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We investigate dynamics of activated escape in periodically modulated systems. The trajectories followed in
escape form diffusion-broadened tubes, which are periodically repeated in time. We show that these tubes can
be directly observed and find their shape. Quantitatively, the tubes are characterized by the distribution of
trajectories that, after escape, pass through a given point in phase space for a given modulation phase. This
distribution may display several peaks separated by the modulation period. Analytical results agree with the
results of simulations of a Brownian particle in a model modulated potential.
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I. INTRODUCTION

The problem of noise-activated escape in periodically
modulated systems is of interest for many areas of physics
and applications, from Josephson junctions �1–3� and nano-
and micromechanical systems �4,5� to epidemics �6�. The
theory of activated escape should answer two closely related
questions: what is the escape rate, and how does the system
move during escape? Fluctuational trajectories leading to es-
cape, or interstate switching, are of significant interest and
have been extensively studied in recent years using various
numerical techniques, see Refs. �6–9� and papers cited
therein. Even though escape is a random event, the probabili-
ties of following different paths are strongly different. There-
fore, the system most likely follows a certain pathway, i.e.,
its trajectory is close to the most probable escape path
�MPEP�, see Ref. �10� and references therein.

The distribution of escape trajectories can be conveniently
characterized by the prehistory probability distribution
�PPD�, a quantity accessible to direct experimental measure-
ments. It is obtained by recording trajectories of the system
that lead to escape, and superimposing the trajectories that—
after the system has escaped—pass through a small vicinity
of a point qf �for a certain modulation phase, in the case of a
periodically modulated system�. The point qf is chosen in the
phase space to be sufficiently far behind the boundary of the
basin of attraction to the initially occupied metastable state.
Formally, the PPD ph�q , t �qf , tf� is the probability density for
the system to have passed through a point q at an instant t,
provided it had been fluctuating about the metastable state
for a long time and passed qf at a later time tf, tf � t �11�. All
time intervals that we discuss are small compared to the life-
time of the metastable state.

The PPD ph�q , t �qf , tf� should peak at q lying on the op-
timal fluctuational path that leads to qf. Therefore it “maps
out” optimal paths. For stationary systems, this has been di-
rectly confirmed by extensive simulations �12–14� and also
in laser experiments �15�. In such systems, escape can occur
at any time with equal probability; therefore, the tube of
paths around the optimal escape path is broad.

In the present paper, we study escape pathways in peri-
odically modulated systems. Modulation synchronizes es-
cape events. This can be easily understood for escape from a
slowly modulated potential well. Here, escape is most likely

to occur when the instantaneous potential barrier �U�t� is at
its lowest, once per period, cf. Fig. 1�a�. If the modulation
amplitude of �U�t� significantly exceeds the noise intensity
D �D=kBT for thermal noise�, escape events are synchro-
nized very strongly. Strong synchronization persists even
where the modulation is not slow and the adiabatic
picture—in which the escape rate is determined by the in-
stantaneous barrier height—does not apply �16–20�. As a
result of escape synchronization, there is one MPEP per pe-
riod.

FIG. 1. �Color online� Activated motion leading to detection of
an escaped particle at point qf at time tf �schematically�. Panels �a�
and �b� illustrate escape from a static and a periodically modulated
potential well, respectively. In the latter case, qa�t� and qb�t� are
the periodic stable state and the basin boundary. The trajectories
qopt

�n��t� �n=1, . . . ,−2� are the periodically repeated MPEPs. The four
major stages of motion A, B, C, D on the way to qf correspond to
motion well behind the basin boundary, near the boundary, between
the attractor and the boundary, and near the attractor, respectively.
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In turn, as we show, the PPD displays a sharp narrow peak
as a function of q for a given t. This peak lies on the MPEP.
Respectively, in �q , t� space, the PPD displays a narrow ridge
centered at the MPEP, cf. Fig. 2. Moreover, the PPD may
have several narrow peaks �ridges in �q , t� space�. Their
width gives the width of the distribution of escape trajecto-
ries. It is determined by the typical diffusion length lD
= �2Dtr�1/2, where tr is the relaxation time of the system. This
is qualitatively different from the shape of the PPD in sta-
tionary systems �15�. Of course, in modulated systems, along
with the final point qf through which the system passes, one
should fix the modulation phase when the passage happens.
It is given by the passage time tf�mod �F�, where �F is the
modulation period.

The occurrence of a narrow peak of the escape trajectories
distribution can be understood from the qualitative picture of
motion in escape. This picture is sketched in Fig. 1 for a
system with one dynamical variable q. Escape from a static
potential well corresponds to going over the barrier top qb
from the vicinity of the potential minimum qa, see Fig. 1�a�.
Similarly, a modulated system escapes when it goes over the
periodic basin boundary qb�t� from a periodic metastable
state qa�t�, see Fig. 1�b� �here and below, we assume that the
noise correlation time is small; see Ref. �21� for a more
general case�. Let us suppose that the escaped particle is
found at time tf, at a point qf sufficiently far behind qb�t�. A
typical trajectory to this point displays four distinct sections
with different types of motion shown schematically by letters
A through D.

We discuss the motion backward in time from tf. Imme-
diately adjacent to qf is Section A of the trajectory in Fig. 1.
Here, for small noise intensity, the system moves close to the
noise-free trajectory from the vicinity of qb�t� to qf. In the

case of a static potential, this corresponds to sliding down the
potential slope from qb to qf. Section B corresponds to dif-
fusion in a region of width �lD around qb�t�. In this region,
noise-free motion with respect to qb�t� is slow �in the case of
a static potential, the potential is locally flat at qb�. Section C
corresponds to motion from the attractor to the basin bound-
ary. The respective trajectory is close to the MPEP. This
motion is a result of the large fluctuation that has led to
escape detected at qf. For strongly synchronized escape,
there is one MPEP per modulation period, as shown in
Fig. 1�b�. The MPEP approaches qb�t� asymptotically as t
→�. If the system was observed behind qb�tf� at time tf, it
has most likely arrived at the vicinity of qb�t� along the
MPEP that approached qb�t� before tf, but not too much in
advance, as shown in Fig. 1�b�. Finally, in Region D well
before tf, the system was fluctuating about the attractor.

The described picture of motion suggests that the PPD
will peak on the trajectory singled out in Fig. 1�b�. It also
explains why the PPD peak along the q axis should be nar-
row: in contrast to stationary systems, which can arrive at the
vicinity of qb at any time, periodically modulated systems
approach qb�t� only once per period, and the tube of escape
trajectories is narrow. We note that, by changing qf , tf, we
can switch between neighboring MPEPs, and therefore there
is a possibility for the PPD to have two, and potentially even
more, peaks inside the attraction basin.

