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Critical Exponent Crossovers in Escape near a Bifurcation Point
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In periodically driven systems, near a bifurcation (critical) point the period-averaged escape rate W
scales with the field amplitude A as j lnWj / �Ac � A��, where Ac is a critical amplitude. We find three
scaling regions. With increasing field frequency or decreasing jAc � Aj, the critical exponent � changes
from � � 3=2 for a stationary system to a dynamical value � � 2 and then again to � � 3=2. Monte
Carlo simulations agree with the scaling theory.
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long before the standard condition !Ftr � 1 is violated.
We present numerical calculations and Monte Carlo simu-

distribution of noise trajectories is given by the functional
P 	f�t�
 � exp��R	f
=D�,
In many physical systems the barriers for thermally
activated transitions are high, leading to low transition
rates. An activation barrier can be reduced and the rate
increased if the system is brought close to a critical
(bifurcation) point where a metastable state disappears
[1]. This idea is used, for example, in studies of thermal
magnetization reversal in nanomagnets close to the co-
ercive magnetic field or a critical spin-polarized current
[2–4]. Because of their exponential sensitivity, transition
probabilities provide an important means of characteriz-
ing the dynamics of a system, as has been exploited also
in studies of Josephson junctions [5,6].

Experiments on nanomagnets and Josephson junctions
are often performed by ramping the control parameter
(magnetic field or current) and measuring the time dis-
tribution of escape events [1,5]. In interpreting the data it
is usually assumed that, for sufficiently slow ramp rates,
the system remains quasistationary. Then the activation
energy of a transition, or barrier height, usually scales
with the control parameter �, measured from its critical
value, as �3=2 [7,8].

In this Letter a theory of activated transitions is devel-
oped for periodically driven systems. In such systems the
notion of a stable state is well defined irrespective of the
modulation rate, and the applicability of the quasistation-
ary, or adiabatic approximation can be carefully studied.
It turns out that, near a critical point, this approximation
breaks down even for slow driving. This is a result of the
strong dependence of the relaxation time tr on the dis-
tance to the bifurcation point �, e.g., along the modula-
tion amplitude axis.

As a consequence of the slowing down of one of
the motions [9] close to the bifurcation point, the tran-
sition rate displays system-independent features: the
activation energy of a transition scales as ��. We find
three scaling regions in the parameter space. As the
modulation frequency !F increases, the critical exponent
� changes from 3=2 to 2 and then again to 3=2. The
emergence of � � 2 scaling is a result of a new time
scale, which signifies the breakdown of adiabaticity
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lations for a specific system, which agree well with the
scaling theory.

Activated transitions in modulated systems have been
investigated in various contexts [10–19]; stochastic reso-
nance and diffusion in periodically driven ratchets are
recent examples [20–22]. In this Letter we study the
previously unexplored region of modulation amplitudes
close to critical and reveal the universality that emerges.

We will consider a periodically modulated overdamped
one-dimensional system. The results will apply also to
multidimensional systems [23], because near the critical
point of interest (saddle-node bifurcation) a system has
only one ‘‘soft’’ mode.We will describe the dynamics by a
Langevin equation,

_qq � K�q;A; t� � f�t�; K�q;A; t� �F� � K�q;A; t�:

(1)

Here, A is the characteristic modulation amplitude, and
�F � 2�=!F. The function f�t� is Gaussian noise. The
precise shape of its power spectrum will not be important.
The noise intensity D will be the smallest parameter of
the theory (for thermal fluctuations D � kBT). Then the
rate of noise-induced escape W � t�1

r ; !F.
We will assume that the modulation amplitude A is

close to a critical value Ac where a stable periodic state
of the system qa�t� merges with an unstable periodic
state, qb�t�. In the limit of slow modulation, these states
can be visualized as the instantaneous minimum and
barrier top of the oscillating potential U�q; t� that defines
the force K in Eq. (1), K � �@U=@q, see Fig. 1.

Escape from the stable state qa�t� occurs as a result of
an appropriate large fluctuation of f�t�. This fluctuation
drives the system from qa�t� over the boundary qb�t� of
the basin of attraction. The motion of the system during
escape is random. However, different trajectories have
different probabilities. The system is most likely to
move along a particular trajectory called the optimal
path qopt�t� [24]. It corresponds to the most probable noise
realization fopt�t� [17].

