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We show that quantum diffusion near a quantum critical point can provide an efficient mechanism of
quantum annealing. It is based on the diffusion-mediated recombination of excitations in open systems far
from thermal equilibrium. We find that, for an Ising spin chain coupled to a bosonic bath and driven by a
monotonically decreasing transverse field, excitation diffusion sharply slows down below the quantum
critical region. This leads to spatial correlations and effective freezing of the excitation density. Still,
obtaining an approximate solution of an optimization problem via the diffusion-mediated quantum
annealing can be faster than via closed-system quantum annealing or Glauber dynamics.
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Quantum annealing (QA) has been proposed as a candidate
for a speed-up of solving hard optimization problems
[1–3]. Optimization can be thought of as motion toward the
potential minimum in the energy landscape associatedwith the
computational problem. Conventionally, QA is related to
quantum tunneling in the landscape that is slowly varied in
time [4]. It provides an alternative to simulated annealing,
which relies on classical diffusion via thermally activated
interwell transitions. It was suggested that the coupling to the
environmentwould not necessarily bedetrimental toQA[5–7].
Recently, the role of quantum tunneling as a computa-

tional resource has become a matter of active debate [8–13],
as it is not necessarily advantageous compared to classi-
cal computational techniques, e.g., the path integral
Monte Carlo method [14–16]. In addition, dissipation
and noise can make tunneling incoherent, significantly
slowing down [17] the transition rates that underlie QA.
In this Letter we show that dissipation-mediated quantum

diffusion can provide an efficient additional resource for QA.
We model QA as the evolution of a far-from-thermal-
equilibrium multispin system, which is coupled to a thermal
reservoir and is driven by a time-dependent field. The
diffusion involves environment-induced transitions between
entangled states. These states are delocalized coherent super-
positions of multispin configurations separated by a large
number of spin flips (a large Hamming distance). At a late
stage of QA the diffusion coefficient decreases. Ultimately
diffusion becomes hopping between localized states and QA
is dramatically slowed down. An important question is
whether the solutionobtained by then is closer to theoptimum
than the solution obtained over the same time classically.
Diffusion plays a special role when the system is driven

through the quantum critical region, as often considered in
QA [2,4,8]. A well-known result of going through such a

region is the generation of excitations via the Kibble-Zurek
mechanism [18,19]. This leads to an error, in terms of QA,
as the system is ultimately frozen in the excited state. The
generation rate can be even higher in the presence of
coupling to the environment [20,21].
It is diffusion that makes it possible for the excitations to

“meet” each other and to recombine, thus reducing their
number. Near the critical region, diffusion is enhanced because
of the large correlation length. It has universal features related
to the simple form of the excitation energy spectrum.
The effect of quantum-diffusion-induced acceleration of

QA is of the utmost importance for systems with delocalized
multispin excitations, in particular, above or close to the
threshold of many-body localization transition. To reveal and
characterize this new effect, we study it here for a model with
no disorder. Thismodel is of interest on its own as an example
of a far-from-equilibrium system coupled to the environment.
The specific model is a one-dimensional Ising spin chain
driven through the quantum phase transition by varying a
transverse magnetic field at a constant speed. Among recent
applications of this classic model, we could mention cold-
atom systems [22–24] and the circuit QED [25].
We assume that each spin is weakly coupled to its own

bosonic bath. The QA Hamiltonian is

HQA ¼ −J
XN−1

n¼1

ðσznσznþ1 þ gσxnÞ −
XN
n¼1

σxnXn þHB; ð1Þ

whereN is thenumber of spins,JgðtÞ is the transverse field,σxn,
σzn are Pauli matrices, HB ¼ P

n;γℏωγnb
†
γnbγn is the baths’

Hamiltonian, Xn ¼
P

γλγnðb†γn þ bγnÞ, and b†γn, bγn are
boson creation and annihilation operators in the nth bath.
WeassumeOhmicdissipation,2

P
γðλγn=ℏÞ2δðω−ωγnÞ¼αω,

α ≪ 1, and a linear-in-time schedule for reducing the
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transverse field, _gðtÞ ¼ −v < 0, starting from the initial value
gi ≫ 1. We further assume translational symmetry, so that λγn
and ωγn are independent of n. The spin-boson coupling (1)
provides amicroscopicmodel for the classical spin-flip process
in the Glauber dynamics [26].
In the absence of coupling to the environment, model (1)

describes a quantum phase transition between a paramag-
netic phase (g > 1) and a ferromagnetic phase (g < 1) [27].
The spin part of the Hamiltonian (1) can be mapped onto
fermions [28] using the Jordan-Wigner transformation,
σxn ¼ 1 − 2a†nan, σzn ¼ −KðnÞða†n þ anÞ, where KðjÞ ¼Q

i<jσ
x
i and a

†
n and an are fermion creation and annihilation

operators. Changing in the standard way to new creation
and annihilation operators η†k, ηk, with ηk ¼ ð1= ffiffiffiffi

