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Abstract

The design of analogue electronic experiments to investigate phenomena in nonlinear
dynamics, especially stochastic phenomena, is described in practical terms. The advantages
and disadvantages of this approach, in comparison to more conventional digital methods,
are discussed. It is pointed out that analogue simulation provides a simple, inexpensive,
technique that is easily applied in any laboratory to facilitate the design and implementation
of complicated and expensive experimental projects; and that there are some important
problems for which analogue methods have so far provided the only experimental approach.
Applications to several topical problems are reviewed. Large rare fluctuations are studied
through measurements of the prehistory probability distribution, thereby testing for the first
time some fundamental tenets of fluctuation theory. It has thus been shown for example that,
whereas the fluctuations of equilibrium systems obey time-reversal symmetry, those under
non-equilibrium conditions are temporally asymmetric. Stochastic resonance, in which the
signal-to-noise ratio for a weak periodic signal in a nonlinear system can be enhanced
by added noise, has been widely studied by analogue methods, and the main results
are reviewed; the closely related phenomena of noise-enhanced heterodyning and noise-
induced linearization are also described. Selected examples of the use of analogue methods
for the study of transient phenomena in time-evolving systems are reviewed. Analogue
experiments with quasimonochromatic noise, whose power spectral density is peaked at
some characteristic frequency, have led to the discovery of a range of interesting and often
counter-intuitive effects. These are reviewed and related to large fluctuation phenomena.
Analogue studies of two examples of deterministic nonlinear effects, modulation-induced
negative differential resistance (MINDR) and zero-dispersion nonlinear resonance (ZDNR)
are described. Finally, some speculative remarks about possible future directions and
applications of analogue experiments are discussed.
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1. Introduction

Analogue simulation provides a method of solving complicated dynamical equations. One
builds an electronic model of the system under study and then investigates its behaviour,
usually under the influence of external forces of some kind, using a digital data processor
to analyse the response. This approach has been found especially useful in relation to
stochastic problems, i.e. those where the system of interest is subject to random fluctuations
(noise), either of external or internal origin. Contrary to a still widespread misapprehension,
analogue simulation does not require large or costly apparatus: an ‘analogue computer’ as
such is no longer needed. Nor is the technique difficult to implement. In this review, we
explain the basis of the method and describe how different variants have been used to address
some selected problems in (mostly) stochastic nonlinear dynamics. First, however, we
discuss in more detail why analogue modelling techniques are valuable, and their advantages
and disadvantages as compared to more commonly used digital methods (Mannella 1997).

A major advantage of analogue simulation is that it readily enables large volumes of
a system’s parameter space to be surveyed quickly for interesting phenomena, often by
turning knobs to adjust the relevant parameters while examining the results on a visual
display; the equivalent procedure with a digital system is often slower and more ponderous.
Usually analogue simulations are used to test theoretical predictions. However, there are
many examples of new physical phenomena and ideas first discovered through analogue
simulations. When noise is added to a strongly nonlinear system, for example, it may
improve not only the transmission of signals through the system, but also the signal-to-
noise ratio measured at the output (Fauve and Heslot 1983)—an observation that in a large
part was responsible for the outburst of work on stochastic resonance (see section 4 later).
Other examples include the idea for the Josephson voltage standard (Kautz 1988, 1996), and
the observations of skewing in the stochastic phase portraits of bistable systems driven by
coloured noise (Moss and McClintock 1985, Mosset al 1986), modulation-induced negative
differential resistance (Dowet al 1987) and noise-induced spectral narrowing (Dykmanet
al 1990a, b). In each of these cases, the phenomenon had not been predicted theoretically,
was not anticipated prior to the experiments and appeared unexpectedly in the analogue
model.

In a sense, analogue simulations lie in between real experiments and digital simulations,
and combine certain characteristic features of each. In both forms of simulation one
investigatesmodel systems. However, the techniques for data acquisition and processing
used in analogue simulation are often exactly the same as those used in the corresponding
experiments on real physical systems. This feature can sometimes be extremely useful,
for example in that it enables the acquisition/analysis software to be developed, tested
and implemented in studies of an analogue model prior to implementing it in the more
complicated environment of a real experiment. Noise-enhanced heterodyning in a fluctuating
nonlinear optical element, for example, was first simulated in an idealized electronic model
(Dykmanet al 1994a) prior to performing the nonlinear optical experiment itself (Dykman
et al 1995a, b).

There is a long-standing and close relationship between studies of fluctuating nonlinear
systems and experiments on electrical circuits. The connections were studied in
radioengineering over several decades, a typical example being the work on fluctuations
in the Thompson generator (Rytov 1956a, b). In fact, it was experiments of this kind
on electronic circuits that were largely responsible for stimulating the development of the
theory of random processes as a whole, yielding a variety of important results some of which
are now being used in quantum electronics. The relationships between electrical circuits
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and the properties of Langevin and Fokker–Planck equations were discussed by Landauer
(1962) and Stratonovich (1963, 1967). In analogue experiments, the static properties of
the electronic system are known (or are assumed to be known), and the problem is to
investigate how it responds to random or periodic forcings. An example of the revealing
role of such simulations can be seen from the analysis (Smytheet al 1983a, McClintock
and Moss 1985, Mosset al 1985b) of the Ito–Stratonovich dilemma (Van Kampen 1990). It
concerns the description of how a system responds to white noise. Any naturally occurring
noise necessarily has a finite correlation time. This is true for the noise used in analogue
simulations. Noise in Langevin equations can be considered effectively white in the limit
where its correlation time is very small compared to the relaxation times of the system, which
corresponds to the Stratonovich prescription. The physical relevance of this prescription
was clearly demonstrated in the analogue simulations. The authors concluded that the
alternative Ito prescription, much used by theorists at that time, was inapplicable to real
physical systems except perhaps in special cases (e.g. equations with delay). In contrast,
when trying to implement similar studies on a digital computer, with the values of the
noise being uncorrelated at different discretized instants of time, it was quickly realized that
any attempt to resolve the dilemma would be fruitless—because it would be necessary for
the programmer tochooseeither the Ito or Stratonovich stochastic calculus in writing the
simulation code, thus pre-selecting the answer.

In contrast to digital simulations, truncation errors do not accumulate in analogue
simulations. Analogue simulations are therefore especially valuable for use, for example,
with fast oscillating systems where the integration time (the time over which data are
accumulated and perhaps ensemble-averaged) substantially exceeds the vibration period,
as in problems involving quasimonochromatic noise (Dykmanet al 1991b, 1993e, and
section 6 later). Although digital techniques can alwaysin principle be made more accurate
than analogue methods, which typically achieve 2–3% accuracy, the relative simplicity
of analogue simulations and their high speed represent significant advantages, particularly
where qualitative results have to be established—as was the case for the ring-laser gyroscope
equation (Vogelet al 1987a), for example, where it was found that analogue results of
satisfactory statistical quality could be acquired in a matter of 15–30 min, whereas numerical
solution of the Fokker–Planck equation took hours of Cray time.

