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Dephasing with strings attached
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Motivated by the existence of mobile low-energy excitations like domain walls in one dimension (1D) or
gauge-charged fractionalized particles in higher dimensions, we compare quantum dynamics in the presence of
weak Markovian dephasing for a particle hopping on a chain and for an Ising domain wall whose motion leaves
behind a string of flipped spins. Exact solutions show that the two models have near identical transport responses
in the bulk. On the other hand, in finite-length chains, the broadening of discrete spectral lines is much more
noticeable in the case of a domain wall. These results may be of relevance to a broad class of systems including
quasi-1D antiferromagnets, polymer chains, and even retinal systems.
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I. INTRODUCTION

The effect of environmental coupling on the time evolu-
tion is a fundamental issue in the study of open quantum
systems. A classical example is quantum diffusion of point
defects in crystalline helium. With coherent bandwidth the
smallest energy in the problem, of order 10−4 K, at low defect
densities the diffusion coefficient is inversely proportional to
the dephasing rate due to quasielastic phonon scattering [1–3].
The resulting temperature dependence has been confirmed in
NMR experiments [4–6]. It was later realized by Andreev
[7] that the same physics that governs the diffusive transport
of microscopic defects—isotopic substitutions, adatoms, or
vacancies—should also work for topological defects like kinks
in a dislocation line.

The question we address in this work is what are the
differences in macroscopic manifestation between these two
cases—microscopic particles and topological excitations. The
major microscopic difference is that the latter can act as a
source of an observable emergent gauge field. A case in point
is the dynamics of monopoles and Dirac strings [8,9] in spin
ice [10].

Here we consider a simplified version of the spin ice setting
that discards the high-dimensional network of background spin
configurations in favor of one-dimensional systems. This first
pass at the problem enables us to contrast the motion of a free
particle and that of a particle with a string attached, in the form
of a domain wall in an Ising chain. Specifically, we consider
the strong coupling regime where the size of a domain wall is
one lattice constant.

We solve and contrast these two cases, of particle and do-
main wall motion, subject to a locally uncorrelated Markovian
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dephasing bath. The main difference is that dephasing rates
for far-off-diagonal elements of the density matrix are much
higher for a domain wall, in agreement with the intuition
from dephasing in an n-qubit quantum register [11]. Our
solution demonstrates that, for unstructured motion in one
dimension, the two cases differ only weakly, in the sense that
the difference between the two is considerably smaller than the
difference between either and the fully coherent time evolution.
In particular, linear transport responses in the presence of a
small density gradient or a weak uniform field are identical
for the two cases, in perfect agreement with the insightful
arguments by Andreev [7]. However, we notice that this is
no longer the case when considering finite-length chains. Here
the discrete energy spectrum is broadened considerably more
strongly for the case of domain walls. The effect is related to
the enhanced fragility of the interference of a domain wall with
itself when it does a round trip on the finite lattice to establish
a standing wave.

One-dimensional and quasi-one-dimensional systems have
been extensively studied experimentally for decades. Our
results may be of direct relevance to a number of these.
Examples we discuss below include the Villain mode [12]
in CsCoBr3 [13], highly tunable quantum simulators using
both trapped ions [14] and cold atomic systems (where the
Su-Schrieffer-Heeger model has been recently realized in
momentum space [15]), and also solitons in polyacetylene and
other molecular wires [16], as well as in retinal systems [17].

The remainder of this paper is structured as follows. In
Sec. II we introduce model, notations, and method. Section III
contains the main results of our work, for unbiased motion as
well as in the presence of a dc or an ac driving field. Section IV
is devoted to a discussion of the scope of experimental systems
for which our analysis may be relevant, alongside a brief
discussion of peculiarities of each of the setups in question. We
conclude with an outlook in Sec. V. Further technical details
are relegated to Appendix A.
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FIG. 1. The two models considered here: (a) A one-dimensional
tight-binding model in the presence of dephasing caused by fluctu-
ating energy levels εi ≡ εi(t). (b) A domain wall in a ferromagnetic
Ising chain in the presence of a transverse field and dephasing caused
by fluctuating longitudinal magnetic fields hi ≡ hi(t). The domain
wall site is labeled by an integer index, and the spin positions are
correspondingly half-integers.

II. MODEL

A. Master equation with Markovian dephasing

The two models we solve describe one-dimensional hop-
ping of a particle or a domain wall, respectively, in the presence
of Markovian dephasing uncorrelated across sites. In the case
of a particle, the model is a one-dimensional tight-binding
Hamiltonian which describes hopping in the presence of
dephasing caused by fluctuating energy levels εi ≡ εi(t), see
Fig. 1(a). In the case of a domain wall, the same tight-binding
Hamiltonian is obtained by projecting a transverse-field Ising
model onto a sector which contains a single domain wall
stabilized by the boundary conditions, in the limit of large Ising
coupling; here, dephasing is caused by fluctuating longitudinal
magnetic fields hi ≡ hi(t), see Fig. 1(b). The domain wall
site is labeled by an integer index, and the spin positions are
correspondingly half-integers.

Both models are conveniently expressed in terms of the
density matrix with components ρab, a and b being particle or
domain wall position labels, via the equation

ρ̇ab = −i[H,ρ]ab − �ab ρab (no summation!). (1)

The first term on the right-hand side (r.h.s.) describes the
Schrödinger evolution of the density matrix of a closed system.
For both systems, we take H = H0 to be the usual tight-binding
Hamiltonian with matrix elements

(H0)ab = −�

2
(δa,b+1 + δa+1,b), (2)

where δa,b is the Kronecker symbol, and � denotes the half-
bandwidth. For convenience we choose units where the lattice
spacing and Planck’s constant are set to 1.

The second term on the r.h.s. of Eq. (1) accounts for the
coupling of the system to the external world. While generally
such a coupling could result in a multitude of physical effects,
we assume the regime dominated by Markovian dephasing.
As we discuss below (and in more detail in Appendix A) this
limit is universal as long as the evolution of the density matrix
remains slow on the scale of the bath correlation time τc.

Central to our analysis is the difference in the dephasing
rates for the off-diagonal elements of the density matrix in the
two cases. For a hopping particle, the off-diagonal elements

are all equal to each other,

�
(particle)
ab = γ (1 − δa,b). (3)

By contrast, the dephasing rates grow linearly with the distance
from the diagonal in the case of a domain wall,

�
(dw)
ab = γ |a − b|. (4)

Here γ is the dephasing rate scale.
At a formal level, Eqs. (1) and (3) can be considered a

Lindblad equation [18,19] for single-particle hopping, in the
case where each site has its own bath, see Fig. 1(a).

Similarly, Eqs. (1) and (4) describe dynamics in a single-
domain-wall sector of an Ising spin chain in the presence of the
transverse field � and independently fluctuating longitudinal
magnetic fields, see Fig. 1(b). Shifting the domain wall by
|a − b| positions requires flipping |a − b| spins, which in turn
controls the dephasing rate for the matrix element ρab (see,
e.g., Ref. [11]).

