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Interaction-induced time-symmetry breaking in driven quantum oscillators
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We study parametrically driven quantum oscillators and show that, even for weak coupling between the
oscillators, they can exhibit various many-body states with broken time-translation symmetry. In the quantum-
coherent regime, the symmetry breaking occurs via a nonequilibrium quantum phase transition. For dissipative
oscillators, the main effect of the weak coupling is to make the switching rate of an oscillator between its period-2
states dependent on the states of other oscillators. This allows mapping the oscillators onto a system of coupled
spins. For identical oscillators, the stationary state can be mapped on that of the Ising model with an effective
temperature ∝ h̄, for low temperature. If the oscillators are different and are away from the bifurcation parameter
values where the period-2 states emerge, the stationary state corresponds to having a microscopic current in the
spin system. Close to the bifurcation point the coupling cannot be considered weak and the system maps onto
coupled overdamped Brownian particles performing quantum diffusion in a potential landscape.
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I. INTRODUCTION

Time-symmetry breaking in periodically modulated quan-
tum systems, often called a “time crystal” effect [1], has
been attracting much attention recently. One of the most
challenging problems in this rapidly developing area is the
understanding of the interplay of interaction, disorder, and
dissipation [2–9]. In particular, disorder helps preventing heat-
ing of the system by a periodic drive in the coherent regime
[10–12]. However, the dependence of the lifetime of the
broken-symmetry state on the disorder strength is not known
generally and is likely to be model-dependent. Disorder
should not be necessary in the presence of dissipation. An ex-
ample is the observation of an interaction-induced breaking of
the time-translation symmetry in a dissipative classical cold-
atom system [13]. A microscopic theory mapped the effect
onto a phase transition in an all-to-all coupled Ising system,
and the measured critical exponents were in agreement with
this mapping [14].

Closely related to the problem of time-symmetry breaking
is computing with parametric oscillators [15–22]. A weakly
nonlinear classical dissipative oscillator displays period dou-
bling when its eigenfrequency ω0 is modulated at a frequency
ωF close to 2ω0 [23]. The emerging period-2 states have oppo-
site phases; see Fig. 1. They can be associated with two states
of a classical bit [24], or two spin states. The spin analogy
was studied in recent numerical work for up to four coupled
quantum parametric oscillators and, for a number of parameter
values, it was shown that the system can be mapped onto an
“Ising machine” in the coherent [19] as well as the dissipative
regime [20–22]. If the system is in one of the period-2 states,
time-translation symmetry is broken, since the period of the
motion is 4π/ωF ≈ 2π/ω0 instead of 2π/ωF .

In this paper we study the possibility and the nature of
time-symmetry breaking in a large system of coupled quan-
tum parametric oscillators. Of interest to us are the broken-

symmetry phases that emerge both in the coherent and in the
dissipative regimes. Our formulation applies in the presence
of weak disorder.

The relevant physical systems are microwave modes in
superconducting cavities that can be coupled into lattices with
variable geometry [25–27], as well as coupled vibrational
modes in networks of nanomechanical resonators [18,28,29].
An advantageous feature of these systems is the possibility
to make them one- or two-dimensional, control the coupling
strength, and implement various coupling geometries which,
at least in the nanomechanical setting, are not limited to
nearest-neighbor coupling. We assume the coupling of the
modes in different resonators to be comparatively weak and
the mode eigenfrequencies to form a narrow band centered at a
characteristic eigenfrequency ω0. In the absence of a periodic
drive, the spectrum of excitations is therefore also a narrow
band centered near ω0.

The effect of the coupling is significantly more compli-
cated for parametrically excited modes (oscillators). To un-
derstand it, we note first that the quantum dynamics of an
isolated oscillator can be mapped onto the dynamics of an
auxiliary particle with a double-well quasienergy Hamiltonian
[30]. The Hamiltonian is symmetric; the two minima corre-
spond to the opposite phases of the period-2 oscillations; see
Fig. 1. The oscillator can tunnel between the minima, which
leads to phase-flip transitions. However, if the relaxation rate
largely exceeds the tunnel splitting, the interwell switching
occurs via effectively “overbarrier” transitions. This happens
even for T = 0 due to the quantum noise which invariably
accompanies relaxation [30]. One can associate the minima
of the Hamiltonian of the �th oscillator with a spin σ� = ±1.
The switching rates Wσ�

≡ Wσ�→−σ�
between the minima are

equal by symmetry.
If the oscillators are coupled and one of them is in a certain

state (near one of the minima of the quasienergy Hamiltonian;
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FIG. 1. (a) Period doubling of a weakly nonlinear classical dissi-
pative oscillator parametrically driven at a frequency ωF that is close
to twice the oscillator eigenfrequency ω0. (b) The scaled Hamiltonian
g of the oscillator as a function of the scaled coordinate Q and
momentum P in the frame rotating at frequency ωF /2 in the rotating
wave approximation. (c) Cut g(Q, 0) through (b) at P = 0. The blue
(left) and green (right) circles indicate the stable positions of the
oscillator in the rotating frame, which correspond to the oscillations
in the laboratory frame shown by the blue and green dashed lines
in (a). (d) If the oscillator is additionally driven by a field F ′ at
frequency ωF /2, the extra term �g in the oscillator Hamiltonian
breaks the symmetry. As we show, a similar effect results from the
coupling of parametric oscillators.

see Fig. 1), the symmetry of the effective Hamiltonian for the
oscillator coupled to it is broken. Then, for this oscillator,
the switching rates between the minima become different.
Depending on the sign of the coupling, the “deeper” well
corresponds to the oscillators having the same (for the case of
attractive coupling) or the opposite (for the case of repulsive
coupling) phase.

It is important that the rates Wσ�
are much smaller than

the inverse t−1
r of the relaxation time. Therefore, when one

of the oscillators is switching, the oscillators coupled to it are
most likely localized in a certain minimum. As we show, the
change of the switching rate Wσ�

of oscillator � due to its
coupling to oscillators � ′ can be large even for weak coupling,
with ln Wσ�

being linear in the coupling. This allows one to
map the problem onto the Ising model of coupled spins, for
identical oscillators.

The well-known properties of the Ising model imply that,
for not too weak attractive coupling, the most probable state
of the many-mode two-dimensional system is the broken-
symmetry state with all σ� equal, i.e., the phases of all oscilla-
tors being the same. In this state, the symmetry with respect to
time translation by the drive period is broken. For the case of
repulsive mode coupling, the system of coupled modes maps
onto the antiferromagnetically coupled Ising model and can
exhibit frustration, depending on the geometry of the lattice
and the structure of the coupling.

We emphasize that the occurrence of the Ising-type regime
is a consequence of the coupling of the oscillators. If the

FIG. 2. Sketch of the excitation spectrum ω(k) near the quantum
phase transition in the frame rotating at ωF /2. If the control param-
eter μ is below (left panel) or above (right panel) the critical value
μQPT, the spectrum is gapped. For μ = μQPT, the spectrum becomes
linear for k → 0.

oscillators are uncoupled (or if the coupling is very weak),
the distribution over the two phases of parametrically excited
vibrations is uniform and the system as a whole does not
display time-symmetry breaking.

If the oscillators are close to the bifurcation point where
period-two states emerge, their coupling becomes effectively
stronger, and the appropriate picture is that of a multiple-well
“quasienergy landscape.” This landscape has global symmetry
with respect to time translation t → t + 2π/ωF , but each
individual minimum does not have this symmetry. As a result,
in the presence of disorder there may be many metastable
broken-symmetry states. Quantum noise leads to diffusion
between these states, but the transitions between different
minima involve many modes and become exponentially slow.
The system effectively “freezes” in one of them, and time-
translation symmetry is then broken.

In the quantum-coherent regime, a new phenomenon ap-
pears: instead of a bifurcation point for each individual os-
cillator, the coupled modes exhibit a nonequilibrium quantum
phase transition (QPT). The control parameter is the distance
to the critical value of the drive frequency ωF = ωQPT, or to
the critical value of the drive amplitude. We will consider
the case where there is no disorder and the oscillators are
on a lattice. The spectrum of excitations of the system can
be naturally defined, if one starts from the symmetric state
(below the QPT), where the oscillators are not excited and all
of them occupy the ground state. Here the spectrum is gapped;
see Fig. 2 (in the absence of driving, it is just the spectrum of
optical phonons in a crystal). It is convenient to picture the
spectrum by downshifting the excitation frequency by ωF /2.
Then the spectral gap goes to zero at the phase transition
point and the dispersion law of the long-wavelength exci-
tations becomes linear. For attractive coupling between the
oscillators, beyond the QPT the system has a state where all
of them vibrate in phase and the excitation spectrum is again
gapped. This state has broken time-translation symmetry, a
direct analog of the ferromagnetic state of an Ising chain that
goes through a QPT on varying the transverse magnetic field
[31,32].