As mentioned above, we are interested in the regime
where escape events are strongly synchronized by the modu-
lation. It means that the probability density to find the
escaped system at a point qf behind the basin boundary, cf.
Fig. 1, displays sharp peaks as a function of the observation
time tf. These peaks are periodically repeated in time. They
were studied in Ref. �20�. We will analyze the PPD for the
time tf close to the maximum of the escape probability peak.
This choice is justified, because the corresponding PPD char-
acterizes the most probable escape trajectories. Otherwise,
the PPD would be formed by trajectories with exponentially
smaller probabilities that are very rarely followed in escape.

Interestingly, the condition that the tubes of escape trajec-
tories be narrow in time and space requires that the modula-
tion frequency �F=2� /�F lie within a range, limited both
from below and from above. To understand the lower limit,
we note that as mentioned above, for slow modulation es-
cape occurs every period around the time tm+k�F where the
height of the instantaneous potential barrier �U�t� is at its
minimum �k=0, ±1, . . . �. The typical width of the time win-
dow for escape �t is given by the condition ��U�tm±�t�
−�U�tm� � �D, which leads to �t= �D /�Ü�tm��1/2

��F
−1�D /�U�tm��1/2. If �t exceeds the typical duration of

motion in escape tr ln��U�tm� /D�, the PPD has the same
shape as if the system were escaping out of a stationary
potential well of height �U�tm�. In this case, inside the at-
traction basin the ridge of the PPD in �q , t� space is broad
and asymmetric, its width along the q axis is independent of
the noise intensity �15�.

In the opposite limit of high-frequency modulation, �Ftr
	1, escape of an overdamped system is not synchronized.
The dynamics is characterized by the coordinates averaged
over modulation period. The PPD as a function of such co-

FIG. 2. �Color online� The PPD ph�q , t �qf , tf� and its contour
plot for a noise-driven overdamped system with equation of motion
q̇=q2−0.25+A cos �Ft+ f�t�, where f�t� is white noise of intensity
D. The parameters are A=0.7, �F=2, D=0.01, qf =0.8, and tf

= ��F /2��mod �F�, where �F=2� /�F is the modulation period. The
shadowing �color code online� corresponds to the four regions of
the height of the distribution separated by the values ph=0.5,2 ,7.
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ordinates is described by the theory for stationary systems
�15�, and the PPD peak inside the attraction basin is broad.

In the intermediate range of frequencies not only are the
PPD peaks narrow but, as mentioned above, the PPD as a
function of q for given t �and also of t for given q� may
display several peaks inside the attraction basin. This hap-
pens because the motion of the system near the basin bound-
ary is slow. Therefore, if the system is observed behind the
boundary qb�t� at a given time tf, it could have arrived at the
boundary along one of a few periodically repeated optimal
escape paths, fluctuated about qb�t� for some time, and then
made a transition to �qf , tf� over time �tr.

The multiple-peak structure of the PPD is a specific fea-
ture of periodically modulated systems far from equilibrium,
i.e., away from both the adiabatic limit of slow modulation
and the limit of fast modulation. It is illustrated in Fig. 2 for
a model system. Two ridges of the PPD inside the attraction
basin are clearly resolved in this figure. Their shape is well
described by the asymptotic theory developed in this paper.

In Sec. II below, we discuss the dynamics of a periodi-
cally modulated system and the equations for the MPEP. In
Sec. III, we obtain a general expression for the PPD near the
basin boundary, and relate it to the distribution that describes
the quasiperiodic current away from the attraction basin,
which gives the escape rate. In Sec. IV, it is shown that the
PPD is simplified in the adiabatic limit, where the modula-
tion period is large compared to the relaxation time. Two
types of behavior may be displayed near qb�t� in this case,
depending on the ratio of the two small parameters that char-
acterize the dynamics. The analysis is extended to the case of
nonadiabatic driving in Sec. V. In Sec. VI, we obtain the
central result of the paper, the PPD inside the attraction ba-
sin. We show that it has the shape of a sum of diffusion-
broadened Gaussian peaks centered at the periodically re-
peated MPEPs. In Sec. VII, we describe the results of
simulations of a model system and compare them to the ana-
lytical results. Section VIII provides a brief summary of the
results.

II. ESCAPE OF A PERIODICALLY MODULATED SYSTEM

We investigate the PPD for an overdamped system char-
acterized by one dynamical variable q. The system is in a
periodically modulated potential U�q , t�=U�q , t+�F�. Fluc-
tuations are induced by an external noise f�t�. The motion is
described by the Langevin equation

q̇ = K�q,t� + f�t� . �1�

Here, K�q , t���qU�q , t� is the regular periodic force. We
consider the simplest case, where f�t� is zero-mean white
Gaussian noise with correlator �f�t�f�t��	=2D
�t− t��.

In the absence of noise, system �1� has a periodic meta-
stable state �attractor� qa�t�=qa�t+�F� and a periodic bound-
ary qb�t�=qb�t+�F� of the basin of attraction to qa�t�, see
Fig. 1�b�. The states qa�t� and qb�t� are, respectively, the
stable and unstable periodic solutions of the equation q̇
=K�q , t�. For concreteness, we assume that qa�t��qb�t�.

The PPD ph�q , t �qf , tf�, as defined in Sec. I, is the condi-
tional probability density �with respect to q� of passing

through a point �q , t� in the coordinate-time space on the way
from the attractor to a point �qf , tf�. It has the form �11�

ph�q,t�qf,tf� =
��qf,tf�q,t���q,t�qin,tin�

��qf,tf�qin,tin�
, �2�

where ��q1 , t1 �q2 , t2� is the probability density �with respect
to q1� of a transition from �q2 , t2� to �q1 , t1�, with t1� t2.

We assume that the noise intensity, D, is small. Then, the

period-average escape rate is W̄exp�−R /D�, where R is the
activation energy of escape, R	D �16–20�. The condition on

D is that W̄−1 largely exceeds the relaxation time of the sys-
tem tr and the modulation period �F. Equation �2� gives the
distribution of escape paths in a broad time range

W̄−1 	 tf − tin � t − tin 	 tr,�F, �3�

where the population of the attraction basin practically does
not change. For t− tin	 tr, the initial state qin, which is close
to the attractor qa�tin�, gets forgotten. Then, the right-hand
side of Eq. �2� becomes independent of tin.

The functions ��q , t �qin , tin�=��q , t� and ��qf , tf �qin , tin�
=��qf , tf� give the time-periodic probability density to find
the system in states q and qf, respectively. To study escape
pathways, we calculate the PPD for qf outside the attraction
basin, qf �qb�tf�.

The transition probability density ��q , t �q� , t�� is a solu-
tion of the Fokker-Planck equation �FPE�

�t� = − �q�K�q,t��� + D�q
2� , �4�

with the initial condition ��q , t� �q� , t��=
�q−q��. Even for a
one-dimensional �1D� system, this equation does not have a
known explicit solution, except for the case of K linear in q.
To analyze the PPD, we will have to find approximate solu-
tions in different regions and match them.

