RATE

A. General expression for the escape rate

The experimentally accessible instantaneous rate of es-
cape from the metastable state is characterized by the current
j�q , t� from its attraction basin. We assume that this basin lies
for qqb�t�, i.e., qa�t�qb�t�. Then the escape current is the

rate of change of the population in the region �−� ,q�, with q
lying behind the basin boundary qb�t�. As explained in the
Introduction, of interest is j�q , t� for such q that Q=q
−qb�t�� lD. Equation �6� is advantageous as it immediately
gives such a current.

We consider first j�q , t� not for a fixed q, but for a fixed
distance Q=q−qb�t� from the boundary,

j�q,t� = −
�

�t
	

−�

qb�t�+Q

dq ��q,t� � �b�t��„qb�t� + Q,t…Q .

�10�

Here we have used the FPE �1� and linearized K(qb�t�
+Q , t) in Q; we have also disregarded the diffusion current,
which is a good approximation for Q� lD.

The distribution �(qb�t�+Q , t) in the expression for the
current �10� is given by Eqs. �6� and �8�. For Q� lD the term
proportional to p2 /D in Eq. �8� can be neglected compared to
pQ /D. Changing in Eq. �6� to integration over x= pQ /D, we
obtain

j�q,t� = �b�t�ED1/2	
0

�

dx e−x exp�− s��d�/D� ,

�d = ��xD/Q,t� = �F ln�x�b�td,t��� . �11�

Here td� td�Q , t� is given by the equation �b�td , t�= lD /2Q.
It follows from Eq. �11� that in the whole harmonic region

j depends on the observation point Q only in terms of the
delay time td. This time shows how long it takes the system
to roll down to the point Q, �Qtd=−1/ ��b�td�Q�. We note that
�b�t� can be negative for a part of the period, leading to
reversals of the instantaneous current.

The escape rate W̄ is given by the period average j�q , t�.
The averaging can be done for a given q or a given Q behind
the boundary. The result will be the same, since the period-
average value of �qj is equal to zero, and therefore the
period-average current is independent of coordinate. It is
convenient to do time averaging in Eq. �11� by changing
from integration over time to integration over �d with ac-
count taken of the relation d�d /dt=�F�b�t�. The result is
independent of Q, as expected, and reads

W̄ =
�̄b

2	
ED1/2	

0

2	

d� exp�− s���/D� . �12�

Equations �11� and �12� provide a complete solution of
the Kramers problem of escape of a modulated system and
reduce it to finding the function s. It is seen from Eqs. �8�
and �12� that this function has the meaning of the zero-mean
periodic part of the activation energy of escape. Equations
�11� and �12� are similar in form to the expressions for the
instantaneous and average escape rates for comparatively
weak modulation obtained in Ref. �17�. For such modulation
�s��R, which allowed finding s explicitly �see Appendix A�.

B. Synchronization of escape

Periodic modulation may lead to an exponentially strong
time dependence of the escape probability within a period,
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that is, to synchronization of escape events. This effect is
determined by the parameter �sm� /D. Here sm�min� s��� is
the minimal value of s reached for a certain phase �=�m. By
construction, sm0. We will be interested in strong synchro-
nization, when the escape current displays sharp narrow pe-
riodic peaks as a function of time.

Strong synchronization of escape requires that �sm��D �a
more precise criterion will be discussed below�. In this case
the factor exp�−s��d� /D� in Eq. �11� for j�q , t� is a sharp
function of �d. The major contribution to the integral over x
comes from the range where s is close to sm and, respec-
tively, the phase �d is close to �m. The time dependence of
j�q , t� can be found by changing in Eq. �11� from integration
over x to integration over �d. Because �sm��D, the integrand
�dx /d�d�exp�−x− �s /D�� is maximal for �d=�m−2	k with
k=0, ±1, . . .. For such �d and for a given k the integrand is
equal to

gk�t� = �F
−1xk exp�− xk − �sm/D�� ,

where

xk�t� = �b
−1�td,t��exp���m + 2	k�/�F� . �13�

The whole integral �11� is determined by the sum of gk.
As a function of time, gk is maximal for xk=1. Within any

period of time from t to t+�F the condition xk=1 is met only
for one k, and only for one instant of time tk. For all other k
the function xk exp�−xk� is much smaller provided �F�1.
We note that, if xk=1 for a given tk, then it follows from Eqs.
�3� and �13� that xk+1=1 for tk+1= tk+�F. This means that, as
a function of time, the escape rate displays sharp periodic
peaks with period �F. The shape of the peaks will be dis-
cussed below.

When �sm��D, there is no exponential synchronization,
and the escape current smoothly depends on time. It happens
in particular when modulation is weak or the modulation
frequency is large, �F�1.

IV. MATCHING THE INTRAWELL
AND BOUNDARY-LAYER DISTRIBUTIONS

A. Intrawell distribution near the basin boundary

To find j�q , t� we match the boundary-layer distribution
�6� to the tail of the intrawell distribution. The matching has
to be done close to the basin boundary qb�t�, where Eq. �6�
applies, but it is convenient to do it well inside the attraction
basin, −�q−qb�t��� lD, that is, outside the diffusion layer
around qb�t�. Of primary interest is the case of strong modu-
lation, �sm��D, since the case of weak to moderately strong
modulation was considered earlier �17�.

The intrawell distribution in the region −Q� lD �Q=q
−qb�t�� can be found, for example, by solving the FPE �1� in
the eikonal approximation, with the diffusion coefficient D
being a small parameter,

��q,t� = e−S�q,t�/D, S = S0 + DS1 + ¯ �14�

�here, in contrast to Ref. �15� we single out the factor D in S1
explicitly�.

To zeroth order in D, the equation for S0�S0�q , t� can be
written as

�tS0 = − H��qS0,q;t� . �15�

Equation �15� has the form of a Hamilton-Jacobi equation for
the action S0 of an auxiliary conservative system with Hamil-
tonian �23�

H�p,q;t� = p2 + pK�q,t�, p = �qS0. �16�

The auxiliary system is nonautonomous, its Hamiltonian
is a periodic function of time. Since we are interested in the
periodic distribution ��q , t�, we need to find a periodic solu-
tion of Eq. �15�. This can be done using the method of char-
acteristics, i.e., by studying Hamiltonian trajectories
(q�t� , p�t�) of the auxiliary system,

q̇ = K + 2p, ṗ = − p�qK . �17�

Equations �17� have two hyperbolic periodic states
(qa�t� ,0) and (qb�t� ,0), where qa�t� and qb�t� are the meta-
stable state and the basin boundary of the original dissipative
system. We are interested in Hamiltonian trajectories
(q�t� , p�t�) that belong to the unstable manifold of the peri-
odic state (qa�t� ,0). For such trajectories, the action S0�q , t�
is minimal for q=qa�t�, and ��q , t� is maximal, respectively.
Indeed, a straightforward calculation based on Eq. �17�
shows that, for q close to qa�t�, the momentum on the un-
stable manifold is p= �q−qa�t�� /�a

2�t�, where �a
2 is given by

Eq. �5�. Respectively, S0= �q−qa�t��2 /2�a
2�t�, in agreement

with Eqs. �4� and �14� for ��q , t�.
To logarithmic accuracy, the escape rate is determined by

the probability to reach the basin boundary qb�t�, i.e., by the
action S0(qb�t� , t) �16�. The Hamiltonian trajectories of the
auxiliary system that form this action belong to the stable
manifold of the periodic state (qb�t� ,0). The trajectory
(qopt�t� , popt�t�), which minimizes S0(qb�t� , t), approaches
qb�t� asymptotically as t→�. This is a heteroclinic trajectory
of the auxiliary system, an intersection of the unstable and
stable manifolds of the states (qa�t� ,0) and (qb�t� ,0), respec-
tively �20�.

