
PRL 94, 070602 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 FEBRUARY 2005
Activated Escape of Periodically Modulated Systems

M. I. Dykman and D. Ryvkine
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823, USA

(Received 21 December 2004; published 24 February 2005)
0031-9007=
The rate of noise-induced escape from a metastable state of a periodically modulated overdamped
system is found for an arbitrary modulation amplitude A. The instantaneous escape rate displays peaks
that vary with the modulation from Gaussian to strongly asymmetric. The prefactor � in the period-
averaged escape rate depends on A nonmonotonically. Near the bifurcation amplitude Ac it scales as � /
�Ac � A�� . We identify three scaling regimes, with � � 1=4, �1, and 1=2.
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Thermally activated escape from a metastable state is
often investigated in systems driven by time-dependent
fields. Recent examples are activated transitions in modu-
lated nanomagnets [1–3] and Josephson junctions [4–6].
Modulation changes the activation barrier. This enables
efficient control of the escape rate and accurate measure-
ment of the system parameters [7]. Most frequently used
types of modulation are slow ramping of a control parame-
ter, when the system remains quasistationary, and periodic
modulation. In the latter case the system is away from
thermal equilibrium, which complicates the theoretical
formulation of the escape problem [8].

In the present Letter we extend to periodically modu-
lated systems the analysis of the escape rate done by
Kramers for systems in thermal equilibrium [9]. Our ap-
proach gives the full time-dependent escape rate W�t� as
well as the period-averaged rate W � � exp��R=D�,
where R is the activation energy of escape and D is the
noise intensity, D � kBT for thermal noise.

For comparatively small modulation amplitude A escape
of an overdamped Brownian particle was studied in
Ref. [10]. The range of intermediate A and intermediate
modulation frequencies !F was analyzed in Refs. [11,12].
Here we find W�t� for an arbitrary A and an arbitrary
interrelation between !F and the relaxation time of the
system tr. We show that the prefactor � depends on A
strongly and nonmonotonically. It displays scaling behav-
ior near the bifurcational modulation amplitude Ac for
which the metastable state disappears.

In the spirit of Kramers’s approach, we relate the instan-
taneous escape rate W�t� to the current well behind the
boundary qb�t� of the basin of attraction to the initially
occupied metastable state (q is the system coordinate).
This is the current usually studied in experiments.
Because of the oscillations of qb�t�, it has a different
functional form from the current at qb�t� calculated in
Refs. [11,12]. We find W�t� by matching the probability
distribution ��q; t� near qb�t� and inside the basin of
attraction. This can be done without a complete calculation
of ��q; t� near qb�t�, using singular features of the dynam-
ics of large fluctuations.
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For a periodically modulated overdamped Brownian
particle, the distribution ��q; t� is given by the Fokker-
Planck equation (FPE)

@t� � �@q�K�q; t��� �D@2q�: (1)

Here, K�q; t� is the periodic force driving the particle,
K�q; t� �K�q; t� �F� 	�@qU�q; t�, where �F � 2�=!F
is the modulation period and U�q; t� is the metastable
potential. The equation of motion of the particle in the
absence of noise is _q � K�q; t�. The metastable state qa�t�,
from the vicinity of which the system escapes due to noise,
and the basin boundary qb�t� are the stable and unstable
periodic solutions of this equation, respectively.

We assume that the noise intensity D is small. Then in a
broad time range tr 
 t
 1=W the distribution ��q; t� is
nearly periodic in the basin of attraction to qa�t�. The
current away from this basin, and thus the escape rate
W�t�, are also periodic.

The distribution � is maximal at qa�t� and falls off
exponentially away from it. In the presence of periodic
driving it acquires singular features as D! 0 [13]. The
singularities accumulate near qb�t�. In order to find W�t�
one has to understand how they are smeared by diffusion.