B. Discussion of the approximations involved

The standard derivation given in Appendix A assumes the
case of an oscillator (phonon) bath, including both first- and
second-order coupling terms which can be interpreted respec-
tively as contributions due to phonon absorption/emission and
phonon scattering. With first-order coupling, Markovian de-
phasing is obtained only in the special case where the spectral
function of the bath coupling has a linear in frequency “Ohmic”
form. On the contrary, at sufficiently high temperatures, a
generic second-order phonon-coupling Hamiltonian always
produces Markovian dephasing as a result of quasielastic
scattering of high frequency phonons.

Our derivation shows that for the Markovian limit to apply
one needs both the bath temperature β−1 and the cutoff
frequency ωc to be large compared to the coefficients of
Eq. (1). Formally, the bath correlation time can be defined as
τc ∼ max(β,ω−1

c ). The usual Markovian limit τc → 0 implies
an infinite bath temperature βc → 0 and ωc → ∞. Corre-
spondingly, the only stationary solution of Eq. (1) with �ab > 0
for a �= b is classical (density matrix purely diagonal), with
uniform density distribution between the sites, independently
of the structure of the Hamiltonian H0.

When the on-site baths are not independent, as in the
case of dephasing by higher-dimensional phonon modes, one
generically expects �ab to depend nontrivially on |a − b| even
in the case of a particle. However, with the correlation between
the sites asymptotically vanishing with increasing distance, at
large |a − b|,�ab is expected to saturate in the case of a particle,
and continue to grow linearly in the case of a domain wall.

In the case of a domain wall, the Markovian approximation
necessarily breaks down at large enough |a − b|. This is not
a concern, however, since far-off-diagonal matrix elements
ρab decay to zero rapidly and are not expected to modify the
conclusions obtained from our simplified Eqs. (1) and (4) when
both �τc and γ τc are small.

III. SOLUTIONS OF THE MASTER EQUATION

Here we construct exact and approximate solutions of the
Markovian master equation (1). On an infinite uniform chain,
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it is convenient to make evident the translational invariance
with respect to the center-of-mass coordinate R ≡ (a + b)/2.
Thus, we define a translationally invariant matrix �ab ≡ Va−b,
where V0 = 0, and Vs = V−s > 0 is the dephasing rate for
the sth diagonal of the density matrix, s �= 0. From the
previous section, we have Vs = γ (1 − δs,0) and Vs = γ |s|, the
Markovian dephasing rates for a particle [Eq. (3)] and a domain
wall [Eq. (4)]. It is also convenient to write the commutator in
Eq. (1) explicitly,

ρ̇ab = i
�

2

∑
±

(ρa±1 b − ρa b±1) − Va−bρab. (5)

A. Stationary polynomial solutions

To derive the (quantum) diffusion coefficient from Eq. (5),
one would look for stationary solutions with a linear density
gradient. Here we introduce a slightly more general polynomial
ansatz,

ρab = g0(s) + Rg1(s) + R2g2(s) + · · · + Rmgm(s), (6)

where, as before, s = a − b and R = (a + b)/2. After sub-
stituting in Eq. (5) and collecting matching powers of R, we
obtain the following coupled equations:

ġ�(s) + Vsg�(s)

= i�
∑

j

(
j

�

)
2�−j [gj (s + 1) − gj (s − 1)], (7)

where 0 � � � m, and the summation is over values of j in the
interval � < j � m, with j − � odd. In particular, for � = m,
the r.h.s. is zero, so that gm(s) decays exponentially, consistent
with the later result in Eq. (15). In the stationary limit, t → ∞,
only the diagonal element gm(s = 0) remains nonzero. The
stationary equation for � = m − 1 reads

Vsgm−1(s) = im�[gm(s + 1) − gm(s − 1)] (8)

and it gives nonzero solutions only for s = ±1. Similarly, for
� = m − 2, we get

Vsgm−2(s) = i(m − 1)�[gm−1(s + 1) − gm−1(s − 1)] (9)

and gm−2(s) is nonzero only for s ∈ {−2,0,2}. While the
subsequent equations are more complicated, the general result
is that nonzero stationary values of gj (s) are limited to |s| �
m − j .

Thus, with a polynomial order-m form (6) of the density
matrix, its stationary matrix elements beyond mth diagonal are
necessarily zero. More generally, this implies a rapid fall-off
of the matrix elements with the distance from the diagonal,
suggesting that the specific form of Vs at large s be not
important. This limits the possible differences in dc transport
properties between the cases of a particle and a domain wall,
Eqs. (3) and (4).

In particular, for the density that depends on the distance
linearly [first order polynomial in powers of R in Eq. (6)], sta-
tionary solutions of Eq. (5) are exactly tridiagonal. Explicitly,
the off-diagonal matrix elements are proportional to the density
gradient,

ρa,a+1 = −ρa+1,a = i
�

2γ
(ρa+1,a+1 − ρa,a).

These are exactly the matrix elements that determine the
hopping current between sites a and a + 1,

Ja,a+1 = i
�

2
[ρa,a+1 − ρa+1,a]. (10)

Replacing finite differences with the derivatives times the
lattice spacing d, and rescaling the density, we obtain the
coefficient of quantum diffusion

D = �2d2

2γ
, (11)

exactly the same for particles and the domain walls.
This result only requires that both � and γ be small

compared to temperature (and the bath cut-off frequency), it
does not really matter which of them is larger [3,7]. In other
words, the mean free path during the dephasing time can be
large or small compared to the lattice spacing. This is different
from transport in disordered systems, where quasiparticle
description is expected to apply only while the mean free path
remains larger than the lattice spacing [20,21]. One can thus
say that quantum diffusion (controlled by dephasing due to
time-dependent fluctuations of the energy levels) is insensitive
to the nominal Ioffe-Regel crossover.

With the help of the Einstein relation, from Eq. (11) we
also conclude that the corresponding mobilities should also
be identical. Thus, by probing the usual dc linear transport
response, one will see no difference between a particle and a
domain wall.

B. Exact solutions on an infinite chain

More general solutions of Eq. (5) can be obtained by
introducing the Fourier transform

ρab =
∫

dK

2π
eiKReiπs/2φs(t,K), s ≡ a − b, (12)

where the phase factor eiπs/2 is introduced to make explicit
the reflection symmetry s → −s in Eq. (13) below. Fourier
modes φs ≡ φs(t,K) at different K are independent, except
the required Hermiticity of ρ, φ∗

s (t,K) = φ−s(t, − K). They
obey the equation

φ̇s = −iuK (φs+1 + φs−1) − Vsφs, (13)

uK ≡ � sin(K/2). (14)

This can be viewed as a Schrödinger equation on a chain of
site label s, with an imaginary on-site potential −iVs .