The paper is organized as follows: In Sec. II below we
describe the Hamiltonian of the system. In Sec. III we show
how the problem of weakly coupled parametric oscillators
can be described in terms of an exponentially strong mod-
ification of the rate of interstate switching of an oscillator
depending on the state of other oscillators. The description
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is based on the notion of the logarithmic susceptibility. It
allows mapping the system onto an Ising system provided
there is detailed balance. This is the case if the oscillators
are identical. Using results of a calculation of the logarith-
mic susceptibility sketched in Appendix A, Sec. IV analyzes
coupled oscillators near the threshold of parametric excitation.
One of its results is a spin-glass type phase where the system
can have many metastable states with broken time-translation
symmetry. Section V describes a quantum time-symmetry
breaking transition in a spatially periodic system of coupled
oscillators. Section VI summarizes the results and presents
concluding remarks.

II. THE MODEL

We consider a system of coupled quantum oscillators
(modes). They are weakly nonlinear and are parametrically
modulated. The Hamiltonian of the system is

H = H0 + HF + Hc, (1)

where

H0 = 1

2

∑
�

(
p2

� + ω2
�q2

�

) + 1

4
γ

∑
�

q4
� . (2)

Here, � = 1, 2, . . . , N enumerates the oscillators, q� and p�

are their coordinates and momenta, and ω� are their eigen-
frequencies; we assume that the values of ω� are close to
each other, |ω� − ω0| � ω0. The parameter γ characterizes
the lowest-order nonlinearity that is relevant for resonantly
excited small-amplitude oscillations [23]. In what follows we
assume γ > 0; an extension to the case γ < 0 is straightfor-
ward.

The Hamiltonian HF describes resonant parametric driv-
ing,

HF = 1

2

∑
�

q2
�F cos ωF t, ωF ≈ 2ω0, (3)

and Hc is the Hamiltonian of the coupling between the modes,

Hc = −1

2

∑
� �=� ′

ε�� ′q�q� ′ , |ε�� ′ | � ω2
0. (4)

This coupling corresponds to a bilinear mode interaction and
occurs, e.g., in microwave cavity arrays and in systems of
mechanical nanoresonators [26,28,29]. The oscillator non-
linearity, the coupling, and the driving are assumed to be
weak, γ 〈q2

�〉, |ε�� ′ |, |F | � ω2
0. In this case the motion of

the oscillators corresponds to vibrations at frequency ≈ωF /2
with amplitude and phase that slowly vary on the timescale
1/ωF . This motion can be conveniently described in the
rotating frame by introducing the ladder operators a�, a†

�

of the �th oscillator, applying a canonical transformation
U (t ) = exp[−i(ωF t/2)

∑
� a†

�a�] and switching to the scaled
coordinates Q� and momenta P� that slowly vary in time,

U †(t )[q� + (2i/ωF )p�]U (t ) = −iC(Q� + iP� )e−iωF t/2,

[P�,Q� ′ ] = −iλδ�� ′ ,

λ = 3h̄γ /ωF F. (5)

Here, we chose F > 0 and set C = (2F/3γ )1/2 =
(2h̄/λωF )1/2; in Appendix B we use a different scaling
to describe the quantum phase transition induced by the
varying field amplitude. The parameter λ is the dimensionless
Planck constant in the rotating frame; we note that, in terms
of the scaled variables Q�, P� , the lowering operator is
a� = (2λ)−1/2(Q� + iP� ).

We assume that the scaled Planck constant is small, λ �
1. This means that the dynamics in the rotating frame is
semiclassical and the states of parametrically excited period-2
oscillations of the individual mode overlap only weakly.

A. The rotating wave approximation

For weak nonlinearity and weak mode coupling, the res-
onant dynamics of the coupled modes can be conveniently
described in the rotating wave approximation (RWA). In this
approximation the canonically transformed Hamiltonian of
the system becomes

U †HU − ih̄U †U̇ ≈ (3γC4/8)G,

G =
∑

�

g� (Q�, P� ) + gc. (6)

Here, G is the scaled RWA Hamiltonian of the system. It
is the sum of the scaled RWA Hamiltonians g� (Q�, P� ) ≡
g� (Q�,−iλ∂Q�

) of the individual oscillators and the coupling
term gc. The individual Hamiltonians g� depend on a single
parameter μ� and can be expressed as [30]

g� (Q�, P� ) = 1

4

(
P 2

� + Q2
� − μ�

)2 + 1

2

(
P 2

� − Q2
�

) − μ2
�

4
,

μ� = 2δω�ωF /F, δω� = 1

2
ωF − ω�. (7)

The parameter μ� is determined by the ratio of two small
parameters, the detuning δω� of half the drive frequency
from the mode eigenfrequency and the scaled drive amplitude
F/ωF . For μ� < −1, g� (Q�, P� ) has a single minimum at
Q� = P� = 0. This minimum corresponds to the equilibrium
position of the oscillator in the laboratory frame. As μ�

increases beyond −1, the point Q� = P� = 0 becomes first a
saddle point, and then, for μ� > 1, a local maximum of g� . In
addition, for μ� > −1, the function g� has two symmetrically
located minima at P� = 0,Q� = ±(μ� + 1)1/2. They can be
seen in Fig. 1. Classically, in the presence of weak dissipa-
tion these minima become stable states. They correspond to
two states of period-2 oscillations with opposite phases. We
enumerate them by

σ� = ±1;

for concreteness, we set σ� = 1 to correspond to the minimum
of g� with Q� > 0.

The term gc in Eq. (6) describes the coupling Hamiltonian
in the rotating frame,

gc = −1

2

∑
� �=� ′

V�� ′ (Q�Q� ′ + P�P� ′ ),

V�� ′ = 2ε�� ′/F. (8)
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We note that the coupling in the coordinate channel in the
laboratory frame described by Eq. (4) becomes symmetric
with respect to the coordinates and momenta in the rotating
frame, in the RWA.

The effect of the coupling on the mode dynamics depends
on the relation between |V�� ′ | and the depth of the wells of
the functions g� ; see Fig. 1. If |V�� ′ | is small, the overall
many-mode Hamiltonian (6) is a set of double-well functions
g� slightly distorted by the coupling. If, on the other hand,
the coupling is comparatively strong, the overall structure of
the Hamiltonian changes. We will not consider this case in the
present paper.

Corrections to the rotating wave approximation vanish
like (δω�/ωF )2, (V�� ′/ωF )2. They do not break the under-
lying symmetry discussed in Sec. II A 1. In the special case
where the spacing between the intrawell and over-the-barrier
quasienergies coincides with a multiple of h̄ωF these cor-
rections may modify the tunneling of an isolated oscillator
between its coexisting stable states [33]. However, interwell
tunneling is irrelevant in the context of the present paper: it is
exponentially suppressed in the system of coupled oscillators.
Here and below we refer to quasienergies in the extended
Brillouin zone, i.e., not projected onto a single interval of
width h̄ωF . The values of the quasienergies of an isolated os-
cillator are given by the eigenvalues of operator g� multiplied
by F 2/6γ (except for the corrections to the RWA mentioned
above).

Symmetry arguments

The RWA Hamiltonian G has inversion symmetry, both
with respect to the simultaneous sign change of all coor-
dinates, {Q� → −Q�}, or all momenta, {P� → −P�}. This
symmetry is a consequence of the parity of the Hamiltonian H

in {p�} and the symmetry of H with respect to time translation
by the driving period t → t + 2π/ωF . From Eq. (5), such
a translation corresponds to changing the signs of {Q�, P�}.
Indeed, as a result of the time translation, the unitary op-
erator U (t ) in Eq. (5) becomes U (t + 2π/ωF ) = U (t )N2,
where N2 = exp(−iπ

∑
� a†

�a� ). The time-translation opera-
tor N2 flips the sign of the mode coordinates and momenta,
N

†
2q�N2 = −q� and similarly for p� . In addition, N2 com-

mutes with G. Therefore, as in the case of a single oscillator
[34,35], the eigenfunctions of G are the Floquet eigenfunc-
tions of the original time-periodic Hamiltonian H . The eigen-
values of G are the RWA-quasienergies of the system scaled
by the factor F 2/6γ .