Finally, experience suggests that digital and analogue methods should be regarded as
complementarytechniques for the study of stochastic nonlinear problems. Each has its
own advantages and disadvantages; which of these is emphasized or de-emphasized will
depend on the nature of the system being investigated. As in any experimental study, it is
possible to make mistakes and generate artifacts using either form of simulation. For really
complicated problems it is therefore desirable to use both techniques if possible, with one
acting as a check on the other, to eliminate mistakes or hidden flaws in the algorithm used
for the digital simulation, or misconnections and experimental uncertainties in the analogue
circuit.

In what follows, although we will concentrate mostly on analogue experimental
investigations by the Lancaster group, we would emphasize that the technique has been,
and continues to be, used successfully in many other laboratories. For example, electronic
models have been employed extensively over many years for studies of deterministic
phenomena such as heart rate variability (Van der Pol and Van der Mark 1928), chaos
(Holmes 1979, Linsay 1981, Testaet al 1982, Jeffries and P’erez 1982, Yeh and Kao 1982,
D’Humiereset al 1982, Robinson 1990, King and Gaito 1992, Gomes and King 1992, Heagy
et al 1994), phenomena near period-doubling bifurcations (Jeffries and Wiesenfeld 1985,
Bryant and Wiesenfeld 1986, Vohra and Bucholtz 1993, Vohraet al 1994), and the three-
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photon Josephson junction parametric amplifier (Bryantet al 1987). Modelling techniques
for noise-driven systems were developed by a number of scientists and mathematicians
including, particularly, Morton and Corrsin (1969). The first applications of the technique
in its contemporary form were probably those reported by Sanchoet al (1982), Arecchiet
al (1982), Fauve and Heslot (1983) and Smytheet al (1983a, b). Subsequently, stochastic
analogue modelling has been used by numerous research groups including, for example,
Mitschkeet al (1985), Fronzoniet al (1985), Gammaitoniet al (1989), Anishchenkoet al
(1993) and Carroll and Pecora (1993).

The particular topics chosen as examples for discussion are intended to be representative.
We point out, however, that we have successfully applied the analogue approach to the study
of many other interesting stochastic nonlinear problems, in addition to those mentioned,
including: noise-induced phase transitions (Smytheet al 1983a), stochastic postponements
of critical onsets (Robinsonet al 1985); noise-induced changes in the relaxation times of
bistable systems driven by both white (Sanchoet al 1985) and coloured (Casademuntet al
1987) parametric (i.e. multiplicative) noise; bistability driven by coloured noise (Hanggiet
al 1985, Fronzoniet al 1986); noise-induced postponements of bifurcations in a ring laser
model (Mannellaet al 1987a, c) and in the Brusselator (Fronzoniet al 1987a); the effect of
noise on a Hopf bifurcation (Fronzoniet al 1987b); fluctuation spectra of the double-well
Duffing oscillator (Mannellaet al 1987b, Dykmanet al 1988); Fokker–Planck descriptions
of coloured noise-driven processes (Grigoliniet al 1988); relaxation of fluctuations in the
steady state of the Stratonovich model (Mannellaet al 1988); the effect of noise on the
Fréedericksz transition (Stockset al 1989b); quantum phenomena, via the Ricatti equation
(Stockset al 1989a, 1993a); relaxation near a predicted noise-induced transition, falsifying
(Jacksonet al 1989) an earlier theory and leading to a deeper understanding encompassing
coloured noise (Mannellaet al 1990); supernarrow spectral peaks near a kinetic phase
transition (Dykmanet al 1990e); velocity spectra for Brownian motion driven by coloured
noise in a periodic potential (Igarashiet al 1992); and noise-induced chaos in the Lorenz
model (Fedcheniaet al 1992). Earlier reviews of the application of analogue techniques to
problems in stochastic nonlinear dynamics include those by Fronzoni (1989), McClintock
and Moss (1989) and Mannella and McClintock (1990).

We start, in section 2, by describing the basis of the technique, with the intention of
providing sufficient detail to enable other scientists to apply it in practice. In sections 3–7 we
discuss the use of analogue simulation to illuminate the understanding of several physical
phenomena selected, in part, to demonstrate the ease with which the technique may be
applied to a wide diversity of challenging problems. Finally, in section 8, we summarize
the present status of the work and offer some speculative comments about future directions.

2. Technical details

The aim is to build an electronic model of the system to be investigated, and then to
study its properties, usually while being driven by randon fluctuations (noise) and/or other
external forces. In this section, we sketch the basic principles of circuit design, discuss
noise generators and outline the steps to be taken in analysing the signal(s) coming from
the circuit model.

2.1. Circuit design

The work-horse of modern analogue circuit design is the operational amplifier. For present
purposes, it enables most of the arithmetic operations needed to model the equations of
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interest to be effected in a very convenient and economical fashion. An excellent, detailed,
account of the use of operational amplifiers and other integrated circuits (ICs) will be found
in the book by Peyton and Walsh (1993). Here, just for completeness, we summarize very
briefly the simple circuit configurations that seem to be used most frequently in modelling
operations.
• Addition. Voltages may be added using the general arrangement sketched in figure 1(a).

This example is for three input voltagesV1, V2 andV3 but, in principle, any number may
be used; note that the output is inverted

Vout = −
(
RF

R1
V1+ RF

R2
V2+ RF

R3
V3

)
. (1)

Non-inverting addition is also easy to effect (Peyton and Walsh 1993), through use of the
positive input point, but it is somewhat less flexible in practice; adjustment of the sign is
in any case easy when analogue multipliers (see later) are in use.
• Subtraction. Two voltagesV1 and V2 can readily be subtracted by use of the

arrangement in figure 1(b), for which

Vout =
(
R2

R1

)
(V1− V2). (2)

• Multiplication or division by a constant factorcan be implemented simply by choosing
appropriate ratios of input and feedback resistors,RF/R1 or R2/R1, in the circuits shown
in figures 1(a) and (b), respectively.
• Integration may be effected by use of the Miller integrator of figure 1(c), for which

C
dVout

dt
+ Vin

R
= 0 (3)

so that the output is

Vout = − 1

RC

∫ t

0
Vin dt (4)

with the time constantRC.
• Multiplication of two voltages is most conveniently performed by use of an analogue

multiplier IC, for example the Analog Devices AD534 or the Burr–Brown MPY-100. The
operation of these differential input ICs in multiplier mode can be as sketched in figure 1(d),
for which

Vout = 1

8
(Vx1− Vx2)(Vy1− Vy2)+ (Vz1− Vz2) (5)

where the scale factor8 is used to prevent the product voltage exceeding the specified
maximum. The default value8 = 10 can be adjusted to suit particular situations. In what
follows, multipliers will often be shown in circuit block diagrams as though their inputs
were single-ended (rather than differential). In such cases, the appropriate input terminals
are chosen so as to provide the desired sign of product at the output, and the other terminal
of each pair is earthed.
• Division of two voltages can be performed, using the same multiplier ICs, but

connecting the output back into one of the inputs as shown in figure 1(e), in which case

Vout = 8(Vz2− Vz1)
(Vx1− Vx2)

+ Vy1. (6)