For a stationary Gaussian noise f�t�, the probability
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FIG. 1 (color online). (a) An oscillating potential barrier. In
the limit of slow modulation, the stable and unstable periodic
states qa and qb are the instantaneous positions of the potential
minimum and barrier top, respectively. (b) For slow modula-
tion, when the driving amplitude A is close to Aad

c , the states
qa;b�t� come close to each other once per period. (c) As A
further approaches Ac, the states qa;b�t� become skewed com-
pared to the adiabatic picture, to avoid crossing.
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R 	f
 �
1

2

ZZ
dtdt0 f�t�F̂F �t� t0�f�t0�: (2)

Here, the kernel F̂F �t� t0�=D is the inverse of the noise
correlation function ’�t� t0� � hf�t�f�t0�i. In particular,
for white-noise ’�t� � 2D��t� and F̂F �t� � ��t�=2.

The optimal paths qopt�t�; fopt�t� are obtained by min-
imizing the functional R with the constraint that q�t� and
f�t� are interrelated via Eq. (1). The path qopt�t� starts at
the stable state for t! �1 and ends at the unstable
periodic state for t! 1 [17].

The escape rate of a driven system W depends periodi-
cally on time. From Eq. (2), the maximal as well as the
period-averaged escape rate W are / exp��R=D�. The
activation energy of escape is R � R	fopt
.

We will calculate R near the bifurcation point starting
with the case of slow driving, when the modulation period
�F � tr . Here, a natural framework is provided by the
adiabatic approximation in which the system follows
modulation without delay.

The adiabatic stable and unstable states of the system
qada;b�t� are obtained from Eq. (1) by neglecting _qq and the
noise term

K�qada;b;A; t� � 0: (3)

The derivative �@K=@q calculated for qada �t� gives
the reciprocal instantaneous relaxation time 1=tadr .
Adiabaticity implies that tadr � �F.

The adiabatic critical value of the modulation ampli-
tude A � Aad

c is determined by the condition that the
states qada �t� and qadb �t� touch each other. Such ‘‘adiabatic’’
bifurcation generally happens once per period. We set t �
n�F at this time (n � 0;�1; . . . ). We also set qada �0� �
qadb �0� � 0 for A � Aad

c .
At the adiabatic bifurcation point the potential barrier

of U�q; t� in Fig. 1 disappears. Therefore escape is most
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likely to happen over a small portion of the modulation
period centered at t � n�F.

When the states qada and qadb approach each other, we
have @K=@q! 0 and tadr ! 1. This means that the adia-
batic approximation breaks down near the bifurcation
point. Retardation effects can be taken into account by
expandingK near Aad

c ; t � 0 (or t � n�F) and keeping the
lowest order terms in q; �Aad � A� Aad

c , and t

K � �q2 � ��Aad � � 2�!Ft�
2: (4)

Here, � � 1
2@

2K=@q2, � � @K=@A, and  �

	��2�!2
F�

�1@2K=@t2
1=2 (the derivatives are evaluated
for A � Aad

c , t � 0;  is independent of !F,  > 0).
Equation (4) is written for the case of an additive

periodic force, K � K0�q� � F�t� [25,26]. Then, for A �
Aad
c , the states qada;b�t� touch each other when F�t� is

maximal or minimal over t, and the expansion of K in t
starts with terms / t2. For K of a general form, the
dynamics can still be described by Eqs. (1) and (4) after
a change of variables [23].

The adiabatic periodic states (3) exist for ���Aad < 0.
For concreteness we set � > 0. Then qada;b � �1=2�tadr ,
and the adiabatic relaxation time is

tadr �
1

2
	�� !Ft�

2 � ���Aad
�1=2: (5)

The applicability of the adiabatic approximation re-
quires not only that !Ftadr � 1, but also j@tadr =@tj � 1,
otherwise the system cannot follow the modulation.
From Eq. (5), near the bifurcation point the time depen-
dence of tadr is pronounced, so that maxj@tadr =@tj �
3�3=2 !F=j��A

adj � !Ft
ad
r . Therefore the inequality

j@tadr =@tj � 1 is much stronger than !Ft
ad
r � 1. It holds

if

tadr � tl; tl � �� !F�
�1=2; (6)

i.e., !F � j��Aadj= . The time tl sets a new dynamical
time scale that restricts the adiabatic approximation.