In the following subsections, we discuss the dynamics of
the system prior to and during escape.

A. Dynamics near the periodic states

We start with the dynamics close to the periodic states
qi�t�, i=a ,b. In the absence of noise, it is described by the
linear equations 
q̇=�i�t�
q with 
q=q−qi�t� and

�i�t� = �i�t + �F� = ��qK�qi�t�
, i = a,b . �5�

Time evolution of the deviation 
q from qi�t� is given by


q�t� = 
q�t���i�t,t�� ,

�i�t,t�� = exp
�
t�

t

d� �i����, i = a,b . �6�

Because of the periodicity of �i�t�, the Floquet multipliers

Mi = �i�t + �F,t� = exp��̄i�F�, i = a,b , �7�

are independent of time, with Ma�1 and Mb�1. In Eq. �7�,
�̄i �i=a ,b� is the period-average value of �i�t�, with �̄a�0,
�̄b�0. The relaxation time of the system can be chosen as
tr= �̄b

−1���̄a�−1.
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Weak noise leads to fluctuations about the attractor, which
have Gaussian distribution near the maximum in the time
range �3�. From Eq. �4�, this distribution has the form

�a�q,t� = G„q − qa�t�;�a�t�… , �8�

with

G�x;�� = �2�D�2�−1/2exp�− x2/2D�2� . �9�

The variance �a
2�t� is periodic in time. It is given by the

expression

�i
2�t� = 2�Mi

−2 − 1�−1�
0

�F

dt1�i
−2�t + t1,t� �10�

with i=a.

Most probable escape paths

Along with small fluctuations, there also occur occasional
large deviations from qa�t�, including escape from the attrac-
tion basin. In a broad parameter range, escape events are
very strongly synchronized with the modulation, see Ref.
�20� and papers cited therein. Because large fluctuations have
small probabilities, in escape the system closely follows the
trajectory that is least improbable among all possible escape
trajectories. As mentioned in Sec. I, it is usually called
the MPEP, qopt�t�. Inside the attraction basin, escape trajec-
tories lie within periodically repeated narrow tubes.
The tubes have a width �lD and are centered at the MPEPs
qopt

�n��t��qopt�t+n�F�, n=0±1. . . .
The MPEPs provide a solution to the variational problem

of maximizing the probability of a fluctuation in which the
system moves from qa�t� to qb�t�. This problem can be
mapped onto the problem of dynamics of an auxiliary Hamil-
tonian system. The latter is described by the Wentzell-
Freidlin Hamiltonian H�p ,q ; t�= p2+ pK�q , t� �22�. Its equa-
tions of motion have the form:

q̇ = K�q,t� + 2p, ṗ = − p�qK . �11�

The MPEPs correspond to the minimal action heteroclinic
Hamiltonian trajectories (qopt�t� , popt�t�) �16,23�. They start
for t→−� at the periodic hyperbolic state (qa�t� , p=0) of the
auxiliary system, and for t→� approach its other periodic
hyperbolic state, (qb�t� , p=0).

Well outside the diffusion regions around the periodic
states qa,b�t�, the motion along the MPEP is fast. It is seen
from Eq. �11� that the system moves between these regions
over time tr. Close to qb�t�, the system is slowed down and,
in the region �q−qb�t� � � lD, the motion is dominated by dif-
fusion. The duration of staying in the vicinity of qb�t� can be
obtained by linearizing equation of motion �1� near qb, and is
given by the Suzuki time tS� �̄b

−1ln��q / lD� �24,25�, where
�q=mint �qb�t�−qa�t�� is the typical distance between the pe-
riodic states.

Periodically modulated systems are advantageous as they
allow one to observe, via the prehistory distribution, both the
fast motion along the MPEP and the slow motion near the
unstable state. As we show below, the peak of the PPD does

not display broadening due to diffusion near qb, as does the
PPD in the absence of modulation �15�.

III. PREHISTORY PROBABILITY DISTRIBUTION
NEAR THE BASIN BOUNDARY

We will calculate the PPD in the regime of strong syn-
chronization of escape �19,20�. In this regime, the probability
distribution ��q , t� of finding a particle behind the basin
boundary has the form of sharp periodic pulses as a function
of t. It is most interesting to find the PPD for a final point
�qf , tf� on the �q , t� plane near the center of such a pulse.

We will assume that the point �qf , tf� is sufficiently far
from the diffusion-dominated layer �Region B in Fig. 1�
around the basin boundary, so that the distance to the bound-
ary is Qf =qf −qb�tf�	 lD. This condition is usually realized
in experiments, where the position of a particle detector is
chosen so as to ensure that the detected particles have prac-
tically no chance to return to the attraction basin. At the same
time, we assume for convenience that the final point is still in
the harmonic region, Qf ��q, in which case the motion be-
tween qb and qf can be described by linearizing equation �1�
in Q=q−qb�t�.

We will start the analysis of the PPD ph�q , t �qf , tf� with
the case where not only qf, but also the point �q , t� through
which the trajectory of interest has passed, is in the harmonic
region around the basin boundary qb�t�.

A. Transition probability density

As seen from Eq. �2�, finding the PPD requires calculating
the transition probability density ��qf , tf �q , t�. The FPE for
��qf , tf �q , t� can be linearized near qb�t�,

�tf
� = − �b�tf��Qf

�Qf�� + D�Qf

2 � , �12�

where �=��qf , tf �q , t� and Qf =qf −qb�tf�.
The solution of Eq. �12� can be sought in the form of a

Gaussian distribution

� = G�Qf − Q̃�tf�;�̃�tf�� , �13�

with G�x ;�� given by Eq. �9�. Equation �12� will be satisfied

provided the hitherto unknown functions �̃ , Q̃ obey the equa-
tions

d�̃2

dtf
= 2�b�tf��̃2 + 2,

dQ̃

dtf
= �b�tf�Q̃ . �14�

The initial conditions for these equations follow from the
condition ��qf , t �q , t�=
�qf −q�. They have the form �̃2�t�
=0 and Q̃�t�=Q=q−qb�t�. Then, the solution of Eq. �14� is

�̃2�tf� = 2�
t

tf

d��b
2�tf,�� ,

Q̃�tf� = Q�b�tf,t� . �15�

Finally, using the function
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� f
2�tf,t� = �b

−2�tf,t��̃2�tf� = 2�
t

tf

d� �b
−2��,t� , �16�

we can write the distribution in the form

� = �b
−1�tf,t�G„Q − Qf�b

−1�tf,t�;� f�tf,t�… . �17�

The function Qf�b
−1�tf , t� has a simple meaning. Consider

the noise-free trajectory that passes through the point Qf at
time tf. This trajectory should have passed through the point
Qf�b

−1�tf , t� at time t. As expected, the transition probability
�17� is maximal for Q coinciding with this point.