• Trigonometric functionscan be implemented by use of, for example the Analog
Devices AD639 universal trigonometric converter IC, which can be connected to transform
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Figure 1. Mathematical operations with analogue electronic circuits: (a) addition;
(b) subtraction; (c) integration; (d) multiplication of two voltages; (e) division of two voltages;
(f) generation of trigonometric functions; (g) generation of general functions. The respective
transformation equations are given in the text.
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the input voltage into its sine, cosine, tangent, cosecant, secant, cotangent or their inverse
functions. For example, it can be connected as indicated in figure 1(f), where the output
voltage is

Vout = 10 sin[50(V1− V2)] + V3. (7)

Here,V1, V2 andV3 are in volts and the argument of the sine is in degrees. Obviously,
a cosine can be generated by setting either 50V1 or 50V2 to 90◦. A range of±500◦ is
accommodated, but can effectively be extended where necessary by use of an analogue
multiplier IC to generate the double angle (see section 4.4 later).
• General functionscan be created by use of a hybrid analogue/digital device as

sketched in figure 1(g). The required function is held in the erasable programmable read-
only memory (EPROM) as a look-up table. The input voltage is digitized by the analogue
to digital converter (ADC) and used to look up the corresponding number in the EPROM,
which is then converted to a voltage at the output by the digital to analogue converter
(DAC). Devices of this kind have been used, for example, to create trigonometric functions
(Vogel et al 1987b) (before the corresponding converter ICs had become available), and for
creating the potential corresponding to a one-dimensional quantum-mechanical binary alloy
(Stockset al 1993a). The period of the clock used to drive such a device must, of course,
be very much shorter than all characteristic times in the system under study.

In assembling these circuit elements to model a given equation or system of equations,
there are several points to be borne in mind.

(1) To minimize extraneous noise introduced by the circuit itself, the design should be
such as to minimize the number of active components, for example operational amplifiers
or analogue multipliers, as discussed by Fronzoni (1989).

(2) Care must, of course, be taken to ensure that the voltage limits for the various
components are not exceeded. Thus, a typical circuit must operate within manufacturers’
specifications not only under equilibrium conditions, but also when external forces are
driving it far from its stationary state: even the largest excursions to be expected must
remain within design specifications, and not only at the output, but also at all intermediate
points too.

(3) At the same time, care must also be taken to ensure that the signal is, at all points in
the circuit, larger (preferably much larger) than the background noise and drift produced by
the circuit itself. This requirement, taken with the preceding one, means that the dynamic
range of the analogue technique is necessarily limited: the maximum tolerable voltage
swings are typically±10 V, and intrinsic noise is typically±0.5 mV peak-to-peak, giving
an effective dynamic range of 2×104. With careful circuit design, this is more than sufficient
for most purposes.

(4) To speed up data acquisition, it is normal to scale time in such a way that time in
the model effectively runs much faster than real time. In doing so, care must be taken to
remain within the allowed frequency limits of the active components; because the bandwidth
is related to amplitude, it is usually best to compare expected and allowable slew rates.
Again, the validity of operation should be checked at all intermediate points, and not just
at the output.

(5) To reduce the effect of stray capacitance, connections should be made as short and
direct as possible, and the circuit layout planned accordingly. Where a circuit model is
likely to be needed for many different applications, or where particular stability is needed,
it is worth designing and fabricating a special printed circuit board (PCB). In most cases,
however, a simple mounting board into which the components can be inserted (with pressure
contacts) is sufficient, and is of course convenient in that modifications are fast and easy.
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(6) It is usually best to choose resistor values within (or not too far outside) the range
10–100 k�, and capacitance values of at least 100 pF in view of the typical stray capacitance
of a few pF.

Optimization of the design requires that all of the above criteria should be taken into
account, but some degree of compromise between them is usually necessary in practice.
Minimization of the number of active components can often be achieved by making judicious
combinations (in single circuit elements) of the separate arithmetic operations described
above.

To see how a circuit model can be designed in practice, we now consider a particular
example: the underdamped single-well Duffing oscillator used (Dykmanet al 1994c) for
experiments on supernarrow spectral peaks and high-frequency stochastic resonance in a
system with co-existing periodic attractors (see section 4.3 later). The equation to be
modelled is

ẍ + 20ẋ + ω2
0x + γ x3 = F cosωF t + f (t) (8)

where the oscillator is driven by a periodic force of amplitudeF , frequencyωF andf (t)
is the zero-mean white Gaussian noise of intensityD such that

〈f (t)〉 = 0 〈f (t)f (s)〉 = 40Dδ(t − s). (9)

The circuit used to model (8) is shown in figure 2: two integrators are needed because of
the inertial term. The periodic force in the dashed box is set to zero for present purposes
(but it will be needed in section 4.3 in the discussion of high-frequency stochastic resonance
in the same system). We use primes to distinguish times and frequencies in the circuit (in
units of s and Hz) from the corresponding dimensionless times and frequencies that appear
in equation (8). To understand the relationships between quantities in the circuit and in
(8), we sum the currents at point A, and those at point B, and we equate them to zero in
each case (using Kirchhoff’s law and the fact that the input impedance of an operational
amplifier is effectively infinite). For point A

V1

R3
+ f

′(t ′)
R1
+ F ′

R2
cos(ω′F t

′)− V 3
2

20R6
− V2

R5
+ C1

dV1

dt ′
= 0 (10)

and at point B

V1

R4
+ C2

dV2

dt ′
= 0. (11)

Figure 2. A block diagram of an analogue electronic circuit modelling an underdamped single-
well Duffing oscillator (8) (Dykmanet al 1994c).
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Using (11) to substitute forV1 in (10), we obtain

C1R4C2
d2V2

dt ′2
+ R4C2

R3

dV2

dt ′
+ V2

R5
+ V 3

2

20R6
− f

′(t ′)
R1
− F ′

R2
cos(ω′F t

′) = 0. (12)

The component values used in the circuit were

R1 = R4 = R5 = 2R6 = R2

10
= R0

10
= 100 k�

R3 = 2.5 M�

C1 = C2 = 1 nF.

Thus equation (12) may be written

τ 2 d2V2

dt ′2
+ 20τ

dV2

dt ′
+ V2+ V

3
2

10
= F ′

10
cos(ω′F t

′)+ f ′(t ′) (13)

where

τ = R1C1 = R4C2 0 = R1

2R3
. (14)

It can be seen, therefore, that with the transformations

V2→ x t ′ → τ t ω′F → ωF/τ F ′ → 10F f ′(t ′)→ f (t) (15)

(13) goes over into (8) withω0 = 1 andγ = 0.1. Note that the multiplication ofV 2
2 by ×5

(figure 2) is used to prevent theV 3
2 term being too small compared to background noise and

voltage offsets in the circuit, following the additional scaling by 0.1 in the second multiplier.
The relatively large value ofR3 = 2.5 M� was used to obtain a small value of the damping
constant0. Under these circumstances, it is better tomeasurequantities like0 and ω0

for the completed circuit (McClintocket al 1993), treating it as an experimental object in
its own right, rather than just calculating them from component values; the measured and
calculated values typically agree to within±10%.

