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Bragg-Cherenkov Scattering and Nonlinear Conductivity of a Two-Dimensional Wigner Crystal

M. I. Dykman and Yuri G. Rubo*
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824

(Received 11 March 1997)

We show that the conductivity of 2D Wigner crystals displays strong nonlinearity. It arises from
coherent many-electron Cherenkov emission of surface waves in the substrate (e.g., ripplons on helium)
with the wave vectorsq close to the reciprocal lattice vectorsG of the electron solid. The rate
of such Bragg-Cherenkov scattering sharply increases with the Wigner crystal velocityy as v ? G
approaches the surface wave frequencyvsGd. The results are compared with recent experiments.
[S0031-9007(97)03468-6]

PACS numbers: 73.20.Dx, 67.90.+z, 73.50.Jt
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Recently, several experimental groups [1–3] observ
that when electrons above helium surface form a tw
dimensional Wigner crystal, they display strongly non
linear magnetoconductivity, including switching from
high- to a low-conductivity state with increasing driv
ing field. The nonlinearity arises for extremely wea
fields where electron heating is negligibly small [3]. Th
switching was interpreted [2] as being due to the ele
tron crystal sliding out of a periodic array of polaron-typ
“dimples” on the helium surface [4]. However, the stron
nonlinearity of the conductivity, which is observed eve
well below the switching [3], has remained unexplaine
In the present paper we show that such nonlinearity is
generic feature of the transport of electron solids. It
due to the mechanism of electronlosseswhich we call the
Bragg-Cherenkov scattering. This mechanism describ
basic experimental observations made in [3], including t
observation that the velocity of a Wigner crystal expe
ences saturation with increasing driving field.

The Bragg-Cherenkov scattering iscoherent many-
electronemission or absorption of vibrational excitation
(surface phonons or ripplons). Conventional singl
electron Cherenkov emission arises if the electr
velocity v exceeds the phase velocity of irradiated wav
yphsqd, and the transferred momentum̄hq is small com-
pared to the electron momentum, in which case the ene
conservation law is of the formq ? v ­ vsqd [vsqd ;
qyphsqd is the radiation frequency]. If the electrons form
a solid, the Cherenkov waves emitted by different ele
trons interfere with each other. As in Bragg scatterin
this interference is constructive for wave vectors of th
irradiated waves equal to the reciprocal lattice vectors
the electron solidG. The Bragg-Cherenkov scattering
is just the result of this interference. It gives rise to
strong increase in the emission rate when the velocity
the electron solid is such thatv ? GyG becomes close to
the phase velocityyphsGd. Respectively, the reaction o
frictional forceFsvd should also dramatically increase fo
such velocities.

For finite temperatures, 2D solids do not have trans
tional long-range order [5]. The density correlator deca
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as a power law of interparticle distance, for large distanc
[6]. This gives rise to smearing of the Bragg peaks, a
in the case of Bragg-Cherenkov scattering should give r
to smearing of the peaks in the frictional force as a fun
tion of the velocity of electron solid. In particular,Fsvd
should havetails on the low-velocity sides of the Bragg-
Cherenkov resonances atG ? v ­ vsGd. We show be-
low that these tails play an important role in the nonline
conductivity of a Wigner crystal.

In evaluating the frictional forceF we will assume that
the electron system is moving as a whole with a veloci
v , but other than that the electrons and surface vibratio
are close to thermal equilibrium. This approximation
reasonable for comparatively small velocities where he
ing of the electron system is small, and for weak enou
coupling to the vibrations. The coupling Hamiltonian i
of the form

Hi ­
X
q

Vqrqsbq 1 b1
2qd, rq ­

X
n

eiq?rn , (1)

whereb1
q , bq are ripplon (or surface phonon) creation an

annihilation operators (q is a 2D vector), andrq is the
electron density operator.

The average force per electron is given by the tim
derivative of the total electron momentumP, F ­
2ish̄nSd21kfP, Higl, wheren is the electron density and
S is the area of the system. To the lowest order inHi ,
in the spirit of the memory function formalism [7] the
electric current and the force are expressed in terms of
electron density correlatorkrqstdr2qs0dl0 for the isolated
electron system [8,9]:

Fsvd ­ 2sh̄nSd21
X
q

q
nsssvsqdddd 1 1
n sq ? vd 1 1

jVqj2

3
Z `

2`
dt eifq?v2vsqdgtkrqstdr2qs0dl0 . (2)

Here,nsvd ­ fexpsh̄vykTd 2 1g21 is the Planck number.
For electrons that form a Wigner crystal, the correlat

krqstdr2qs0dl0 as a function of the wave vectorq has
sharp peaks at the reciprocal lattice vectorsG. For
zero temperature andS ! `, these peaks are given by
© 1997 The American Physical Society 4813
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dsq 2 Gd. It then follows from Eq. (2) that the zero-
temperature forceFT­0 is of the form

FT­0 ­ 2
2p

h̄
nS

X
G

GjṼGj2dfG ? v 2 vsGdg ,

Ṽq ; Vq exps2l2q2y4d ,
(3)

wherel2 is the mean square electron displacement fro
the lattice site for zero temperature [see Eq. (8) below].