The function � f
2, Eq. �16�, is simply related to the function

�b
2�t�, Eq. �10�, introduced earlier,

�b
2�t� − �b

−2�tf,t��b
2�tf� = � f

2�tf,t� . �18�

We will use this relation in what follows.

B. General expression for the PPD near qb„t…

From Eq. �2�, the PPD is determined by the product of the
transition probability �17� and the ratio of the quasiperiodic
distributions ��q , t� /��qf , tf�. The distribution ��q , t� close to
qb�t� was found earlier �19,20�. It has the form

��q,t� = �
0

�

dp���p,Q,t�, Q = q − qb�t� ,

���p,Q,t� =
E

D
exp�−

1

D

 p2�b

2�t�
2

+ pQ + s����� ,

��p,t� = �Fln
 p�b�t,t��
�̄blD

�, �F = �F/�̄b. �19�

Here E and t� are constants, s���=s��+2�� is a zero-mean
2�-periodic function, and �F is the dimensionless modula-
tion frequency.

The function s��� in Eq. �19� plays the role of an instan-
taneous modulation-induced change of the activation energy.
In the regime of strong synchronization of escape, the mini-
mal value sm of s��� satisfies the condition �sm � 	D. The
minima of s��� lie on the optimal escape paths �19,20�, p
= popt

�n��t�� popt�t+n�F�. Here n=0, ±1, . . . enumerates peri-
odically repeated MPEPs, see Fig. 1�b�; we set (qopt

�0��t� ,
popt

�0��t�)= (qopt�t� , popt�t�).
Near the basin boundary qb�t�, the optimal paths satisfy

the linearized equation �11� and evolve in time as

popt�t� = �b
−1�t,t��popt�t��, Qopt�t� = − �b

2�t�popt�t� ,

Qopt�t� = qopt�t� − qb�t�, �Qopt� � �q . �20�

Equation �20� describes how a given optimal path ap-
proaches �qb�t� , p=0� for t→�. The parameter t� is deter-
mined by matching to one of the periodically repeated tra-
jectories �11� that start from (qa�t� , p=0) for t→−�.

Expanding the function s��� around its minima at the
periodically repeated MPEPs, to second order in ��p , t�

−�(popt
�n��t� , t), we obtain probability distribution �19� as a

sum of contributions from the MPEPs

���p,Q,t� =
Ee−sm/D

D
�

n

exp�− r�n��p,Q,t�/D� ,

r�n� = pQ +
p2�b

2�t�
2

+
�F

2sm�

2
ln2
 p

popt
�n��t�� . �21�

Here, sm� ��d2s /d�2�m is the curvature of the function s at
the minimum. For strong synchronization, where �sm � 	D,
we have sm� 	D as well, which is a consequence of s���
being a zero-mean periodic function. The quantity sm� can be
found �19,20�, along with the constant E exp�−sm /D�, by
matching periodic distribution �19� to the distribution well
inside the attraction basin.

It follows from Eq. �20� that, near the basin boundary,

popt
�n+k��t� = popt

�n��t + k�F� = Mb
−kpopt

�n��t� . �22�

With account taken of the relation Mb=exp�2� /�F�, this
leads to the expression

r�n+k� = r�n� + 2�k�Fsm� ln
 p

popt
�n��t�� + 2�2k2sm� . �23�

Combining Eqs. �17� and �21� and using Eq. �18�, we
obtain for the PPD near the basin boundary,

ph�q,t�qf,tf� = �b
−1�tf,t�G„Q − Qf�b

−1�tf,t�;� f�tf,t�…

�

�n �
0

�

dp exp�− r�n��p,Q,t�/D�

�n �
0

�

dp exp�− r�n��p,Qf,tf�/D�
.

�24�

This expression gives the general form of the PPD near the
basin boundary. We note that, even though the equations of
motion near qb�t� can be linearized, the PPD is generally
non-Gaussian. This distortion is an important feature of es-
cape dynamics.

IV. ADIABATIC REGIME NEAR THE BASIN BOUNDARY

We start the analysis with the case of slow modulation,
�F�1, where the motion can be described in the adiabatic
approximation. As we show below, in the adiabatic regime
and for strong synchronization, sm� 	D, only one term con-
tributes to each of the sums in Eq. �24�. The shape of the
PPD in this case is determined by the parameter

� = �F
2sm� /D . �25�

We call � the distortion parameter. This is because, for
��1, the escape current has a form of Gaussian peaks;
whereas for larger �, the peaks of the current become non-
Gaussian �19,20�. Formally, � is equal to the ratio of two
small parameters, the squared reduced modulation frequency
�F / �̄b=�F and the noise intensity scaled by the effective
modulation strength D /sm� .

PATHWAYS OF ACTIVATED ESCAPE IN¼ PHYSICAL REVIEW E 73, 061109 �2006�

061109-5



The physical meaning of � can be understood in the fol-
lowing way. In the adiabatic picture, one usually thinks of
escape as occurring in the instantaneous potential U�q , t�.
Most likely, it happens once per period at the time tm when
the barrier height �U�t�=U(qb�t� , t�−U�qa�t� , t) is minimal,
cf. Fig. 1. As explained in Sec. I, the typical width of the
time window for escape �t is determined by the condition
�d2�U /dt2�m��t�2=D, where the subscript m indicates that
the derivative is evaluated for t= tm. The parameter sm� is �20�

sm� = �d2�U/dt2�m/�F
2�b

2�tm� � �d2�U/dt2�m/�F
2 .

Therefore, the parameter �����t�2�̄b
2�−1 is the squared ratio

of the relaxation time of the system tr= �̄b
−1 to �t. It shows

whether the system moves fast enough to escape while the
barrier remains at its minimum, or the barrier noticeably
changes during escape—leading to a delay of escape with
respect to tm and a distortion of the tube of escape trajecto-
ries.

Because the PPD evolves over time �tr, of interest is the
time range �t− tf � � tr��F. Moreover, both t and tf should be
close to tm. Then, the instantaneous relaxation rate �b�t� can
be approximated by its value �bm��b�tm�. The functions �b

and � f
2 become

�bm�tf,t� = exp��bm�tf − t�� ,

� fm
2 �tf,t� = �bm

2 �1 − exp�− 2�bm�tf − t��� , �26�

where

�b
2�t� � �b

2�tm� � �bm
2 = 1/�bm.

A. Weak distortion, �™1

We first consider the limit of weak distortion, ��1 �more
precisely, the weak distortion condition has the form
� ln2�sm� /D��1, see below�. In this limit, one can think of
motion in the fully adiabatic way, assuming that it occurs in
a quasistatic potential U�q , tm�. The periodic distribution be-
hind the attraction basin ��qf , t�, which is proportional to the
instantaneous escape rate, has a form of periodic in time
Gaussian pulses, with width ��D /sm� �1/2�F �20�.