N
p Þ×P

N
n¼1½an cosðθk=2Þ − ia†n sinðθk=2Þ�e−ikn, we obtain the

Hamiltonian of the isolated spin chain as H0 ¼
2J

P
kϵkη

†
kηk, where ϵk is the dimensionless fermion energy,

ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg − cos kÞ2 þ sin2k

q
; tan θk ¼

sin k
g − cos k

: ð2Þ

The dependence of the minimal energy Δ ¼ 2Jϵ0 on g and
the form of ϵk are illustrated in Fig. 1.
In the course of QA, pairs of fermions with opposite

momenta are born from vacuum due to the Landau-Zener
transitions as the system passes through the critical point
g ¼ 1 [18,19]. The resulting density of excitations nKZ for
large N is simply related to the QA speed [29],

nKZ ¼ jℏ_g=8πJj1=2: ð3Þ

In terms of the fermion operators, the Hamiltonian of the
coupling to bosons, Eq. (1), reads

Hi ¼
X
kk0

hkk0Xk−k0 ;

hkk0 ¼ ckk0η
†
kηk0 þ skk0η

†
kη

†
−k0 þ s�k0kη−kηk0 ; ð4Þ

where Xq ¼
P

γλγðbγq þ b†γ−qÞ are boson field operators,
bγq ¼ N−1=2P

nbγn expð−iqnÞ, and the coefficients ckk0
and skk0 are expressed in terms of the rotation angles θk,
θq, see Eq. (24) of the Supplemental Material (SM) [30].
From Eq. (4) one can identify three types of relaxation

processes, see Figs. 1(b)–1(c). The first is scattering by a
boson in which a fermion changes its momentum k and
energy ϵk. The rate of a single-fermion transition k → k0 is
Wþ−

kk0 ∝ jckk0 j2. The other processes are generation and
recombination of pairs of fermions due to boson scattering.
The parity of the total number of fermions is not changed.
The generation and recombination rates Wþþ

kk0 and W−−
kk0

are ∝ jskk0 j2,

Wμν
kk0 ¼

2πα

N
Ωμν

kk0 ½1 − μν cosðμθk − νθk0 Þ�½nðΩμν
kk0 Þ þ 1�;

Ωμν
kk0 ¼ 2Jðμϵk þ νϵk0 Þ=ℏ; ð5Þ

where μ, ν ¼ � and nðωÞ ¼ ½expðℏω=kBTÞ − 1�−1.
The single-particle quantum kinetic equation that incor-

porated these processes was considered in Refs. [20,21]. It
was written for the coupled fermion populations hη†kηki and
coherences hηkη−ki. The approach [20,21] involved two
major approximations, the spatial uniformity of the fermion
distribution and the absence of fermion correlations. These
approximations hold in the critical region, where the gap in
the energy spectrum ΔðgÞ ¼ 2Jj1 − gj ≲ kBT. For a suffi-
ciently low QA rate, the density of excitations is dominated
by thermal processes rather than the Landau-Zener tunnel-
ing [20,21]. The fermion population in this region is
½expð2Jϵk=kBTÞ þ 1�−1, see Fig. 1(d).
QA aims at minimizing the number of excitations over a

given time. Aswe show, for the considered open system there
exists an optimal QA speed that allows one to achieve the
excitationdensity far below theLandau-Zener-limiteddensity
(3) in a closed system. This density corresponds to the
bottleneck of QA imposed by the sharp slowing-down of
excitation decay due to many-fermion effects and spatial
correlations. The approximation [20,21] does not capture this
effect. The full analysis requires solving the full Bogolyubov

(a)

(b)

(c)

(d)

FIG. 1. (a) The dependence of the gap Δ in the energy spectrum
of the Ising chain (2) on the scaled transverse field g, which
linearly decreases in time. (b) The fermion dispersion law and the
processes of fermion scattering induced by the coupling to the
bosonic field. Both the generation and the recombination are two-
fermion processes. (c) The diagrams that show single-fermion
intraband scattering, recombination, and generation of fermions;
the change of the fermion energy and momentum comes from the
bosons. (d) The dependence of the density of quasiparticles on
time (g ¼ 1 − _gt). The boundary of the filled region shows the
thermal equilibrium density, whereas the solid line shows the
nonequilibrium density calculated using the Boltzmann equa-
tion (6) and disregarding spatial correlations.
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chain of equations for the coupled many-particle Green’s
functions [38].However, the densitywhere the slowing-down
occurs and the scaling relations between the speed _g and the
final density of excitations, which are our primary interest,
can be found in a simpler way, as discussed below.
As we show, the range of interest is g behind the critical

region, yet close to it, where 1 − g ≪ 1. In this range, as g
decreases, spatial correlations in the fermion system
change from weak to strong. We start with the region of
comparatively high densities, where spatial correlations can
be disregarded and the fermion dynamics is described [39] by
the Boltzmann equation for the single-fermion Wigner prob-
ability density ρWðx; kÞ ¼ ð2πÞ−1 R dphη†kþp=2ηk−p=2ie−ipx,

∂tρW þ 2J
ℏ
ð∂kϵkÞ∂xρW ¼ L̂ð0Þ½ρW � þ L̂ð1Þ½ρW �: ð6Þ

Here, operator L̂ð0Þ describes single-fermion scattering by
bosons [39], see Fig. 1, with the transition ratesWþ−

kk0 given by
Eq. (5); cf. Eqs. (6) and (9) in the Supplemental Material [30].
The characteristic reciprocal relaxation time of fermion
momentum due to single-fermion scattering τ−1r is determined
by the transition rate Wþ−

kk0 for fermions with energies
2Jϵk, 2Jϵk0 ∼ kBT,

τ−1r ðgÞ ¼ 2αkBT½ð1 − gÞ=βgℏ2�1=2; β ¼ 2J=kBT: ð7Þ
This expression refers to the semiclassical range behind the
critical point where the excitation gap Δ has become large
compared to kBT,

e−ΔðgÞ=kBT ≪ 1; ΔðgÞ ¼ 2Jð1 − gÞ: ð8Þ
The rate τ−1r ðgÞ increases with the distance 1 − g ∝ Δ

from the critical point. Extrapolating it back to the critical
region Δ≃ kBT, we recover the scaling of the critical
relaxation rate ðτ−1r Þc found in [20,21]. For the slow
quantum annealing rate that we consider,