The force (3) describes friction due to the Bragg
Cherenkov scattering, where surface waves with t
Bragg wave vectorsG are coherently emitted by all
electrons. Clearly,FT­0 goes to infinity for resonant
values of the velocityv defined by the conditionG ? v ­
vsGd. We note that in the case of coupling to 3D
vibrations one should perform integration in (3) over the
transverse wave vector, and thed functions will go over
into the step functions. The occurrence of the related s
functions in the absorption coefficient of a Wigner cryst
at rest was shown in [10].

In (3) we have neglected the contribution from com
bined Bragg-Cherenkov processes where phonons of
Wigner crystal are emitted along with surface excitation
This contribution gives rise to smooth sidebands on t
high-y sides of the peaks (3). It is small for “soft” sur-
face excitations, such that

ctn
1y2 ¿ vsGd, ct ¿ dvsGdydG , (4)

wherect is the transverse sound velocity of the Wigne
crystal. For typical experimental parameters for electro
on heliumctn1y2yvsGd * 102, for actualG # l21.

In the case of finite temperatures the Bragg pea
in the static density correlator of the electron solid a
smeared,krqr2ql0 ~

P
G jq 2 Gj221asGd [6], where the

temperature-dependent term in the exponent

asGd ­
kTG2

4pmc2
t n

. (5)

To describe the related smearing of thed-shape spikes
(3) in the frictional force one should analyze the behavi
of the time-dependentelectron density correlator which
is given, for a long timet , jG ? v 2 vsGdj21, by the
asymptotic expression

krqstdr2qs0dl0 ­ nS
X
n

expfiq ? Rn 2 q2W sRn, tdg ,

W sR, td ø
kT

4pmc2
t n

lnfvmst2 1 kc22
t R2d1y2g

1
1
2

l2,

(6)

Here, the vectorsRn specify the lattice sites, andvm ­
minsV, kTyh̄d where V is the Debye frequency of the
Wigner crystal; the coefficientk is ,1. In (6) we
dropped temperature-dependent terms inW sR, td that are
not logarithmically large for largeR2 1 c2

t t2.
The major contribution to the integral overq in Eq. (2)

comes from the values ofq close to the reciprocal
4814
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lattice vectorsG. For slow surface waves (4) one ca
replaceq by G everywhere except the fast oscillating
factor expsiq ? Rnd in the electron density correlator (6)
It is straightforward then to integrate overq ø G for
eachG, and then to evaluate the sum overRn (cf. [11]
where there were considered tails of the absorption lin
due to coupled plasmon-ripplon resonances [12]). Aft
evaluating the integral over time in (2) we obtain

F ­ 2
nS

h̄vm

X
G

G
G ? v
vsGd

jṼGj2z sGd

3

Ç
vm

G ? v 2 vsGd

Ç12asGd
,

z sGd ­ 2 sinfpasGdy2gGf1 2 asGdg ,

(7)

whereasGd is given by Eq. (5), and we have setkT ¿

h̄vsGd, h̄jG ? vj [the coefficientk in (6) drops out of the
expression (7) for slow surface waves (4)].

Equation (7) describes the tails of Bragg-Cherenko
resonances in the frictional force. These tails are form
as a result of multiphonon umklapp scattering process
where several thermal phonons of the Wigner crys
are created and annihilated, with the total change of t
phonon energy equal tōhjvsGd 2 G ? vj ø kT and the
total momentum transfer equal toG.

The frictional force (7) increases as a power law of th
reciprocal detuningjG ? v 2 vsGdj21, with a fractional
temperature-dependent exponent1 2 asGd. This means
that, in contrast to the situation forT ­ 0, there arises
a strong frictional force evenbefore the crystal reaches
the critical velocityyphsGd ­ vsGdyG (for v parallel to
G). We note that in a nonlinear regime, where thev-
dependent terms in the denominators in (7) are substan
the frictional force is not parallel to the velocity, excep
in the case where the crystal moves along a symme
axis. In the general case, the crystal moves at an an
with respect to the driving force (which is equal to2F in
stationary conditions). Equation (7) makes it possible
find the velocity for a given driving force. Clearly, this
problem may have several solutions, and the velocity a
function of the driving force may display hysteresis.