With K = 0, the hopping (14) is zero, and the master
equation (13) separates into a set of independent equations
for each s. The corresponding solution reads

φs(t,K = 0) = φs(0,K = 0) e−Vs t . (15)

This is a special case m = 0 of the general polynomial in R

solution derived in Sec. III A. Since Vs = 0 for s = 0, and
positive otherwise, the resulting stationary solution is a purely
diagonal classical density matrix, with density distributed
uniformly along the chain, as would be expected at large
temperatures.
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1. Dynamics of a single particle

Let us now consider the master equation (13) for a general
K in the case of a particle Vs = γ (1 − δs,0). This imaginary
potential is a constant except for s = 0, which allows us to
construct a solution for general initial conditions in quadratures
using a version of the single-site scattering expansion. We start
by writing a Laplace-transformed version of Eq. (13),

pψs − φs(0) = −iuK (ψs+1 + ψs−1) − γψs + γ δs,0ψ0,

(16)

where ψs ≡ ψs(p,K) = L[φs(t,K)] is the Laplace transform
of φs(t,K). Denote Qs the Green’s function (GF) of the
translationally invariant version of Eq. (16), the solution of
this equation with the last term dropped, and φs(0) ≡ φs(0,K)
replaced by δs,0,

Qs =
∫ 2π

0

dq

2π

eiqs

p + γ + 2iuK cos q
(17)

= eiπ |s|/2
[
y
(

p+γ

2uK

)]|s|

[
(p + γ )2 + 4u2

K

]1/2 , y(x) ≡ x −
√

1 + x2, (18)

where we need to select the branch with the square root positive
at p + γ > 0. Then the GF Gss ′ (p,K) of the full Eq. (16)—its
solution with φs(0) replaced by δss ′—is given by the multiple
scattering series,

Gss ′ (p,K) = Qs−s ′ + QsγQ−s ′ + QsγQ0γQ−s ′ + · · ·
= Qs−s ′ + Qsγ Q−s ′

1 − γQ0
. (19)

In particular, the diagonal-to-diagonal matrix element

G00(p,K) = 1[
(p + γ )2 + 4u2

K

]1/2 − γ
(20)

is the spatial Fourier/temporal Laplace transform of the proba-
bility P ≡ P (R,t) for a particle initially at the origin to travel
to site R in time t :

P =
∫ ε+i∞

ε−i∞

dp

2πi
ept

∫ π

−π

dK

2π

eiKR[
(p + γ )2 + 4u2

K

]1/2 − γ
;

(21)

ε > 0 indicates that the integration contour is shifted to the
right of the imaginary axis.

The corresponding Fourier transform gives the dynamic
structure factor S(ω,k) accessible in scattering experiments.
Namely, S(ω,k) = G00(iω,K), where the real-space wave
vector is k = ẑK/d, assuming the chain is along the z axis
and the lattice constant is d.

2. Dynamics of a domain wall

The solution of Eq. (13) for a general K in the case
of a domain wall Vs = γ |s| is only slightly more compli-
cated. We only consider the case where the density matrix at
t = 0 is diagonal, φs(t = 0,K) = δs,0. Due to the reflection
symmetry of Eq. (13), the solution remains symmetric at
all times, φs(t,K) = φ−s(t,K). As a result, we only need to
consider s � 0. Denoting gs ≡ gs(p,K) the Laplace trans-
form of φs(t,K), with φs(0,K) = δs,0, we have the following

algebraic equations:

pg0 − 1 = −2iuKg1, (22)

pgs = −iuK (gs−1 + gs+1) − γ sgs, s > 0. (23)

The system (23) being tri-diagonal, at a generic p there are only
two linearly independent solutions. If we introduce rescaled
parameters z ≡ 2uK/γ and ν = p/γ , these equations are
readily rendered into the form of Bessel recurrence relations for
functions Zν+s(−iz). Then, the corresponding general solution
of Eq. (23) is

gs = Ae−isπ/2Iν+s(z) + B eisπ/2Kν+s(z), (24)

where Iν(z) and Kν(z) are the modified Bessel functions of the
first and second kind, respectively.

In lieu of guessing, we note that Eq. (23) is a finite-difference
equation with coefficients linearly dependent on the index.
Such and more general difference-differential equations can
be solved with a version [22,23] of the Laplace’s method
for ordinary differential equations with coefficients linearly
dependent on the independent variable [24]. In the case of
Eq. (23), the corresponding solution is given by the complex
integral

gs =
∫

C

dx e(ν+s)x+iz sinh x, (25)

where z and ν are defined as in Eq. (24), and the integration
contour C must be chosen so that (i) the integral be nonzero,
and (ii) the integrand returns to the same value at the ends of the
contour (or returns to zero in an infinite contour). Recognizing
Eq. (25) as a Sommerfeld integral representation [25] for
modified Bessel functions of order ν + s, up to a phase factor,
we recover Eq. (24).

Only the first of the two solutions (24) falls to zero as s →
+∞ at a fixed z �= 0, which gives B = 0. The coefficient A is
found with the help of Eq. (22), and the final result is

gs(p) = e−i|s|π/2 Ip/γ+|s|(z)

γ z I ′
p/γ (z)

, z = 2uK

γ
, s ∈ Z, (26)

where I ′
ν(z) = Iν+1(z) + (ν/z)Iν(z) is the derivative with re-

spect to the argument. Using the appropriate asymptotic forms
[26] of the modified Bessel functions, it is easy to check that the
solution (26) goes to zero rapidly as s increases, and also that
in the limit γ → 0 the correct form in the absence of dephasing
is recovered.

3. Numerical comparison of the two cases

In Eq. (13) the dependence on the dimensionless momentum
K is encoded via the effective hopping uK , which can be
scaled away by the choice of time units and the corresponding
rescaling of the dephasing rates Vs . Thus, in the following
numerical examples we only considered the case uK = 1. In
Fig. 2 we compare the structure factor for a particle G00(ε +
iω,K) [Eq. (20)] and the corresponding quantity g0(ε + iω)
for a domain wall [Eq. (26)]. Clearly the shape of the peaks
is very similar between the two cases, even at relatively large
values of γ .

Correspondingly, the real-time/space correlation functions
P (R,t) [see Eq. (21)] are also very similar. The inverse Laplace
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FIG. 2. Frequency dependence of the real part of the dynamic
structure factor for a particle [G00(ε + iω,K), Eq. (20), red solid lines]
and for a domain wall [g0(ε + iω,K), see Eq. (26), blue dashed lines]
with uK = 1 and dephasing γ as labeled. The thin black line shows
the corresponding result in the absence of dephasing. A regularization
parameter ε = 10−3 was used for all the curves.

transform being numerically expensive, we computed P (R,t)
for the two cases by directly solving Eqs. (1) on finite-length
chains, starting with a state localized on a single site in the
middle of the chain. At γ = 0, our numerical solutions on
chains of length L = 25 (not shown) are indistinguishable
from the corresponding analytical solution on an infinite chain
Pγ=0(R,t) = J 2

R(� t), given in terms of the order-R Bessel
function (thin black lines in Fig. 3). Numerical solutions for
R = 0, 1, and 2 and γ = 0.05, 0.1, and 0.4 are shown in Fig. 3.
Again, the solutions for the two cases are very similar.