As A approaches Aad
c , the criterion (6) is violated. The

periodic stable and unstable states qa;b�t� are pressed
against each other. Since they cannot cross, they become
distorted, as shown in Fig. 1(c). Ultimately they merge,
but along a line rather than at a point. From Eqs. (1) and
(4), this line is qa;b�t� �  !Ft. This defines the nonadia-
batic bifurcation for slow driving. The critical amplitude
is

Asl
c � Aad

c �  !F=�: (7)

We now calculate the escape rate for both the adiabatic
and nonadiabatic regions. With reduced variables the
equations of motion (1) and (4) take the form

_QQ � G�Q;�; �� � ~ff���; G � Q2 � �2 � 1� �;

(8)

where Q � �tlq, � � t=tl, and _QQ � dQ=d�. The control
080602-2



P H Y S I C A L R E V I E W L E T T E R S week ending
27 FEBRUARY 2004VOLUME 92, NUMBER 8
parameter

� � �� !F�
�1�Asl

c � A� (9)

is the reduced distance to the slow-driving bifurcation
point. The adiabatic approximation applies for �� 1.
The region � & 1 is nonadiabatic.

The function ~ff��� � � !F�
�1f�t� in Eq. (8) describes

noise. If the correlation time of f�t� is much less than
tl; tadr , then ~ff��� is effectively � correlated, h~ff���~ff�0�i �
2 ~DD����, with ~DD � j�=4j1=2� !F�

�3=2
R
dt’�t�. From

Eq. (2), the probability distribution of ~ff��� is /
exp	� ~RR�~ff�= ~DD
, with ~RR �

R
d� ~ff2���=4.

To find the activation energy of escape R we have to
minimize ~RR with respect to trajectories leading to es-
cape. It can be conveniently done by replacing ~ff��� with
_QQ�G. This leads to a variational problem for the re-

duced activation energy ~RR � min ~RR � � ~DD=D�R,

~RR � min
Z 1

�1
d�L� _QQ;Q; ��; L �

1

4
� _QQ�G�2; (10)

with the boundary conditions Q��� ! Qa��� for �! �1
and Q��� ! Qb��� for �! 1, where Qa�b� � �tlqa�b�.
The escape rate is W / exp�� ~RR= ~DD�.

Equation (10) gives ~RR as a function of the reduced
distance to the bifurcation point �. It has the form of a
mechanical action and can be found from the Hamilton
equations

_QQ � 2P�G; _PP � �P@QG �P � @ _QQL�: (11)

The activation energy ~RR��� obtained by solving Eqs. (11)
numerically is shown in Fig. 2. In addition to the adiabatic
scaling �3=2 for large �, it displays a crossover to a new
nonadiabatic �2 behavior in the region ln� � 1.

We now analyze the asymptotic behavior of ~RR. In the
adiabatic range, �� 1, escape is most likely to occur
when the states Qa;b��� are closest, i.e., for � � 0 cf.
FIG. 2 (color online). Scaling crossover of the escape activa-
tion energy ~RR vs the distance to the bifurcation point � /
Asl
c � A (9) for slow modulation. The escape rate W /

exp�� ~RR= ~DD�. The thick solid lines show the numerical solution
of Eqs. (10) and (11). They display the occurrence of two
scaling regions ~RR / ��. The dash-dot lines show the nonadia-
batic scaling (14), with ~RR / �2. The dashed lines show the
adiabatic result ~RR � �4=3���� 1�3=2; its asymptote ~RR / �3=2 is
shown by the thin solid line. The analytical and numerical
results agree in the regions �� 1 and �� 1.
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Eq. (5). If we disregard the term �2 in G, from Eq. (11)
we find Qopt��� � ��� 1�1=2 tanh	��� 1�1=2��� �0�

with arbitrary �0. The adiabatic activation energy is ~RR �
�4=3���� 1�3=2 / �Aad

c � A�3=2. This can be easily under-
stood by noticing that, for � � 0 we have G � �@QU,
with the potential U � �Q3=3� ��� 1�Q. Then ~RR is
just the height of the potential barrierU�Qb� �U�Qa� [1].

The term �2 in G leads to a nonadiabatic correction. To
first order we obtain [23]

~RR � �4=3���� 1�3=2 � ��2=6���� 1��1=2: (12)

Equation (12) and the numerical results are in good agree-
ment (better than 7%) for � > 3.