For small velocitiesjG ? vj ø vsGd, Eq. (2) provides
a solution of the problem of the conductivitys ­
e2nyyF of a Wigner crystal weakly coupled to surfac
vibrations. This solution applies for temperatures sm
compared to the Debye temperaturekT ø h̄V. For
such temperatures, the characteristic wave numbers of
surface vibrations involved in scattering are limited b
the conditionq & l21, and asqd ø 1 for such q (the
conditionsasl21d ø 1 and kT ø h̄V are equivalent).
Comparison of the theory with the experimental results
the conductivity of an unpinned Wigner crystal [13] wil
be discussed elsewhere.

We note that Eqs. (6) and (7) apply also in the presen
of a magnetic field normal to the electron layer. Magnet
field affects only the amplitude of zero-point vibrationsl
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in (3) and the characteristic frequencyV in (6), which
in the strong field becomes the limiting frequency of th
lower phonon branch of the Wigner crystal [14]:

V ­
v2

p

sv2
p 1 v2

c d1y2 , l2 ,
h̄

msv2
p 1 v2

c d1y2 ,

vp ­ s2pe2n3y2ymd1y2 sct ø 0.2vpn21y2d ,
(8)

where vc is the cyclotron frequency. In classically
strong magnetic fields the nondiagonal component of t
conductivity exceeds the diagonal one,jsxyj ¿ sxx , and
the velocity of the crystalv ø vH , where yH ­ cEyB
is the Hall velocity in the crossed electric and magnet
fields E and B. In this case the dissipative conductivity
sxx

sxx ­
nc2

B2y
2
H

vH ? FsvHd . (9)

Equations (7)–(9) make it possible to analyze th
strongly nonlinear magnetoconductivity observed in [2,
for electrons on liquid helium in classically strong mag
netic fields. For actual wave numbers, the dispersi
law of capillary waves on helium surface, ripplons, i
superlinear,vsqd ~ q3y2. Therefore, as the velocityy
of the electron crystal is increasing, the resonant con
tion G ? v ­ vsGd is first met for the minimal reciprocal
lattice vectorG1 ­ s8p2ny

p
3 d1y2. Respectively, if the

Hall velocity vH is pointing alongG1, it should saturate
as a function of the driving fieldE at the valuevsG1dyG1.
Such saturation was indeed observed in [3].

The results for the Hall velocityyH as given by Eqs. (7)
and (9) are compared in Fig. 1 with the experimental da
[3]. We have used the expressions for the matrix eleme
of the electron-ripplon couplingVq given in [15]. In
Fig. 1 the velocity yH is plotted vs the longitudinal
(along the fieldE) component of the electron velocity
yl ­ sxxEyne. When solving Eq. (7) the forceFsvd

FIG. 1. The Hall velocity of an electron crystal on the helium
surface vs the longitudinal velocityyl ­ sxxEyne. The bold
line is the theory, the circles are the experimental data [3] f
n ­ 2.26 3 108 cm22, T ­ 0.06 K, B ­ 0.2 T. The thin line
shows the ripplon phase velocity for the smallest reciproc
lattice vector of the crystalyphsG1d ­ 4.95 mys.
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was averaged over orientations ofv with respect to the
crystal axes. This was done having in mind the Corbi
geometry used in the experiment [3]. In this geometr
the electric field is applied in the radial direction, an
it causes rotation of the electron crystal in the magne
field. For different azimuthal angles, the velocityv is
pointing in different directions. The current measure
in [2,3] was related to the azimuthally-averaged rad
velocity yl.

Strong nonlinearity of the friction force substantiall
complicates the dynamics of a rotating electron crystal.
particular, the occurrence of the limiting velocity remind
the Ehrenfest paradox and, more generally, the probl
of a rotating disc in the theory of relativity. In [3] the ex
perimental data were analyzed in an assumption that
conductivity is spatially uniform, and the theoretical re
sults in Fig. 1 refer to a uniformly moving Wigner crysta
as well. Detailed analysis of the magnetoconductivity
a Wigner crystal in the Corbino geometry will be give
elsewhere, including the effects of the shear deformatio

It is seen from Fig. 1 that, for small driving fieldsE,
the Hall velocity yH is proportional toyl. The slope
yHyyl for classically strong magnetic fields gives th
value of the linear conductivitysxx ­ se2nymvcdylyyH ,
which is in good agreement with the experiment, witho
adjustable parameters. We note that the averaging o
the directions ofv we performed does not affect linea
conductivity. Generally, the frictional force for smallyH

is formed by the scattering processes with the moment
transfer h̄G & h̄yl. However, for electrons on helium
the actual values ofG are much smaller because typicall
h̄vsGd ø kT [4(b)], and the sum overG in (7) converges
very fast and is not sensitive to the actual value ofl (in
calculations we used the rhs of the expression (8) forl).