In the case of dissipative systems with detailed balance,
including systems in thermal equilibrium, the corresponding
manifolds coincide with each other. However, in nonequilib-
rium systems this is no longer true. In periodically modu-
lated systems there is only one heteroclinic trajectory with
minimal S0 per period. The coordinate qopt�t� on this trajec-
tory is the most probable escape path �MPEP�. This is the
trajectory that the original system is most likely to follow in
escape. It is physically observable and has been seen in both
experiments and simulations �16�.

Close to qb�t�, the Hamiltonian equations �17� for
q�t� , p�t� can be linearized and solved. On the MPEP

popt�t� = − Qopt�t�/�b
2�t� = �b

−1�t,t��popt�t�� ,

S0„qopt�t�,t… = R − Qopt
2 �t�/2�b

2�t� , �18�

where Qopt�t�=qopt�t�−qb�t�. The quantity R
=S0(qopt�t� , t)t→� is the activation energy of escape.
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Equations �18� apply to an arbitrary trajectory on the
stable manifold of the state (qb�t� ,0) close to this state. The
MPEP is just one such trajectory. It is determined by the
condition that it starts at (qa�t� ,0) for t→−�. This condition
synchronizes the trajectory and determines popt�t� for a given
t. It is important that the optimal paths are periodically re-
peated in time with period �F. The values of popt�t� form
an infinite series. For neighboring paths they differ by the
factor Mb

−1. They can also be thought of as the values
of popt�t+k�F� for the same MPEP and different k, with
popt�t+k�F�→0 for k→�.

From Eqs. �18�, everywhere on the stable manifold of
(qb�t� ,0) the action has the form

Sb�q,t� = R − Q2/2�b
2�t� . �19�

It is parabolic as a function of Q.
Due to nonintegrability of the dynamics with Hamiltonian

�16�, the action surface S0�q , t�, which gives the intrawell
probability distribution �14�, becomes flat for small Q−Qopt
�20�. It touches the surface Sb�q , t� on the MPEP. Away from
the MPEP S0�q , t��Sb�q , t�. Therefore the function

�b�q,t� = ��q,t�exp�Sb�q,t�/D� �20�

is maximal on the MPEP.
The prefactor of the eikonal-approximation distribution is

given by the term exp�−S1�; cf. Eq. �14�. On the MPEP the
auxiliary function z=exp�2S1� obeys the equation �24�

d2z

dt2 − 2
d�z�qK�

dt
+ 2zp�q

2K = 0, �21�

where q=qopt�t�, p= popt�t�. The initial condition to this equa-
tion follows from the explicit form �4� of ��q , t� near the
stable state,

z�t� → 2	D�a
2�t�, t → − � . �22�

Close to qb�t�, from Eq. �21�,

z�t� = D�Z1�b
2�t� + Z2popt

−2 �t�� , �23�

where Z1,2 are constants �18,25�. This solution was found in
Ref. �18�, but the term proportional to Z1 was disregarded.

B. Matching the exponents and prefactors

We are now in a position to match the functions �b�q , t�
�Eq. �20�� as given by the eikonal approximation �14�, �18�,
and �23� and the boundary-layer solution �6�. In the spirit of
the eikonal approximation, matching should be done in the
vicinity of the MPEP, where �b is maximal.

The eikonal approximation applies when the optimal es-
cape paths qopt�t+k�F� �k=0, ±1, . . . � are separated by a
large distance compared to the diffusion length lD. For small
noise intensity D the corresponding range incorporates much
of the harmonic region near qb�t�, because the width of the
latter region �q is independent of D and �q� lD for small D.
Physically, lD characterizes the width of the tube of paths
along which the system moves in escape �16�. In the region
−Q� lD the tubes of escape paths overlap and the eikonal
approximation no longer applies.

In contrast, the boundary-layer distribution Eq. �6� covers
the whole harmonic region �Q���q, including the diffusion-
dominated region �Q�� lD. Thus, for small noise intensity D,
the two distributions should overlap in a broad range lD�
−Q��q inside the harmonic region but outside the
diffusion-dominated layer.

We first consider the boundary-layer expression �6� for
�b�q , t� in the region −Q� lD and for strong modulation
�sm��D. As we show, �b�q , t� is maximal for all times t pro-
vided q lies on an appropriate trajectory that belongs to the
stable manifold of qb�t�.

Equation �6� is simplified for −Q� lD, because the inte-
gral over p can be evaluated by the steepest descent method.
The extremum of the integrand is given by the condition

p�b
2�t� + Q + �Fp−1 ds

d�
= 0.

The integrand is maximal if p=−Q /�b
2�t� and s is minimal

for this p, i.e., ��p , t�=�m and s=sm. The relation p=
−Q /�b

2�t� holds for any trajectory on the stable manifold of
qb�t�; cf. Eq. �18�. Moreover, since on these trajectories p
= p�t�=�b

−1�t , t��p�t��, it follows from Eq. �9� that ��p , t�
=const. Therefore if the phase �=�m for one instant of time,
it will be equal to �m for all times.

The function �b �20� calculated in the eikonal approxima-
tion is maximal on the MPEP. Therefore �b in the boundary-
layer approximation should be maximal on the MPEP as
well. It follows from the above arguments that it will indeed
be maximal on the MPEP provided

�„popt�t�,t… = �m. �24�

This amounts to choosing the appropriate initial phase �the
value of t�� in Eq. �9�. With this choice, steepest descent
integration in Eq. �6� gives the boundary-layer distribution
near the MPEP in the form

��q,t� = Eb�t�exp�− Sb�q,t�/D� ,

Eb�t� = ẼD−1/2��b
2�t� + �F

2sm� popt
−2 �t��−1/2, �25�

where

Ẽ = E�2	D�1/2 exp��R − sm�/D� ,

sm� = �d2s/d�2��m
. �26�

It is seen from Eqs. �18� and �25� that, with the right
choice of phase, the exponents of the boundary-layer and
eikonal-approximation distributions coincide with each other
along the MPEP. Moreover, the slopes �qSb�q , t�, which are
determined by popt�t�, also coincide.

For the matching of the distributions to be complete, the
function Eb�t� of the boundary-layer distribution �25� should
match on the MPEP the prefactor of the eikonal-
approximation distribution z−1/2 �23�. Remarkably, they in-
deed have the same form, as functions of time, near qb�t�.
Therefore the parameters Z1 and Z2 allow one to determine
E and sm� , and vice versa, E and sm� give Z1 and Z2. With the
appropriately defined parameters, not only the exponents but
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also the prefactors of the boundary-layer and eikonal distri-
butions fully match each other.

The function popt�t� exponentially decays with time, and
therefore the term proportional to popt

−2 �t� in Eb and z−1/2 ex-
ponentially increases as t→�. This leads to qualitatively dif-
ferent forms of the prefactor for different frequencies and
strengths of the modulation. For �F

2sm� � lD
2 /�b

2�t�, which cor-
responds to slow and not too strong modulation �see below�,
the term proportional to popt

−2 in Eb is small in the whole
harmonic region. Then the constant Z2 in z�t� should be
small as well. In this case the prefactor is determined by the
constant Z1. This gives

Ẽ = Z1
−1/2. �27�

In the opposite case of very strong and/or higher-
frequency modulation, where �F

2sm� ��q2 /�b
2�t�, the term

proportional to popt
−2 is much larger than �b

2�t� in the whole
harmonic region, and the constant Z1 in z�t� can be disre-
garded. In this case

Ẽ/�F
�sm� = Z2

−1/2. �28�

Equation �25� describes also the intermediate case where
the term proportional to popt

−2 in Eb�t� and z�t� is small in a
part of the harmonic region sufficiently far from qb�t�, but
becomes large closer to qb while still outside the layer �lD.
This regime corresponds to strong synchronization for com-
paratively weak driving. Here, both parameters Z1 and Z2
are important and can be used for matching, giving the same
result. The corresponding analysis is provided in Appendix
A.