The individual RWA Hamiltonians g� also have inversion
symmetry; cf. Fig. 1. Therefore, generally, the intrawell states
of g� are tunnel-split into symmetric and antisymmetric states.
For a small dimensionless Planck constant λ, this splitting
is small deep inside the wells and may be equal to zero for
certain μ� [36].

B. Quantum kinetic equation

We now discuss the dissipative dynamics of the system of
parametric oscillators. To this end, we will assume that each
oscillator is coupled to its own thermal reservoir and that all
reservoirs have the same temperature. We will use the simplest
model where the interaction with the reservoirs is linear in

q�, p� . If the densities of states of the reservoirs weighted with
the coupling to the oscillators are sufficiently smooth near ω0,
the oscillator dynamics in “slow time”

τ ≡ tF/2ωF (9)

is Markovian. A derivation is a straightforward extension of
the derivation for a single nonlinear oscillator [37] to the
case of coupled oscillators; the frequency renormalization is
incorporated into ω� . For simplicity, we will assume that the
decay rates of all the oscillators are the same: different decay
rates constitute a dissipative type of disorder and will not be
discussed in this paper.

With these assumptions, the master equation for the mul-
tioscillator density matrix ρ reads

ρ̇ ≡ dρ

dτ
= i

λ
[ρ,G] + κ

∑
�

D[a�]ρ,

D[a]ρ = −(n̄ + 1)(a†aρ − 2aρa† + ρa†a)

− n̄(aa†ρ − 2a†ρa + ρaa†). (10)

Here, κ is the dimensionless oscillator decay rate; it is related
to the decay rate � of free vibration amplitude in unscaled
time as κ = 2�ωF /F . Parameter n̄ = [exp(h̄ωF /2kBT ) −
1]−1 is the oscillator Planck number.

Alternatively, and this will be used below, one can write
down the quantum Langevin equations

Q̇� = −κQ� + ∂P�
G + fQ�

(τ ),

Ṗ� = −κP� − ∂Q�
G + fP�

(τ ). (11)

Here, fQ�
(τ ) and fP�

(τ ) are δ-correlated operators,

〈fQ�
(τ )fQ�′ (τ

′)〉 = 〈fP�
(τ )fP�′ (τ

′)〉
= 2Dδ(τ − τ ′)δ�� ′ ,

D = 1
2λκ (2n̄ + 1), (12)

and 〈[fQ�
(τ ), fP�′ (τ ′)]〉 = 2iλκδ(τ − τ ′)δ�� ′ . For small λ the

noise intensity D is small. Equation (11) is the Heisenberg
version of the master Eq. (10). The partial derivatives of G in
Eq. (11) should be interpreted as symmetrized expressions, for
example, ∂P (P 2 + Q2)2 = 2P (P 2 + Q2) + 2(P 2 + Q2)P .

The equilibrium positions of an isolated oscillator

For an isolated parametrically excited oscillator �, in the
absence of noise, Eqs. (11) have stable stationary solutions
(σ�Q(0)

� , σ�P (0)
� ) given by

Q(0)
� = (μ� − μB )1/2 cos ��, �� = arctan

κ

1 − μB

,

P (0)
� = (μ� − μB )1/2 sin ��,

μB = −(1 − κ2)1/2. (13)

Here, σ� = ±1 enumerates the vibrational states with oppo-
site phase. As before, we set σ� = 1 for the state with positive
Q(0)

� .
The coefficient μB in Eq. (13) is the value of μ� at

the bifurcation where the zero-amplitude state Q� = P� = 0
becomes dynamically unstable and the two stable period-2
states emerge. In the model we use here, where the decay
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rate in the scaled time is the same for all modes, μB is also
the same for all modes. In this paper we concentrate on the
parameter range μ� < −μB , where an isolated oscillator has
either two stable period-2 states (for μ� > μB) or a stable
zero-amplitude state (for μ� < μB), but not the case where
all these states are stable.

In the Wigner representation, the probability distribution
ρ� (Q�, P� ) of an isolated oscillator has peaks which are
centered near (σ�Q(0)

� , σ�P (0)
� ). For weak damping, the po-

sitions of the peaks are close to the minima of g� (Q�, P� ),
cf. Fig. 1, and the width of the peaks is ∼ λ1/2 for n̄ �
1 [30,38]. However, the peaks can be well resolved even
if the broadening κλ of the quasienergy levels (which are
given by the scaled eigenvalues of g�) is not small com-
pared to the interlevel distance. The distribution is symmetric,
ρ� (Q�, P� ) = ρ� (−Q�,−P� ).

III. TIME-SYMMETRY BREAKING FOR WEAKLY
COUPLED OSCILLATORS

In this section we show that even weak mode coupling can
lead to a collective breaking of the time-translation symmetry
of dissipative oscillators if the quantum noise is sufficiently
weak. The underlying mechanism is the coupling-induced
change of the rate of switching between the period-2 states
of the oscillators. It should be emphasized that the time-
symmetry breaking for the driven oscillator corresponds to
the breaking of the symmetry of the system described by the
stationary Hamiltonian G in phase space. Therefore the results
[39] on the absence of time-symmetry breaking in a stationary
system in the ground state do not apply to our case. Rather,
the symmetry breaking for the time-independent Hamiltonian
G resembles the symmetry breaking in an Ising system. In the
laboratory frame, though, it corresponds to the breaking of the
discrete time-translation symmetry.

The dissipative dynamics of an isolated parametric oscil-
lator � is characterized by the dimensionless relaxation rate
κ and by the switching rate Wσ�

from the well σ� to the well
−σ� of the RWA Hamiltonian g� . To simplify notations, here
and below we use Wσ�

for the dimensionless switching rate
and imply the dimensionless time τ when discussing time
evolution. The dimensionless switching rates are exponen-
tially smaller than the relaxation rate, Wσ�

� κ . The oscillator
approaches one of the minima of g� on a timescale ∼ κ−1. It
performs quantum fluctuations about this minimum for a time
much longer than κ−1, until ultimately it switches to the other
minimum.

If κ largely exceeds the exponentially small tunnel split-
ting of the intrawell states, the interwell switching occurs
via “overbarrier” transitions [30]. Such transitions result
from quantum diffusion over the intrawell quasienergy states,
which brings the system from the bottom of the initially
occupied well of g� to the top of the interwell barrier. This
process is reminiscent of the familiar thermally activated
overbarrier transitions in classical systems [40], except that,
for low temperatures, it is induced by quantum fluctuations
and, respectively, is called quantum activation. The physical
cause of the diffusion over quasienergy states is that quan-
tum relaxation is invariably associated with noise. Relaxation
results from transitions between the states of the oscillator

with emission of excitations of the thermal reservoir, but these
transitions happen at random, and therefore they bring in
noise. The presence of this quantum noise is reflected in the
noise terms in Eq. (11).

For an isolated oscillator �, the rate of switching due to
quantum activation has the form

W (0)
σ�

= constant × exp
( − R(0)

� /λ
)
.

The parameter R(0)
� is the quantum activation energy. By

symmetry, R(0)
� is the same for switching from both states

σ� = ±1. Expressions for R(0)
� have been found in several

important limiting cases [30,38]. Note that in the expression
for W (0)

σ�
the quantum noise intensity λ plays a role analogous

to temperature in the expression for the rate of thermally
activated switching. We note that R(0)

� depends on temperature
in terms of the Planck occupation number n̄ and for n̄ � 1 we
have R(0)

� ∝ h̄ω�/T .

A. Symmetry lifting by an extra field at frequency ωF/2

Before analyzing the effect of the coupling of the modes,
we consider a simpler but directly related problem, viz.,
the effect of a weak additional field at frequency ωF /2 on
the switching rate. Such a field is described by the term
−F ′ ∑

� q� cos(ϕ� + ωF t/2) in the Hamiltonian. It breaks the
time-translation symmetry t → t + 2π/ωF . In the rotating
frame, the effect of the field ∝ F ′ on the mode dynamics is
described by the term

�g� (Q�, P� ) = −f ′(Q� sin ϕ� + P� cos ϕ� ) (14)

that has to be added to the RWA Hamiltonian g� , Eq. (7), with
f ′ = 8F ′/3γC3.