Jj_gj ≪ ℏðτ−1r Þc; ðτ−1r Þc ≃ 4Jα=ℏβ2; ð9Þ
the fermion distribution in the critical region remains of the
Boltzmann form.
Operator L̂ð1Þ½ρW � in Eq. (6) describes two-fermion

generation and recombination accompanied, respectively,
by absorption and emission of a boson, see Fig. 1.
Recombination requires a collision of two fermions with
a boson, see Fig. 1. Respectively, the recombination term is
quadratic in ρW ,

L̂ð1Þ
rec ½ρWðx; kÞ� ¼ −N

X
q

Wþþ
kq ρWðx; kÞρWðx; qÞ: ð10Þ

It becomes small for small fermion densities. In contrast,

the generation term L̂ð1Þ
gen½ρWðx; kÞ� is density-independent

for small densities and is proportional to W−−
kq ∝

exp½−ΔðgÞ=kBT�. It rapidly falls off as the control param-
eter g moves away from the critical point.

Overall, in the range (8) the generation and recombina-
tion rates described by L̂ð1Þ are small compared to the
momentum relaxation rate τ−1r , and the distribution over the
fermion momentum approaches thermal equilibrium with
the bosonic bath temperature. Function ρWðx; kÞ in (6)
factors into a product of the Boltzmann distribution over
fermion energy ϵk and a coordinate-dependent fermion
density nðx; tÞ, ρW ¼ nðx; tÞ expð−βϵkÞ=

P
k expð−βϵkÞ.

A new time scale is associated with the decay of density
fluctuations. In the considered approximation this decay is
described by the diffusion equation

_nðx; tÞ ¼ D∂2
xnðx; tÞ; D ¼ cD

Jβ1=2

αℏ
g3=2

ð1 − gÞ3=2 : ð11Þ

The diffusion coefficient (11) has a standard formD ∼ hv2kiτr
with vk ¼ ð2J=ℏÞ∂kϵk being the fermion velocity;D sharply
increases with decreasing 1 − g. In Eq. (11) cD ≈ 0.17 [30].
On the time long compared to the decay time of density

fluctuations, the distribution nðx; tÞ becomes uniform and
its evolution is determined by generation and recombina-
tion processes. The spatially averaged density hni is
described by a rate equation,

h _ni ¼ −wðhni2 − n2thÞ: ð12Þ

Here, nth ≡ nthðgÞ ¼ N−1P
k expð−βϵkÞ is the thermal equi-

librium density, whereas wðgÞ ¼ P
k;qW

þþ
kq exp½−βðϵk þ

ϵqÞ�=Nn2th is the recombination rate. From Eq. (5), for
β ≫ 1 − g, 1=g

wðgÞ≃ 8παJ
ℏβg

; nthðgÞ≃
�
1 − g
2πβg

�
1=2

e−βð1−gÞ: ð13Þ

As g≡ gðtÞ decreases, the thermal density nth exponen-
tially sharply falls down. The mean density hni cannot
follow this decrease, so that the density of fermions
becomes higher than the thermal density. This happens
for the value gðtÞ ¼ gth where the correction δhni ¼
hnðtÞi − nthðgðtÞÞ becomes ∼nthðgðtÞÞ, see Figs. 1 and 2.
The quasistationary solution of the linearized Eq. (12) reads
δhni ≈ − _nth=2wnth. This gives an equation for gth

β−1wðgÞnthðgÞ ¼ j_gj for g ¼ gth: ð14Þ
As g is decreased below gth and reaches the region

expfβ½gth − gðtÞ�g ≫ 1, we can disregard nth in Eq. (12).
Then using the explicit form of the rate wðgÞ, we obtain

hnðtÞi ≈ β−1nthðgthÞðlog ½gth=gðtÞ�Þ−1: ð15Þ

This expression describes quantum annealing of fermion
density in a strongly nonequilibrium regime. We observe
that hnðtÞi varies with time only logarithmically here.
For still smaller g, not only does the system move further

away from thermal equilibrium in terms of hni, but it also
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develops strong spatial fluctuations. This is due to the sharp
decrease of the diffusion coefficientD ¼ DðgÞ, see Eq. (11).
Spatial fluctuations of the density nðx; tÞ impose a bottleneck
on the recombination in one-dimensional systems [36],
because for fermions to recombine they first have to come
close to each other. In contrast to the usually studied reaction-
diffusion systems, in the present case the bottleneck arises
not because of the decrease of the density, but, in the first
place, because of the falloff of the diffusion coefficient. Once
the recombination becomes limited by diffusion, the change
of the fermion density becomes slower than in Eq. (15).
To estimate the density n� ¼ hnðt�Þi where the crossover

to diffusion-limited recombination occurs, we set the rates
_n of the recombination and diffusion processes equal to
each other. For the recombination, one can use Eq. (12),
_n ¼ −wn2. For the diffusion, one can use Eq. (11) where
the mean interparticle distance 1=hni is chosen as a spatial
scale on which the density fluctuates. This gives

n� ¼ hnðt�Þi ¼ kwðg�Þ=Dðg�Þ; g� ¼ gðt�Þ; ð16Þ
where k ∼ 1. An alternative way of estimating n� is
described in Sec. IV of the SM [30].
Equations (14)–(16) relate the crossover value of g ¼ g�

to the value gth where thermal equilibrium is broken. Since
g�, gth are close to the critical point g ¼ 1, it is convenient to
switch to variable z ¼ βð1 − gÞ, with z� ¼ βð1 − g�Þ
expressed in terms of zth ¼ βð1 − gthÞ as follows:

μðβ=αÞ2z1=2th expð−zthÞ ¼ z3=2� ðz� − zthÞ; ð17Þ
where μ ¼ cD=8k

ffiffiffiffiffiffiffi
2π3

p
; note that β=α ≫ 1.

Equations (14)–(17) express the crossover density n� in
terms of the speed j_gj.

Beyond the crossover point, g < g� (i.e., t > t�), the
diffusion-controlled decrease with time of the already-small
fermion density is further significantly slowed down
compared to Eq. (15). If we stop QA once g� is reached,
n� gives the approximate solution of the annealing prob-
lem. Unexpectedly, the dependence of n� and g� on j_gj is
nonmonotonic, see Fig. 2. The optimal (minimal with
respect to j_gj) value of n� is

nopt ≈ ½8πkα2=cDβ3�z3=2opt ; ð18Þ
where zopt ≡ βð1 − goptÞ ≈ log½μðβ=αÞ2� is the value of z�
where n� is optimal. The optimal speed is

j_gjopt ≈ ð64kπ2Jα3=cDβ5ℏÞ lnðβ2=α2Þ1=2: ð19Þ
Equation (9) suggests that, in the considered dissipative
system, QA can be started at the critical point. Then the
time zopt=βj_gjopt to reach gopt is a small portion of the total
time to reach g ¼ 0, which is j_gj−1opt. The density nopt is
extremely small for weak coupling, α ≪ 1, and low
temperatures, β ≫ 1, and it rapidly decreases with decreas-
ing α and kBT=J.
The evolution of the fermion density for t > t� can

be roughly estimated from the scaling equation
h _ni ¼ −k0DðgÞhni3, cf. [36], where k0 ∼ 1. Because of
the sharp decrease of DðgÞ with increasing 1 − g, the
solution of this equation for 1 − g ¼ Oð1Þ weakly depends
on gðtÞ. For the optimal speed (19) such saturation density
is hni ∼ nopt= lnðβ=αÞ ≪ nopt.
It is instructive to compare the optimal speed (19) with

the speed j_gjKZ that would lead to the same saturation
density, nopt= lnðβ=αÞ ¼ nKZ, due to the Kibble-Zurek
mechanism of the creation of excitations in the absence
of coupling to the environment. From Eqs. (3) and (19),

_gopt=_gKZ ∝ ðβ=αÞ lnðβ=αÞ2 ≫ 1: ð20Þ
Therefore, the time it takes to reach the approximate
solution (18) in a closed quantum system is much larger
than in our case.
It is instructive also to compare j_gjopt with the speed of

annealing based on the classical Glauber dynamics [26]. In
this dynamics, for kBT ≪ J excitations in the Ising spin
chain are eliminated through diffusion of kinks. If the
transition rate for a kink to move to a neighboring site is wG
and the initial density of the kinks is ∼1, the time tclass to
reach density n ≪ 1 is ð8πwGn2Þ−1 [26]. In terms of our
model, the uncertainty relation imposes a limitation
wG ≪ J=ℏ. Therefore the ratio of the times to reach
nopt= lnðβ=αÞ via classical and quantum diffusion is very
large, ∼tclassj_gjopt ∝ β=α ≫ 1.
The results demonstrate that quantum diffusion near

the critical point provides an important mechanism of the
speed-up of QA. The diffusion occurs over states that are
large quantum superpositions of spin configurations

(a) (b)

FIG. 2. Fermion density (a) vs the distance to the critical point
and (b) vs the annealing rate. In (a), the filled region is bound by
the thermal distribution nthðgÞ. The black line shows the non-
equilibrium density hni for α ¼ 0.06, β ¼ 25, and
j_gj ¼ j_gjopt ¼ 2.85 × 10−7, see Eq. (12). The blue point marks
the crossover value g�. For g < g� spatial correlations become
strong and the theory is inapplicable. In (b), the red, blue, green,
and black lines show the scaled density ~n� ¼ cdβ3n�=8kπα2 vs
the scaled QA rate v ¼ ℏβ3j_gj=4 ffiffiffiffiffi