This is expected: as wave packet spreads, the density
can be more and more accurately described by a low-order
polynomial. Thus, according to our arguments in Sec. III A, the
far-off-diagonal matrix elements of the density matrix rapidly
get smaller, and so does the difference between the cases of a
particle and a domain wall.

C. ac response spectrum of a finite chain

We now consider modified dynamics in the presence of an
ac driving field. Physically, in the case of a charged particle,
the driving field can be applied as an electric field along the
chain direction. Similarly, in the case of a domain wall, it can
be applied as a magnetic field in the easy-axis direction in
the ferromagnetic case, or a gradient of such a field in the
antiferromagnetic case.

The driving Hamiltonian H1 ≡ H1(t) corresponds to a
linear potential,

(H1)ab = −f (t) a δab (no summation!), (27)

where, e.g., in the case of a charged particle in the electric
field, the coefficient is f (t) = eE(t) d, with e the charge and d

the distance between neighboring sites, and we only consider
harmonic driving fields E(t) = 
e E0e

−iωt . The corresponding
observable is the current (10), written here as an operator in
the coordinate representation

Jab = i
�

2
(δa,b+1 − δa+1,b), (28)

FIG. 3. Time dependence of the probabilities P (R,t), R = 0, 1, 2,
for a particle (red solid lines) and for a domain wall (blue dashed lines)
with � = 2 and dephasing γ as indicated, in chains of length L = 25.
The thin black line shows the corresponding result in the absence of
dephasing, P (R,t) = J 2

R(� t), where JR(z) is the Bessel function of
order R. Even for the largest dephasing γ = 0.4, the particle and
domain wall curves remain close to each other.

the canonical current associated with the hopping Hamiltonian
(2). We will compute the average current, the expectation of
the current operator (28),

I (t) = Tr[Ĵ ρ(t)] ≡ 
e[Y (w)E0e
−iωt ], (29)

where Y (ω) is the complex admittance whose real part is
proportional to the absorption spectrum. (An alternative deriva-
tion of the latter using linear response theory is given in
Appendix B.)
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We note that the scattering mechanism considered here
disregards transitions between the states of the chain with
emission/absorption of bath excitations, which are normally
responsible for the formation of the equilibrium Boltzmann
distribution

ρ(0) = Z−1 exp(−βH0), (30)

where Z is the normalization; at β� � 1, on a chain of length
L, one can use Z ≈ L. This distribution is formed by other
scattering processes. The rates of the corresponding transitions
are small compared to the dephasing rate γ in the considered
case β−1  �,γ .

Thus, we can still use the quantum kinetic equation (1) to
analyze the absorption spectrum in this regime. Namely, in the
presence of the perturbation Hamiltonian H = H0 + H1(t),
we expand the density matrix around the equilibrium solution
(30) ρ = ρ(0) + ρ(1) + · · · , and solve only the equations for
the perturbation linear in the applied field ρ(1) ≡ ρ(1)(t):

ρ̇
(1)
ab + i[H0,ρ

(1)]ab + �abρ
(1)
ab = −i[H1(t),ρ(0)]ab. (31)

Features of the absorption spectrum are most pronounced
for short chains, and at sufficiently small γ � �. Here the
energy levels of the system in the absence of bath coupling Em

are well separated, so that the transition frequencies ωm−n =
Em − En can be large compared to γ . In the absence of
other transitions at the same frequency, at driving frequencies
ω close to ωm−n, the solution of Eq. (31) is dominated by
only one resonant term, the matrix element ρ(1)

mn. This results
in a conventional Lorentzian line shape, with the complex
admittance Y (ω) ∝ (ω − ωm−n + i�m−n)−1, where �m−n is
the dephasing rate for the energy-basis matrix element ρmn. As
Weisskopf and Wigner realized early on [27], the line shape
could be different if there are two or more pairs of levels
corresponding to the same transition frequency ωm−n. This
effect, often called interference of transitions, is particularly
common in weakly nonlinear oscillators whose spectra are
close to being equidistant [28].

Both situations occur for the transitions on a finite chain.
Indeed, in the case of the hopping Hamiltonian (2) on a
chain of length L, with zero boundary conditions, the energy
levels are Em = −� cos km, corresponding to the wave func-
tions ψm(a) = [2/(L + 1)]1/2 sin(kma) with km = πm/(L +
1), where both the site a and the energy index m are in the range
1,2, . . . ,L. The transition frequency is nondegenerate only in
the symmetrical case m = L + 1 − n. On the other hand, for
any pair of energy states with indices m, n such that m + n �=
L + 1, there is always a symmetric pair m′ = L + 1 − n, n′ =
L + 1 − m with the same transition frequency ωm−n = ωm′−n′ .

To calculate the corresponding admittance of a chain, notice
that to leading order in powers of β� the r.h.s. of Eq. (31) is
proportional to the current operator (28):

−i[H1,ρ
(0)] ≈ −iL−1β[H0,H1] = βed

L
E(t)Ĵ . (32)

Recalling that E(t) = 
e E0e
−iωt , let us introduce the di-

mensionless coupling constant M ≡ βeE0d/L and the small
frequency bias ν ≡ ω − Em + En. Then, as long as both ν and
γ remain small compared to all transition frequencies, in the
degenerate case m + n �= L + 1, the density matrix ρ(1) will
have only two relatively large matrix elements in the energy

basis, with the complex amplitudes φ0 ≡ ρ(1)
mn and φ1 ≡ ρ

(1)
m′n′ .

The corresponding secular equations read

−iνφ0 + �mn,mnφ0 + �mn,m′n′φ1 = MJmn,

−iνφ1 + �m′n′,mnφ0 + �m′n′,m′n′φ1 = MJm′n′ . (33)

The coefficients are the matrix elements of the dephasing
operator �̂ [cf. Eq. (5)] in the energy basis

�mn,m′n′ =
∑
a,b

ψm(a)ψm′ (a)ψn′(b)ψn(b) Va−b, (34)

and the matrix elements Jmn ≡ 〈m|Ĵ |n〉 of the current operator
(28). Only off-diagonal m �= n matrix elements of the current
operator are nonzero. Explicitly,

Jmn = i
�

2

L−1∑
a=1

[ψm(a + 1)ψn(a) − ψm(a)ψn(a + 1)]

= i �

L + 1
(1 − eiπ(m−n))

sin km sin kn

cos km − cos kn

. (35)

In particular, this gives a selection rule Jmn = 0 for m − n even.
Also, for any pair of degenerate transitions ωm−n = ωm′−n′ , we
have Jm′n′ = Jmn. Similarly, we get the diagonal and the off-
diagonal matrix elements (34) equal �0 ≡ �mn,mn = �m′n′,m′n′

and �1 ≡ �mn,m′n′ = �m′n′,mn. As a result of this symmetry,
only the symmetric combination φ0 + φ1 is excited by the
external drive. Consequently, even in the degenerate case, the
absorption peak retains the Lorentzian form, with half-width
at half-maximum �m−n = �0 + �1.