In the absence of noise the motion of the system close to
the periodic states qi�t� (i � a; b) is described by the
equation _q � K with K linearized in q� qi�t�. The evo-
lution of q�t� � qi�t� is given by the factors

�i�t; t0� � exp
�Z t

t0
d��i���

�
�i � a; b�; (2)

where �i�t� � �i�t� �F� 	 �@qK�q; t��qi�t�. Over the pe-
riod �F the distance q�t� � qi�t� decreases (for i � a) or
increases (for i � b) by the Floquet multiplier Mi �
�i�t� �F; t� 	 exp� 
�i�F�, where 
�i is the period-average
value of �i�t�, with 
�a < 0; 
�b > 0.

For weak noise the expansions of K can be used to find
��q; t� near qa;b�t�. Near the metastable state qa, the dis-
tribution is Gaussian [14], ��q; t� / expf��q� qa�t��2=
2D!2

a�t�g. The reduced time-periodic variance is given by
the equation
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!2
i �t� � 2jM�2

i � 1j�1
Z �F

0
dt1�

�2
i �t� t1; t� (3)

with i � a (in the absence of modulation !2
a � 1=j�aj).

The general form of the periodic distribution near the
unstable state qb�t� (the boundary-layer distribution) can
be found from Eq. (1) using the Laplace transform, similar
to the weak-driving limit [10]. With K linear in q� qb, the
equation for the Laplace transform of ��q; t� is of the first
order, giving

��q; t� �
Z 1

0
dpe�pQ=D~��p; t�; Q � q� qb�t�;

~��p; t� � ED�1=2 expf��s�&� � p2!2
b�t�=2�=Dg:

(4)

In Eq. (4), E is a constant, s�&� is an arbitrary zero-mean
periodic function, s�&� 2�� � s�&�, and & 	 &�p; t�,

&�p; t� � �F ln�p�b�t; t
0�= 
�blD�: (5)

Here, �F � !F= 
�b 	 2�= lnMb is the reduced field fre-
quency, lD � �2D= 
�b�

1=2 is the typical diffusion length,
and t0 determines the initial value of &; from Eq. (5),
&�p; t� �F� � &�p; t� � 2�. In Eq. (4) we assumed that
the basin of attraction to qa lies for q < qb�t�, and jQj 

�q 	 mint�qb�t� � qa�t��.

The form (4) is advantageous as it immediately gives the
current j�q; t� from the occupied region ��1; q�. Well
behind the basin boundary, where Q � q� qb�t� � lD,
diffusion can be disregarded; the current becomes convec-
tive and gives the instantaneous escape rate, j�q; t� �
�b�t���q; t�Q at a given Q. Disregarding the term /
p2=D in ~� for Q� lD, we obtain from Eq. (4)

j�q; t� � �b�t�ED1=2
Z 1

0
dxe�x exp��s�&d�=D�: (6)

Here, &d � �F ln�x�b�td; t0��, and td 	 td�Q; t� is given
by the equation �b�td; t� � lD=2Q. In the whole harmonic
range j depends on the observation pointQ only in terms of
the delay time td, which shows how long it took the system
to roll down to the point Q, @td=@Q � �1=�b�td�Q. We
note that �b�t� can be negative for a part of the period,
leading to reversals of the instantaneous current.

The escape rateW is given by the period-averaged j�q; t�
and is independent of q. From Eq. (6)

W �

�b
2�

ED1=2
Z 2�

0
d& exp��s�&�=D�: (7)

Equations (6) and (7) provide a complete solution of the
Kramers problem of escape of a modulated system and
reduce it to finding the function s. They are similar in form
to the expressions for the instantaneous and average escape
rates for comparatively weak modulation, jsj 
 R, where
s was obtained explicitly [10].

Unless the modulation is very weak or has a high fre-
quency, for small noise intensity max s� jmin sj � D. In
this case the major contribution to the integrals in Eqs. (6)
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and (7) comes from the range where s is close to its
minimum sm reached for some & � &m. Then the escape
rate j�q; t� sharply peaks as a function of time once per
period when &d�t� � &m. This means that escape events
are strongly synchronized. As we show, both j�q; t� and W
are determined just by the curvature of s�&� near &m.