If the rescaled field f ′ is small, the term �g� is small
compared to the depth of the wells of g� . However, it can
lead to a significant change of the switching rates and, most
importantly, make the switching rates σ� → −σ� different
for σ� = 1 and σ� = −1. In the stationary state, this will
lead to a difference of the well populations. In the classical
regime, where the interstate switching is thermally activated,
the change was discussed previously [41]. We will show in
the following section and in Appendix A that, in the quantum
regime, too, in several cases of interest the major effect of the
drive is to change the quantum activation energy compared to
its value R(0)

� in the absence of the drive. The switching rate
Wσ�

then has the form

Wσ�
∝ exp

[ − Rσ�
/λ

]
, Rσ�

= R(0)
� + �Rσ�

,

�Rσ�
= f ′σ� (χQ� sin ϕ� + χP� cos ϕ� ), (15)

where Rσ�
is the activation energy for the oscillator � to

switch from the state σ� and �Rσ�
is its driving-induced part.

In analogy to the classical case, we introduced the loga-
rithmic susceptibilities χQ� and χP� for the variables Q� and
P� of the mode �. To simplify the further analysis we use
a notation that differs from the one used in Ref. [41]. To be
specific, the susceptibilities χQ� and χP� will be calculated
for the well σ� = 1. They give the change of the logarithm
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of the switching rate Wσ�
linear in the drive f ′. The change

of the rate can be large even where |�Rσ�
| � R(0)

� provided
|�Rσ�

| � λ. By symmetry, the sign of the change is opposite
for the two different wells, and therefore �Rσ�

∝ σ� .

B. Switching rates for coupled modes

The separation of the timescales of relaxation and interwell
switching allows one to use the logarithmic susceptibilities
to describe the effect of a weak interaction between the
oscillators. In the absence of interaction, as seen from the
master equation (10), on a timescale long compared to κ−1,
the oscillator dynamics can be described as rare uncorrelated
switching between the wells. Each oscillator spends most of
the time in close vicinity to ±(Q(0)

� , P (0)
� ). We emphasize

that, in each of these states, the time-translation symmetry is
broken.

The major effect of a weak interaction is that, if one oscilla-
tor is in a given state σ = ±1, it lifts the time-translation sym-
metry for the oscillators it is coupled to. In fact, it acts exactly
like a driving force ∝ F ′, as it also oscillates at frequency
ωF /2. A symmetry lifting that is similar in spirit was observed
for two coupled classical nanomechanical oscillators in the
transient process of sweeping the drive frequency ωF [42].

Put differently, for any given oscillator �, the oscillators � ′
with � ′ �= � act as a drive at frequency ωF /2. The phase of
this drive is determined by the states σ� ′ of these oscillators.
By comparing the expressions for the change of g� due to an
external drive (14) with the expression (8) for the coupling
term gc, we see that the switching rates between the states of
the considered oscillator � have the form

Wσ�
= W (0)

σ�
exp

[
−σ�

∑
� ′

′
J�� ′σ� ′/λ

]
,

J�� ′ = V�� ′
[
χQ�Q

(0)
� ′ + χP�P

(0)
� ′

]
. (16)

Here we have approximated the dynamical variables Q� ′ , P� ′

of the oscillators with � ′ �= � by their most probable values
σ� ′Q

(0)
� ′ , σ� ′P

(0)
� ′ .

Equation (16) is the major result of this section. It maps the
problem of the coupled parametric oscillators onto a problem
of coupled Ising spins. The effect of the spin coupling is to
modify the rates of switching between the states of individual
spins. The symmetry breaking in this model and its depen-
dence on the dimensionality of the system is well understood.
In our case, the effective dimensionality is determined by
the connectivity of the oscillator network, for example, the
number of nearest neighbors of an oscillator in the network.

An interesting situation occurs if the oscillators slightly
differ in frequency or one of the other parameters. In this case
the equilibrium positions of different oscillators in the rotating
frame (Q�, P� ) are different and so are also the logarithmic
susceptibilities. As a result, the spin-coupling parameters are
asymmetric, J�� ′ �= J� ′� . Such a situation is not encountered
in the standard analysis of spin systems and is not described
by the Ising model discussed below. In the present context it
emerges as a consequence of the mapping of a nonequilibrium
quantum dissipative system on a system of coupled spins.

C. The stationary distribution; mapping onto the Ising model

We will now look at the evolution of the distribution
w(σ1, σ2, . . .) of the states {σ�} of the system of effective
spins. The distribution changes due to switching of the spins,
that is, of the individual oscillators, with the rates given by
Eq. (16). Since the switching events are independent, the
function w evolves according to the balance equation

ẇ = −
∑

�

Wσ�
w(σ1, . . . , σ�, . . .)

+
∑

�

W−σ�
w(σ1, . . . ,−σ�, . . .). (17)

The dynamics of the system simplifies in the case of
identical oscillators. In this case the susceptibilities χQ�

, χP�

are the same for different oscillators. Then, given that V�� ′ =
V� ′� , we have J�� ′ = J� ′� . The coupling parameters J�� ′ are
symmetric also if the oscillators are in the vicinity of the
bifurcation point; see Sec. IV and Appendix A. Then the
stationary solution of Eq. (17) is

wst = Z−1 exp [−H ({σ�})/λ],

H ({σ�}) = −1

2

∑
� �=� ′

J�� ′σ�σ� ′ . (18)

This exactly corresponds to the statistical distribution of an
Ising system at effective quantum temperature λ; the normal-
ization constant Z plays the role of the partition function. If
the coupling constants of the oscillators ε�� ′ ∝ V�� ′ ∝ J�� ′

are positive, the coupling is “ferromagnetic”: in the most
probable state the values of σ� are the same for all oscillators;
that is, the oscillators vibrate in phase. This is intuitively clear:
if the oscillators attract each other, they will try to synchronize
into a state where they all vibrate in phase. Whether the system
reaches this fully ordered state is determined by the standard
results for the ferromagnetic Ising model.

The condition of the phase transition into the symmetry-
broken phase is the Ising condition, which for nearest-
neighbor coupling in a 2D lattice has the form J�� ′ = CIsingλ,
with CIsing ∼ 1 being determined by the geometry. This con-
dition defines a line in the plane of the control parameters,
the driving amplitude F and frequency ωF of the field, since
both J�� ′ and λ depend on F and ωF . The position of this
line depends on the strength of the coupling between the
oscillators, with J�� ′ ∝ ε�� ′ , and also on the oscillator decay
rate. The symmetry is broken on one side of the line, whereas
on the other side the system is “paramagnetic”; i.e., the phases
of the oscillators are not correlated.

In the case where ε�� ′ are negative, Eq. (18) maps the
system of parametric oscillators onto an antiferromagnetic
Ising system. We emphasize that in the system of oscillators
that are currently studied, both the strength of the coupling,
and often its sign, can be independently controlled.

Importantly, if the oscillators are slightly different, imply-
ing J�� ′ �= J� ′� , the system lacks detailed balance, generally.
Indeed, consider the probability of a pair of switching events
that bring the system from the state with given (σ�, σ� ′ ) to
(−σ�,−σ� ′ ). It is easy to see that this probability depends on
which of the spins, � or � ′, switches first for J�� ′ �= J� ′� . The
violation of detailed balance is a generic feature of systems
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far from thermal equilibrium, and the system of different
driven oscillators is in this category. We expect that the time
symmetry breaking transition can still occur if the disorder
is weak, but the full analysis of this transition is beyond the
scope of this paper.

IV. VICINITY OF THE BIFURCATION POINT

To find the coupling parameters J�� ′ one has first to calcu-
late the logarithmic susceptibility of an isolated oscillator. A
general approach to such a calculation is based on solving the
variational problem for the exponent of the switching rate Rσ�

,
which can be formulated using the master equation, Eq. (10).
We will consider the limiting cases where simpler approaches
can be used. One of them is where the dissipation-induced
broadening of the quasienergy levels is much smaller than the
level spacing. The corresponding theory is somewhat involved
and is described in Appendix A. It reduces the problem to
algebraic equations and Fourier transformations that generally
require a numerical evaluation.

A. The low-damping limit

Explicit expressions for J�� ′ can be obtained in the vicinity
of the bifurcation point μB . Here, two regions have to be
analyzed separately. One is the case where the spacing of the
eigenvalues of g� is small compared to λ, even though it still
largely exceeds the scaled broadening λκ of the quasienergy
levels (the quasienergy level broadening is ∼ h̄�, in dimen-
sional units). The other is where the level broadening becomes
significantly larger than the level spacing. The first case is
outlined in Appendix A. Using the results obtained there, in
particular Eq. (A6), we find

χQ� = 2(μ� + 1)1/2/(2n̄ + 1), μ� + 1 � 1,

J�� ′ = [2/(2n̄ + 1)]V�� ′Q(0)
� Q

(0)
� ′ . (19)

The expression (19) for the “spin-coupling” parameters J�� ′ is
bilinear in the positions of the wells of the coupled oscillators
Q(0)

� ≈ (μ� − μB )1/2 ≈ (μ� + 1)1/2; see Eq. (13) for κ � 1.
It is symmetric even in the presence of a weak disorder in the
oscillator eigenfrequencies, J�� ′ = J� ′� . Therefore the system
of coupled parametric oscillators maps onto the equilibrium
Ising model.