2.2. Noise generators

Experiments are often undertaken to model systems driven by white noise. In reality, of
course, white noise—with zero correlation time and thus a power spectrum that remains
flat up to infinite frequency—is an idealization. Noise in real physical systems always
has a finite correlation time, and correspondingly a roll-off in the power spectrum above
some characteristic frequency. Provided that the correlation time of the noise is much
smaller (e.g. by a factor of 30) than all characteristic times (the vibration period(s) for an
underdamped system, or the relaxation time(s) for an overdamped one), the noise can be
considered quasi-white and its effects will be indistinguishable from those of white noise
with the same intensity.

A number of commercial noise generators have been used for experiments in
stochastic nonlinear dynamics. These have included the Quan-Tech model 420 (no longer
manufactured) and, more recently, the Wandel and Goltermann† model RG1. The latter
produces Gaussian noise with a power spectrum that is flat to within±0.5 dB up to 108 kHz;
above this frequency, there is a very fast roll-off. It possesses the advantage that the output
is genuinely random, with an essentially infinite repetition period. At the same time it
has the disadvantages that there is significant ‘sag’ of the power spectrum (though within
specification) in the intermediate frequency range and that it is relatively expensive.

† Wandel u. Goltermann, 7410 Reutlingen, Germany.
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For many purposes, however, a much cheaper and simpler ‘home-made’ noise generator
will suffice which, in some respects, is actually superior. This is the device used and
described by Faettiet al (1984, 1985) and Fronzoni (1989). It is based on the generation
of a pseudo-random sequence by a linear-feedback shift register (Golomb 1967); the
dichotomous (two-state) output is then filtered through a Miller integrator to produce (Rice
1944) the Ornstein–Uhlenbeck (i.e. exponentially correlated) noise. In its original form, the
dichotomous noise suffered from asymmetry in that the times spent in the upper and lower
states were systematically different on account of the OR-feedback being used (Tomlinson
and Galvin 1975). Consequently, the distribution function of the approximately Gaussian
noise created after passage through the filter suffered from significant skewness. Faettiet al
(1985) showed that this problem could be overcome by randomly inverting the sign of the
feedback voltage between EX-OR and EX-NOR. A version of this device (figure 3) used
at Lancaster (Casademuntet al 1989c) employs the output from two different stages of the
same 17-stage feedback shift register (SR1) as feedback inverters for two separate 41-stage
(Freeman 1988) shift registers (SR2 and SR3). In this way, two independent pseudo-random
pulse sequences are obtained which, after filtration, provide uncorrelated pseudo-white noise
sources. With a clock frequency of∼4 MHz, and the filter time constants set to give a
cut-off above 40 kHz, the distribution functions at the output are Gaussian to more than
±4 standard deviations and the repetition time of the pseudo-random time sequences is
∼6.5 days. There is no detectable ‘sag’ in the power spectrum. It is essential to remember
that these noise generators should not be used for experiments whose duration exceeds the
repetition time; in all other respects, however, they have been found entirely satisfactory.

The root-mean-square (RMS) amplitude of the Ornstein–Uhlenbeck noise being applied
to a circuit model can conveniently be measured with a true RMS to DC converter such as

Figure 3. A block diagram of the linear-feedback shift-register digital noise generators used
at Lancaster, based on a design developed in the University of Pisa (Faettiet al 1984, 1985;
Fronzoni 1989). Pseudo-random dichotomous (two-level) pulse sequences are generated by the
41-stage feedback shift-register SR2. The high-cut filter converts this dichotomous noise to an
output that is Gaussian and exponentially correlated, with a correlation timeR2C2. The first
feedback shift register SR1 pseudo-randomly inverts the sign of the feedback in SR2, thereby
eliminating skewness of the distribution. An additional 41-stage feedback shift register SR3
(not shown), taking its inverting input from stage 9 of SR1 but otherwise connected exactly
like SR2, provides a second independent noise source. FF is a flip-flop that divides the 4 MHz
clock frequency by a factor of 32, and X1–X4 are exclusive-OR gates. The low-frequency
cut-off, determined byR1C1, is fixed at∼1 Hz, and the high-frequency cut-off is adjustable.
The output noise finally passes through a variable-gain operational amplifier (not shown) before
being applied to an experiment.
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the Analog Devices AD536A IC. It is then necessary to relate this value (in volts) to the
intensityD of white noise appearing in model equations such as (8) and (9). To do so, we
note that Ornstein–Uhlenbeck noise is exponentially correlated, with

〈f (t)f (s)〉 = 20D

τN
e−|t−s|/τN (16)

whereτN is the correlation time. Thus, the mean-square noise amplitude is

〈f 2(t)〉 = 20D

τN
. (17)

But the circuit operates in scaled time, so that

τN = τOU

τ
(18)

whereτOU is the measured or calculated correlation time of the noise (in seconds), andτ is
the time scaling of the model, given by equation (15) in the example in section 2.1. Hence,

D =
(
τOU

20τ

)
〈f 2(t)〉. (19)

Here,〈f 2(t)〉 can be measured directly. Values of all the other parameters are also known,
because they can be calculated from the component values or measured directly. Thus (19)
provides the required connection betweenD and the RMS noise voltage measured by the
true RMS to DC converter IC.

Note that the fast roll-off of some commercial noise generators, such as the Wandel
and Goltermann model mentioned above, means that they do not produce Ornstein–
Uhlenbeck noise as they stand. Passage of the output through a Miller integrator with a
time constant of at least∼1 ms (for a roll-off at 100 kHz) will perform the necessary
conversion. If the integrating filter has a smaller time constant than this, however,
misleading results can be obtained: the output may seem to correspond to Ornstein–
Uhlenbeck noise, but it is deficient in high-frequency components, so there is likely to
be poor agreement between the apparentD measured for the model and theD that appears
in the equations.

2.3. Signal acquisition and analysis

Analysis of the behaviour of the circuit model usually involves two main stages: digitization
of the analogue signalx(t) (V2(t) in the above example); and then processing of the resultant
digital time series to extract the particular information required, which is often in the form
of a statistical distribution.

The first 12 years of stochastic/nonlinear research by the Lancaster group, including a
large proportion of the work described below, depended on the use of Nicolet data processors
(models NIC-80, NIC-1180 and NIC-1280) both to digitize and analyse the signals. These
were quite remarkable instruments for their time, but are now obsolete and are currently
being replaced by PC-based equivalent systems with enhanced capabilities.