2π
p

Jα for log μ ¼ 8, 9, 10, 11,
respectively [parameter μ ∝ ðβ=αÞ2 is defined in (17)]. The
minimal density nopt ¼ min n�. The dashed sections of the lines
refer to the regions where the asymptotic theory does not apply.
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separated by theHammingdistance∼βg½αð1 − gÞ�−1 ≫ 1 of
the order of the mean free path of a fermion. The bottleneck
of QA in an open system can be imposed by the sharp
slowing-downof the diffusion behind the critical region. The
crossover to slow excitation recombination is accompanied
by the onset of significant spatial fluctuations of the
excitation density even in the absence of disorder. At the
crossover, the residual density of excitations nonmonotoni-
cally depend on the quantum annealing rate j_gj. Its minimum
provides the optimal value of the rate. This value scales with
the coupling constant and temperature as α3T5, and the
optimal excitation density is ∝ α2T3. Importantly, the
optimal speed j_gjopt is independent of the system size.
For our simple but nontrivial example of QA, attaining

the approximate solution [40] via the quantum-diffusion-
mediated process is faster than via classical diffusion or the
closed-system QA. One might expect that, in higher-
dimensional systems, quantum diffusion over extended
states could provide an efficient route to finding approxi-
mate solutions in the presence of disorder above the many-
body mobility edge [41].
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I. QUANTUM KINETIC EQUATION IN THE

SINGLE-FERMION APPROXIMATION

In this section we brie�y outline the starting point of
the analysis, the Boltzmann equation for the fermion den-
sity matrix in the standard single-fermion approximation,
and show that, as the system evolves, there emerges a
separation of time scales between the rates of intraband
scattering and the much slower rates of generation and
recombination of fermions.
The problem of the dynamics of fermions coupled to

phonons is a standard problem of the solid state physics
[1]. If the coupling is weak, the fermion dynamics is often
described by the Boltzmann equation. In this equation,
correlations in the fermion system are disregarded. An-
other major assumption is that the characteristic dura-
tion of fermion scattering by phonons is short compared
to the reciprocal scattering rate, which is determined by
the coupling strength. In the problem considered in the
main text, the fermion energy counted o� from the bot-
tom of the band is kBT , and the typical duration of scat-
tering is ~/kBT . It is much smaller than the reciprocal
scattering rate for the small coupling constant α.
The Boltzmann equation is Markovian and is for-

mualted in terms of the coupling-induced transitions be-
tween the states of the fermions. For weak coupling, the
rates of these transitions can be found in the Born ap-
proximation. The equation takes on a particularly simple
form for a spatially uniform system, where the Wigner
probability density ρW (x, k) = ρk/N is independent of
the coordinate x and just gives the probability density
per unit length to �nd a fermion with the wave vector
k; we remind that the fermions are on a chain with N
sites and the period of the chain is set equal to 1. The
Boltzmann equation then reads

∂ρk
∂t

= L(0)
k [ρ] + L(1)

k [ρ], (1)

L(0)
k [ρ] =

∑
q

(
W+−
qk (1− ρk)ρq −W+−

kq ρk(1− ρq)
)

L(1)
k [ρ] =

∑
q

(
W−−kq (1− ρk)(1− ρq)−W++

kq ρkρq)
)

Here operator L(0) describes inelastic intraband scatter-
ing, where a fermion makes a transition between states

with di�erent wave numbers k, cf. Fig. 1 of the main
text. The rate of a transition k → q is W+−

kq . Operator

L(1) describes a two-fermion generation and recombina-
tion processes. The rates of these processes are ∝ W−−kq
and ∝W++

kq , respectively. The transition rates are given

by Eq. (5) of the main text.
For a �xed scaled transverse �eld g, Eq. (1) has a sta-

tionary solution given by the Fermi-Dirac distribution
with zero chemical potential, ρk = 1/[exp(2Jεk/kBT ) +
1]. In addition to the standard assumptions regarding
the Boltzmann equation, in deriving Eq/ (1) we assumed
that, for varying g, the reciprocal duration of scattering
is small compared to the QA rate, kBT/~� |ġ|.
Unlike the scattering rates W+−

kq , the rates Wµµ
kq (with

µ = + or µ = −) depend exponentially strongly on
the relation between the energy gap ∆ = 2J |1 − g|
and kBT . At the initial stage of QA, the energy gap
is ∆ � kBT and the system is mostly frozen in its
ground state, because fermion generation is suppressed,
W−−kq ∝ exp(−2∆/kBT ). As the critical region ∆ . kBT

is traversed, fermions with energies . kBT become ther-
mally excited (and are potentially also excited via the
Kibble-Zurek mechanism, which in the considered case
of small |ġ| gives less excitations).
After the critical point is passed, the system again en-

ters the semiclassical region ∆ � kBT . The energy dis-
persion law becomes parabolic near the bottom of the
band, with energy 2Jεk,

εk = 1− g + (2J)−1 ~2k2

2me
, me = ~2|1− g|/2Jg (2)

(me is the fermion e�ective mass). Fermions with ther-
mal energy have a typical wave number

kth = [(1− g)/βg]1/2, β = 2J/kBT. (3)

Since in the semiclassical region the two-fermion gen-
eration rate W−−kq is exponentially small, the fermion
population decreases. A key observation is that fermion
annihilation requires a two-fermion collision with rate
W++
kq ρkρq. Therefore it also slows down in the semicalssi-

cal regime. In contrast, the rate of intraband scattering

described by the operator L(0)
k in Eq. (1) has terms linear

in ρk, which do not contain exponentially small factors.
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Therefore intraband transitions are faster than genera-
tion and recombination.
The physical picture of the semiclassical dynamics is

that, because of the intraband scattering, there is �rst es-
tablished thermal distribution within the fermion band.
The total fermion population changes on a longer time
scale due to interband processes. If we keep only the in-
traband scattering terms in Eq. (1) and take into account
that, for low fermion densities the system is nondegener-
ate, this equation takes the form

∂ρk
∂t
'
∑
q

L
(0)
kq ρq, L

(0)
kq = W+−

qk − δkq
∑
k′

W+−
kk′ . (4)

In the limit of a long chain, N � 1, and for β−1 �
|1− g| � 1, we introduce a scale-free integral kernel,

L
(0)
kq = τ−1

r L̄
(0)
KQ, K = k/kth. (5)

Here, τ−1
r is the relaxation rate introduced in Eq. (7) of

the main text, kth is de�ned in Eq. (3), and

L̄
(0)
KQ = WQK − δ(K −Q)

∫
dK ′ WKK′ , (6)

WQK =
1

2
(Q2 −K2){1− exp[−(Q2 −K2)/2]}−1.