B. Classical limit

The condition of applicability of Eq. (A6) holds also far
from the bifurcation point if the temperature is high, n̄ � 1.
The logarithmic susceptibility as a function of the only param-
eter μ� in this case was found in Ref. [41]. It is important that
it is not proportional to Q(0)

� . Therefore in the classical limit
J�� ′ �= J� ′� and the system of coupled parametric oscillators
does not map on the Ising model if the oscillators are different.

C. The soft-mode controlled dynamics

The role of dissipation becomes increasingly more im-
portant as the parameters of an isolated damped oscilla-
tor approach the bifurcation point μB = −(1 − κ2)1/2; see
Eq. (13). For μ� − μB � κ , the logarithmic susceptibility in

the classical limit was calculated in Ref. [41]. The quantum
dynamics near the bifurcation point is similar to the classical
dynamics [38]. It is fully controlled by a soft mode; see below.
Therefore one can show that the expression for the quantum
logarithmic susceptibility is similar to that for the classical
one, which allows finding the parameters J�� ′ for weakly
coupled oscillators.

A better insight can be gained by formulating the problem
of coupled oscillators somewhat differently. We will assume
that all oscillators are close to the bifurcation point, i.e.,
that the condition μ� − μB � κ holds for all �. It is then
convenient to rotate the variables by changing to the new
coordinates and momenta Q̃�, P̃� . They are defined by Q̃� +
iP̃� = (Q� + iP� ) exp(−iβ ) with β = (π − arcsin κ )/2. In
these variables,

g� = 1
4

(
Q̃2

� + P̃ 2
� − μ

)2 + 1
2

(
P̃ 2

� − Q̃2
�

)
cos 2β

+ P̃�Q̃� sin 2β − μ2/4, (20)

and gc = − 1
2

∑
� �=� ′ V�� ′ (Q̃�Q̃� ′ + P̃� P̃� ′ ).

Rewriting Eq. (11) in the new variables, one immediately
finds that, over a dimensionless time (2κ )−1, the variable
P̃� relaxes to its quasiequilibrium value P̃� ≈ (μB/κ )Q̃� −∑

� ′
′
V�� ′Q̃� ′/2κ , whereas the relaxation of Q̃� is much

slower. Such a separation of timescales is characteristic of
the dynamics near a bifurcation point of a single dynamical
system [43]. The variable Q̃� is the analog of a soft mode.
Its fluctuations are much stronger than the fluctuations of P̃� .
In other words, if one writes down the master equation in
the Wigner representation, the distribution over P̃� is much
narrower than over Q̃� ; see [38]. One can disregard the
fluctuations of P̃� , and then the problem is reduced to the
dynamics of one variable per oscillator. To leading order in
μ� − μB the Langevin equations (11) take the particularly
simple and intuitive form

d

dτ
Q̃� ≈ −∂U({Q̃�})

∂Q̃�

+ f̃� (τ ),

U({Q̃�}) = |μB |
κ

∑
�

[
−1

2
(μ� − μB )Q̃2

� + 1

4κ2
Q̃4

�

]

− |μB |
2κ

∑
� �=� ′

V�� ′Q̃�Q̃� ′ , (21)

where f̃� = fQ�
cos β + fP�

sin β is a δ-correlated noise with
〈f̃� (τ )f̃� ′ (τ ′)〉 = 2Dδ(τ − τ ′)δ�� ′ ; cf. Eq. (12). Importantly,
f̃� can be considered to be a c-number, because there is only
one component of the noise for each oscillator. Moreover,
since the dynamics of each oscillator is described by only
one variable, this dynamics is classical. The only trace of
the quantum formulation is that the noise intensity D is
proportional to h̄ for small n̄; cf. Eq. (12).

Equation (21) shows that, near the bifurcation point, the
dynamics of coupled quantum parametric oscillators in the
rotating frame maps onto the dynamics of a system of cou-
pled overdamped Brownian particles. Each particle moves
in a quartic bistable potential, and the coupling between the
particles is bilinear in their coordinates.
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FIG. 3. (a) Logarithmic susceptibility near the bifurcation point
as a function of the frequency detuning δω�/� ≡ μ�/κ scaled by
the decay rate of the amplitude of free vibrations in unscaled time
�. For the red, blue, and green curves the scaled field amplitude
is F/2ωF � ≡ κ−1 = 1.1, 2.5, and 5. (b) Scaled coupling parame-
ter J̃�� ′ = (2n̄ + 1)J�� ′/2V�� ′ as a function of the field amplitude,
Eq. (23). For the red, blue, and green curves the frequency detuning
is δω�/� = δω� ′/� = −3, −2, and −1. The dashed lines are given
by Eq. (19), which refers to the weak-damping limit.

The weak-coupling limit

The behavior of the system (21) strongly depends on the
relation between two small parameters: the coupling strength
|V�� ′ | and the distance to the bifurcation point μ� − μB . The
results are particularly simple if |V�� ′ | � μ� − μB for all �.
Here, in the absence of coupling to other oscillators, the stable
states of a �th oscillator are σ�Q̃(0)

� ,

Q̃(0)
� = κ (μ� − μB )1/2. (22)

The noise f̃� leads to switching between the states σ� = ±1.
The coupling to other oscillators modifies the switching rate
Wσ�

. As discussed earlier, for weak noise intensity switching
events are rare and, most likely, when one oscillator switches,
the oscillators it is coupled to are close to their equilibrium po-
sitions (22). Then, the switching rate is given by the Kramers
expression [40] for a thermally activated transition over a
potential barrier, except that in the case considered here the
origin of the fluctuations is quantum [38]. To lowest order in
V�� ′ ,

Wσ�
= C� exp

[ − Rσ�
/λ

]
, Rσ�

= R(0)
� + �Rσ�

,

R(0)
� = |μB |(μ� − μB )2

2(2n̄ + 1)
, �Rσ�

= σ�

∑
� ′

′
J�� ′σ� ′ ,

J�� ′ = 2V�� ′
∣∣μBQ̃(0)

� Q̃
(0)
� ′

∣∣/κ2(2n̄ + 1). (23)

The prefactor in the switching rate in dimensionless time
is C� = |μB |(μ� − μB )/(

√
2 πκ ). We note that, somewhat

unexpectedly, Eq. (23) for J�� ′ , obtained for κ � μ� − μB ,
goes over into Eq. (19) for J�� ′ obtained for κ → 0.

Equation (23) can be obtained also using the logarithmic
susceptibility near the bifurcation point. The dependence
of the logarithmic susceptibility on the frequency detuning
δω� = 1

2ωF − ω� for different field amplitude is shown in
Fig. 3(a). Figure 3(b) shows the dependence of the parameters
of the effective spin coupling on the field amplitude for
different detuning.

We note that in the soft-mode controlled region, even
where the oscillators are somewhat different, still J�� ′ = J� ′� .
Therefore the stationary distribution of the system of coupled

parametric oscillators coincides with that of the Ising model.
Importantly, the correction �Rσ�

falls off slower than R(0)
� as

the oscillator approaches the bifurcation point and μ� − μB

decreases. This means that the role of the coupling increases
closer to the bifurcation point.

D. Stronger coupling: A “time glass”

Sufficiently close to the bifurcation point the weak-
coupling condition |V�� ′ | � μ� − μB breaks down for many,
if not for all, oscillators �. If this happens, i.e., if the coupling
is stronger, but still |V�� ′ | � |μB | [as seen from Eq. (13),
|μB | < 1], the dynamics of the coupled oscillators near the
bifurcation point is described by Eq. (21), except that now this
equation cannot be solved by perturbation theory in V�� ′ .

In the absence of noise, Eq. (21) has stable stationary
solutions, which are inversion-symmetric (Q̃� → −Q̃�), as
expected, and correspond to the broken time-translation sym-
metry. However, these are no longer weakly perturbed single-
oscillator states (22). Rather, these states are formed as a
result of the coupling. They are located at the minima of the
potential “landscape” U({Q̃�}). Generally, if the oscillators
are different, this landscape has multiple minima with depth ∼
κ|μB |V 2

�� ′ , as seen from Eq. (21). If this depth largely exceeds
the noise intensity D = λκ (2n̄ + 1)/2, once the system is
near a minimum, it will stay there for a long time. This
would mean that we can have various types of many-body
metastable broken-symmetry states, a spin-glass analog in the
time domain.