For small �, expression �24� for the PPD can be simpli-
fied. We will start with the analysis of the denominator in
this expression. If there were no term �F

2sm� /D=� in
r�n��p ,Qf , tf� /D, the typical values of p contributing to the
integral over p would be �D /Qf. For such p, there may be
only one n, for which the term � ln2�p / popt

�n��tf�� in r�n� /D is
small, whereas for all other n it is sm� /D �cf. Eq. �23��,
making the integrand exponentially small. A similar argu-
ment applies to the numerator in Eq. �24�, except that, de-
pending on Q, the typical values of p are of order of
�D /�bm�1/2 ,D /Q, or −�bmQ.

Keeping only the leading term in the sums in the numera-
tor and denominator of Eq. �24� and disregarding corrections
�, we obtain

ph�q,t�qf,tf� = G„Q − Qf�bm
−1 �tf,t�;� fm�tf,t�…

�
Qf�bm

−1 �tf,t�
2D�bm

2
exp
 Q2

2D�bm
2 �erfc
 Q

2D�bm
2 � .

�27�

In deriving this expression, we also took into account that the
final point qf is sufficiently far from the diffusion-dominated
region behind the basin boundary, Qf 	 lD, and disregarded
corrections �lD

2 /Qf
2. We note that the terms � in r�n� in the

numerator and denominator in Eq. �24� have a logarithmic
factor. This factor may become large in the weak-noise limit.
One can show that for the corrections � to be small, it is
necessary that � ln2�sm� /D��1. This condition is equivalent
to the inequality �t	 tS, where �t is the characteristic time
window within which the barrier height is practically con-
stant and tS is the Suzuki time, see Eq. �28� below.

Equation �27� for the PPD is further simplified for such
times that the point Qf�b

−1�tf , t� is far behind the basin bound-
ary compared to lD. This is the point that the noise-free tra-
jectory arriving at Qf at time tf passes at time t. For such t,
the PPD as a function of Q has the form of a Gaussian peak
with variance D� fm

2 �tf , t�. This means that the trajectories ar-
riving at the point Qf are close to the noise-free trajectory.
The tube of these trajectories is diffusion broadened, with
width �D�tf − t��1/2 for small tf − t.

Because, for ��1, escape as a whole occurs in the qua-
sistatic potential U�q , tm�, the full calculation of the PPD
described in Sec. VI leads to the same result as in the case of
escape in a stationary potential studied earlier �15�. As tf − t
increases, the peak of PPD �27� crosses the basin boundary
and enters the attraction basin. This is the slowest part of the
PPD evolution. Its duration is determined by the Suzuki time

tS = tr ln�sm� /D� . �28�

The peak is sharply broadened in this region. Deep on the
intrawell side, −Q	 lD, the width of the peak becomes inde-
pendent of D, i.e., parametrically larger than the diffusion-
limited width �lD. As tf − t increases further, the PPD peak
approaches the attractor and narrows down, with the width
again becoming diffusion limited. This part of the evolution
takes �tr.

B. Strong distortion, �š1

The shape of the PPD near the maximum changes dra-
matically in the range where the modulation is still dynami-
cally slow, �F�1, but the distortion parameter � becomes
large, �	1. Here, the shape of the potential barrier for es-
cape changes as the particle crosses the diffusion region
around the basin boundary. This leads to a strong change of
the PPD compared to the picture based on the quasistatic
barrier that was discussed before.

For �	1, in an important range of Q , t and Qf , tf, the
integrands in the numerator and denominator in Eq. �24�
have sharp extrema as functions of p for p= popt

�n� �a more
precise condition is specified below�. Integration over p can
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be done by the steepest descent method. It gives the PPD in
the form of a Gaussian distribution over Q with time-
dependent center Qn0

and variance D� f
2,

ph�q,t�qf,tf� = G„Q − Qn0
;� f�tf,t�… , �29�

where

Qn � Qn�t�qf,tf� = Qopt
�n��t� + �Qf − Qopt

�n��tf���b
−1�tf,t� ,

�30�

and n0�n0�qf , tf�. Here, we have taken into account that the
major contribution to each of the sums in Eq. �24� comes
from one term, with n=n0.

It is clear from the analysis of the denominator in Eq. �24�
that the value of n0 is determined by the condition that
popt

�n0��tf�Qf /D�1 for the n0th optimal path. The very exis-
tence of such n0 follows from the fact that we consider tf, for
which the probability density ��qf , tf� is close to its maxi-
mum over tf; this maximum is reached once per period for
popt

�n��tf�Qf /D=1 �19,20�. The terms with �n−n0 � �1 in the
denominator in Eq. �24� are

 Mb
n0−nexp�− Mb

n0−n� � 1,

where we have used Mb=exp�2� /�F�	1 �this estimate is
written for popt

�n0��tf�Qf /D=1�.
A simple qualitative argument shows that the same n0

gives a major contribution to the sum in the numerator of Eq.
�24�. Indeed, the terms with different n correspond to t
changing by an integer number of the modulation periods �F,
whereas in its central part �Section C in Fig. 1�, an optimal
escape trajectory lasts for a small time compared to �F.
Therefore, �t− tf � ��F. The formal condition for this approxi-
mation to be true is that the Suzuki time tS �28� is small
compared to the modulation period.

The maximum of the Gaussian PPD peak �29� lies at
Qn0

�t �qf , tf�. This function is a sum of the optimal path Qopt
�n�,

which is located inside the attraction basin, and the decaying
in time term Qf −Qopt

�n��tf�, which is determined by the final
point �qf , tf� and is located outside the attraction basin. Its
time dependence is particularly simple in the case where tf
corresponds to the maximum of the distribution ��qf , tf�, i.e.,
popt

�n0��tf�=D /Qf,

Qn0
�t�Qf,tf� � Qfe

−�bm�tf−t� −
D

�bmQf
e�bm�tf−t�. �31�

The first term in Qn0
, Eq. �31�, decreases with increasing tf

− t, which describes approaching the basin boundary back-
ward in time. The second term, on the other hand, increases
with tf − t; this term describes the motion, backward in time,
from the boundary to the interior of the attraction basin. The
motion at the boundary is initiated by noise, and therefore
this term is D. For sufficiently long tf − t, the distribution
maximum Qn0

approaches the optimal path Qopt
�n0��t�. The

overall behavior of Qn0
is shown in Fig. 3. It is seen that the

motion is slowed down near the basin boundary, and the
slowing down strongly depends on the noise intensity, in
agreement with Eq. �31�.

The width of the Gaussian PPD peak �29� is diffusion-
limited; its time dependence is given by Eq. �26� and is also
simple. It is shown in the right panel of Fig. 3.