There is now a very wide range of ADC cards available for operation in PCs. From
time to time, helpful reviews are published (see, for example, Barton 1991, Rand 1994)
which may help in the selection of the most suitable device for a particular application.
Amongst other factors, it will be necessary to consider: the number of bits required for
the digitized signal (12-bits has been standard, but 16-bit ADCs are now becoming more
widely available); the minimum sample interval (values below 1µs are not normally
needed, and 10µs is short enough for most purposes), the speed limits being largely
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determined by those of the standard ICs used for the models, and the fact that the latter
usually involve open mounting boards without optimized high-speed component layout; the
maximum block size (number of consecutive data samples without gaps) required, which
in some cases will involve continuous acquisition (no data gaps); and whether or not a
digital signal processing (DSP) or other type of co-processor is required on the card. If
fast data acquisition without gaps—coupled with intensive processing—is needed, a co-
processor is likely to be essential. The advantage is that most of the data processing can
then take place on the card itself, with relatively infrequent transfers of input data and
ensemble-averaged distribution to the main memory. The PC’s central processing unit
(CPU) thus remains free to operate displays of the input and averaged data, interact with
the user, and service the ‘housekeeping’ needs of the operating system. If the required
distributions are of a conventional kind (e.g. power spectra), a DSP co-processor is likely
to be best. For creating less common types of distribution (see later), a more flexible
type of co-processor is likely to be preferable. The systems currently in use and under
development at Lancaster are based on the Microstar† model DAP 3200a/415 (12-bit)
and DAP 3216/415 (16-bit) ADCs, each of which incorporates an on-board 100 MHz
Intel 486DX co-processor.

In practice, most of the experiments require purpose-designed software. Thus, although
single-variable probability distributions or power spectra may be available as parts of
commercial packages, the numerous other types of distribution that are of interest will
in most cases need to be programmed specially. These will include (see later), for example,
prehistory probability densities, time-evolving distributions in one or more variables, first
passage time distributions, sojourn time distributions for two-variable systems with two or
more attractors, provision for measuring a variety of distributions related to the centre-of-
motion of a system driven by quasimonochromatic noise (QMN), and many others. Even for
seemingly standard applications, minor but essential variations in the required processing
may necessitate coding the software specially, for example the need to subtract a time-
domain ensemble average of the inputbefore processing each block to calculate power
spectra. In any case, to optimize the rate of data acquisition/processing, it will often be
necessary to design a system that will exploit a co-processor to do most of the work as
described above, which will not usually be possible with a standard package. The particular
advantage of the Microstar co-processor is that it may be programmed using the same
compilers and support software that are already in use with the host PC, which simplifies
the task considerably.

3. Large rare fluctuations

Perhaps one of the most convincing demonstrations of how simple analogue electronic
techniques can be used to develop a new experimental approach, and to obtain direct
experimental insight into long-standing problems of fundamental importance, is through
its application to the investigation of large fluctuations.

3.1. The concept of large fluctuations

The concept of large fluctuations was discussed by Boltzmann (1904). In a great many
cases, the characteristic fluctuation intensityD is small, and large fluctuation events, in

† Microstar Laboratories Inc, 2265 116th Avenue NE, Bellevue, WA 98004, USA; and see
http://www.mstarlabs.com/. The UK distributor is: Amplicon Liveline Ltd, Centenary Industrial Estate,
Hollindean Road, Brighton BN2 4AW.
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which the system moves far away from its stable state(s) in the phase space, are very rare.
Although infrequent, large fluctuations can be responsible for big qualitative changes in
a system, and they therefore play a crucial role in numerous important phenomena, for
example nucleation at phase transitions, chemical reactions, mutations in DNA sequences,
protein transport in biological cells and failures of electronic devices.

In many cases the fluctuating systems of interest are far from thermal equilibrium.
Examples include lasers, pattern forming systems (Cross and Hohenberg 1993), trapped
electrons which display bistability and switching in a strong periodic field (Gabrielse
et al 1985, Dehmelt 1990, Tan and Gabrielse 1993) and spatially periodic systems
(ratchets) which display a unidirectional current when driven away from thermal equilibrium
(Magnasco 1993, Astumian and Bier 1994, Millonas and Dykman 1994, Prostet al 1994,
Doering et al 1994, Leibler 1994, Millonas 1995, Hondou and Sawada 1995, Marchesoni
1996, Dykmanet al 1997a). Other examples are discussed in section 4 in the context of
stochastic resonance.

The analysis of large fluctuations requires the solution of two closely interrelated
problems. The first is the evaluation of the probability densityρ(x) for a system to occupy
a statex far from the stable statexst in the phase space. In the stationary regime, the
function ρ(x) is independent of time and has a maximum atxst. The tails ofρ(x) are
determined by the probabilities of large fluctuations.

The other problem is that of thefluctuational pathsalong which the system moves
when a large fluctuation occurs. The distribution of fluctuational paths is a fundamental
characteristic of the fluctuationdynamics, and its understanding paves the way to developing
techniques for controlling fluctuations. Its importance for gaining insight into the physics
of fluctuations from a dynamical perspective was recognized more than 40 years ago by
Onsager and Machlup (1953). A theoretical understanding, and basic techniques for treating
the problem, have been developed since that time; but it was not until recently (Dykman
et al 1992c) that a method for observing the distribution of fluctuational paths for large
fluctuations was proposed and implemented by analogue simulation.

A simple qualitative idea behind the theory of large fluctuations in noise-driven systems
is that such fluctuations result from large outbursts of noisef(t) that push the system
far from the attractor. The probabilities of large outbursts are small, and the value of
the probability densityρ(xf ) for a given remotexf will actually be determined by the
probability of themost probableoutburst of those capable of bringing the system toxf .
This particular realization of noise is just the optimal fluctuational forcefopt(t) for the given
xf . Because a realization (a path) of noisef(t) results in the corresponding realization
of the dynamical variablex(t) (Feynman and Hibbs 1965), there also exists an optimal
path xopt (t;xf ) along which the system arrives atxf , with overwhelming probability.
From a different perspective, optimal pathsxopt (t;xf ) were first described for nonlinear
non-equilibrium Markov systems by Ventcel’ and Freidlin (1970). (Note that ‘Ventcel” is
often, and more correctly, spelled Wentzell in the literature.) Using another approach, the
analysis of the tails of the distribution was also performed by Graham (1973), whereas the
approach described above was suggested independently by Dykman and Krivoglaz (1979)
in the context of escape from a metastable state. This approach is not limited to Markov
systems (Dykman and Krivoglaz 1984, Dykman 1990). For systems driven by Ornstein–
Uhlenbeck noise, optimal paths were discussed by Luciani and Verga (1987, 1988), Tsironis
and Grigolini (1988), Bray and McKane (1989), McKane (1989), Wioet al (1989), McKane
et al (1990), Brayet al (1990) and Luckock and McKane (1990), whereas an equivalent
eikonal formulation was developed by K losek-Dygaset al (1988a, b, 1989). The general
case of Gaussian noise was discussed by Dykman (1990) and Dykman and Smelyanskiy
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(1998a) (see section 6) and by Einchcomb and McKane (1994, 1995). Reviews of related
work on fluctuations in systems driven by coloured noise were given by Lindenberget al
(1989b) and by Dykman and Lindenberg (1994).