As we will show, to calculate the escape rate in the regime
of strong synchronization there is no need in finding the
whole function s��� in the boundary-layer distribution, it is
sufficient to know only sm� . Equations �18� and �25� then
provide the complete solution of the problem of escape.

V. TIME DEPENDENCE OF THE ESCAPE RATE

A. Adiabatic limit

Explicit expressions for the escape rate in the regime of
strong synchronization can be obtained for comparatively
weak or comparatively slow �adiabatic� modulation, where
sm� ��sm��D but

�F
2sm� � R . �29�

The results for comparatively weak modulation, �sm��R,
should go over into the results �17�, which were limited to
this range, but included the strong-synchronization region
�sm��D. This is demonstrated in Appendix A. We show that
sm� found from Eqs. �21� and �25� by perturbation theory in
the modulation amplitude A coincides with the result of Ref.
�17�.

Condition �29� can be met for large A, where sm� �R, pro-
vided the modulation frequency is small compared to the
reciprocal relaxation time, �Ftr��F�1. In this adiabatic
regime the stable and unstable states qa,b

ad �t� are the periodic
solutions of the equation

K„qa,b
ad �t�,t… = 0.

In the adiabatic approximation, escape happens very fast
compared to the modulation period. This means that the es-
cape trajectory can be calculated as if the force K�q , t� did
not depend on t explicitly. One can think then of a particle in
the instantaneous potential well U�q , t� �cf. Fig. 1�a��. The
intrawell distribution has the form

��q,t� = �2	D�a
2�t��−1/2 exp�− �U�q,t� − U„qa

ad�t�,t…�/D� ,

�30�

where �a
−2�t�=�q

2U�q , t�, with the derivative evaluated for q
=qa

ad�t�.
The adiabatic MPEP is given by the equation q̇opt=

−K(qopt�t� , tm). The time tm �i.e., the phase of the modulation
�m=�Ftm� is found from the condition that the adiabatic bar-
rier height of the potential U�q , t�,

�U�t� = U„qb
ad�t�,t… − U„qa

ad�t�,t… , �31�

be minimal, d�U /dt=0 for t= tm. The minimal barrier height
gives the activation energy of escape,

R = �Um � �U�tm� .

The value of sm� can be obtained by matching the intrawell
distribution �30� and the boundary-layer distribution �8�. The
matching is done most easily for sufficiently large Q=q
−qb

ad�t�, so that �Q�� lD and �b�tm�Q2��F
2sm� , and for 
t= t

− tm small compared to the modulation period �F but large
compared to the typical relaxation time �b

−1�tm�. In this
range, in Eq. �30�

U�q,t� − U„qa
ad�t�,t… � �Um +

1

2
�Üm
t2 +

1

2
�bQ2,

where �Üm=d2�U /dt2, with the derivative calculated for t
= tm; here and below in this subsection for brevity we use �b
for �b�tm�.

To find the boundary-layer distribution we note that, for
the corresponding 
t ,Q, the integral over p in Eq. �6� can
still be evaluated by the steepest descent method. However,
in contrast to the analysis of Sec. IV B, the phase � that
provides the extremum to the integral is not equal to the
optimal phase �m, which corresponds to the adiabatic MPEP
qopt�t�. Indeed, the MPEP goes through a given q=Q
+qb

ad�tm� at the time topt�Q� that differs from tm by the relax-
ation time ��b

−1. We have chosen 
t so that �topt�Q�− tm�
� �
t�.

A straightforward but somewhat tedious analysis shows
that the major term in the phase difference is �−�m
��F�b
t. Then Eq. �6� gives

��q,t� � �2	�b�1/2E exp�−
1

D
�sm +

1

2
��bQ2

+ �F
2�b

2sm� 
t2�
 .

By comparing this expression with Eq. �30� near qb , tm we
obtain
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E = �4	2D�b/��a��−1/2 e−��Um−sm�/D,

sm� = �Üm/�F
2�b

2 �32�

�here �i��i�tm�, for i=a ,b�.
We note that the modulation frequency �F drops out from

the expression for sm� , because �F��F while �Ü��F
2 . In

Appendix B we show that the same expressions for the dis-
tribution parameters can be obtained by solving Eq. �21� for
the prefactor.

Escape current

The expressions for the coefficients �32� allow evaluating
the escape current j�q , t� �Eq. �11�� in an explicit form. For
sm� �D the current has sharp peaks as function of time, i.e.,
escape is strongly synchronized. The peak shape can be
found by extending the analysis of Sec. III B used to dem-
onstrate the very onset of synchronization.

For �d close to �m−2	k with integer k, the expression
�11� for �d can be written as

�d � �m + �F ln�x/xk� ,

xk = x0 exp�2	k/�F�, x0 = popt�t�Q/D , �33�

where we used Eq. �24� for popt�t� �xk�xk�Q , t��. Expanding
in Eq. �11� s��d� near the minimum and using Eq. �32� we
obtain

j�q,t� = Wm�k
Jk�Q,t�, Wm =

��a�b�1/2

2	
e−R/D,

Jk = 	
0

�

dx e−x exp�− ��/2��ln�x/xk��2� , �34�

where

� = �F
2sm� /D � �F

2 �sm�/D . �35�

The factor Wm in Eq. �34� is the Kramers escape rate in
the stationary potential U�q , tm�. Because of the modulation,
the escape current �34� is a periodic sequence of sharp peaks.
To show this we note first that, for any given time, the func-
tions xk�Q , t� with different k are exponentially different, be-
cause �F�1. Therefore Jk are also exponentially different.
Only one Jk becomes large within a given period �t , t+�F�.
This happens in a narrow time interval where the corre-
sponding xk�1 �see below�. The periodicity of the current is
a consequence of the relation xk�Q , t+�F�=xk+1�Q , t�, which
follows from Eq. �18�.

The shape of the current peaks is determined by the pa-
rameter �. For ��1, the typical xk that contribute to Jk in Eq.
�34� are given by the condition � ln2 xk�1. For t close to tm
one can show from Eq. �17� with K=K�q , tm� that popt�t�
=C exp�−�t− tm��b�, with C��b�qb�tm�−qa�tm��. Then from
Eq. �33�

xk�t� � exp�− �t − tk��b�, tk = tm + k�F, �36�

with k=0, ±1, . . . �we disregard the correction �b
−1 ln�QC /D�

to tk; it is of the order of the Suzuki time �26��. Then the
escape current near its maxima becomes

j�q,t� = Wm�k
e−�t − tk�2�Üm/2D, � � 1. �37�

The current pulses �37� have Gaussian form. They are
centered at t= tk= tm+k�F. The pulse width 
tw is determined
by the noise intensity and the modulation frequency, 
tw
��D /�Um�1/2�F. We note that the condition ��1 means that
this width is much larger than the relaxation time of the
system ��b

−1 �cf. Fig. 2�a��. Equation �37� corresponds to the
fully adiabatic picture, where the escape rate is given by the
instantaneous barrier height �U�t�.

For larger �, where ��1, the pulse shape is no longer
Gaussian. We emphasize that this happens where the modu-
lation is still slow, �F�1, and one would expect the adia-
batic picture to fully apply.