Explicitly, in the case of a particle we obtain

�
(P)
0 = Lγ

L + 1
, �

(P)
1 = − γ

L + 1
, (36)

which gives the peaks width �
(P)
m−n = (L − 1)γ /(L + 1), m +

n �= L + 1. In the nondegenerate case m + n = L + 1, we get
�

(P)
m−n = (2L − 1)γ /(2L + 2). By the selection rules (m − n

has to be odd), this transition is only allowed on even-length
chains. As expected, in both cases, the line widths are close
to γ .

In the case of a domain wall, after some tedious but
elementary calculations, we obtain, in the degenerate case
m + n �= L + 1:

�
(DW)
0 = γ

2(L + 1)2 + 1 − 3 csc2 km − 3 csc2 kn

6(L + 1)
, (37)

�
(DW)
1 = −γ

1

L + 1

1 + cos km cos kn

(cos km + cos kn)2
, (38)

where csc k ≡ 1/ sin k is the cosecant. In the nondegenerate
case, m + n = L + 1, we obtain

�
(DW)
m−n = γ

4(L + 1)2 + 2 − 15 csc2 km

12(L + 1)
. (39)

Clearly, in these cases, the absorption linewidths scale linearly
with L. Given that the distances between the lines (say, for
m − n = 1) scale inversely proportionally to L, one expects
that in the case of a domain wall individual peaks would cease
to resolve at a smaller γ (with chain length L fixed).

In addition to degenerate perturbation theory analysis of
a single absorption peak, we also solved numerically the full
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FIG. 4. Frequency-dependent susceptibility χ (ω) ≡ 
e Y (ω) for
a particle (red solid lines) and for a domain wall (blue dashed lines)
on a chain of length L = 7 with the hopping parameter � = 2 and
dephasing γ as indicated. Vertical grid lines indicate the differences
for pairs of discrete energy levels in the absence of dephasing, as
labeled on the top frame.

set of linear response equations (31) in the frequency domain,
and computed the resulting admittance Y (ω). Numerical plots
of the corresponding real part χ (ω) = 
e Y (ω) on a chain of
length L = 7 for a particle and a domain wall are shown in
Fig. 4. As expected, only the absorption lines corresponding to
the allowed transitions with m − n odd are present. At small γ ,
we verified the predicted widths of the Lorentzian line shapes
by fitting with the numerical data (not shown). It is clear from
Fig. 4 that the discrete energy levels are much broader in the
case of a domain wall, and individual absorption lines cease to
be resolved at much smaller values of γ .

IV. POSSIBLE EXPERIMENTAL REALIZATIONS

The one-dimensional models solved here apply to a broad
range of (quasi-)1D systems, which in turn provide a variety
of different platforms to study the dynamics of domain walls
and/or particles in the presence of environmental relaxation.
This poses the challenge to test our conclusions in a single
system directly. Ideally, one would be able to study both
(1) bulk transport of topological defects in long chains and
(2) resolve their spectral signatures in short chains, with (3)
enough uniformity in properties to ensure that linewidths are
not dominated by inhomogeneous broadening, and yet (4) a
variety of lengths to enable finite-size scaling. Furthermore,
(5) the system has to be in the regime of quantum diffusion, (6)
with our simple models applicable, meaning that correlations
between the baths on neighboring sites should be weak,
with the bath free of sharp spectral features which could
interfere with the measurements; preferably, (7) one should
be able to confirm the relaxation model in a pump-probe-type
experiment. Finally, for direct comparison, (8) one would like
to measure both single-particle and domain wall dynamics in
the same system. In this section we address a number of such
systems, focusing on these eight items.

A. Bulk and surface lattice defects

Quantum diffusion was first discovered for dilute point
defects in bulk quantum crystals, using nuclear magnetic
resonance spectroscopy [4–6]. While similar physics is also
expected to govern the transport of point topological defects
like kinks in a dislocation [7], to our knowledge these pre-
dictions have never been confirmed experimentally [29]. Even
if they were, due to the long-range nature of the deformation
associated with bulk dislocations, we do not expect simple
models studied in Sec. II to apply directly.

Related experiments could be possible with adatoms or
adatom clusters on clean crystalline surfaces. Dynamics of
such systems can be studied using direct imaging tools such
as scanning tunneling microscopy and field ion microscopy,
as well as a variety of indirect scattering techniques [30]. In
particular, a regime of quantum or quantum-assisted diffusion
was reported for hydrogen and deuterium atoms on metallic
surfaces [31–33]. One could conceivably use a technique
similar to electron energy-loss spectroscopy from Ref. [34] to
detect discrete energy levels of an atom trapped in a quantum
corral [35] or other nanoscale pattern on the surface [36,37].
In our opinion, the biggest challenge of such an experiment
would be the small energies involved; a similar experiment
with a quantum-confined topological defect (e.g., in a chain of
adatoms) would be even harder.

B. Villain mode in quantum spin chains

Topological defects (domain walls) are much more common
in quantum spin chains. In fact, they are readily seen in inelastic
neutron scattering experiments [13], due to a characteristic line
shape predicted by Villain [12,38]. An obvious question would
be to what extent today’s capabilities can be used to obtain, e.g.,
the details of the temperature dependence of line shapes, in
particular, due to quantum interference effects in finite-length
chains.
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Neutrons probe the domain walls by measuring the
Fourier components of the spin-spin correlation function
〈Sz(r,t)Sz(0,0)〉. For a single domain wall on an infinite chain,
the corresponding dynamical structure factor can be obtained
from Eq. (26) by simple scaling,

S(ω,k) = g0(iω,K)

sin2(K/2)
, k = ẑK/d. (40)

Such a form factor—a Fourier transform of the sign function—
is generally associated with an Ising domain wall. As expected,
dephasing leads to broadening of the singularities in the Villain
mode spectrum (see Fig. 2). Other broadening mechanisms
include scattering between domain walls within a chain, as well
as magnetic interactions with the domain walls in neighboring
chains.

Chain lengths can be controlled by nonmagnetic substi-
tutions on the magnetic sites [39]. In principle, the energy
resolution of inelastic neutron scattering should be sufficient
to observe discrete energy levels for domain walls on finite-
length chains. However, one would need to make sure that the
inhomogeneous broadening due to different chain lengths does
not swamp the decoherence-induced broadening.