V. QUANTUM PHASE TRANSITION IN THE LATTICE
OF PARAMETRIC OSCILLATORS

We now consider a closed system of quantum parametric
oscillators; i.e., we assume that the oscillators are isolated
from a thermal reservoir. For a single quantum oscillator, the
possibility to have a broken-symmetry state is a consequence
of the exact degeneracy of the eigenvalues of g� for a discrete
set of the values of the ratio μ�/λ [36]. A combination of the
corresponding eigenstates is a period-2 state.

For a system of coupled oscillators the situation is differ-
ent. We will consider the simplest case where the oscillators
are identical, form a periodic lattice, and the coupling is ferro-
magnetic. To allow for two- or three-dimensional systems, we
will index the oscillators by a vector �, which can be thought
of as the position of the corresponding oscillator. Our primary
interest will be the spectrum of excitations in the system and
how it evolves on varying the control parameter μ, which is
now the same for all oscillators, μ� = μ.

The extrema of the RWA Hamiltonian (6) G(Q�, P�}) of
the coupled oscillators are given by the equation

Q�

(
Q2

� + P 2
� − μ − 1

) −
∑
� ′

′
V�� ′Q� ′ = 0,

P�

(
Q2

� + P 2
� − μ + 1

) −
∑
� ′

′
V�� ′P� ′ = 0. (24)

For a strongly detuned or weak driving field, −μ � 1, the os-
cillators are prepared in their quantum ground state. Because
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of the quantum smearing, this makes the system qualitatively
different from the corresponding classical system. However,
the solution of the above equation for the equilibrium position
of the oscillators has the same form as in the classical limit,

Q(0)
� = P (0)

� = 0, G(0) = 0 (μ < μQPT), (25)

where μQPT is defined below in Eq. (28); we disregard
quantum corrections to G(0). Excitations in this regime can
be obtained by linearizing the equations of motion Q̇� =
∂G/∂P� , Ṗ� = −∂G/∂Q� about Q

(0)
� = P

(0)
� = 0 and seek-

ing the solution for the increments of Q�, P� in the standard
form δQ� = δQ(k) exp(ik� ), δP� = δP (k) exp(ik� ). The
excitations are “optical phonons” with frequencies

ω(0)(k) = {[μ + V (k)]2 − 1}1/2,

V (k) =
∑
� ′

′
V�� ′ exp[ik(� ′ − � )]. (26)

The Fourier components of the coupling parameters have
the property V (k) = V ∗(k): this is because V�� ′ = V� ′� and
V�� ′ is translationally invariant. Thus, for sufficiently large
−μ, the frequencies (26) are real. They correspond to the
(scaled) frequencies of the undriven coupled oscillators with
the Hamiltonian H0 + Hc, Eqs. (2) and (4), shifted by −ωF /2.
We note that there is only one branch of phonons in the system
of coupled oscillators even in the absence of the periodic
drive, as each oscillator has only one degree of freedom.

The spectrum (26) is gapped, as illustrated in the left panel
in Fig. 2. For small k,

ω(0)(k) ≈ ω(0)(0) − μ + V (0)

2ω(0)

∑
� ′

′
V�� ′[k(� − � ′)]2,

ω(0)(0) = [(2 + μQPT − μ)(μQPT − μ)]1/2 (μ < μQPT),
(27)

where

μQPT = −1 − V (0) (28)

(we note that μQPT < −1).
As μ increases and approaches μQPT, the spectral gap

ω(0)(0) decreases. For μ = μQPT the gap goes to zero and
the spectrum of the Floquet phonons becomes linear for k →
0, see the central panel in Fig. 2: ω(0)(k) → ωQPT(k). For
small k

ωQPT(k) ≈
{∑

� ′

′
V�� ′[k(� − � ′)]2

}1/2

∝ k. (29)

For μ > μQPT the extremum (25) is no longer the mini-
mum of the RWA Hamiltonian G. As seen from Eq. (24),
G has two equally deep minima of depth G(0), which are
located at

Q� = ±Q(0), P� = 0 ; Q(0) = (μ − μQPT)1/2,

G(0) = −(μ − μQPT)2/4 (μ > μQPT). (30)

We checked numerically for short chains with nearest-
neighbor coupling that Eq. (30) provides the global minimum
of G.

The solution (30) describes two degenerate quantum-
coherent period-2 states of the system of coupled oscillators.

Excitations about these states can be found by linearizing the
quantum equations of motion for Q� and P� , as was done
above for excitations about the state (25). The frequencies of
the corresponding Floquet phonons are

ω(0)(k) = [1 − μQPT − V (k)]1/2[2(μ − μQPT)

+ V (0) − V (k)]1/2 (μ > μQPT). (31)

The spectrum (31) is gapped, cf. the right panel in Fig. 2, with
ω(0)(0) = 2(μ − μQPT)1/2; the difference ω(0)(k) − ω(0)(0) is
quadratic in k for small k, as in the case μ < μQPT.

The evolution of the system as μ increases from below
to above μQPT corresponds to a quantum phase transition to
a many-body period-2 state. In the rotating frame, one can
think of it in terms of the wave function as a function of the
coordinates {Q�}. In the symmetric phase this wave function
is almost even with respect to each coordinate Q� and is max-
imal for all Q� = 0. The admixture of terms that are not even
with respect to individual Q� is small. This is reminiscent
of the paramagnetic state of an Ising spin chain in a strong
transverse field, where each spin is almost completely aligned
along the field. On the other hand, in the symmetry-broken
phase, the wave function of our system is close to the product
of the wave functions of the individual oscillators centered
either at Q(0) or at −Q(0). The tunnel splitting between the
states that are symmetric and antisymmetric combinations of
such products is exponentially small in the size of the system.
This again reminds us of a spin chain with the states | ↑ ↑ . . .〉
and | ↓ ↓ . . .〉.

The transition is determined by quantum fluctuations. If
the evolution occurs as μ is slowly increased in time, it
should have the familiar features associated with the creation
of topological defects due to the nonadiabaticity that occurs
where the excitation gap approaches zero; see [44,45]. In
this region quantum effects related to the nonlinearity of
the oscillators become important, too. We emphasize again
that the broken-symmetry state in {Q�} space corresponds
to the state with a broken time-translation symmetry in the
laboratory frame.

The critical point can be traversed by changing the fre-
quency or the amplitude of the driving force (or both). The
parameter scaling used above was done assuming a nonzero
field amplitude. An alternative scaling that allows turning the
field on from zero is described in Appendix B.

VI. CONCLUSIONS

The results of this paper show that the Floquet dynamics
of coupled quantum oscillators can exhibit a breaking of the
discrete time-translation symmetry imposed by a periodic
field. This symmetry breaking occurs when the frequency
of the driving field is close to twice the eigenfrequencies
of the oscillators. In the broken-symmetry state the phases
of the parametrically excited vibrations of different oscilla-
tors take correlated values; the system has an equivalent state
where all these phases differ by π . This can be contrasted
with the case of uncoupled oscillators: here, the vibration
phases are uncorrelated and on average the symmetry in a
large system is not broken.
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Because the energy spectrum of the system of coupled
oscillators consists of narrow slightly nonequidistant bands,
the resonant driving required for the symmetry breaking is
weak. The drive frequency largely exceeds the width of the
bands, preventing uncontrolled intraband heating. Moreover,
the driving does not induce decay processes with participation
of excitations of the bath known in quantum optomechanics as
sideband heating [46]. Therefore disorder is not necessary for
avoiding heating and observing coherent many-body effects.
It is well known experimentally that heating is not an issue
for a single parametrically excited cavity mode or a nanores-
onator, and there is no reason to expect that it would become
an issue for coupled oscillators.

Transitions between the degenerate broken-symmetry
states of the periodically driven system correspond to phase
slips. For a many-body state, collective phase slips are rare
and the lifetime of the broken-symmetry state scales expo-
nentially with the size of the system even for weak coupling
between the oscillators.

In contrast to a single quantum-coherent (nondissi-
pative) parametric oscillator, where symmetry breaking
is possible but requires fine-tuning of the frequency of
the driving field [35,36], for coherent coupled oscillators
no fine-tuning is needed. The symmetry-breaking transi-
tion in this case is a quantum phase transition. It oc-
curs as the amplitude or frequency of the driving field
goes across the corresponding critical values (which dif-
fer from the bifurcational parameter values of an isolated
oscillator).