The major qualitative result of the theory of optimal paths in classical systems is that
these paths are real physical trajectories (see Dykman 1990). Although the arrival at a
given statexf is the result of a fluctuation, the motion on the way to this state is essentially
deterministic. It occurs in real time, in the space of the dynamical variables of the system.
In other words, if we find a system in a given state far from an attractor, and we know that
the system had been fluctuating about that attractor for a time much longer than either the
relaxation time or the correlation time of the fluctuating bath (or the driving noise), then
we can tell with high probabilityhow the system moved to this state. To some extent this
statement is counterintuitive, as our daily experience tells us (Lebowitz 1993) that, if we
find the system far away from its stable equilibrium, it means that it had been prepared even
further away from equilibrium, and we just happened to find it on its way to equilibrium.
However, as shown by Einstein (1910), large fluctuations may still happen even in the
equilibrium state, at the expense of a (very unlikely, yet possible) decrease in entropy.
The optimal path concept shows that this decrease develops in time in a certain optimal
way.

Optimal fluctuational paths are a counterpart of the relaxational paths in the absence of
fluctuations, and they have also much in common with rays in geometrical optics and with
WKB trajectories in quantum mechanics. Optimal fluctuational paths and rays both represent
the most likely ways to be followed. Formally, they are the paths that provide extrema
to certain functionals (the least action principle). The pattern of rays in optics displays
singularities (Berry 1976, 1977), and therefore similar singularities might be expected in
the pattern of optimal paths. And indeed, they seemed to appear when the appropriate
equations of motion were solved formally (Jauslin 1987b, Day 1987, Chinarovet al 1993,
Maier and Stein 1993a, b, 1996b). It gave rise to concern about the applicability of the
method near singularities (Risken 1993). However, it was soon realized that theobservable
singularities of the pattern of optimal fluctuational paths may be different from those in
geometrical optics (Jauslin 1987b, Dykman 1990). It was shown recently that, for Markov
systems, the singularities can be understood and classified using topological arguments
(Dykman et al 1994d, Smelyanksiyet al 1997a). Nevertheless, the very prediction of an
onset of singularities is a challenge to experiment.

The notion of the optimal fluctuational path being a counterpart of the relaxational path in
the absence of fluctuations has long been a major tool for tackling fluctuation dynamics. Yet,
until recently, there was no direct experimental evidence in support of the idea. Arguably,
therefore, the theory was based on an act of faith. One experimental problem was that, if
the noise intensity is too small, it is hard to obtain good statistics for arrivals of the system
at a remote state whereas, if the noise intensity is too large so that the required fluctuations
happen often, the notion of the optimal path becomes irrelevant. Another problem was that
experiments on optimal fluctuational paths could not be undertaken systematically until the
appropriate statistical quantity, the prehistory probability distribution (Dykmanet al 1992c),
had been introduced.

In this situation, analogue electronic models have provided an ideal opportunity for
the development of new experimental techniques, based on measurements of the prehistory
probability distribution. As we shall see, they led to the first direct experimental observations
of the dynamics of large fluctuations in noise-driven systems. Note that similar behaviour
is to be expected not only of noise-driven systems, but of other fluctuating systems as
well.
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3.2. Prehistory probability distribution

To investigate the dynamics of large fluctuations in the stationary regime, one may adopt
an approach (Dykmanet al 1992c) in which one accumulates the information about all
arrivals of the system in the close vicinity of a chosen statexf . In the experiments the
state of the system is monitored continuously. Two such events, where the trajectory of a
one-variable system passed throughxf , are shown in figure 4. The interesting region of the
path—the fluctuational partf coming toxf—is then stored. An ensemble-average of such
trajectories (see later), built up over a period of continuous monitoring (typically weeks),
creates theprehistory probability distributionph(x, t;xf , tf ) (Dykman et al 1992c). If a
pointxf lies far from the attractor, so that the stationary probability densityρ(xf ) is small,
the time intervals between successive passages ofxf will be large; they will considerably
exceed both the characteristic relaxation time of the system,τr, and the noise correlation
time, τc. The arrivals of the system atxf are, therefore, mutually uncorrelated. Since the
moment of observationtf is the only instant of time singled out under stationary conditions,
the prehistory probability distribution can be consistently defined as the probability density
ph(x, t;xf tf ) ≡ ρ(xi , ti;x, t;xf , tf ) of the system being atx at time t if it was atxf at
time tf (wheretf > t), with ti →−∞, andxi close to the attractorxeq.

Figure 4. Fluctuational behaviour measured and calculated for a simple one-dimensional model
equilibrium system: the double-well Duffing oscillator withK(x) = x − x3, for D = 0.014 in
(21), (32). Two typical fluctuations (jagged lines) from the stable state atS = −1 to the remote
statexf = −0.1 and back again are compared with the calculated deterministic relaxational path
from xf to S (full, smooth, curve) and the calculated time-reversed relaxational path fromS to
xf (dashed curve) (Luchinsky 1997).

We stress thatph(x, t;xf , tf ) is not a standard two-time transition probability: it is given
by a ratio of the transition probabilityρ(xf , tf ;x, t | xi , ti), (the conditional probability
density for a system placed initially atxi to pass through the statesx and xf at the
instantst and tf , respectively), to thetwo-time transition probabilityρ(xf , tf | xi , ti), with
the limit being taken in which the initial instantti goes to−∞ (however, in the case of
fluctuations from a metastable state we assume that the time intervaltf − ti is less than the
lifetime of the state). A similar ratio of transition probabilities was considered for Markov
processes by Schulman (1991) in order to clarify discussions about the relationship between
the thermodynamic and cosmological arrows of time.
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In the original paper (Dykmanet al 1992c) the distributionph(x, t;xf , tf ) was
introduced in such a form that the definition applies both to Markov and non-Markov
systems, as the distribution is expressed in terms of the probability density functional
P[x(t)] of the pathsx(t) of a noise-driven system,

ph(x, t;xf , tf ) = ρ(xf , tf ;x, t | xi , ti)/ρ(xf , tf | xi , ti)

ph(x, t;xf , tf ) =
∫ x(tf )=xf

x(ti )≈xeq(ti )

Dx(t ′)δ(x(t)− x)P[x(t)]

×
(∫ x(tf )=xf

x(ti )≈xeq(ti )

Dx(t ′)P[x(t)]

)−1

ti →−∞. (20)

We note that the initial value ofx(ti) for t →−∞ in (20) may in fact be arbitrary, provided
(t − ti) and (tf − ti) substantially exceedτr andτc, so that the system becomes randomized
and will have forgotten its initial position before the start of the fluctuation bringing it toxf
at tf . In this section we will limit our analysis to Markov processes, and we will consider
two types of systems: stationary and periodically driven. In the latter case the position of
the stable statexeq(t) in (20) is a periodic function of time, and we will assume that it has
the same period as the driving force.

The physical significance of the prehistory probability densityph(x, t;xf , tf ) follows
from the fact that, since the optimal pathxopt(t − tf ;xf ) is the most probable path for
reachingxf , the functionph(x, t;xf , tf ) at a givent − tf should have a sharp maximum
in x lying on that path,x = xopt(t − tf ;xf ). Therefore, by investigating the prehistory
probability densityph(x, t;xf , 0) experimentally one can find not only the optimal paths
themselves, but also test immediately the very concepts of the optimal path and the optimal
fluctuation, and establish the range of parameters and the area of phase space within which
optimal paths are well defined, i.e. where the tube of fluctuational paths around an optimal
path is narrow.