Furthermore, in the presence of a sufficiently strong mag-
netic field, one can cause the chains to undergo a spin-flop
transition to a ferromagnetic phase. Above this transition, do-
main walls are confined to move in pairs (effectively equivalent
to single flipped spins—akin to a true pointlike particle); these
pairs become the new elementary excitations. This would allow
one to study directly the differences between particles and do-
main walls discussed in Sec. III C, although the spin relaxation
mechanisms could be quite different in these two phases.

Instead of the finite-length chains, one could also construct
disordered chains, where a small fraction of the bonds have a
somewhat smaller exchange energy, thus providing a confining
potential for the domain walls.

Yet another possibility is to look at the discrete spectra of
bound domain wall pairs under conditions similar to those
of the experiment in CoNb2O6 [40]. Namely, in an ordered
magnetic phase stabilized by weak interchain couplings, there
is a linear confining potential between the pairs of domain
walls on the same chain. Near the bottom of the domain-wall-
hopping band, the corresponding discrete energy levels are well
described by a two-body Schrödinger equation with quadratic
kinetic energy and linear potential [40]. The level widths,
especially near the bulk Curie temperature where the confining
potential is weaker, could reflect the signature of increased
fragility of bound states of domain walls to environmental
decoherence discussed in the present work.

C. Molecular chains and retinal systems

Another system supporting one-dimensional solitons are
conjugated polymers like polyacetylene [16]. The defining
feature of such systems is that sp2 hybridization leaves one
unpaired electron per carbon atom. This causes the spin-Peierls
instability, which breaks the translational symmetry sponta-
neously and results in a doubly degenerate dimerized state
at the charge neutrality point. In the noninteracting picture,
such a state would be a gapped semiconductor. However,
energetics of the system at small dopings is such that each

additional charge binds to a domain wall between two different
degenerate ground states, resulting in mobile excitations with
fractional charge e/2, and the effective mass closer to the
electron mass rather than the ionic mass, as would be naïvely
expected. Upon doping, such molecular-chain polymers have
bulk conductivities comparable to that of copper.

Related finite-size systems can be readily formed by chem-
ical means. Particularly interesting from our point of view are
homo- or heterocyclic aromatic molecules and ions formed by
conjugated cycles of odd lengths L, whose ground states are
near-equal superpositions of L resonance contributions [41],
each necessarily containing a soliton. Examples with L = 5 are
furan C4H4O and cyclopentadienyl anion [C5H5]−, and with
L = 7, borepin C6H7B and tropylium cation [C7H7]+.

Unlike in the case of the simple hopping Hamiltonian (2),
detailed analysis and interpretation of molecular spectra is
notoriously difficult [42–46], in particular, since ground state
configurations involve bonds that are significantly bent (with
angles dependent on L), while electronic transitions are always
dressed with nonlinear phonon modes. The problem is further
complicated by (usually unresolved) rotational levels, and
additional inhomogeneous broadening due to different nuclear
spin configurations [24]; both effects result in quasicontinuum
spectra even in closed systems. We expect the analysis of the
level broadening, e.g., due to nearby substrate to be even more
complicated, even though the rotational degrees of freedom
should not be relevant in this case.

The situation is potentially simpler in open chains where
longer chains can retain their linear forms and make scaling
with L meaningful [47], so that the energies for the transitions
of interest could be smaller. A notable example of open chains
are the small light-harvesting molecules (chromophores) in
retinal systems [17,48,49] (e.g., rhodopsin). Here it has been
proposed that the exceptionally fast response time scales and
high quantum yield may originate from coherent motion of
elementary soliton excitations. Interestingly, it was argued that
a rapid damping of the solitons is key to ensure high quantum
yield in these systems [48], and understanding the role of de-
phasing is therefore paramount. At first sight, since solitons are
reflected at chain ends [17], one may expect self-interference
to occur, and induce the enhanced fragility characteristic of
emergent vs real particles discussed in this work.

D. Cold atom and cold ion systems

An experimental system where essentially all parameters
can be accurately computed is offered by cold atom systems
in optical traps [50]. Quantum diffusion (with spontaneous
emission serving as the source of decoherence) was predicted
long ago [51]. In such a regime, our results are directly relevant
for instance to the motion of solitons in the Su-Schrieffer-
Heeger model, which has been recently realized in momentum
space using 87Rb atoms [15].

For finite-chain spectroscopy of particles or domain walls,
one could combine interacting 1D optical lattices [52] and
a box-trap [53] at half-filling, to achieve an “antiferromag-
netically ordered” state (in the occupation number). Small
variations away from half-filling then introduce domain walls
that can be driven periodically by tilting the box-trap [54]. The
absorbed energy could be inferred by measuring the real-space
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momentum distribution at different times during the cycle of
the applied linear tilting potential. These experiments could be
done either with an ensemble of 1D box traps, or with a single
trap; preparation and detection of bosons at single site level is
within present state of the art capability [55].

Yet another possibility is offered by a recent experiment
[56], where solitons in a zigzag chain of Mg+ ions have been
observed.

E. Quantum simulators and qubit registers

Finally, one more promising platform is provided by quan-
tum simulators. These could be based on systems as distinct as
ensembles of nitrogen-vacancy spin impurities in diamond [14]
recently used in the search for discrete time crystals, or pairs
of distinct states of 40Ca+ ions in optical traps [57]. Their main
attraction is the great tunability, and the capacity to manipulate
and read out the behavior of the system locally.

In particular, a quantum Ising spin chain of length around ten
sites has been implemented in Ref. [57]. The Ising interactions
decay as a (tunable) power law with the distance, localized
excitations can be injected into the system, and arbitrary mul-
tiparticle correlation functions can be measured, which gives
the ability to perform quantum state tomography. In particular,
the decay of a single spin flip into a pair of propagating domain
walls has been observed in Ref. [57]. With the addition of a
dephasing mechanism, e.g., due to quasielastic scattering by
photons, this system would allow a direct comparison between
our theory and experiment.

Even more tunability is permitted by qubit registers, which
are, in effect, small quantum computers, and allow for arbitrary
one- and certain two-qubit gates to be performed. Specific
implementations, where around ten qubits are presently avail-
able, include hyperfine levels in trapped atomic ions [58]
and superconducting flux qubit registers [59]. Of course, with
access to such a register, one can directly construct an n-qubit
entangled cat state (|00 · · · 0〉 + |11 · · · 1〉)/√2 and study its
decay; such experiments were done nearly a decade ago [60].