The condition that the integrands over p in Eq. �24� are
maximal for popt

�n0� imposes a limitation on Q, where the ex-
plicit expression for the PPD �29� applies. For Q close to the
maximum of the distribution, �Q−Qn0

� � lD, this condition
takes the form �	 �Qopt

�n0��t� / lD�. Therefore, expression �29�
describes the distribution not only in the whole range be-
tween �Qf , tf� and the basin boundary, but also throughout
the diffusion region around the basin boundary and a region
that goes deeper into the attraction basin.

V. NONADIABATIC REGIME NEAR THE BASIN
BOUNDARY

The PPD can display a qualitatively different behavior for
nonadiabatic modulation, �F�1. With increasing tf − t, the
PPD inside the attraction basin can split into several peaks.
Such splitting already occurs close to the basin boundary and
is described by general expression �24�. Formally, the PPD
has well-resolved multiple peaks when several terms in the
numerator of Eq. �24� are of the same order of magnitude.

In the nonadiabatic regime, necessarily, �	1. Therefore,
integration over p in Eq. �24� can be done by the steepest
descent method. The integrands are maximal for p= popt

�n�. Us-
ing Eq. �18�, one can show that each term in the numerator
gives a Gaussian distribution over Q centered at Qn
�Qn�t �qf , tf�, Eq. �30�, with variance D� f

2�tf , t�, Eq. �16�.
This is similar to adiabatic case �29�, except that now the
PPD is a sum of appropriately weighted Gaussian peaks,

ph�q,t�qf,tf� =
�n

BnG„Q − Qn;� f�tf,t�…

�n
Bn

. �32�

The weighting factors Bn are

Bn � Bn�qf,tf� = xn exp�− xn� ,

xn = xn�qf,tf� = popt
�n��tf�Qf/D . �33�

If we keep only one term in the numerator and denomi-
nator in Eq. �32�, with the same n=n0 given by the condition
that Bn is maximal for n=n0, Eq. �32� goes over into Eq.

FIG. 3. The reduced position of the maximum Qn0
/Qf �left� and

the reduced width � f
2 /�bm

2 �right� of the PPD �29� in the adiabatic
regime as a function of the reduced time �bm�tf − t�.
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�29�. However, in the nonadiabatic case, there are regimes
where the PPD as a function of �Q , t� may display several
peaks. Equation �32� gives their shapes near the maxima.

The number of peaks of ph depends on Q , t, and �F, as
well as the final point �qf , tf�. As before, we choose the final
point so that the probability density behind the basin bound-
ary ��qf , tf� is close to its maximum over tf, which occurs for
xn0

�qf , tf��1. The amplitudes of different peaks are

Bn0+k = xn0
Mb

−kexp�− xn0
Mb

−k� , �34�

with Mb=exp�2� /�F� being the Floquet multiplier, Eq. �7�.
In practice, in the whole range of modulation parameters
where escape is strongly synchronized, the factor Mb is com-
paratively large. Therefore, for xn0

�1, the coefficients Bn0+k

rapidly decay with increasing �k�, and only a few peaks of the
PPD can be simultaneously observed, primarily with non-
negative k=0,1 , . . . .

The other condition for observing several peaks is that the
distance between them exceeds their width, that is, in par-
ticular �Qn0

−Qn0+1 � 	 lD. For Q�Qn0
	 lD, i.e., when the

PPD maximum is well behind the basin boundary with
respect to the attraction basin, we have �Qn0

−Qn0+1 �
��Qopt

�n0��t� � � lD
2 �b�tf , t� /Qf � lD, where we have used that

Qf 	 lD and that �b�tf , t��1 when the PPD maximum is be-
hind the boundary. Therefore, in this region, the PPD indeed
has only one peak.

For longer tf − t, when �b�tf , t�	1 and the peak positions
Qn0

,Qn0+1 are well inside the basin of attraction, the distance
between them exceeds lD. In this range, the corresponding
peaks of ph can be resolved. The ratio of their amplitudes is
given by the factor Mb, as seen from Eq. �34�. This is in good
agreement with the results of numerical simulations for a
specific model shown in Fig. 2, as will be discussed below.

We note that for �F	1, synchronization of escape by
modulation becomes weak. Although the system is far from
the adiabatic limit, dynamics of the period-average coordi-
nate is similar to dynamics in the case of a stationary system.
Even though the factor Mb becomes of order 1, of interest is
the PPD with respect to the period-averaged coordinate, and
this PPD does not display multiple peaks.

VI. PPD INSIDE THE ATTRACTION BASIN

We assume throughout this section that escape is strongly
synchronized and �	1. To find the PPD for �q , t� deep in-
side the attraction basin, we will use the equation

ph�q,t�qf,tf� =� dq�ph�q,t�q�,t��ph�q�,t��qf,tf� . �35�

It applies for t� t�� tf, as follows from definition �2�, and
can be obtained �15� from the Chapman-Kolmogorov equa-
tion for the transition probability ��qf , tf �q , t�.

As we show, t� in Eq. �35� can be chosen in such a way
that only a narrow range of q� contributes to the integral. The
corresponding q� are close, but not too close, to qb�t��. In this
range, both factors in the integrand, and hence the integral as
a whole, can be explicitly calculated. In particular, the func-
tion ph�q� , t� �qf , tf� is given by Eq. �32�.

The function ph�q , t �q� , t�� is the PPD inside the attraction
basin. For a periodically modulated system, it was found
earlier �26�. Because in escape the system is likely to move
close to one of the periodically repeated most probable es-
cape paths qopt

�n��t�, we are interested in ph�q , t �q� , t�� for both
�q , t� and �q� , t�� lying close to such a path. If both �q , t� and
�q� , t�� are close to an nth path qopt

�n��t�, the corresponding
PPD ph

�n��q , t �q� , t�� is Gaussian �26�,

ph
�n��q,t�q�,t�� = G„q − qn�t�q�,t��;�n�t�,t�… . �36�

Here, qn�t �q� , t�� is the value of the coordinate at time t on
the optimal path that leads to the point �q� , t��. This optimal
path is described by Eq. �11�.

The coordinate qn�t �q� , t�� as a function of time is close to
qopt

�n��t�. We can seek it in the form qn�t �q� , t��=qopt
�n��t�

+
qn�t �q� , t��. To the lowest order in the deviation of �q� , t��
from qopt

�n��t��, the function 
qn can be found from linearized
equation �11�. This gives


q̈n = Vn�t�
qn,

Vn�t� = 
�qtK +
1

2
�q

2�K2��
qopt

�n��t�
. �37�

The boundary conditions for 
qn are 
qn�t� �q� , t��=q�
−qopt

�n��t�� and limt→−�
qn�t �q� , t��=0; the latter condition
simply means that the optimal path approaches the attractor
qa�t� as t→−�.