Our primary interest is to calculate the activation en-
ergy close to the bifurcation point where �� 1. From
Eq. (8), in the whole range � < j ln�j1=2

Qa��� � �Qb���� � �� �
Z �

�1
d�1 e

�2��21 : (13)

For such Qa;b, even though the problem (10) and (11) is of
an instanton type, Eqs. (11) can be linearized in Q��� �
�; P, with solution

Qopt��� � �� �
Z �

0
d�0	1�

���
2

p
e��

02

e�

2��02 ;

~RR � ��=8�1=2�2; �� 1: (14)

Equation (14) shows our central result that, for
slow driving, close to the bifurcation point the activa-
tion energy scales as ~RR / �2. Figure 2 shows the agree-
ment of Eq. (14) with the numerical calculations in the
region � & 1.

The activation energy displays yet another scaling in
the opposite limit where !Ftr � 1 close to the bifurca-
tion point. Because of critical slowing down, this region is
reached for A close to Ac even if !Ftr & 1 far from Ac
(however, it is exponentially narrow for small !F).

For !Ftr � 1 and small �A � A� Ac, the stable and
unstable state qa;b�t� are close to each other all the time.
The slow motion transverse to the periodic cycles qa;b,
with duration �tr, averages out oscillations at frequency
!F. It is described by an equation with time-independent
coefficients, as in the case of a stationary system near a
bifurcation point [8],

_QQ 0 � �0Q
2
0 � �0 �A� f0�t�: (15)

Equation (15) can be derived [23] by expanding the
function K�q;A; t� in Eq. (1) to second order in q� qc�t�
and first order in �A, where qc�t� is the critical cycle
into which the states qa;b�t� coalesce for A � Ac. The
coefficients �0 and �0 are the period-averaged values of
the appropriately weighted derivatives of K.

The function f0�t� / f�t� describes noise. It is effec-
tively � correlated on the slow time scale tr. Its intensity
D0 can be obtained by period averaging the appropriately
weighted correlator )�t� of the noise f�t�.
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FIG. 3 (color online). The results showing the nonadiabatic
� � 2 scaling of the activation energy, R / �Ac � A��, over a
wide range of modulation amplitude A and the crossover to the
� � 3=2 scaling at larger modulation frequency. The data refer
to a driven Brownian particle in a time-dependent potential
U�q; t� � �q3=3� q2=2� Aq cos!Ft, with !F � 0:25 and
!F � 0:5; the relaxation time in the absence of modulation is
tr � 1; the escape rate W / exp��R=D�. The solid line shows
the results of a numerical minimization of the functional R (2).
The dots show the results of Monte Carlo simulations. The
dash-dot line shows the � � 2 scaling (14) with appropriate
parameters. The dashed line shows the high-frequency � � 3=2
scaling.
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From Eq. (15), the activation energy of escape is R �
�D=D0�R0, with R0 � �4=3�j�0j���0 �A=�0�

3=2. This
means that, in the limit of large !Ftr, the activation
energy scales with the distance to the bifurcation point
as ��A�3=2.

To verify the predicted scaling behavior, we studied the
escape rate for a model system, a modulated Brownian
particle withK � q2 � q� A cos!Ft. Over a broad range
of !F and A we obtained the activation energy R by
numerically minimizing the functional R, Eq. (2), and
by Monte Carlo simulations [23]. In the simulationsRwas
found for each A and !F from �105 escape events ob-
served for 2– 4 values of the noise intensity D, keeping
R=D > 6. The calculations and simulations are in excel-
lent agreement, see Fig. 3. They confirm that R indeed
displays scaling crossovers near a bifurcation point. For
!F & 0:1 the behavior of R agrees with the results shown
in Fig. 2. For relatively slow driving with !F � 0:25, the
region of nonadiabatic scaling R / �Ac � A�� with � � 2
significantly expands, whereas the adiabatic scaling prac-
tically disappears. For higher !F the � � 3=2 scaling
becomes visible, first very close to the bifurcation point,
but ultimately (for !F * 1) it becomes the only scaling.

In conclusion, we have identified the regions near a
bifurcation point where the activation energy of escape
displays scaling behavior as a function of the amplitude
of periodic modulation. Because of emergent nonadiaba-
ticity associated with a new time scale, even for slow
modulation, !Ftr � 1, there necessarily occurs a cross-
over from the adiabatic exponent � � 3=2 to � � 2.
080602-4
With increasing modulation frequency, the crossover � �
2 to � � 3=2 takes place. We expect that these scalings
can be observed in systems such as modulated Josephson
junctions, nanomagnets, and optically trapped Brownian
particles.
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