A more satisfying alternative would be to implement
many-body quantum dynamics directly. This can be done by
decomposing the unitary evolution operator into a sequence
of small-angle Trotter slices, each applied during a single
time step of the quantum circuit. For example, to simulate
a transverse-field quantum Ising chain, a repeated cycle of
three time steps is sufficient, with the first two steps used
for odd-bond and even-bond ZZ rotations, and the third step
for local X rotations. When Ising exchange constant is large,
couplings between sectors with different numbers of domain
walls are suppressed, so that a single domain wall will evolve
into a superposition of states dominated by the single domain
wall sector. A quantum X-Y chain can be similarly simulated.
Here, kinematic constraints imposed by the form of the X-Y
Hamiltonian preclude pair creation of further excitations so
that a single-site excitation |0 · · · 010 · · · 0〉 at t = 0 will
likewise evolve like a single particle. Classical dephasing noise
can also be readily implemented by introducing small random
Z rotations on individual qubits.

V. OUTLOOK

In this work we have studied and contrasted transport for
particles and domain walls on chains, in the setting of a

simple effective model with Markovian dephasing. We have
also discussed a number of physical realizations where our
results are likely to be relevant and where one may be able to
put this theory to the test experimentally.

A different, potentially even more interesting setting is
provided by the systems that originally inspired this work—
higher-dimensional topological magnets with pointlike exci-
tations that propagate across a spin background. Here, again,
the spin background is changed when a particle passes a given
point. Drawing on our results, we expect that in presence of
weak dephasing a mechanism similar to quantum diffusion
will govern transport in the bulk. On the contrary, we expect
single-particle bound states to be suppressed compared to the
case of a real particle, and the level broadening to increase with
the spatial extent of the state.

Superficially, self-energy for the pointlike excitations can
be computed using the retraceable path approximation, similar
to what was done for a hole in the antiferromagnet [61,62].
In the presence of weak dephasing, this could give a lower
bound on the associated broadening of discrete energy levels.
It is not clear at the moment what the corresponding effect
would be in the transport setting. We should note that the usual
coherent transport may be suppressed, e.g., in the case of spin
ice, where Trugman loops [63] are forbidden. Related effects,
e.g., ring exchange processes, may also be strongly modified
by environmental decoherence. Further work is needed to fully
understand the corresponding physical consequences on the
stability of quantum spin liquid systems. One implication,
however, is that coherent transport over distances of several
lattice spacings needs not necessarily imply the existence
of spectral features associated with coherent ring exchange
processes involving a comparable number of sites.

In conclusion, we have studied the effect of coupling to
an environment on the transport of particlelike and domain-
wall-like excitations which model broad classes of physical
systems. In the dc transport in large systems, in spite of the
strong difference in the underlying dephasing caused by the
environment, the effect is similar for both types of excitations.
However, in small systems we show that the broadening of
resonant spectral lines is significantly different.
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APPENDIX A: DEPHASING FROM A BOSON BATH

Here we give a conventional derivation of the dephasing
terms for a particle and a domain wall, in the presence of a
weakly coupled bath of harmonic oscillators (e.g., phonons).
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We include both first- and second-order coupling terms, which
can be interpreted respectively as contributions due to phonon
absorption/emission and phonon scattering.

1. Quantum kinetics of a particle

We write the Hamiltonian for the particle in Fig. 1(a) in the
general form

H = H0 + Hb + Hi, (A1)

as a sum of the hopping Hamiltonian (2) in second-quantized
form, H0 = −(�/2)

∑
a(c†aca+1 + H.c.), the bath Hamilto-

nian Hb, and the interaction Hamiltonian Hi:

Hb =
∑

μ

ωμb†μbμ, Hi =
∑

a

εac
†
aca, (A2)

εa =
∑

μ

f (a)
μ uμ + 1

2

∑
μ,ν

g(a)
μνuμuν. (A3)

Here ca annihilates a particle (it does not matter whether
bosonic or fermionic, since we only consider one particle) on
site a, bμ annihilates a bath mode (bosonic) with frequency
ωμ, and εa is the energy of the coupling which includes terms
linear (f (a)

μ ) and quadratic (g(a)
μν ) in the displacement

uμ = bμ + b†μ
(2ωμ)1/2

. (A4)

We consider the evolution of the system using the particle
density matrix in the position representation ρaa′ = 〈c†aca′ 〉. In
the absence of hopping, � = 0, the evolution of the matrix
element ρaa′ is readily evaluated if we introduce the phase
associated with the boson coupling energies (A3) in the
interaction representation

φa(t) ≡
∫ t

0
dt ′ εa(t ′), (A5)

evaluated using the time-dependent boson operators b̃μ(t) =
bμe−iωμt . In the single-particle subspace, for � = 0, we have
the exact equality:

e−iH t c†ae
iHt = e−iHbt Tt e

−i
∫ t

0 dt ′ εa (t ′)c†ae
iHbt , (A6)

where Tt is the standard time-ordering operator. Combining
with the corresponding conjugate for ca′ , in the leading-order
Gaussian approximation we obtain

ρaa′ (t) = e−Waa′ (t)ρaa′ (0),

Waa′ (t) =
∫ t

0
dt ′′

∫ t ′′

0
dt ′ waa′(t ′′ − t ′), (A7)

waa′(t ′′ − t ′) ≡ 〈ε′′
a ε′

a + ε′
a′ε

′′
a′ − ε′

aε
′′
a′ − ε′′

a ε′
a′ 〉,

where, e.g., ε′
a ≡ εa(t ′), and theT ordering of products matches

that of the original exponents. Assuming an equilibrium boson
distribution, and working to leading order in the couplings, we
decompose the averages into contributions coming from one-
and two-boson processes, respectively, waa′(t) = w

(1)
aa′(t) +

w
(2)
aa′(t):

w
(1)
aa′ (t) =

∑
μ

∣∣f (a)
μ − f (a′)

μ

∣∣2

2ωμ

(2nμ + 1) cos(ωμt), (A8)

w
(2)
aa′(t) =

∑
μ,ν

∣∣g(a)
μν − g(a′)

μν

∣∣2

8 ωμων

[(2nμ + 1)(2nν + 1)

× cos(ωμt) cos(ωνt) − sin(ωμt) sin(ωνt)]. (A9)

Here nμ ≡ [exp(βωμ) − 1]−1 is the equilibrium boson oc-
cupation number and β ≡ h̄/kBT . Notice that the obtained
Debye-Waller factors (A7) are time symmetric; this results
from an assumption that the averages involving [f (a)

μ ]2 and
[g(a)

μν ]2 do not depend on the site index a.
At time t large compared to the inverse temperature and to

the inverse bath cutoff frequency ω−1
c (here ωc ≡ maxμ ωμ),

both correlation functions are expected to be small due to rapid
oscillations of the integrand. We can then evaluate the integral
(A7) by changing variable t ′ → t ′′ − τ , integrating over t ′′,
and subsequently extending the upper integration limit in τ to
infinity,

Waa′ (t) =
∫ t

0
dτ (t − τ ) waa′ (τ ) = t �aa′ − �̃aa′ . (A10)

The resulting asymptotic dephasing rate �aa′ is

�aa′ =
∫ ∞

0
dt ′ waa′ (t ′). (A11)

As a result of time integration, the single-boson contribution
(A8) is dominated entirely by low frequency modes,

�
(1)
aa′ = π

β

∑
μ

∣∣f (a)
μ − f (a′)

μ

∣∣2

ω2
μ

δ(ωμ). (A12)

This is nonzero and finite only if the bath spectral function,

Faa′ (ω) ≡ π

2

∑
μ

∣∣f (a)
μ − f (a′)

μ

∣∣2

ωμ

δ(ωμ − ω) (A13)

is a linear function of ω > 0 near the origin, which corresponds
to the case of Ohmic dissipation. A sublinear form Faa′ (ω) ∝
ωα with α < 1 results in a formally divergent dephasing
rate �aa′ .