In the presence of dissipation, an individual oscillator � has
two metastable broken-symmetry states with opposite phases.
Quantum fluctuations lead to transitions between these states.
The oscillator-oscillator coupling modifies the rates of these
transitions. Remarkably, for a weak coupling, the rates can
be found using the logarithmic susceptibility of an isolated
oscillator that describes its response to a weak extra field.

In Fig. 4 we sketch the different regimes where we have
obtained explicit results; they are also summarized below in
this section. The parameter κ in the figure is related to the
friction coefficient � of an oscillator as κ = 2�ωF /F ; here
F and ωF are the amplitude and frequency of the parametric
drive, and � is the decay rate of the undriven-oscillator
vibration amplitude. From the linearized equations of motion
Eq. (11) one can see that the boundary between the regimes
where the motion of an isolated oscillator in the rotating frame
changes character is given by the condition

μ − μB = −κ2/2μB.

Well below this boundary on the (κ−1, μ) plane (but for
μ > μB) the motion near the stable states of an oscillator
is controlled by a soft mode. On the other hand, for μ −
μB � −κ2/2μB the spacing of the quasienergy levels largely
exceeds their width. The results in this range apply also for
−μB > μ > 0.

The concept of the logarithmic susceptibility allows one
to map coupled oscillators on a system of coupled spins
{σ�}. The different broken-symmetry states of an oscillator
� correspond to different values σ� = ±1. If the system is
large and the coupling is not too weak, a stationary state is
formed where the phases of all oscillators (the values of σ�

1/κ

μ
/κ

μB

weak damping regionsoft mode dominated

FIG. 4. The characteristic parameter regions of a parametric
oscillator on the plane (κ−1, μ/κ ). The variable κ−1 is proportional
to the driving amplitude F , whereas μ/κ ∝ δω/� depends on ωF ,
but not on F . The period-two states emerge on the bold red line
μB = −(1 − κ2)1/2 and also on the vertical black line. The dashed
blue line shows the bifurcation line −μB where the zero-amplitude
state becomes stable. The green line, μ = μB − κ2/2μB , bounds the
region near the bifurcation line where the motion near the stable
states in the rotating frame is overdamped. Well inside this region the
results are described by Eqs. (21)–(23). Well above the green line the
spacing of the quasienergy levels exceeds their width and the results
are described by the theory of Appendix A and Eq. (19). Further in
the region of large κ−1 the dissipation can be disregarded and the
quantum phase transition physics comes into play.

with different �) are correlated. Overall, in the absence of
disorder the system is mapped onto the Ising model with the
coupling not necessarily limited to the nearest neighbors. A
broken-symmetry state emerges if the effective dimension of
the system, which is determined by the connectivity, is larger
than one. The effective temperature of the system is ∝ h̄ if
the oscillator Planck number n̄ � 1 and goes over into T for
n̄ � 1. The mapping applies if the spin coupling parameters
J�� ′ exceed the effective temperature.

The parameters J�� ′ have a different form depending on the
distance from the bifurcation point. They have been found in
explicit form close to the bifurcation line in Fig. 4 sufficiently
well below and well above the green line; see Sec. IV. The
corresponding expressions match in the crossover region.
Further away from the bifurcation line, finding J�� ′ requires
numerical calculations that are outlined in Appendix A.

The mapping on coupled spins applies not only if the
oscillators are identical, but also if they are slightly different,
i.e., if the system is disordered. Two kinds of disorder can
be distinguished. One is a disorder in the coupling matrix
elements ε�� ′ ∝ V�� ′ of the oscillators. In this case the sta-
tionary distribution is still given by that of the Ising model
with the corresponding J�� ′ = J� ′� ∝ V�� ′ . The other case is
where the oscillators themselves are different, for example,
have slightly different eigenfrequencies. Interestingly, close to
the bifurcation line in Fig. 4 the stationary distribution in this
case is described by that of the Ising model as well.

Farther away from the bifurcation line the mapping onto
the Ising model breaks down for differing oscillators, even
though one can still map the oscillators onto coupled spins.
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Here the spin dynamics lacks detailed balance. In the station-
ary state, there is a microscopic current in “spin space.” This
is a consequence of the oscillators being far from thermal
equilibrium. To the best of our knowledge, the dynamics of
Ising spins in the absence of detailed balance has not been
explored. Coupled parametric oscillators provide a platform
for studying this dynamics.

Another qualitatively different regime occurs if the os-
cillators are close to the bifurcation line but their coupling
may no longer be assumed weak. Such a regime invariably
emerges as the bifurcation line is approached: There, each
oscillator becomes more and more sensitive to perturbations,
including coupling to other oscillators. In this regime the
dynamics can be mapped onto that of coupled overdamped
Brownian particles driven by noise with the intensity ∝ h̄, for
low temperatures. In the presence of disorder, the resulting
“potential landscape” has multiple metastable minima. Each
of them corresponds to a broken time symmetry state of the
system.

The rich pattern of symmetry-broken states described here
and the possibility of controlling them by varying the pa-
rameters of the driving field makes the system of parametric
quantum oscillators attractive for studying quantum “time-
crystal” phenomena. As mentioned in the introduction, an
appropriate platform for such studies is provided, for example,
by various well-characterized mesoscopic oscillatory systems
with controlled coupling between the modes. Our results bear
not only on the issue of time symmetry breaking, but also on
general questions of quantum physics far from thermal equi-
librium, including such important problems as nonequilib-
rium quantum phase transitions, quantum-fluctuation induced
microscopic currents in the stationary state, and quantum
diffusion in a potential landscape.
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APPENDIX A: QUANTUM LOGARITHMIC
SUSCEPTIBILITY

In the weak-damping limit, we write the master equation
(10) for the isolated oscillator � as a balance equation for
the populations ρm�

of the eigenstates |m�〉 of the RWA
Hamiltonian

G� = g� + �g�. (A1)

The operator G� describes an isolated parametric oscillator �

driven additionally by a weak field at half the frequency of
the parametric drive. The term �g� is given by Eq. (14); it is
proportional to the weak-field amplitude F ′.

For small λ and F ′, the function G� (Q�, P� ) has two
slightly asymmetric wells (enumerated by σ� = ±1); cf.
Fig. 1(d). There are many eigenstates inside each of the wells
for λ � 1. We consider the states |m�〉 inside one of the wells
and number them so that m� = 0 corresponds to the lowest
state. Coupling to a thermal reservoir leads to transitions
|m� + k�〉 → |m�〉. From Eq. (10), the rates �m�+k� m�

of
such intrawell transitions are given by the squared matrix
elements of the operators a�, a†

� on the corresponding wave
functions,

�m�+k� m�
= 2κ (n̄ + 1)|〈m� |a� |m� + k�〉|2

+ 2κn̄|〈m� + k� |a� |m�〉|2. (A2)

Generally, the rates of transitions with k� > 0 are higher than
with k� < 0. Then the system is more likely to move to
eigenstates with lower G� . This corresponds to the minima
of G� (Q�, P� ) being stable states of the oscillator in the
classical limit.

However, even for zero temperature, in contrast to equilib-
rium systems, transitions away from the minima of G� , i.e.,
with k� < 0, have nonzero rates. They lead to the probability
for an oscillator, starting from deep inside of a well, to reach
the intrawell states near the top of the barrier of G� . From
there, the oscillator will end up in each of the two wells with
probability ∼1/2. The exponent of the switching rate Wσ�

is
thus determined by the population of the intrawell states |m�〉
of the σ� well near the top of the barrier. The logarithmic
susceptibility describes the linear dependence of the exponent
of this population on the field F ′.

It is convenient to seek the state populations ρm�
in the

form ρm�
= exp[−R(G(m� ))/λ], where G(m� ) is the eigen-

value of G� in the state |m�〉. This form of ρm�
is reminiscent

of a Boltzmann distribution, with λ playing the role of the
temperature and R(G) playing the role of the energy. In the
considered nonequilibrium case, R is not a linear function of
G. The populations ρm�

strongly vary with the level number
m� . However, generally, the function R(G) is smooth even for
small λ.