In writing this expression we took into account that the
fermion energy dispersion law is parabolic.
A direct calculation shows that the eigenvalues em of

L̄(0) are non-positive. The maximal eigenvalue e0 = 0
corresponds to the right eigenstate, which is the station-
ary solution of Eq. (4),

ρk =
〈n〉
nth

e−βεk , nth =
1

N

∑
k

e−βεk . (7)

Equation (7) describes a quasi-equilibrium thermal dis-
tribution over fermion momenta; 〈n〉 is the spatially-
independent fermion density (the angular brackets are
introduced for the further analysis, where we will be con-
sidering spatial �uctuations); nth is the thermal equilib-
rium density.
One further �nds from the analysis of the eigenvalues

of the operator L̄(0) that its eigenvalues em>0 form a
continuous spectrum (in the limit of N →∞) with a gap
given by the �rst nonzero eigenvalue e1 = −6.6. The rate
τ−1
r |e1| is the typical relaxation rate of fermion momenta.
It increases with the distance 1− g ∝ ∆ from the critical
point.
The density 〈n〉 varies on the time scale t � τr. An

equation describing the slow time evolution of 〈n〉 in the
neglect of spatial nonuniformity and correlations can be
found by substituting expression (7) into the full Boltz-
mann equation (1) and performing summation over the
momentum k in this equation. However, this approxima-
tion breaks down for low densities due to density �uctu-
ations, as indicated in the main text.

II. DIFFUSION EQUATION

In this section we derive the di�usion equation, which
describes the density �uctuations in the single-particle
approximation. In our model the interaction between
the particles comes from recombination and generation.
If these processes are slow, the full quantum kinetic equa-
tion for the single-partcile Wigner probability distribu-

tion ρW (x, k, t)= 1
2π

∫∞
−∞ dp〈η†k+p/2(t)ηk−p/2(t)〉 e−ipx has

the standard form of Eq. (6) of the main text, in which
we now keep only the single-particle term,

∂ρW (x, k)

∂t
+

2J

~
∂ρW (x, k)

∂x

∂εk
∂k

= L(0)[ρW (x, k)] , (8)

where the superoperator L(0)[ρW (x, k)] has the same
form as the collision term in Eq. (4), which for conve-
nience we write here in the integral form,

L(0)[ρW (x, k)] =

∫ ∞
−∞

dq wqk ρW (x, q)

− ρW (x, k)

∫ ∞
−∞

dq wkq, (9)

Here, for β−1 � |1− g| � 1 the transition rates are

wkq =
4αJ

~β
WKQ, (10)

where the dimensionless rates WKQ are given in Eq. (6),
k = Kkth. The rate wkq is symmetric with respect to the
inversion of the sign of the wave vectors k, q,

wkq ≈ w|k| |q|. (11)

The stationary solution of Eq. (9) is given by
the spatially-uniform Boltzmann distribution over the
fermion momentum,

ρ
(0)
W (k) = Z−1 exp

[
−(∆/kBT )− 1

2K
2
]
. (12)

Here Z =
∫∞
−∞ dk exp(−βεk) [the scaled energy εk is

given in Eq. (2)]; the distribution (11) is normalized on
unit density of fermions.
An important physical argument is that the time evo-

lution of the fermion probability distribution with respect
to momentum is fast, it occurs over time ∼ τr. The evolu-
tion of the spatial distribution (the coordinate-dependent
part of ρW ) is much slower. To �nd this slow evolu-
tion, we seek the time-dependent solution of Eq. (9) for
a weakly spatially nonuniform distribution ρW (x, k, t) as
a sum of symmetric and anti-symmetric terms with re-
spect to k, with the symmetric part being of the Boltz-
mann form,

ρW (x, k, t) = n(x, t) ρ
(0)
W (k) + ρ

(1)
W (x, k, t), (13)

where

n(x, t) =

∫ ∞
−∞

dk ρW (x, k, t) , (14)
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is the spatially dependent fermion density and

ρ
(1)
W (x, k, t)) = −ρ(1)

W (x,−k, t)) is a term that corresponds
to a non-zero current,

j(x, t) =

∫ ∞
−∞

dk
2J

~
dεk
dk

ρW (x, k, t), (15)

=

∫ ∞
−∞

dk
2J

~
dεk
dk

ρ
(1)
W (x, k, t).