It follows from Eq. �37� that function �n�t�=
q̇n /
qn sat-
isfies a first-order �Riccati� equation:

�̇n + �n
2 = Vn�t� . �38�

For q� ,qopt
�n��t�� both close to the basin boundary qb�t��, with

account taken of the boundary conditions for 
qn the solution
of Eq. �37� can be written in terms of �n as


qn�t�q�,t�� = �Q� − Qopt
�n��t����n�t,t�� , �39�

where

�n�t,t�� = exp
�
t�

t

d��n���� . �40�

We now discuss the asymptotic behavior of �n�t�. For not
too large t�− t, the function Vn�t� in Eqs. �37� and �38� should
be calculated for qopt

�n��t��qb�t�. For such Vn�t�, the solution

qn�t� of Eq. �37� can either exponentially increase or de-
crease with increasing t�− t. Of interest to us is the decreas-
ing solution, which will ultimately go to zero for t�− t→�. A
simple calculation shows that for this solution:

�n�t� � �b�t� � ��qK�qb�t�, qopt
�n��t� � qb�t� .

For much larger t�− t, the optimal path qopt
�n��t� approaches

the attractor qa�t�, and then the function Vn�t� in Eqs. �37�
and �38� should be calculated for qopt

�n��t��qa�t�. One can
show that the solution 
qn�t�→0 for t→−� corresponds to
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�n�t� � �a�t� + 2�a
−2�t�, qopt

�n��t� � qa�t� ,

where �a
2�t� is the variance of the periodic distribution about

the attractor given by Eq. �10�.
To the lowest order in q�−qopt

�n��t��, the variance of PPD
�36� is also expressed in terms of the function �n �26�,

�n
2�t�,t� = 2�

t

t�
d� �n

−2��,t� . �41�

Using Eqs. �38�, �40�, and �41�, one can show that
�n

2�t� , t→−� �=�a
2�t�. For t→−�, the distribution

ph
�n��q , t �q� , t�� goes over into the periodic Gaussian distribu-

tion �a�q , t�, Eq. �8�, centered at the periodic attractor.
It follows from Eqs. �36�–�39� that, for q close to qopt

�n��t�,
the PPD ph

�n��q , t �q� , t�� displays a diffusion-broadened
Gaussian peak as a function of q� with maximum close to
qopt

�n��t��. The displacement of the maximum over q� from

qopt
�n��t�� is �q−qopt

�n��t��. On the other hand, the function
ph�q� , t� �qf , tf�, as given by Eq. �32�, is a sum of Gaussian
distributions centered at the optimal escape paths. Therefore,
integration over q� in Eq. �35� can be done by the steepest
descent method. The extreme values of q� are also close to
the optimal escape paths.

Different peaks of the PPD ph�q� , t� �qf , tf�, Eq. �32�, cor-
respond to the MPEPs shifted by an integer number of
modulation periods. For each of these peaks, one should use
in Eq. �35� the PPD ph�q , t �q�t��, given by ph

�n� with the ap-
propriate n.

The result of integration over q� describes the peaks of the
PPD ph�q , t �qf , tf� for q close to qopt

�n��t� with appropriate n.
These peaks are Gaussian near the maxima:

ph�q,t�qf,tf� =
1

�n
Bn�qf,tf�

�
n

Bn�qf,tf�

�G„q − qopt
�n��t� − �Qf − Qopt

�n��tf��

��n
−1�tf,t�;�n�tf,t�… . �42�

In obtaining this equation, we used the relations

�b�tf,t���n�t�,t� = �n�tf,t� ,

�n
2�t�,t� + � f

2�tf,t���n
−2�t�,t� = �n

2�tf,t� ,

which in turn follow from the relation �n�t���b�t� in the
harmonic region near the basin boundary. As a consequence,
the result of integration over q� in Eq. �35� is independent of
the matching time t�.

Equation �42� is the central result of the present paper. It
gives, in the explicit form, the PPD of finding the system at
a position q inside the attraction basin at a moment t, pro-
vided that the system has been observed at a point qf outside
the attraction basin at a time tf � t. It shows that, in the re-
gime of strong synchronization, the peaks are Gaussian.
They are centered at the MPEPs and are diffusion broadened
throughout the attraction basin. This is in dramatic contrast
to the PPD in the absence of synchronization, where the PPD
peak inside the attraction basin is strongly asymmetric and

its width is independent of the noise intensity D �15�.
It follows from Eq. �42� that the PPD may have multiple

peaks inside the attraction basin. They can only be observed
for strongly nonadiabatic modulation, where the Suzuki time
is tS��F. In this case, the system stays in the diffusion layer
around the basin boundary qb�t� long enough to accumulate
influxes from several periodically repeated MPEPs qopt

�n��t�.
On the other hand, the modulation period �F should not be
too short, because the strong synchronization of escape
would be lost. Since synchronization loss occurs for tr	�F,
the PPD displays well-resolved multiple peaks only in a lim-
ited parameter range. The limitation is more restrictive in the
considered case, where the final point �qf , tf� is close to the
maximum of the distribution behind the barrier. If this con-
dition is not imposed, the peaks are well resolved in a
broader range, but measuring the PPD becomes more com-
plicated on the whole. An example is discussed in the next
section.

An important feature of distribution �42� is the weak de-
pendence of the shape of the Gaussian peaks inside the at-
traction basin on the final point �qf , tf�, which is a conse-
quence of the smallness of the factor �n

−1�tf , t�. This shows
that the PPD reveals the actual structure of the tubes of the
paths followed in escape inside the attraction basin. In con-
trast, the relative amplitudes of the PPD peaks Bn are sensi-
tive to the choice of the point �qf , tf�.

VII. RESULTS FOR A MODEL SYSTEM

In this section, we present the results of numerical simu-
lations of the PPD for a simple model system and compare
them with the analytical predictions. We consider a Brown-
ian particle in a sinusoidally modulated potential of the form
of a cubic parabola. The Langevin equation of motion has
the form of Eq. �1� with

K�q,t� = q2 −
1

4
+ A cos��Ft� . �43�

The dynamics was simulated using the second-order inte-
gration scheme for stochastic differential equations �27�. The
system was initially prepared in the vicinity of the metastable
state qa�t�. The final point �qf , tf� was chosen behind the
basin boundary qb�t�. The PPD was calculated as a normal-
ized probability distribution of paths q�t� arriving at the point
qf for a particular modulation phase � f =�Ftf�mod 2��.