The pulse shape can be found explicitly in the limit �
�1 but �F�1. In this case Jk can be evaluated by the steep-
est descent method, giving

FIG. 2. �Color online� �a� Pulses of escape current in the adia-
batic approximation as functions of time scaled by the relaxation
time. With increasing parameter � the pulses change from Gaussian
to strongly asymmetric. �b� The same pulses as functions of time
scaled by the modulation period �=�Ft.
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Jk�Q,t� � �2	/��1/2xk exp�− xk� . �38�

As a function of time, Jk displays a peak where xk�t�=1. The
width of the peak 
tw��b

−1 is now independent of both the
noise intensity and the modulation frequency. The peak is
strongly asymmetric, because xk depends on time exponen-
tially �cf. Eq. �36��.

The evolution of the peak shape with varying parameter �
is demonstrated in Fig. 2. It is the same as for weak modu-
lation �27�, but the dependence of the parameters on the
modulation amplitude is different, for strong modulation.
Figure 2�b� shows that, with increasing modulation fre-
quency, not only does the height of the peaks decrease, i.e.,
the modulation of the escape current becomes less pro-
nounced, but also the width of the pulses with respect to the
modulation period rapidly increases.

B. Nonadiabatic regime

The shape of the escape current peaks can be analyzed
also for �F�1, where the adiabatic approximation does not
apply. Our analysis is based on Eqs. �11�, �25�, and �26�. The
function popt

−2 �t���b
2�t , t�� in Eq. �25� for Eb exponentially in-

creases in time near qb; therefore the term proportional to
popt

−2 in Eb and z becomes dominating before the MPEP
reaches the diffusion region �Q�� lD, and in Eqs. �11� and

�25� Eb= ẼD−1/2��F
2sm� popt

−2 �t��−1/2.
Integration over x in Eq. �11� can be done by the steepest

descent method. Using Eq. �24� one can write in Eq. �11�
�d−�m=�F ln�xD /Qpopt�t��. The major contribution to
j�q , t� near its maximum comes from the range ��d−�m�
� �D /�F

2sm� �1/2�1. Expanding s��d� to the second order in
�d−�m and performing integration over x we obtain from
Eqs. �11� and �25�

j�q,t� =
�b�t�ẼD1/2

�F
�sm�

e−R/D �
k=−�

�

xke
−xk,

xk = x0 exp�2	k/�F�, x0 = popt�t�Q/D . �39�

Note that here popt�t� can be smaller than lD /�b
2�t�.

Equation �39� describes the escape rate in the whole re-
gion �F

2sm� �D; it does not require the adiabatic approxima-

tion. The ratio Ẽ /�sm� can be obtained from Eq. �28� by solv-
ing Eq. �21�. In the adiabatic limit Eq. �39� gives the same
result as Eq. �38�. The current peaks �39� are strongly asym-
metric. The current is maximal, for given Q, when xk=1. The
width of the current peaks is given by the reciprocal relax-
ation time ��b

−1. The form of the current peaks is totally
different from that of the diffusion current −D�Q� on the
basin boundary Q=0. This current was studied in Refs.
�18,19�. It can be easily obtained from Eqs. �6� and �25� with
Q=0. The regime �F

2sm� /D�1, where the current has the
form �37�, cannot be studied in the approximation �18� at all.

With increasing �F the peaks of j �39� are smeared out
and the escape synchronization is weakened. For �F�1 the
exponentially strong synchronization disappears. In addition
to the fact that the width of the peaks �̄b

−1 becomes of the

order of the interpeak distance �F for �F�1, sm� rapidly de-
creases with increasing �F for large �F.

C. Nonlinear current propagation

In experiments the instantaneous escape rate can be mea-
sured as current j�q , t� for a given q well behind the basin
boundary qb�t�, i.e., q−qb�t�� lD. When noise is weak, mo-
tion behind the basin boundary is practically noise-free �“de-
terministic”�. Then the escape current is j�q , t�
=K�q , t���q , t�. The function ��q , t� can be related to the dis-
tribution �(qb�t�+Q , t) in the harmonic region where Q� lD.
The relation can be obtained from the Fokker-Planck equa-
tion with neglect of the diffusion term �t�+�q�K�q , t���=0,
and can be expressed in terms of the trajectories in the ab-
sence of noise qdet�t ; t0�. A trajectory qdet is given by the
equation

�tqdet = K�qdet,t� ,

qdet�t;t0� = q, qdet�t0;t0� = qb�t0� + Q . �40�

The boundary conditions in Eq. �40� follow from the fact that
qdet�t ; t0� arrives at observation point q at time t and starts at
point qb�t0�+Q at time t0. Equation �40� gives t0 as a func-
tion of q , t. The distribution behind the boundary is

��q,t� = exp�− 	
t0

t

d���qK�q,���det�0�t0� , �41�

where the derivative �qK is calculated along the trajectory
qdet�t ; t0�, and �0�t0�=�(qb�t0�+Q , t0).

The current j�q , t� has a simple form for adiabatic modu-
lation, �F�1. In this case, as long as q is not too far from
qb�tm�, one can calculate the trajectory qdet for the modula-
tion phase that corresponds to t= tm, where the current is
close to maximum. This gives for t0= t0

ad the expression

t0
ad�q,t� = t − 
t0

ad�q�, 
t0
ad = 	

qb�tm�+Q

q dq�

K�q�,tm�
. �42�

Equation �42� shows that there is a simple q-dependent shift
between t and t0

ad, which is equal to the duration of determin-
istic motion from qb�tm�+Q to the observation point q. We
assume that this shift is small compared to the modulation
period �F.

In the adiabatic approximation Eq. �41� is further simpli-
fied for t close to tm+k�F. In this case

exp�− 	
t0

t

d���qK�det
 �
K�qb�tm� + Q,tm�

K�q,tm�

� �b�tm�Q/K�q,tm� ,

where we have taken into account that K(qb�tm� , tm)= q̇b�tm�
��F �in the case of additive modulation K�q , t�=K0�q�
+F�t�, we have K�qb , tm�=0�. Therefore, we obtain for the
current in the adiabatic approximation

jad�q,t� = j�Q,t0
ad� . �43�

Thus, in the adiabatic approximation the current near the
peaks does not change shape but just shifts in phase, with the
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phase shift described by Eq. �42�. With increasing parameter
� �Eq. �35�� the current peaks change from Gaussian, for �
�1 �see Eq. �37��, to strongly asymmetric �see Eq. �38��.
The peaks are located at t= tk+
t0

ad, with tk= tm+k�F �Eq.
�36��. We note that in Eq. �36� we disregarded a shift of tk by
the Suzuki time ��b

−1 ln�Q / lD�. This shift compensates the
term in 
tad �Eq. �42�� that logarithmically depends on Q, so
that the overall position of the current peaks �37�, �38�, and
�43� is independent of the matching point Q.

In the nonadiabatic case the difference t− t0 depends not
only on the observation point q, but also on time t. In addi-
tion, the factor that relates ��q , t� and �0�t0� in Eq. �41� be-
comes t dependent. Therefore, the overall shape of the cur-
rent changes. However, the escape current has sharp peaks
only where their width is small compared to the interpeak
distance. From this point of view, the case of slow modula-
tion is most interesting for studying the shape of escape cur-
rent and synchronization of escape as a whole.

VI. PERIOD-AVERAGE ESCAPE RATE

In the range sm� ��sm��D, the period-average escape rate
�12� is

W̄ = � exp�− R/D�, � = �̄bẼD1/2/2	�sm� . �44�

The prefactor � can be expressed in terms of Z2 using Eq.
�28�, formally giving the result �18� even where the theory
�18� does not apply.

The asymptotic technique developed in this paper allows
obtaining the prefactor � in several limiting cases. For com-
paratively weak modulation D� �sm��R, Eqs. �21� and �44�,
give the same result as in Ref. �17�, with the scaling �
� �sm� �−1/2�A−1/2. Since the theory �17� covers the whole
range �sm��R, a transition from the Kramers limit of no
modulation to the case of arbitrarily strong modulation is
now fully described.