If we now substitute Eq. (13) into Eq. (9) and separate
symmetric and anti-symmetric terms in k, we obtain

∂n(x, t)

∂t
ρ

(0)
W (k) +

2J

~
dεk
dk

∂ρ
(1)
W (x, k, t)

∂x
= 0 , (16)

and

∂ρ
(1)
W (x, k, t)

∂t
+

2J

~
dεk
dk

∂n

∂x
ρ

(0)
W (k) = −τ−1

s (k)ρ
(1)
W (x, k, t) ,

(17)
where

τ−1
s (k) =

∫ ∞
−∞

dq wkq . (18)

In Eq. (16) we used that
∫
dq wqk ρ

(1)
W (q, x, t) = 0 due to

the symmetry property (11). This equation corresponds
to a standard relaxation time approximation in the trans-
port theory, which is simpli�ed in the considered here
symmetric one-dimensional case.
Integrating (16) over k and using (15), we obtain the

continuity equation

∂n(x, t)

∂t
+
∂j(x, t)

∂x
= 0. (19)

Taking into account that the momentum relaxation time
is small compared to the time over which the density
n(x, t) evolves, for time t � τs we obtain a quasi-

stationary solution of Eq. (17) for ρ
(1)
W ,

ρ
(1)
W (x, k, t) = −∂n(x, t)

∂x
τs(k) ρ

(0)
W (k)

2J

~
dεk
dk

. (20)

The current then is just a di�usion current,

j(x, t) = −D ∂n(x, t)

∂x
, (21)

where D is the di�usion coe�cient,

D =

∫ ∞
−∞

dk ρ
(0)
W (k) τs(k)

(
2J

~
dεk
dk

)2

. (22)

The continuity equation (19) now takes the form of a
di�usion equation for the spatial fermion density n(x, t),

∂n(x, t)

∂t
= D

∂2n(x, t)

∂x2
(23)

The explicit form of the di�usion coe�cient D in the
semiclassical region, which follows from Eqs. (10), (18)
and (22), is given in Eq. (11) of the main text.
We can now write explicitly the condition of the appli-

cability of the single-particle approximation. This condi-
tion is that the recombination rate w(g)n2 is slow com-
pared to the di�usion rate [the recombination rate per
unit density w(g) is given by Eq. (13) of the main text].
The di�usion rate has to be calculated as the inverse
time to di�use over an interparticle distance, which from
Eq. (23) is ∼ Dn3. Therefore the single-particle approxi-
mation applies forDn� w, i.e., for not too small particle
density. This condition gives the desnity n∗ in Eq. (16)
of the main text.

III. RENORMALIZATION OF THE FERMION

SPECTRUM

In addition to fermion scattering, coupling of the
fermions to the bosonic �eld leads to a renormalization
of the fermion energy spectrum (the polaronic e�ect) and
fermion mixing. For weak coupling, the corresponding ef-
fects are small. It is the small renormalization condition
that imposes a constraint on the coupling strength. We
specify it here for the Ohmic-coupling, where the density
of states of the bosonic bath weighted with the coupling
is 2~−2

∑
γ λ

2
γnδ(ω−ωγ) = αω exp(−ω/ωc) for all lattice

sites n.
The e�ect of the Ohmic spin-boson coupling in an Ising

chain is di�erent from the case of a particle in a poten-
tial well coupled to bosons, where the coupling-induced
energy renormalization could be incorporated into the
potential [2]. In the case of a spin chain, the polaronic
energy shift depends on the fermion energy and also on
the transverse magnetic �eld, which varies in time.
Special attention has to be paid to the case of a very

large parameter ωc. A simple perturbation theory shown
below diverges if it is extended to bosons with energies
~ωγ →∞. However, it is clear on physical grounds that
high-energy bosons with ~ωγ � 2J should adiabatically
follow the spin dynamics. For large ωc, we introduce
a cuto� frequency ωcutoff such that ωcutoff � 2J/~ but
ωcutoff < ωc. The e�ect of bosons with ωγ ≥ ωcutoff can
be accounted for by the standard polaronic transforma-
tion

U = exp

[∑
γ,n

σxn
λγn
~ωγ

(bγn − b†γn)Θ(ωγ − ωcutoff)

]
where Θ(x) is the step function. This transformation
eliminates the coupling of σxn to such bosons. It shows
that the major e�ect of the high-energy bosons is the
renormalization of the Ising energy J → J exp(−W ) with
W ∼ 2α log(ωc/ωcutoff). We assume that such renormal-
ization has been done and that W � 1.
After the high-energy bosons are eliminated (if they

were present initially), the analysis of the renormaliza-
tion of the fermion energy can be done using the explicit
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form of the parameters of the coupling Hamiltonian in
the main text,

ckk′ = 2N−1/2 cos[(θk + θk′)/2],

skk′ = iN−1/2 sin[(θk + θk′)/2]. (24)

If we disregard the contribution of thermal bosons, to
the second order in λγ the expression for the polaronic
energy shift 2JΣk of a fermion with wave vector k has a
standard form, with

Σk =
α

2
v.p.

∫
ω̄ exp[−ω̄/ω̄c]dω̄

×
∑
k′

[
|ckk′ |2

εk − εk′ − ω̄
+

4|skk′ |2

εk + εk′ − ω̄

]
, (25)

where v.p. indicates the principal value of the integral
and ω̄c = ~ωc/2J . For ωc . 2J/~, the integration over ω̄
goes from ω̄ = 0 to∞. On the other hand, if ωc � 2J/~,
the upper limit of the integral is ω̄cutoff = ~ωcutoff/2J .
The coupling-induced mixing corresponds to an ex-

tra term in the fermion Hamiltonian of the form of
2J
∑
k Σ

(c)
k η†kη

†
−k+ H.c. If we disregard the contribution

from thermally excited bosons,

Σ
(c)
k =

α

2
v.p.