With the increasing longitudinal velocityyl , the Hall
velocity yH saturates at the valueyphsG1d ­ vsG1dyG1.
This is a consequence of the averaging over the directi
of v in the Corbino geometry. The major contributio
to the conductivity at saturation comes from the are
where v is nearly parallel to one of the six vectorsG1.
For saturatedyH , the conductivity is equal tosxx ­
se2nymvcdylyyphsG1d, as first obtained empirically in
[3], and isproportional to the current densityneyl . We
note that the perturbation theory used to derive Eq.
does not apply deep in the range of saturation whe
jG ? v 2 vsGdj is small and renormalization of coupled
phonon-ripplon modes [12(b)] becomes substantial. T
analysis of renormalization and decay of the coupl
modes is necessary to describe the eventual switch
of the system [1–3] to a low-conductivity state wher
yH ¿ yphsG1d [3].

In conclusion, we have suggested a mechanism
many-electron scattering which is inherent to electr
crystals and is due to coherent emission of surfa
waves with the wave vectors close to the reciproc
lattice vectors of the electron crystal. This mechanis
4815
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the Bragg-Cherenkov scattering, gives rise to stron
nonlinearity of the electron transport as recently observ
in the experiments.

We are grateful to M. J. Lea for useful discussions
and for providing us with the experimental data prior t
publication. We also acknowledge valuable discussio
with A. J. Dahm and P. M. Platzman. Y. G. R. is gratefu
for warm hospitality of Royal Holloway and Bedford New
College, University of London, and of Michigan State
University; his work was partly supported by the Roya
Society.

*Permanent address: Institute of Semiconductor Phy
ics, pr. Nauki 45, Kiev, 252028, Ukraine.

[1] L. Wilen and R. Giannetta, Solid State Commun.78, 199
(1991).

[2] K. Shirahama and K. Kono, Phys. Rev. Lett.74, 781
(1995); K. Kono and K. Shirahama, Surf. Sci.361–362,
826 (1996); J. Low Temp. Phys.104, 237 (1996).

[3] A. Kristensenet al., Phys. Rev. Lett.77, 1350, (1996);
A. Blackburnet al., Czech. J. Phys.46, S1, 3056 (1996);
M. J. Leaet al. (to be published).

[4] (a) T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys
54, 437 (1982); (b) 2D Electron Systems on Helium
4816
d

s

-

and Other Substrates,edited by E. Y. Andrei (Kluwer
Academic, New York, 1996); (c) for an introductory
review on electrons on helium, see A. J. Dahm an
W. F. Vinen, Phys. Today40, No. 2, 43 (1987).

[5] N. D. Mermin and H. Wagner, Phys. Rev. Lett.17, 1133
(1966); N. D. Mermin, Phys. Rev.176, 250 (1968).

[6] B. Jancovici, Phys. Rev. Lett.19, 20 (1967); Y. Imry and
L. Gunther, Phys. Rev. B3, 3939 (1971).

[7] W. Gotze and P. Wolfle, Phys. Rev. B6, 1226 (1972);
A. Isihara, Solid State Phys.42, 271 (1989).

[8] M. I. Dykman and L. S. Khazan, JETP50, 747 (1979).
[9] Yu. M. Vil’k and Yu. P. Monarkha, Sov. J. Low Temp.

Phys.15, 131 (1989).
[10] N. Tzoar and P. M. Platzman, Phys. Rev. B28, 4844

(1983).
[11] M. I. Dykman, Sov. J. Low Temp. Phys.10, 233 (1984).
[12] (a) C. C. Grimes and G. Adams, Phys. Rev. Let

42, 795 (1979); (b) D. S. Fisher, B. I. Halperin, and
P. M. Platzman, Phys. Rev. Lett.42, 798 (1979).

[13] M. A. Stan and A. J. Dahm, Phys. Rev. B40, 8995 (1989);
M. J. Leaet al. (to be published).

[14] H. Fukuyama, Solid State Commun.19, 551 (1976);
L. Bonsall and A. A. Maradudin, Phys. Rev. B15, 1959
(1977).

[15] M. Saitoh, J. Phys. Soc. Jpn.42, 201 (1977).