In the whole range where the adiabatic approximation ap-
plies, �F�1, from Eqs. �26� and �32� we obtain

� = �2	�−3/2��a�b�1/2D1/2�F��Üm�−1/2 �45�

where �a,b are calculated for t= tm. Interestingly, � �Eq. �45��
is independent of the modulation frequency.

VII. SCALING NEAR THE BIFURCATION POINT

Close to the bifurcational value of the modulation ampli-
tude A=Ac where the metastable and unstable states qa,b�t�
merge, the escape rate displays system-independent features.
As shown earlier �28�, the activation energy R of the system
scales as R���, where �� �Ac−A� is the reduced distance to
the bifurcation point along the amplitude axis �see Eq. �48�
below�. Three scaling regimes have been identified for R.
With increasing modulation frequency �F or decreasing �,
the critical exponent � changes from �=3/2 for stationary
systems �adiabatic scaling� to �=2 �locally nonadiabatic scal-
ing� and then back to �=3/2 �high-frequency scaling�. Be-
low we discuss scaling of the prefactor � in these regimes.

A. Adiabatic scaling

We start the analysis with the limiting case of slow modu-
lation �Ftr�1. In this case the adiabatic stable and unstable
states qa,b

ad �t� are given by the equation K(qa,b
ad �t� , t)=0. The

adiabatic critical amplitude Ac
ad is determined by the condi-

tion that the states qa,b
ad �t� touch each other. This happens

once per period, and we set t=k�F �k=0, ±1, . . . � at this
time. We also set qa,b

ad �k�F�=0 for A=Ac
ad. Expanding the

Langevin equation of motion around this point, we obtain

q̇ = �q2 + �
Aad − ��2��Ft�2 + f�t� , �46�

where �= �1/2��q
2K, �=�AK, �2=−�2��F

2�−1�t
2K. Here all de-

rivatives are evaluated at q= t=0, A=Ac
ad; � is independent of

�F; it is assumed, without loss of generality, that ��0;

Aad=A−Ac

ad. The force f�t� is a zero-mean white Gaussian
noise, �f�t�f�t���=2D
�t− t��.

The adiabatic approximation applies provided not only
tr
ad�F�1, but also �ttr

ad�1, where tr
ad�t�= �1/2������Ft�2

−��
Aad�−1/2 is the adiabatic relaxation time. The relaxation
time strongly depends on t and diverges for A→Ac

ad and t
→0. The inequality �ttr

ad�1 is therefore the most restrictive
condition on adiabaticity; it requires that tr

ad� tl, where tl
= ����F�−1/2 is a new dynamical time scale �28�. The condi-
tion tr

ad� tl is equivalent to �F� ��
Aad� /�.
The problem of escape is simplified in the adiabatic re-

gime �11,14,28–31�. For a periodically modulated system,

from Eq. �46� we obtain ��a�=�b=2���
Aad�1/2, �Üm
=4�F

2�2���
Aad�1/2. Then, from Eq. �45�, the prefactor scales
as �� �
Aad�1/4. We note that in the adiabatic approximation �
decreases as A approaches the bifurcational value and, be-
cause escape is strongly synchronized, ��D1/2.

B. Locally nonadiabatic scaling

The critical slowing down of the system motion makes
the adiabatic approximation inapplicable in the region
�
Aad� /Ac

ad��F, where the condition tr
ad� tl is violated. In

this range we rewrite Eq. �46� in the form �28�

Q̇ = Q2 − �2 + 1 − � + f̃��� , �47�

where Q=�tlq, �= t / tl, Q̇=dQ /d�, f̃���= ���F�−1f�tl��. The
control parameter

� = ����F�−1�Ac − A�, Ac � Aad + ��F/� , �48�

is the distance to the true bifurcation point Ac, which is
shifted from Ac

ad because of the slowing down of the system
and the delayed response associated with it. For small driv-
ing frequencies �Ftr�1, where the local expansion �46� ap-
plies, the shift in the bifurcational amplitude is linear in fre-
quency, as seen from Eq. �48�.

For ��1 the activation energy scales �28� as R��2. In
this region the most probable escape path Qopt��� , Popt���
corresponding to Eq. �47� is given by

Qopt��� = � − �	
0

�

d�1�1 − �2e−�1
2
�e�2−�1

2
,
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Popt��� = �e−�2
/�2. �49�

Using these expressions in Eq. �21�, we obtain

z��� = 4	D̃	
−�

�

d�1 exp�2�2 − 2�1
2� . �50�

Here D̃=�1/2���F�−3/2D is the intensity of the random scaled

force f̃���. This gives

� = �0D1/2�
A�−1�F
5/4, 
A = A − Ac, �51�

where

�0 = �32	7�−1/4����1/4�−1 = �64	7�F�−1/4��t
2K�q

2K�1/8/��AK� .

From Eq. �51�, the prefactor �� �
A�−1 sharply increases
as the modulation amplitude approaches Ac. This is qualita-
tively different from the decrease of � in the adiabatic ap-
proximation. The result agrees with the numerical solution of
Eqs. �21� and �44� for a model system shown in Fig. 3. The
calculations in a broad range of A are also confirmed by
Monte Carlo simulations, as discussed below.

C. High-frequency scaling

For high frequencies �F�1, escape is not synchronized
by the modulation. The prefactor in the escape rate is �
= ��̄a�̄b�1/2 /2	, it is independent of the noise intensity D.
Near the bifurcation point it scales as in stationary systems
�11,29�, where �� �
A�1/2 and R� �
A�3/2. We note that modu-
lation is necessarily fast very close to the bifurcation point,
because ��̄a,b�→0 for A→Ac. Therefore the prefactor always
goes to zero for A→Ac. However, for small �F the corre-
sponding region of 
A is exponentially narrow �28�. The in-
crease of � with decreasing Ac−A in the locally nonadiabatic
region does not contradict this picture because in this region
��D1/2, whereas for effectively high-frequency modulation
� is independent of D.

VIII. RESULTS FOR A MODEL SYSTEM

To illustrate the findings, we consider a simple model sys-
tem, a Brownian particle in a cubic potential subject to sinu-
soidal modulation. The Langevin equation is of the form

q̇ = K�q,t� + f�t�, K = q2 − 1/4 + A cos��Ft� , �52�

with f�t� being white Gaussian noise of intensity D.

A. The adiabatic regime

The adiabatic stable and unstable states of the system �52�
in the absence of noise are qa,b

ad �t�= � �1/4−A cos��Ft��1/2,
and the adiabatic critical amplitude is Ac

ad=1/4. The adia-
batic barrier height is �U�t�= �4/3��1/4−A cos��Ft��3/2. Its
minimum �Um= �4/3��1/4−A�3/2 is reached for tm=k�F,
with k=0, ±1, . . ..

The reduced curvature �F
2sm� of the function s��� in the

boundary-layer distribution at �m=�Ftm is given by Eq. �32�,

�F
2sm� = �1/2�A�F

2�1/4 − A�−1/2. �53�

Therefore the condition of strong but slow modulation
�F

2sm� �D, which must hold for the pulses of the escape cur-
rent to be of Gaussian shape, takes the form

�F
2 � D�1/4 − A�1/2/A .

It becomes more and more restrictive for the modulation fre-
quency as the modulation amplitude A approaches the adia-
batic bifurcational value 1/4.

The prefactor � of the period-average escape rate in the
adiabatic limit for sufficiently strong modulation is given by
Eq. �45�. For our model it has a simple explicit form

� = �2	3/2�−1D1/2�1/4 − A�1/4A−1/2. �54�

As expected, ��A−1/2 for small amplitude, whereas close to
the adiabatic bifurcation point �� �Ac

ad−A�1/4.