∫
ω̄ exp[−ω̄/ω̄c]dω̄

∑
k′

skk′ckk′

×
[
(εk − εk′ − ω̄)−1 − (εk + εk′ − ω̄)−1

]
. (26)

The limits of the integral over ω̄ are the same as in
Eq. (25).
It is important that the coupling to bosons does not

lead to mixing of long-wavelength (k → 0) excitations.
This is because ε−k′ = εk′ , whereas skk′ckk′ ∝ sin(θk +
θk′) changes sign for k′ → −k′ in the limit k → 0.
Of interest to us is the parameter range close to the

critical point, |g − 1| � 1, and a range of the scaled
fermion energies εk � 1. Because such fermions have
small k, the coupling practically does not mix fermions
with opposite momenta. The leading-order scaled energy
shift for εk � 1 is Σk ∼ −αω̄cutoff for ω̄c � 1, i.e., for
broadband bosons. On the other hand, for narrow-band
bosons (compared to the Ising coupling energy J), i.e.,
for ω̄c � 1, we have Σk ∼ −αω̄2

c for k → 0. We note that
the condition ω̄c � 1 is compatible with the conditions
ω̄c � 1/β, 1 − gopt used in the main text to describe
relaxation of long-wavelength fermions; here gopt = 1 −
xopt/β, where xopt is given by Eq. (17) in the main text;
1− gopt � 1.
The shift Σk for k → 0 determines the shift in the

critical value of the control parameter g. The shape of the

spectrum of long-wavelength fermions near the critical
point is not changed by the renormalization (25). Indeed,
it can be seen from Eq. (25) that Σk ≈ Σk→0 + Cεk.
Constant C is ∼ α log ω̄cutoff for ω̄c � 1 and is ∼ αω̄2

c for
ω̄c � 1.
IV. CROSSOVER FROM THE MEAN FIELD

REGIME TO THE DIFFUSION LIMITED

REGIME

In this section we provide an alternative estimate of the
fermion density where spatial �uctuations of the fermion
density cannot be disregarded and the recombination rate
becomes di�usion-limited. Such crossover has been stud-
ied in a number of papers [4�8] where the di�usion co-
e�cient and the recombination rate were assumed con-
stant. In the mean-�eld regime described by the rate
equation [Eq. (12) of the main text] these assumptions
lead to a linear increase of the reciprocal density in time
in the large-time limit, if generation is neglected. In our
problem, the fermion density decreases logarithmically
slowly, Eq. (15) of the main text, while the di�usion rate
D ∝ (1− g)−3/2 [Eq. (11) of the main text] sharply falls
o� in time.
To estimate the time and density where there occurs

the crossover in our problem, we extend the Smolu-
chowski argument for the di�usion-limited reaction rate
[9] to systems with time-dependent di�usion coe�cient.
We consider a random spatial con�guration of fermions
at an instant τ . Typically, a given fermion is separated
from other fermions on the both sides by �empty" inter-
vals [4] of size `(τ)= 〈n〉−1(τ). For t > τ , the fermion
di�uses toward the boundaries of this interval, which
are moving themselves due to fermion recombination.
The typical distance over which the particle di�uses is

`D(t, τ) = [
∫ t
τ
dt′D(t′)]1/2, whereas the interparticle dis-

tance varies as `(t)− `(τ) =
∫ t
τ
dt′w

(
g(t′)

)
dt′, where the

recombination rate per particle w is de�ned in Eq. (13)
of the main text.
For recombination to occur, functions `D(t, τ) and

`(t) ≡ 〈n〉−1(t) should coincide at some time t. Using
the explicitly known time dependence of D and w, we
can see that the distance between the particles increases
in time faster than the di�usion distance `D(t, τ). The
maximal time t∗ where one can still have `D(t, τ) = `(t)
is given by equation d(`2D(t, τ)/dt = d`2(t)/dt. It corre-
sponds to the curves `D(t, τ) and `(t) touching at time
t∗. This condition leads to equation

n(t∗) = kw(t∗)/D(t∗), k ∼ 1,

which is the crossover condition discussed in the main
text.

[1] A. Altland and B. Simons, Condensed Matter Field The-
ory, Cambridge University Press (Cambridge, 2010).

[2] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149,
374 (1983).



5

[3] D. Patan et al., Phys. Rev. Lett. 101, 175701 (2008); Phys.
Rev B 80, 024302 (2009).

[4] D. Ben Avraham, M. Burschka, and C. Doering, J. Stat.
Phys. 60, 695 (1990).

[5] V. Privman, C. R. Doering, and H. L. Frisch, Phys. Rev.
E, 48, 846 (1993)

[6] D. C. Mattis and M. L. Glasser, Rev. Mod. Phys., 70, 979
(1998).

[7] J. Allam, M. T. Sajjad, R. Sutton, K. Litvinenko, Z.
Wang, S. Siddique, Q.-H. Yang, W. H. Loh, and T. Brown,
Phys. Rev. Lett. 111, 197401 (2013)

[8] Uwe C. Tauber, Critical Dynamics: A Field Theory Ap-
proach to Equilibrium and Non-Equilibrium Scaling Be-
havior (Cambridge University Press, Cambridge 2014).

[9] M. Smoluchowsky, Z. Phys. Chem. 92, 129 (1917).