The equation for R(G) can be obtained from the master
equation in the eikonal (WKB) approximation. Equation (A2)
shows that the intrawell transition rates �m�+k� m�

fall off
exponentially fast with |k� |. One can then expand R(G(m� +
k� )) ≈ R(G(m� )) + λk�[ω(G)dR/dG]m�

, which is essen-
tially the eikonal approximation. Here, [·]m�

indicates that the
function of G is evaluated for G = G(m� ); function ω(G) is
the frequency of classical vibrations with a given G. We used
that ω(Gm�

) = λ−1[G(m� + 1) − G(m� )] + o(λ).
In deriving the equation for R(G) one should keep in mind

that changing m� by k� in both subscripts of �m�+k� m�
leads

to a small change that can be disregarded for m� � 1 and
|k� | � m� . Yet another fact is that the intrawell distribution
ρm�

is formed on a timescale ∼1/κ � 1/Wσ�
. Thus, for times

� 1/Wσ�
the populations of the intrawell states are given by

the stationary solution of the balance equation. Using these
arguments, one can derive from Eq. (10) the balance equation
for the intrawell state populations as∑

k�

�m�+k� m�

{
1 − exp

[ − k�[ω(G)dR/dG]m�

]} = 0.

(A3)
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In the WKB approximation that we used, the matrix elements
of the lowering operator a� in Eq. (A2) can be written as

ak�
(m� ) ≡ 〈k� + m� |a� |m�〉

= 1

2π

∫ 2π

0
dφ exp(−ik�φ)a� (G(m� )|φ), (A4)

where a� (G|φ) is the value of a� = (2λ)−1/2(Q� + iP� ) cal-
culated as a classical function of the phase φ = ω(G)τ on the
classical intrawell trajectory with a given G.

Equation (A3) is an algebraic equation for π� ≡
ω(G� )dR/dG� . In the absence of an extra drive ∝ F ′, it
was derived and solved in Ref. [30]. Importantly, in this
equation one can treat λm� ≡ I� as a continuous variable.
To leading order in λ, ω(G� ) = dG�/dI� . The variable I� =
(2π )−1

∮
P�dQ� is the classical action for the intrawell orbit

with a given G� . Equation (A3) does not contain the effective
Planck constant λ; it gives π� = dR/dI� as a function of the
continuous variable I� .

The change of R due to the perturbation �g� can be found
by finding the change ��m�+k� m�

of the intrawell transition
rates compared to their values �

(0)
m�+k� m�

for �g� = 0. In
turn, the rate change comes from the change of the matrix
elements ak�

(m� ). The correction to ak�
(m� ) of first order

in �g� can be obtained from Eq. (A4) using the classical
equations of motion for Q�, P� with the perturbed effective
Hamiltonian g� (Q�, P� ) + �g� (Q�, P� ), which is a standard
problem of classical nonlinear mechanics [47]. An important
simplification is that, in the limit of weak damping, the value
of the momentum in a stable state is P (0)

� = 0. Therefore
the coupling parameters J�� ′ in Eq. (16) are determined only
by the χQ�

component of the logarithmic susceptibility. As
a consequence, as seen from Eq. (14), when calculating the
correction to ak�

(m� ) we can limit the analysis to �g� =
−f ′Q� , i.e., ϕ� = π/2 in Eqs. (14) and (15).

Since the leading-order corrections to the intrawell transi-
tion rates are linear in f ′ ∝ F ′, so is also the leading-order
correction �π� (I� ) to the unperturbed value π (0)

� (I� ). From
Eq. (A3) it has the form

�π� (I� ) = −
∑
k�

��m�+k� m�

{
1 − exp

[ − k�π (0)
� (I� )

]}

×
{∑

k�

k��
(0)
m�+k� m�

exp
[ − k�π (0)

�

]}−1

,

where m� = I�/λ and the rates �(0), �� are considered to be
continuous functions of I� .

The logarithmic susceptibility is

χQ� = 1

f ′

∫ I� max

0
�π� (I� )dI�. (A5)

As indicated above, it is assumed here that �π� is calculated
for the σ� = 1 well of the oscillator [the well of g� (Q�, P� )
with the minimum at Q(0)

� > 0]. The upper limit I� max is the
value of the mechanical action in this well at the barrier top of
g� . In the case of weak damping, the logarithmic susceptibility
depends on two parameters, μ� and n̄. Generally, Eqs. (A5)
and (16) suggest that J�� ′ is not symmetric with respect to
the interchange � ↔ � ′ in the presence of disorder in the
oscillator system.

In the absence of the drive ∝ F ′, the assumption of R being
a smooth function of g� breaks down for a certain range of μ�

in a very narrow range of temperatures; for a resonantly driven
oscillator this range was found to be limited to exp(−1/λ) �
n̄ � λ3/2 [48]. It is important that, for n̄ → 0, the perturbation
�g� does not break the smoothness of R(g� ). One can see
this by showing that the exponent of the decay of the intrawell
transition rates �m�+k� m�

with |k� | is weakly modified by a
weak perturbation. The analysis of the decay is somewhat
involved and will be presented elsewhere. Here we only note
that a weak change of the decay exponent of the rates means
that the sum over k� in Eq. (A3) remains converging rapidly
for R(G� ) close to its value in the absence of the perturbation.

Underdamped dynamics near the bifurcation point

The analysis of Eq. (A3) is greatly simplified if dR/dI� �
1. This happens for μ� close to the bifurcation point μB ,
see Eq. (13); in the limit of weak damping, μB → −1. Here
one can expand the exponential factor in Eq. (A3) to second
order in dR/dI� ≡ ω(G� )dR/dG� . In the absence of an
extra drive the calculation was described in [30]. It can be
immediately generalized to the case where such a drive is
present, as in Eq. (A3). One then finds from Eqs. (A3) and
(A4) that, even before the linearization with respect to f ′,
the resulting expression for dR/dI� is similar to that for a
classical oscillator,

dR

dI�

= 2ω(G� )

2n̄ + 1

2πI�

N (G� )
, I� = 1

2π

∫∫
dQ�dP�,

N (G� ) =
∫∫

dQ�dP�

[
2
(
Q2

� + P 2
�

) − μ�

]
. (A6)

The integration in the expressions for N (G� ) and I� is done
over the interior of the contour G� (Q�, P� ) = G� . Equation
(A6) applies near the bifurcation point because the frequency
ω(G� ) is small, ω(G� ) � 2

√
μ� + 1 � 1, and therefore, as

presumed, dR/dI� � 1. We note also that in the expression
for N (G� ), Q2

� and P 2
� are small, which allows one to easily

find the ratio I�/N (G� ).

APPENDIX B: TURNING UP THE DRIVING AMPLITUDE

To develop a formulation that will allow us to see how the
quantum phase transition occurs on increasing the amplitude
of the driving force, we introduce a scaling amplitude Fs . The
dimensionless parameters of the dynamics are

fp = F

Fs

, μ′
� = ωF (ωF − 2ω� )

Fs

sgnγ,

(B1)
C ′ = |2Fs/3γ |1/2, λ′ = 3|γ |h̄/ωF Fs,

and we define the slow variables as U †(t )[q� +
(2i/ωF )p�]U (t ) = −iC ′(Q� + iP� )e−iωF t/2. This leads
to U † H U − ih̄U †U̇ = (F 2

s /6γ )G′ with

G′ =
∑

�

g′
� (Q�, P� ) + g′

c, g
′
� (Q,P ) = 1

4

(
P 2

� + Q2
� − μ′

�

)2

+ 1

2
fp

(
P 2

� − Q2
�

) − 1

4
μ′2

� . (B2)
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Here, g′
c is given by Eq. (8) for gc in which V�� ′ is replaced with V ′

�� ′ = 2ε�� ′/Fs . The dimensionless time τ , in which the RWA
dynamics is described by the equation dA/dτ = −i(λ′)−1[A,G′], is τ = (Fs/2ωF )t .

For ferromagnetic coupling in a periodic system of identical oscillators (� → �, μ′
� → μ′) in the broken-symmetry state we

have a minimum of G′ at Q� = ±Q(0) ′, P� = 0, with

Q(0) ′ = (fp − fQPT)1/2, fQPT = −μ′ − V ′(0),

ω(k) = [2fp + V ′(0) − V ′(k)]1/2[2fp − 2fQPT + V ′(0) − V ′(k)]1/2. (B3)

Here, V ′(k) is given by Eq. (31) for V (k) with V�� ′ replaced by V ′
�� ′ .

If μ′ is negative and μ′ + V ′(0) < 0, Eq. (B3) leads to a critical value of the scaled driving force amplitude fp = fQPT =
−μ′ − V ′(0) where Q(0) ′ = 0 and the gap in the excitation spectrum (B3) disappears. The analysis of the case fp < fQPT is fully
analogous to that for the case μ < μQPT in Sec. V; in this case Q(0) ′ = 0. The results show explicitly that one can go through
the quantum phase transition by either varying the driving frequency or the driving amplitude.
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