A model fluctuating system which is convenient for simulations and which makes it
possible to reveal optimal paths and singular features of the distribution of paths is an
overdamped Brownian particle driven both by a regular forceK(x, t) and by a random
force with the same number of independent components as the number of the particle
coordinates. We will assume the regular force to be time periodic and/or non-gradient, in
general. The Langevin equation of motion of the system is of the form

ẋ =K(x, t)+ f(t) (21)

〈fi(t)〉 = 0 〈fi(t1)fj (t2)〉 = Dδij δ(t1− t2).
We assume the random forcef(t) to be a zero-mean white Gaussian noise, of intensityD.

The model (21) describes the fluctuational dynamics of a wide class of macroscopic
dissipative systems (Zwanzig 1973, Haken 1975, Kuboet al 1978, Risken 1993). It has
numerous counterparts in spatially extended systems, in which casex is a coordinate-
dependent field (an order parameter), as discussed by Hohenberg and Halperin (1977) and
Cross and Hohenberg (1993) (see the papers by Graham and Tél (1990) and Smelyanskiy
et al (1997b) and references therein for a discussion of the work on large fluctuations in
continuous systems lacking detailed balance).

The probability density functional for a Markovian system (21) can be written as

P[x(t)] = exp(−S[x(t)]/D). (22)

To lowest order in the noise intensity,S[x(t)] takes the form of the action functional for an
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auxiliary dynamical system with the LagrangianL(ẋ,x; t) (Freidlin and Wentzell 1984):

S[x(t)] =
∫ tf

ti

dt L(ẋ,x; t) L(ẋ,x; t) = 1

2
[ẋ−K(x; t)]2. (23)

A simple way to obtain equation (23) is to note that the probability density functional for
white noisef(t) is of the form (cf Feynman and Hibbs 1965)

Pf [f(t)] = exp

(
− 1

2D

∫
dt f2(t)

)
. (24)

To find the functionalP[x(t)] for large fluctuations ofx one can just expressf(t) in (24)
in terms ofx(t) using the equation of motion (21) (Dykman and Krivoglaz 1979) (the
Jacobian of the corresponding transformation gives a correction toS of orderD).

The optimal fluctuational pathxopt(t | xf , tf ) along which the system arrives at the
point xf at the instanttf is the path that provides the minimum toS[x(t)]. It is given by
the solution of the variational problem

δS[x]

δx(t)
= 0 xopt(tf | xf , tf ) = xf (25)

xopt(ti | xf , tf )→ xeq(ti) for ti →−∞.
The variational equation of motion of the auxiliary system (25) can be written in the
Lagrangian form, or one can use the equations of motion in the Hamiltonian form.
According to (25) the Hamiltonian equations take on the form (Ventcel’ and Freidlin 1970)

dx

dt
= ∂H

∂p

dp

dt
= −∂H

∂x

dS

dt
= 1

2
p2

H ≡ H(x,p; t) = ẋp− L(ẋ,x; t) = 1

2
p2+ pK(x; t) (26)

p = ẋ−K(x; t).
The boundary conditions follow from the condition that the optimal path starts from the
stable state asti →−∞, and therefore

x(tf ) = xf (27)

x(ti)→ xeq(ti) p(ti)→ 0 S(ti)→ 0 for ti →−∞.
The functionS[x]/D evaluated along the optimal path determines the logarithm of the
stationary probability distribution of the systemρ(x) (for periodically-driven systems, the
stationary distribution depends periodically on time),

ρ(x) = constant× exp(−S[xopt(t | x, t)]). (28)

Therefore, minS[x] is similar to the thermodynamic potential, and following Graham’s
suggestion (Haken 1975, Graham 1973, 1989) it is sometimes called a non-equilibrium
potential.

In fact, equations (26) and (27) describeextremefluctuational paths.Optimal paths
provide theglobal minimum to the actionS[x]. It is clear from (20) and (28) that, for
smallD, these are optimal paths that possess physical significance, and not just extreme
paths (26).
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3.2.1. System in equilibrium with thermal bath.The equations of motion (26) can easily be
solved if the system is in equilibrium with a thermal bath, in which case the forceK(x, t)
is independent of time and is a gradient force, i.e.K(x, t) = −∇U(x), so that

ẋopt =∇U(xopt) popt = 2∇U(xopt) S(x) = 2U(x). (29)

It can be seen that the optimal fluctuational trajectory in this case is a mirror image (with
respect to time) of the deterministic relaxational trajectoryẋ = −∇U(x). This is a
consequence of the principle of the symmetry of fluctuations with respect to time inversion
for classical systems in thermal equilibrium in the absence of magnetic fields and rotation
(Landau and Lifshitz 1980); see also section 3.2.3.

The existence of such optimal paths has been tested experimentally (Dykmanet al
1992c) by investigation of the fluctuations of an electronic circuit modelling the system of
interest, for which the system (21) corresponded to one-dimensional motion in the quartic
bistable potential

U(x) = − 1
2x

2+ 1
4x

4 (30)

driven by external white noise. Because no additional forces were applied, the system
could be considered to be in thermal equilibrium at a temperature determined by the noise
intensity and the damping constant, which are linked by the fluctuation dissipation theorem
(Landau and Lifshitz 1980). The corresponding Langevin equation

ẋ = x − x3+ f (t) 〈f (t1)f (t2)〉 = Dδ(t1− t2) (31)

was modelled with the circuit shown in figure 5(a). It is similar to that for the underdamped
Duffing oscillator (figure 2), except that it contains only one integrator and that there
is (for now) no periodic driving force. The equations for the points A and B are
respectively

C
dV2

dt ′
+ 1

R1
f ′(t ′)+ 1

R2
V1 = 0

1

10R
V1+ 1

10R
V2+ 1

R
V3 = 0.

Noting (see figure 5(a)) that

V3 = −V
3

2

10
it is straightforward to show that

dV2

dt ′
+ f

′(t ′)
R1C

+ V 3
2

R2C
− V2

R2C
= 0.

By making the transformationsV2 → x, t ′ → τ t , f ′(t ′) → f (t) as before, and choosing
the circuit component values

R = 10 k� R1 = R2 = 100 k� C = 10 nF τ = CR1

we then arrive at equation (31).
Starting with the system in the close vicinity of one of the stable states (xi ≈ ±1),

successive blocks ofx(t) time series were digitized with a Nicolet LAB80 data processor
(a member of the NIC-80 series), and examined. The moment at whichx(t) eventually
reached a pre-set valuexf was noted, and the path by which it had reached that point
was recorded. The process was then repeated, so as to build up an ensemble average of
the paths leading toxf . A typical example of the resultant prehistory probability density
ph(x, t; xf , 0) is shown in figure 5(b). These results demonstrated (Dykmanet al 1992c) for
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(a)

(b)

Figure 5. (a) A block diagram of an analogue electronic circuit modelling an overdamped
double-well Duffing oscillator (21) and (32) (Dykmanet al 1992c) either with, or without, the
periodic forceA cos(ω′t ′); (b) the prehistory probability densityph(x, t; xf , 0) for (21) and (32)
(Dykman et al 1992c) measured forA = 0 in the analogue electronic experiment for a final
positionxf = −0.30 withD = 0.0701.

the first time that optimal fluctuational paths are physically observable, and that using the
new theoretical and experimental technique based on the prehistory probability distribution,
it should be possible, in principle, to check many fundamental tenets of the theory of large
fluctuations. Note that, although this experimental investigation, like all of the Lancaster
nonlinear research up to 1996, was carried out with a Nicolet data processor, the more recent
studies of large fluctuations described below depend on the PC-based Microstar ADC system
described in section 2.3.