B. Locally nonadiabatic regime near the bifurcation point

As explained in Sec. VII, sufficiently close to the bifurca-
tion point the adiabatic approximation breaks down. As a
result, the bifurcation point Ac shifts away from Ac

ad �to
higher amplitude, in our case�. Close to Ac the pulses of
escape current become strongly asymmetric, even though the
modulation frequency is small. The scaling of the prefactor
in the period-average escape rate also changes dramatically,
from decreasing �as in the adiabatic approximation� to in-
creasing for A→Ac. From Eqs. �51� and �52�

� = �64�2	7�−1/4D1/2�
A�−1�F
5/4. �55�

The results on the prefactor for the discussed model sys-
tem in the range �Ftr

�0��1 are shown in Fig. 3 �tr
�0� is the

relaxation time in the absence of modulation; for the model
�52� tr

�0�=1�. They refer to the modulation frequency �F

=0.1. The dependence of � /�D on the modulation amplitude
A is shown in the main part of the figure. The solid line for
small A represents Eq. �54�. The solid line close to the bifur-
cational amplitude Ac�0.29 is given by Eq. �55�. The

FIG. 3. �Color online� The prefactor � in the average escape rate

W̄ �Eq. �44��. The results refer to the model �52� with �F=0.1 and
describe escape in the regime of strong synchronization, where �
�D1/2. The solid line for small A shows the scaling ��A−1/2 �17�.
The solid lines for small 
A=A−Ac in the main figure and in the
inset show the scaling �51�. The dashed line shows the result of the
numerical solution of Eq. �21�. The squares and crosses show the
results of Monte Carlo simulations for R /D=5 and 6, respectively.
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dashed line for intermediate values of A is given by Eq. �44�
with Ẽ /�sm� �Eq. �28�� evaluated by numerically integrating
Eq. �21�. It is wel described by Eq. �54� for A0.2. The
analytical results agree with the results of simulations repre-
sented by squares and crosses. The inset shows in more de-
tail the locally nonadiabatic scaling �� �
A�−1 in the region
near Ac.

The simulations have been done using the standard
second-order integration scheme �32� for stochastic differen-
tial equations. The period-average escape rate was found as a
reciprocal of the average dwell time of particles leaving the
attraction basin. For each set of parameter values we accu-
mulated �105 escape events. The prefactor of the escape rate

� was evaluated as �=W̄ exp�R /D�. The values of activation
energy R were obtained independently by solving the appro-
priate instantonic problem. We checked previously �28� that
these values agree extremely well with Monte Carlo simula-
tions. For each value of A the noise intensity D was adjusted
so as to keep R /D fixed at R /D=5 �squares� and 6 �crosses�.

The results on the prefactor for higher modulation fre-
quency are shown in Fig. 4. They were obtained in the same
way as for lower frequency. It is seen from Fig. 4 that for the
used model, already for �Ftr

�0�=1 the amplitude dependence
of the prefactor differs very significantly from the result of
the adiabatic approximation. In particular, the prefactor dis-
plays the scaling behavior �� �Ac−A�1/2 near the bifurcation
point. It is independent of the noise intensity and is well
described by the expression �= ��̄a�̄b�1/2 /2	.

IX. CONCLUSIONS

The results of this paper and the previous work allow us
to draw a general scheme of the dependence of the rate of
activated escape on the modulation parameters. This scheme
is sketched in Fig. 5.

The weak-driving region corresponds to the case where
the modulation-induced change of the activation energy of
escape is small compared to the noise intensity D. In this
region the major effect of modulation is weak “heating” of
the system, which is quadratic in the modulation amplitude

�for underdamped systems, the effective temperature de-
pends on energy �10,33��. Escape is not synchronized by the
modulation. The width of this region along the amplitude
axis is proportional to D for low frequencies and becomes
proportional to �FD1/2 for large �F��Ftr.

Synchronization emerges once the magnitude of the oscil-
lations of the “instantaneous” activation energy �sm� becomes
much larger than D. There is a broad region of modulation
amplitudes where �sm��A and the logarithm of the period-
average escape rate W̄ is linear in A, too �17�. This log-linear
region in Fig. 5 is bounded on the large-A side by the con-
dition A /Ac�1, where Ac is the bifurcational value of A.
Strong synchronization occurs for small frequencies �F�1.
Here, the escape current has peaks with width much smaller
than the modulation period. The prefactor � in the period-
average escape rate scales as �D /A�1/2.

Synchronization persists for higher modulation ampli-
tudes. The shape of the peaks of escape current is Gaussian
for �F

2sm� �D, and their width is ��D /sm� �1/2�F. For higher
frequencies, the peaks become strongly asymmetric and non-
Gaussian, with width �tr. In the log-linear region the bound-
ary between the two types of peaks is �F�A−1/2.

For high modulation frequencies, �sm� becomes small and
exponentially strong synchronization of escape disappears.
The escape current is still modulated in time, of course, but
generally it does not have a shape of sharp narrow peaks
even for small noise intensity.

Of special interest is the bifurcation region, because there
the dynamics and fluctuations display system-independent
features. The region is determined by the condition �Ac−A�
�Ac, as shown in Fig. 5. In this region, in the adiabatic
approximation the boundary of the range where escape cur-
rent peaks are Gaussian has the form �F� �Ac−A�1/4.

Close to Ac, where �Ac−A� /Ac�F�1, the adiabaticity is
broken. This condition and the condition �F�1 determine

FIG. 4. �Color online� The prefactor � in the average escape rate

W̄ �44� close to the bifurcation point A=Ac. The results refer to the
model �52� with �F=1. The squares and crosses show the results of
Monte Carlo simulations for R /D=4 and 5, respectively. The solid
line shows the asymptotics �= ��a�b�1/2 /2	� �Ac−A�1/2.

FIG. 5. �Color online� Different regions of escape behavior in
modulated overdamped systems depending on the modulation fre-
quency �F and amplitude A; tr

�0� is the relaxation time in the ab-
sence of modulation. The smeared boundaries between the regions
are shown by dashed lines. The bold solid line indicates the bifur-
cational amplitude where the metastable state disappears. The
shaded region below it indicates the range where the activation
energy of escape R�D. The transition between the regions of ex-
ponentially strong and nonexponential synchronization occurs for
�Ftr

�0��1.
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the boundary of the locally nonadiabatic region. Inside this
region the escape current has the form of asymmetric narrow
peaks. Special scaling is displayed for �Ac−A� /Ac�F�1.
Here, the activation energy of escape scales with the distance
to the bifurcation amplitude Ac as �Ac−A�2, whereas the pref-
actor in the period-average escape rate is proportional to
�Ac−A�−1. Because of the slowing down near the bifurcation
point, the locally nonadiabatic behavior and synchronization
of escape disappear for small Ac−A, which determines the
high-A region boundary. This boundary is very close to Ac
for small �F, but for higher �F the region of locally nona-
diabatic behavior shrinks and ultimately disappears. Outside
this region on the high-�F side, for A close to Ac the prefac-
tor � scales as �� �Ac−A�1/2.

In conclusion, we have obtained a general solution of the
problem of noise-induced escape in periodically modulated
overdamped systems. For small �F the pulses of escape cur-
rent are exponentially sharp and change with increasing �F
from Gaussian to strongly asymmetric. For large �F expo-
nential current modulation disappears. The prefactor � in the
period-average escape rate is a strongly nonmonotonic func-
tion of the modulation amplitude A for low frequencies. It
first drops with increasing A to �� �D /A�1/2 �17�, then varies
with A smoothly �18,19�, and then sharply increases, �
�D1/2 / �Ac−A� near the bifurcation amplitude Ac. We found
three scaling regimes near Ac, where �� �Ac−A�� with �
=1/4 , −1, or 1 /2. The widths of the corresponding scaling
ranges strongly depend on the modulation frequency.
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APPENDIX A: DISTRIBUTION MATCHING
FOR DYNAMICALLY WEAK MODULATION

In this appendix we study, using our general approach, the
case of moderately weak modulation and compare the results
to the previous work �17�. Following Ref. �17� we assume
that the force K�q , t�=−U0q+F�t�, where U0�q� is the meta-
stable potential in the absence of modulation �in this appen-
dix we use the notation fq��qf�. The force F�t+�F�=F�t� is
dynamically weak. This means that it weakly disturbs the
motion in the absence of fluctuations. Yet it may strongly
change the escape rate, because there it is compared with the
small noise intensity.