An example of the full PPD is shown in Fig. 2. The point
�qf , tf� is chosen so that in escape the system is likely to
pass near it �tf is determined mod �F�, that is, the quasi-
stationary distribution ��qf , tf� is close to its maximum over
tf for a given qf behind the basin boundary �the parameter
popt

�n0��tf��qf −qb�tf�� /D is equal to 1.2, whereas the maximum
of ��qf , tf� is expected where this parameter is equal to
1 �20��. For the chosen modulation parameters and noise
intensity, the calculated activation energy of escape is
R�0.0910 and R /D�9.1; the ratio of the modulation fre-
quency to the relaxation rate �F�2.24. We accumulated
�105 escape trajectories that arrive in a small area centered
at �qf , tf�, with width 
q=0.02,
t=0.02�F.
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It is seen from Fig. 2 that, in the regime of strong syn-
chronization and for strongly non-Gaussian pulses of escape
current, the peaks of the PPD are narrow both behind the
basin boundary and inside the attraction basin. Moreover, for
the chosen parameter values, two distinct peaks of the PPD
are well resolved inside the attraction basin. They correspond
to the two paths, which the system is most likely to follow in
escape.

The positions of the PPD peaks on �q , t� plane are shown
in Fig. 4 with full squares, where there is one peak, and with
crosses where two peaks are well resolved. They are com-
pared with the periodically repeated optimal escape paths
calculated by numerically solving variational equations �11�
for model �1�, �43�. Such paths start from the periodic attrac-
tor qa�t� for t→−� and approach the basin boundary qb�t�
for t→�, both of which are also shown in Fig. 4. It is seen
that, as expected from our analysis, the PPD maxima lie
nearly on top of the MPEPs. The small deviation is due to
diffusion broadening and associated small asymmetry of the
PPD peaks for the noise intensity used in the simulations.
Figure 4 demonstrates that studying the PPD provides a di-
rect way of observing MPEPs.

The observed shape of the PPD peaks is compared with
the theory in Fig. 5, which shows the cross sections of the
PPD at several instants of time counted off from the final
time tf. For small tf − t, the system is behind the basin bound-
ary and moves close to the noise-free trajectory leading to
�qf , tf�. The top left panel of Fig. 5 refers to the case where
the system is localized close to the boundary. Here, and for
smaller tf − t, the PPD has a single sharp peak.

For earlier time �larger tf − t�, the system could either be
moving toward the basin boundary along the MPEP or could
have been fluctuating about the basin boundary after it had
arrived to its vicinity along the previous MPEP �shifted by
�F�. As we showed analytically, the probability of staying

near the boundary is smaller, but the PPD may still display
two peaks. This is seen in the right top panel of Fig. 5. The
main peak corresponds to motion along the MPEP. The
higher-q shoulder corresponds to the poorly resolved �for the
chosen time� peak for fluctuations about the basin boundary.

For still larger �but not too large� tf − t, the escaping sys-
tem should have been moving toward the basin boundary. In
the present case, it most likely followed one of the two pe-
riodically repeated MPEPs, with different probabilities. Well-
resolved peaks of the PPD in this range are seen in the left
lower panel of Fig. 5. For large tf�t, compared to the relax-
ation time and �F, the system should have been fluctuating
about the attractor qa�t�. The PPD in this case should have a
single peak, which is seen in the right lower panel.

It is seen from Fig. 5 that the results of simulations agree
with the analytical results. Not surprisingly, the observed
peaks are broader than the asymptotic theory predicts. This is
a consequence of the relatively large noise intensity used in
the simulations.

VIII. CONCLUSIONS

In this paper, we have studied the PPD for activated es-
cape in periodically modulated systems. We have shown that
the PPD, as a function of coordinates, can display one or
several narrow peaks within the basin of attraction to the
metastable state. They correspond to narrow ridges of the
PPD in �q , t� space. The ridges are centered at the periodi-
cally repeated MPEPs. Their cross sections are Gaussian
near the maxima and are diffusion broadened, see Eq. �42�.

The number of the PPD peaks that can be observed de-
pends on the parameters of the system. The multipeak struc-

FIG. 4. �Color online� The positions of the maxima of the PPD
ph�q , t �qf , tf� in Fig. 2, which show the most probable paths fol-
lowed by the system in escape. The data of simulations are shown
by full squares where the PPD has one peak and by crosses where
two peaks are well resolved. Solid lines show periodically repeated
MPEPs qopt

�n��t� for model �1�, �43�. Dashed lines show the basin
boundary qb�t� and the attractor qa�t�.

FIG. 5. �Color online� Cross sections of the PPD ph�q , t �qf , tf�
shown in Fig. 2 as functions of the coordinate q for the time tf − t
=0.3�F ,0.5�F ,�F, and 2�F. The results refer to model system �1�,
�43� with A=0.7, �F=2, D=0.01, qf =0.8, and tf =0.5�F. The point
�qf , tf� is close to the expected maximum of the distribution behind
the basin boundary. Solid lines show expression �42�. Squares show
the results of simulations.
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ture is best resolved in a limited parameter range. On the one
hand, the modulation should not be too slow, so that the
system does not follow it adiabatically. On the other hand, it
should not be too fast, so that escape events are strongly
synchronized and the system dynamics is not described by
period-averaged coordinates.

Most of the results of this paper refer to the case where
the final point �qf , tf� is chosen so that the escaped system
has a high probability density of passing through this point.
Such choice simplifies the experimental observation of the
PPD. For the corresponding �qf , tf�, the amplitudes of differ-
ent peaks of the PPD �heights of the ridges in �q , t� space�
differ significantly from each other, as seen from Eq. �34�
and Figs. 2 and 5. These amplitudes are sensitive to the
choice of �qf , tf�. In contrast, the positions and shapes of the
PPD peaks very weakly depend on �qf , tf�. This shows that
the PPD provides a means for studying the distribution of
trajectories leading to escape.

We have performed extensive numerical simulations of
escape for a model Brownian particle in a modulated poten-
tial well. The simulations confirm the possibility to clearly
observe MPEPs. They are in a good qualitative and quanti-
tative agreement with the analytical theory.

Observing MPEPs is not only interesting on its own, but
also has broader implications. First, periodically modulated
systems are an important class of systems far from thermal
equilibrium. In contrast to the case of equilibrium systems,
optimal fluctuational paths in nonequilibrium systems have
no immediate relation to dynamical trajectories in the ab-
sence of noise; in particular, they may not be obtained by just
reversing time. The MPEPs can display interesting and coun-
terintuitive behavior �21,28�, and studying them provides in-
sight into the general features of dynamics away from ther-
mal equilibrium. Second, understanding the dynamics of a
system in escape paves the way for efficient control of this
dynamics and the escape probability itself; as will be dis-
cussed in a separate publication, such control can be accom-
plished by applying comparatively weak field pulses in the
right place and at the right time.

In conclusion, the results of this paper suggest a way of
direct observation of MPEPs, in space and time. They also
describe, qualitatively and quantitatively, the distribution of
the trajectories followed in escape.
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