To find j�q; t� we match Eq. (4) to the distribution ��q; t�
close to qb�t� but well inside the attraction basin, �Q�
lD. For smallD this distribution can be found, for example,
by solving the FPE (1) in the eikonal approximation,
��q; t� � exp��S�q; t�=D�. To zeroth order inD, the equa-
tion for S � S0 has the form of the Hamilton-Jacobi equa-
tion @tS0 � �H for an auxiliary nondissipative system
with Hamiltonian [15]

H�q; p; t� � p2 � pK�q; t�; p � @qS0: (8)

The Hamiltonian trajectories of interest q�t�; p�t� start in
the vicinity of the metastable state. The initial conditions
follow from the Gaussian form of ��q; t� near qa�t�, with
S0 � �q� qa�t��2=2!2

a�t�.
To logarithmic accuracy, the escape rate is determined

by the probability to reach the basin boundary qb�t�, i.e., by
the action S0�qb�t�; t� [8]. The Hamiltonian trajectory
qopt�t�; popt�t�, which minimizes S0�qb�t�; t�, approaches
qb�t� asymptotically as t! 1. It is periodically repeated
in time with period �F; qopt�t� is the most probable escape
path (MPEP) of the original system.

Close to qb�t�, the Hamiltonian equations for q�t�; p�t�
can be linearized and solved. On the MPEP

popt�t� � �Qopt�t�=!2
b�t� � �

�1
b �t; t0�popt�t0�;

S0�qopt�t�; t� � R�Q2
opt�t�=2!

2
b�t�;

(9)

where Qopt�t� � qopt�t� � qb�t�. The quantity R �

S0�qopt�t�; t�t!1 is the activation energy of escape.
The surface S0�q; t� is flat for small Q�Qopt due to

nonintegrability of the dynamics with Hamiltonian (8)
[13]. It touches the surface Sb�q; t� � R�Q2=2!2

b�t� on
the MPEP, Q � Qopt�t�. Away from the MPEP S0�q; t�>
Sb�q; t�, and therefore the function �b�q; t� � ��q; t��
exp�Sb�q; t�=D� is maximal on the MPEP.

We match on the MPEP �b found in the eikonal ap-
proximation to the maximum of �b found from Eq. (4) near
the basin boundary. For jsmj � D and �Q� lD, the
integral over p in Eq. (4) can be evaluated by the steepest
descent method. The integrand is maximal if p �
�Q=!2

b�t� and s is minimal for this p; i.e., &�p; t� � &m

and s � sm. These conditions can be met on the whole
MPEP at once, because &�popt�t�; t� � const. Then from
Eq. (4)

��q; t� � Eb�t� exp��Sb�q; t�=D�;

Eb�t� � ~ED�1=2�!2
b�t� ��2

Fs
00
mp�2

opt�t��
�1=2;

(10)
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where ~E � E�2�D�1=2 exp��R� sm�=D�, and s00m 	

�d2s=d&2�&m
. From Eqs. (9) and (10), not only the expo-

nents, but also their slopes coincide along the MPEP for the
boundary-layer and eikonal-approximation distributions.

The function Eb�t� should match on the MPEP the
prefactor of the eikonal-approximation distribution � �
exp��S=D�, which is given by the term S1 / D in S. On
the MPEP, z � exp�2S1=D� obeys the equation [16]

d2z=dt2 � 2d�z@qK�=dt� 2zp@2qK � 0; (11)

where q � qopt�t�; p � popt�t�. The initial condition to this
equation follows from ��q; t� � z�1=2 exp��S0=D� being
Gaussian near qa�t�, which gives z�t� ! 2�D!2

a�t� for t!
�1. Close to qb�t�, from Eq. (11) z�t� � D�z1!2

b�t� �
z2p�2

opt�t��, where z1;2 are constants [11]; the term / z1
was disregarded in the analysis [11]. Remarkably,
z�1=2�t� is of the same functional form near qb�t� as
Eb�t�. Thus the prefactors in ��q; t� as given by the eikonal
and the boundary-layer approximations also match each
other.