The distribution � inside the attraction basin can be found
by calculating the action S�q , t� in Eq. �14� to the first order
in F. From Eqs. �15� and �16� S can be written in a standard
way as an integral of the Lagrangian L,

S�q,t� = 	
−�

t

d� L�q, q̇;��, L =
1

4
�q̇ − K�q,t��2. �A1�

The linear in F correction to S can be obtained by integrating
the term proportional to F along the optimal escape path
q0�t� in the absence of driving, q̇0= p0=U0q�q0�. This gives

S�q,t� = U0�q� − U0�qa0� + s�q,t� ,

s�q,t� = − 	
−�

t

d� q̇0���F��� , �A2�

where the optimal path is chosen so that q0�t�=q, and qa0 is
the stable state qa�t� in the limit F=0, with U0q�qa0�=0;
similarly, we use below qb0 as the basin boundary for F=0,
with U0q�qb0�=0. The quantity ��t�=−q̇0�t� determines the
field-induced change of the logarithm of the escape rate, and
therefore was called logarithmic susceptibility.

Equation �A2� allows one to match the intrawell distribu-
tion ��q , t�= ��a0 /2	D�1/2 exp�−S�q , t� /D� to the boundary-
layer distribution �6�–�8� for

− Q = qb0 − q � �s�q,t�/�b0�1/2,lD �A3�

�here �i0�−U0qq�qi0� with i=a ,b�. In the range �A3� the
integral over p �Eq. �6�� can be evaluated by the steepest
descent, giving ��q , t��E�2	�b0�1/2 exp�−s��� /D�, with �
= ��F /�b0�ln�−Q / lD�+�F�t− t��. The exponent of this
boundary-layer distribution coincides with −s�q , t� /D in the
range �A3� if we set �17�

s��� = �
n

�̃�n�F�Fnein�,

�̃��� = − 	
−�

+�

dt q̇0�t�ei�t. �A4�

Here Fn are Fourier components of F�t�. Matching the pref-
actors in the intrawell and boundary-layer distributions gives

E =
1

2	
��a0�b0�1/2 exp�− �U0/D� . �A5�

We emphasize that the matching has been done not only far
from the diffusion region, but also in the range �A3�, that is,
much further away from the boundary than diffusion length
lD, in the regime of strong synchronization �sm��D.

We will show now that the alternative approach of Sec. IV
gives the same result in the case of strong synchronization
�sm��D. To do this we have to solve the equation for the
prefactor �21� to the first order in F, which in turn requires
finding the first-order corrections to the optimal path q1 , p1.
Linearizing the first of Eqs. �17�, one obtains

q̇1 = K0qq1 + F�t� + 2p1. �A6�

Here K0q�q��−U0qq�q�, and the derivative is evaluated for
the zeroth-order optimal path, q=q0�t�. The correction to the
momentum, p1��S /�q− p0, from Eq. �A2� is

p1 = − K0qq1 − F�t� +
1

q̇0�t�
	

−�

t

d� q̇0���Ḟ��� . �A7�

To obtain Eq. �A7�, we used the fact that q0�t�=q, and there-
fore �q0��� /�q= q̇0��� / q̇0�t�. We also took into account that
p1�t�→0 for t→−�.

In the absence of driving the prefactor is constant, and the
function z�t� from Eq. �21� is determined by the initial con-
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dition �22�, z=z0=2	D / ��a0�. Let z=z0+z1, where z1 is a
correction proportional to F. The linearized Eq. �21� is

z̈1 − 2K0qż1 = 2z0K0qq�q̇1 − p1� . �A8�

From Eqs. �A6�–�A8�,

ż1 =
2z0

q̇0
2�t�

	
−�

t

d� q̇0���Ḟ����K0q„q0�t�… − K0q„q0���…� .

�A9�

To find the parameters sm� and E of the boundary-layer distri-
bution �25� and �26� we need to find z1 close to qb0, i.e., for
t→�. It follows from the results of Sec. III that, for strong
modulation, in this range

ż � 2�b0DZ2q̇0
−2�t� , �A10�

where we used that p0= q̇0, ṗ0=−�b0p0. Before we compare
this expression with Eq. �A9� we note that the condition that
s, as given by Eq. �A4�, is minimal for �=�m corresponds to

	
−�

�

dt q̇0�t�Ḟ�t� = 0.

This condition describes synchronization of the most prob-
able escape path by the modulation. In the absence of modu-
lation q0�t− tc� is a MPEP for any tc. Modulation lifts the
time degeneracy; only one MPEP per period provides a mini-
mum to s. As a consequence, the first integral in Eq. �A9�
goes to zero for t→�. Then from Eqs. �A9� and �A10� we
obtain, taking into account that q̇0=−K0,

Z2 = −
2	

��a0�b0�	−�

�

dt q̇0�t�F̈�t� . �A11�

It follows from Eq. �A4� that Z2=2	�F
2sm� / ��a0�b0�. Taking

into account Eqs. �28� and �26�, we obtain the same result for
the prefactor in the boundary-layer distribution as Eq. �A5�.
We note that this result refers to the case of comparatively
strong modulation �sm��D, and is obtained by matching the
intrawell and boundary-layer distributions not in the region
�A3� �17�, but closer to the basin boundary, where �sm�
��bQ2.

APPENDIX B: NONADIABATIC CORRECTIONS
FOR SLOW MODULATION

In this appendix we show an alternative approach to the
analysis of adiabatically slow modulation. By treating time
variation of the modulation as a perturbation, we find the
most probable escape path and also solve Eq. �21� for the
auxiliary function z and obtain the constant Z2, �cf. Eq.
�23��. This provides an alternative way of finding the param-
eters of the boundary-layer distribution and also gives an
insight into the actual dynamics of escape for slow modula-
tion.

The small parameter of the slow-modulation theory is the
reduced frequency �Ftr�1. The typical duration of escape is
the relaxation time �tr; it is much smaller than the modula-
tion period �F=2	 /�F. Escape is most likely to happen once

per period, for the modulation phase �m=�Ftm �which, as we
show, corresponds to the minimal barrier height; tr is the
adiabatic relaxation time for t= tm�. For t close to tm we can
expand the force in the form

K�q,t� = K0�q� + F1�q,t� + F2�q,t� , �B1�

where K0�q��K�q , tm�, F1�q , t��Kt�q , tm��t− tm�, F2�q , t�
��1/2�Ktt�q , tm��t− tm�2 �here and below f t��t f , fq��qf�.
Thus, K0 represents a stationary force, and F1 and F2 are the
time-dependent corrections of first and second order in �Ftr.

To zeroth order in �Ftr, the positions of the stable state qa
and basin boundary qb of the system are the solutions qa0 and
qb0 of the adiabatic equation K0�q�=0 with �a00 and
�b0�0, respectively, where �i0=K0q�qi0� �i=a ,b�. The pa-
rameters �i0 characterize the relaxation rate of the system.
We emphasize that, in contrast to Appendix A where K0 re-
ferred to the system in the absence of modulation, here K0
and the parameters qa,b ,�a,b are calculated for strong modu-
lation but at a specific instant of time tm.