Notice that in the case of a bath formed by lattice phonons
in two or three dimensions (substrate phonons), necessarily
�

(1)
aa′ = 0. Indeed, only acoustic phonons can contribute at small

frequencies, and the coupling f (a)
μ becomes nearly position

independent at small wave vectors kμ → 0.
In comparison, the dephasing rates coming from the two-

boson contribution (A9) are dominated by scattering,

�
(sc)
aa′ = π

4

∑
μ,ν

∣∣g(a)
μν − g(a′)

μν

∣∣2

ω2
μ

(nμ + 1) nν δ(ωμ − ων). (A14)

In the case of acoustic phonons at 1 K (well below the Debye
energy scale), assuming a speed of sound s = 5 × 105 cm/s,
the inverse temperature is β = h̄/kBT = 7 × 10−11 s, which
corresponds to a correlation radius of about lc ≡ sβ = 350 Å.
This radius gets smaller with increasing temperature. Relevant
fluctuations in the thermal baths for sites separated by distances
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larger that lc are uncorrelated. When lc is smaller than the
distance between two adjacent lattice sites, assuming that the
corresponding modes are similar, we recover Eq. (3).

Having analyzed the exponential decay of the matrix ele-
ments, we can now restore the hopping � to recover the full
master equation (1). The Markovian approximation is valid
when ρ changes little on the scale of the bath correlation time
τc ≡ max(β,ω−1

max), that is for τc� � 1, τcγ � 1.
A more accurate evolution equation which includes non-

Markovian effects can be derived using time-dependent
Green’s functions in the Keldysh formalism [64–67], or the
formalism by Konstantinov and Perel’ [68], with the help of
an appropriate resummation of the perturbation series [69,70].

2. Quantum kinetics of a domain wall

Similar arguments apply to the case of a domain wall,
Fig. 1(b), where we label the position of the domain wall
by integers, and the positions of the spins by half-integers.
Assuming the Ising exchange energy to be bond independent,
we write the position-dependent part of the energy of the
domain wall at a as

εa =
∑

j∈{1/2,3/2,...}

1

2
(ha+j − ha−j ). (A15)

Reversing this map, we get εa+1 − εa = ha+1/2. With this
result, we can start with the same general Hamiltonian terms
(A1) and (A2), with the fluctuating magnetic fields at half-
integer sites j [cf. Eq. (A3)]:

hj =
∑

μ

f̄ (j )
μ uμ + 1

2

∑
μ,ν

ḡ(j )
μνuμuν. (A16)

These immediately lead to the analogs of Eqs. (A8) and (A9)
for the one- and two-boson Debye-Waller factors. The resulting
dephasing rates are

�̄
(1)
aa′ = π

β

∑
μ

∣∣∑
j f̄

(j )
μ

∣∣2

ω2
μ

δ(ωμ), (A17)

�̄
(2)
aa′ = π

4

∑
μ,ν

∣∣∑
j ḡ

(j )
μν

∣∣2

ω2
μ

(nμ + 1)nνδ(ωμ − ων), (A18)

where the summation over j encompasses the half-integer
positions of the spins in the interval between a and a′, namely,
min(a,a′) < j < max(a,a′). As a result, the single-phonon
contribution to the dephasing rate �aa′ may no longer be
identically zero, consistent with the arguments in Ref. [11],
and larger |a − a′| are now expected to result in increasing
dephasing rates due to an increasing number of terms included
in the sum. With the correlation between the local fields hj

decaying to zero, we get an asymptotically linear growth,
recovering Eq. (4) when the local fields are uncorrelated and
identically distributed.

The asymptotic dephasing rates are approximately constant
for t  τc = max(β,ω−1

c ). Thus, the Markovian equations
(1) and (4) are applicable for τc� � 1, τcγ |m − m′| � 1.
However, dephasing leads to an exponential suppression of
the far-off-diagonal matrix elements of the density matrix.
Thus, if we use the dephasing rate Eq. (4) for large |m − m′|,
technically outside of the applicability range of the Markovian
approximation, the corresponding error is expected to be
exponentially small. With this in mind, we use the Markovian
dephasing rates (4) for all matrix elements.

APPENDIX B: FINITE-CHAIN ABSORPTION SPECTRUM
VIA LINEAR RESPONSE THEORY

Here we give an alternative derivation of the absorption
spectrum of a finite chain, using linear response theory [71,72]
and the quantum regression theorem [73].

We are interested in finding the absorption spectrum, which
is determined by the real part of the admittanceY (ω). The width
of the spectrum is limited by the bandwidth � and the decay
rate γ , and therefore we are interested in frequencies ω �
kBT /h̄ ≡ β−1. In this case the Kubo formula [71,72] reads


e Y (ω) = β 
e
∫ ∞

0
dt eiωt 〈Ĵ (t)Ĵ (0)〉, (B1)

where Ĵ is the current operator. It should be noted that the
scattering mechanism we consider disregards energy exchange
between the phonon bath and the system. Therefore, it does
not lead to the Boltzmann distribution implied in Eq. (B1).
As we discussed in Sec. III C, this distribution is formed by
other scattering mechanisms which take this exchange into
account. The rate of the energy exchange is small compared
to the “elastic” rate γ . Correspondingly, the current correlator
(B1), and thus the spectrum of Y (ω), can be calculated using
the kinetic equation (1).

We notice that in the regime of applicability of Eq. (B1),
namely ω � β−1, the corrections [74,75] to the quantum
regression theorem [73] are small. We can then write the
correlator (B1) as

〈Ĵ (t)Ĵ (0)〉 =
∑

J̄nmρ̄mn(t), J̄mn = 〈m|Ĵ |n〉, (B2)

where the time evolution of the matrix elements ρ̄mn(t) is
described by Eq. (1), with H = H0 and with the initial
condition

ρ̄mn(0) = J̄mn Z−1 exp(−βEn). (B3)

Here Z is the partition function, and for the considered tem-
perature range Z ≈ L and exp(−βEn) ≈ 1. The corresponding
results are identical to our analysis of Eq. (31), as can be seen
by applying a semi-infinite Fourier transform to Eq. (1) with
initial condition (B3).
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