Explicit expressions for the escape rate in the regime of
strong synchronization can be obtained for comparatively
weak or slow modulation, where s00m � jsmj � D but

�2
Fs

00
m 
 R: (12)

The results for D
 jsmj 
 R should coincide with the
results of Ref. [10], which were obtained in a different way.
We have verified this by finding s00m from Eq. (11) by
perturbation theory in the modulation amplitude A.

Condition (12) can be met for large A, where s00m � R,
provided the modulation frequency is small, !Ftr �
�F 
 1 (adiabatic modulation). Here, the MPEP is given
by the equation _qopt � �K�qopt; tm�, with tm found from
the condition of the minimum of the adiabatic barrier
height �U�t� � U�qb�t�; t��U�qa�t�; t�. The activation
energy R � �Um 	 �U�tm�.

The value of s00m can be obtained from z�t� or by match-
ing the adiabatic intrawell distribution / exp��U�q; t�=D�
and the boundary-layer distribution (4) in the region jQj �
lD and �2

Fs
00
m 
 �b�tm�Q

2 for jt� tmj 
 �F. Both ap-
proaches give �2

F�
2
bs

00
m � � �Um, where �b and � �Um 	

@2t�U are calculated for t � tm.
The form of j�q; t� depends on the parameter �2

Fs
00
m=D.

When it is small, the term / p�2
opt in Eb�t� [Eq. (10)] and z�t�

is also small away from the diffusion region around qb.
Then z � 2�D!2

a�tm�. The pulses of j�q; t� are Gaussian,

j�q; t� �
j�a�bj1=2

2�
e�R=D

X
k

e��t�tk�2� �Um=2D (13)

[�a;b 	 �a;b�tm�]. They are centered at tk � tm � k�F,
with k � 0;�1; . . . [we disregard the delay
���1

b ln�Q=lD� in tk]. Equation (13) corresponds to the
fully adiabatic picture, where the escape rate is given by
the instantaneous barrier height �U�t�.
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The current has a different form for �2
Fs

00
m=D� 1.

Because p�2
opt�t� / �

2
b�t; t

0� exponentially increases in time
near qb, the term / p�2

opt in Eb and z becomes dominating
before the MPEP reaches the diffusion region jQj � lD.
Then Eqs. (6) and (10) give

j�q; t� �
�b�t�~ED1=2

�F
������
s00m

p e�R=D
X1
k��1

xke
�xk ;

xk � x0 exp�2�k=�F�; x0 � popt�t�Q=D:

(14)

Note that here popt�t� can be smaller than lD=!2
b�t�.

Equation (14) describes the escape rate in the whole
region �2

Fs
00
m � D; it does not require the adiabatic ap-

proximation. Its form is totally different from that of the
diffusion current �D@Q� on the basin boundary Q � 0 as

given by Eqs. (4) and (10). The ratio ~E=
������
s00m

p
� �Fz

�1=2
2

can be obtained by solving Eq. (11).
For �F 
 1 the current (14) is a series of distinct

strongly asymmetric peaks, with xk � exp���t� k�F �
tm��b�tm�� near the maximum. The transition between the
pulse shapes (13) and (14) occurs for �2

Fs
00
m=D� 1. It is

described by Eq. (6) with E � �2���1D�1=2j�a=
�bj1=2 exp���R� sm�=D�. For �F 
 1, the shape of cur-
rent pulses in the whole range (12) is the same as for weak
modulation [17], but the parameters depend on A;!F
differently. With increasing �F the peaks of j (14) are
smeared out and the escape synchronization is weakened.
For �F � 1 it disappears.

The escape current (14) is completely different from the
current on the basin boundary [11]. The regime
�2
Fs

00
m=D
 1, where the current has the form (13), cannot

be studied in the approximation [11] at all.
In the range s00m � jsmj � D, the period-averaged escape

rate (7) is

W � � exp��R=D�; � � 
�b~ED
1=2=2�

������
s00m

q
: (15)

The prefactor � can be expressed in terms of z2, giving the
result [11] even where the theory [11] does not apply.