Because of the time-dependent terms in K, the positions qi
�i=a ,b� acquire corrections qi1,2 of the first and second order
in �Ftr, so that qi=qi0+qi1+qi2. They can be found from the
equation q̇i=K�qi , t� and have the form

qi1 = − �F1t

�i0
2 +

F1

�i0



qi0

, i = a,b , �B2�

and

qi2 = �−
5

2

K0qqF1t
2

�i0
5 +

3F1tF1qt

�i0
4 −

F2tt

�i0
3 −

2K0qqF1tF1

�i0
4 +

3F1qtF1

�i0
3

−
F2t

�i0
2 −

1

2

K0qqF1
2

�i0
3 +

F1qF1

�i0
2 −

F2

�i0



qi0

, i = a,b . �B3�

We now consider corrections to the MPEP. For K given
by Eq. �B1� it is natural to seek the solution of Eqs. �17� in
the form q=q0+q1+q2, p= p0+ p1+ p2. To zeroth order in �F
the MPEP is given by the equation

q̇0 = p0 = − K0�q0� .

The first-order corrections q1 , p1 satisfy Eq. �A6� with F
=F1 and with the boundary conditions q1→qa1 at t→−� and
q1→qb1 at t→�. In the second order

q̇2 = K0qq2 +
1

2
K0qqq1

2 + F1qq1 + F2 + 2p2 �B4�

with q2→qa2 at t→−� and q2→qb2 at t→�. Here and be-
low the functions K0 and F1,2 and their derivatives are cal-
culated along the zeroth-order MPEP q0�t�.

From the expression for the action �A1� with the force
�B1� we obtain, similarly to Eq. �A7�,

p1 = − K0qq1 − F1 +
1

q̇0�t�
	

−�

t

d� q̇0F1�.

Using this expression and Eq. �17�, we further obtain
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q̇1 − p1 =
1

q̇0�t�
	

−�

t

d� q̇0F1�. �B5�

The momentum p1→0 at t→ ±�; therefore Eq. �B5� re-
quires that

1

q̇0�t�
	

−�

t

d� q̇0F1� → �q̇a1, t → − � ,

q̇b1, t → � ,
 �B6�

where q̇a1,b1 are given by Eq. �B2�.
For t→−� the condition �B6� is met; hence the choice of

the lower limit of integration. To consider the t→ +� limit
we write the left-hand side of Eq. �B6� as

1

q̇0�t�
	

−�

�

d� q̇0F1� −
1

q̇0�t�
	

t

�

d� q̇0F1�.

For t→� the second term goes to q̇b1. Therefore to satisfy
the condition �B6� we must have

	
−�

�

d� q̇0F1� = 	
qa0

qb0

dq F1��q� = 0. �B7�

In changing the integration variable we used that F1t does not
depend on t explicitly.

The condition �B7� is equivalent to the requirement that
the adiabatic barrier height

�U�t� = 	
qa�t�

qb�t�

dq�K0�q� + F1�q,t� + F2�q,t�� �B8�

be minimal, d�U /dt=0, to the first order in �F.
We note that the condition �B7� is invariant with respect

to time shift of the MPEP q0�t�→q0�t− tc�, with an arbitrary
tc. However, it does specify the modulation phase �m
=�Ftm when escape is most likely to occur.

The term in the action of second order in �Ftr has the
form

S2�q,t� =
1

4
	

−�

t

d��q̇1 − K0qq1 − F1�2 + 	
−�

t

d� q̇0�q̇2 − K0qq2

−
1

2
K0qqq1

2 − F1qq1 − F2� .

Using this equation to calculate p2=�qS2, we obtain from Eq.
�B4�

q̇2 − p2 =
1

q̇0�t�
	

−�

t

d� q̇0u��� ,

u�t� = F1qtq1 + F2t + �q̇1 − p1��K0qqq1 + F1q� . �B9�

Using Eq. �B3�, one can check that �B9� satisfies the bound-
ary condition q2→qa2, p2→0 for t→−�. To satisfy the
boundary condition at t→ +� we must require that

	
−�

�

d� q̇0u��� = 0. �B10�

The integral �B10� depends on the position tc of the “cen-
ter” of the MPEP q0�t− tc� and thus specifies this position.

Equations �B7� and �B10� fully determine both the phase of
the modulation where escape is most likely to occur and the
MPEP as a function of time.

We are now in a position to develop a perturbation theory
for the function z�t�, which should be calculated along the
MPEP from Eq. �21�. The parameter of interest Z2 is deter-
mined by the asymptotic behavior of z for t→�: this is the
coefficient at the diverging term Dp0

−2�t� in z�t� �cf. Eq. �23��.
As we will see, Z2��F

2 , and therefore we need to find z to
second order in �Ftr. Respectively, we seek z in the form z
=z0+z1+z2, with zj � ��Ftr� j �j=0,1 ,2�.

The initial conditions for zj follow from Eq. �22�. The
function �a

2�t� in Eq. �22� is a periodic solution of the equa-
tion �̇a

2=2�a�a
2+2, which can be easily solved by perturba-

tion theory in �Ftr. To zeroth order ��a
2�0=1/ ��a0� and z0

=2	D / ��a0�.
From Eq. �21�, the equation for z1 has the form

z̈1 − 2K0qż1 = 2z0�K0qq�q̇1 − p1� + F1qt� .

This equation differs from Eq. �A8� by the term F1qt, which
allows for q dependence of the perturbation force. The left-
hand side can be written as �1/ q̇0

2�d�ż1q̇0
2� /dt, which imme-

diately gives

ż1q̇0
2 = 2z0	

−�

t

d� q̇0
2�K0qq�q̇1 − p1� + F1q��

= 2z0q̇0�K0q�q̇1 − p1� + F1t� . �B11�

Here we have taken into account the initial condition for z1
for t→−� and also used the relation

d

dt
�q̇1 − p1� = K0q�q̇1 − p1� + F1t, �B12�

which follows from Eq. �B5�. Taking into account that
q̇1 , p1 ,F1t do not diverge for t→�, we see from Eq. �B11�
that ż1�t�q̇0

2→0 as t→ +�. Therefore z1 does not contain a
term proportional to exp�2�b0t�� p0

−2�t� for t→�, and as a
consequence it does not contribute to Z2.

In the second order, from Eq. �21� we have

z̈2 − 2K0qż2 = v�t� , �B13�

where

v�t� = 2z0�K0qq�q̇2 − p2� + �K0qqqq1 + F1qq��q̇1 − p1� + F1qqtq1

+ F2qt� + 2ż1�K0qqq1 + F1q� + 2z1�K0qq�q̇1 − p1� + F1qt� .

�B14�

The left-hand side of Eq. �B13� is �1/ q̇0
2�d�ż2q̇0

2� /dt, and
therefore

ż2�t�q̇0
2�t� = 	

−�

t

d� q̇0
2v��� . �B15�

A cumbersome calculation, which involves integration by
parts using conditions �B7� and �B10� and Eqs. �B2�, �B4�,
�B5�, and �B9�, shows that, as t→ +�, the integral in the
right-hand side of Eq. �B15� tends to a constant
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C = 2z0�− 	
−�

�

d� q̇0F2tt +
�F1t�qb0��2

�b0
−

�F1t�qa0��2

�a0

 .

�B16�

Equation �B16� is the central result of this appendix. It
follows from this equation and the fact that the singular part
of z behaves as exp�2�b0t� for t→� that

Z2 = D−1 lim
t→�

z�t�p0
2�t� =

C

2�b0D
.

On the other hand, from Eqs. �B8� and �B16� we obtain

�Ü�tm� =
C

2z0
=

C��a0�
4	D

.

Therefore

Z2 = 2	�Ü�tm�/��a0�b0� ,

which coincides with the result of Eqs. �28� and �32�.
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