The asymptotic technique developed in this Letter
allows obtaining the prefactor � in several limiting cases.
For comparatively weak modulation, D
 jsmj 
 R,
Eqs. (11) and (15) give the same result as in Ref. [10].
Since the theory [10] covers the whole range jsmj 
 R, a
transition from the limit of no modulation to the case of
arbitrarily strong modulation is now fully described.

In the whole range where the adiabatic approximation
applies, �F 
 1, we obtain

� � �2���3=2j�a�bj
1=2D1=2!F�� �Um�

�1=2; (16)

where �a;b are calculated for t � tm. Interestingly, � (16)
is independent of the modulation frequency.

Equation (16) is simplified for the modulation amplitude
close to the bifurcational value Ac where the metastable
and unstable states merge. For small -A � Ac � A and
2-3
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FIG. 1 (color online). The prefactor � in the average escape
rate W (15). The results refer to a Brownian particle with
K�q; t� � q2 � 1=4� A cos�!Ft�, !F � 0:1 and describe es-
cape in the regime of strong synchronization, where � / D1=2.
The solid line for small A shows the scaling � / A�1=2 [10]. The
solid line for small Ac � A (Ac ’ 0:29) shows the scaling (17).
The dashed line shows the result of the numerical solution of
Eq. (11). The squares and crosses show the results of
Monte Carlo simulations for R=D � 5 and R=D � 6, respec-
tively.
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!Fjt� tmj the adiabatic barrier is �U�t� / �-A�

ac!2
F�t� tm�

2�3=2 (here ac � Ac), and j�a;bj / �-A�1=2;
cf. Refs. [18–23]. Then, from Eq. (16), the prefactor in
the adiabatic limit scales as � / �-A�1=4.

The slowing down of the system motion makes the
adiabatic approximation inapplicable in the region
-A=Ac & �F. In contrast to the adiabatic scaling R /

�-A�3=2, the activation energy scales here as R / �-A�2

[22]. Using the results [22], we obtain from Eq. (11)

� � �0D
1=2�-A��1!5=4

F ; (17)

where �0 � �64�7!F�
�1=4j@2t K@

2
qKj

1=8=j@AKj. Here all
derivatives are evaluated for q; t, and the amplitude A �
Aadc � Ac where the minimum and maximum over q of the
potential U�q; t� merge (once per period).

From Eq. (17), the prefactor � / �-A��1 sharply in-
creases as the modulation amplitude approaches Ac. This
is qualitatively different from the decrease of � in the
adiabatic approximation. The scaling � / �-A��1 agrees
with the numerical solution of Eqs. (11) and (15) for a
model system shown in Fig. 1. The calculations in a broad
range of A are also confirmed by Monte Carlo simulations.

For high frequencies, �F � 1, escape is not synchro-
nized by the modulation. The prefactor in the escape rate is
� � j 
�a 
�bj

1=2=2�; it is independent of the noise intensity
D. Near the bifurcation point it scales as in stationary
systems, where � / �-A�1=2 and R / �-A�3=2 [18,19].
Very close to the bifurcation point modulation is neces-
sarily fast, because j 
�a;bj ! 0 for A! Ac. Therefore the
prefactor always goes to zero for A! Ac. However, for
small !F the corresponding region of -A is exponentially
narrow [22].
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In conclusion, we have obtained a general solution of the
problem of noise-induced escape in periodically modu-
lated overdamped systems. With increasing modulation
frequency, the pulses of escape current change from
Gaussian to strongly asymmetric; for large !F current
modulation is smeared out. The prefactor � in the period-
averaged escape rate is a strongly nonmonotonic function
of the modulation amplitude A for low frequencies. It first
drops with increasing A to � / �D=A�1=2 [10], then varies
with A smoothly [11,12], and then sharply increases, � /

D1=2=�Ac � A�, near the bifurcation amplitude Ac. We
found three scaling regimes near Ac, where � /
�Ac � A�

� with � � 1=4, �1, or 1=2. The widths of the
corresponding scaling ranges strongly depend on the
modulation frequency.
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