3.2.2. System without detailed balance.For a non-potential or time-dependent force
K(x; t) the Hamiltonian equations (26) with boundary conditions (27) become non-
integrable, generally speaking. The solutions of these equations can only be obtained in
special cases, like in the case where the initial fluctuating system is underdamped (Dykman
and Krivoglaz 1979, Ben-Jacobet al 1982) or where the drift coefficientsK have a special
symmetry (Ventcel’ and Freidlin 1970, Graham and Tél 1986). In general, when solving the
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Hamiltonian equations one should be prepared to obtain singularities known in geometrical
optics (Berry 1976), and also chaos. However, as we have mentioned before and will also
outline later, theobservablesingularities in the pattern of optimal paths turn out to be
different (Dykmanet al 1994e).

It was first appreciated by Graham and Tél (1984a, b) that, since the simplest non-
integrable Hamiltonian system is the one with one degree of freedom and with the
Hamiltonian that periodically depends on time (Guckenheimer and Holmes 1983), the
simplest fluctuating system which may display singularities in the stationary probability
distribution is an overdamped periodically-driven system with one degree of freedom.
Respectively, the pattern of optimal paths of such a system should display singularities
as well (Dykmanet al 1996c, 1997a).

The simplest appropriate model is that of an overdamped fluctuating system driven by
an additive sinusoidal force,

ẋ = K(x; t)+ f (t) K(x; t) = −U ′(x)+ A cos�t

U(x) = − 1
2x

2+ 1
4x

4. (32)

The model (32) has attracted a lot of attention recently in the context of stochastic resonance
(see section 4). We consider a situation that is bothnon-adiabaticand nonlinear: neither
� nor A need be small; only the noise intensityD will be assumed small.

Since the HamiltonianH(x, p; t) is periodic in t , the set of paths{x(t), p(t)} is also
periodic: the paths that arrive at a point (xf , tf ) are the same as the paths that arrive at the
point (xf , tf + 2π/�), but shifted in time by the period 2π/�. Note, however, that any
given individual optimal path is not itself periodic in time.

To acquire topological insight into the pattern of singularities of optimal paths (Dykman
et al 1994e, Dykman and Smelyanskiy 1998b) we note that trajectories emanating from
a stationary state lie on a Lagrangian manifold (LM) (Arnol’d 1978) in phase space
(x, t, p = ∂S/∂x) (the unstable manifold of the corresponding state) and form a one-
parameter set. The actionS(x, t) is a smooth single-valued function of position on the LM.
It is a Lyapunov function: it is non-decreasing along the trajectories of the initial system
in the absence of noisėx = K(x; t). The projections of trajectories in phase space onto
configuration space form the extreme paths. Optimal paths are the extreme paths that give
the minimal action to reach a given point (x, t) in the configuration space. These are the
optimal paths that can be visualized in an experiment via measurements of the prehistory
probability distribution.

A periodically-driven system, being a system with 1.5 degrees of freedom (the coordinate
and time), provides a good opportunity to look into (at least some of) the generic singularities
of the optimal paths. The pattern of extreme paths, the LM and action surfaces calculated
(Dykmanet al 1997c) for the overdamped periodically-driven oscillator (32) are shown in
figure 6. It can be seen from figure 6 that, although there is only one path to a point (x, t, p)
in phase space, several different extreme paths may come from the stationary periodic state
to the corresponding point (x, t) in configuration space. These paths cross each other. This
is a consequence of folding of the Lagrangian manifold.

A generic feature related to the folding of LMs is the occurrence ofcaustics in the
pattern of extreme paths. Caustics are projections of the folds of an LM. They start at cusp
points. Clearly, the area of the configuration space behind a caustic may not be reached
along the paths that encounter it. If these paths formed the probability distribution in the
corresponding range of dynamical variables, this distribution would be singular: the situation
here is different from that with caustics in the WKB, as, in contrast to the wavefunction
which is decaying on one side of the caustic and oscillating on the other side, the probability
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Figure 6. From top to bottom: action surface, Lagrangian manifold (LM) and extreme paths
calculated for the system (32) using equations (26) with the initial conditions discussed by
Dykmanet al (1997b, c). They correspond to the analogue electronic circuit in figure 5(a), but
with a periodic external force added as shown in that figure in the dashed box. Parameters for
the system were:A = 0.264, ω = 1.2. To clarify interrelations between singularities in the
optimal paths pattern, action surface and LM surface, they are shown in a single figure: the
action surface has been shifted up by one unit, and the LM scaled by a factor 1/2 and shifted
up by 0.4.

distribution may not oscillate. Therefore, encountering a caustic is inappropriate, on a
physical basis, and one would expect that the caustic should be ‘hidden’.

The avoidance of caustics was analysed by Dykmanet al (1994e) and can be understood
from figure 6. It can be seen in figure 6 that the folds of the LM merge at the cusp point.
The structure of an LM with two folds merging at the cusp gives rise to a swallowtail-type
singularity in the action surface. The spinode edges of the action surface correspond to the
caustics. The lower sheets of the action surface intersect along a line the projection of which
on the coordinate place can be called aswitching line. The switching line separates regions
which are reached along differentoptimal paths, namely, the paths which correspond to
the smaller value of the action. The switching line starts from the cusp point. The optimal
paths terminate on the switching lineprior to a caustic being encountered. This topological
picture is generic (Dykmanet al 1994e, Smelyanskiyet al 1997a), it explains both how
caustics are avoided and what are the observable singularities of the pattern of optimal paths.
The first numerical results on the formation of the singularities, avoidance of caustics and
formation of switching lines in systems lacking detailed balance were obtained by Day
(1987) and Jauslin (1987b), and the occurrence and avoidance of a turning point for a
coloured-noise-driven system was obtained analytically by Dykman (1990). The generic
topological features of the pattern of optimal paths had not been observed in experiments
until the introduction of the analogue electronic approach that we describe later (see also
section 6.4).
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In addition to the fact that large fluctuations occur only occasionally, their experimental
investigation in non-equilibrium systems is also complicated by the fact that the coordinate
space, in general, has two or more dimensions. This makes periodically-driven systems
particularly advantageous for the analysis of the prehistory problem as the ‘extra’
coordinate is time, which is one of the variables of the prehistory probability distribution
anyway.

The problem of statistics can be overcome, at least in part, by using a multichannel
technique. Several dynamical variables of the system and the external force are recorded
simultaneously, and then the statistics of all actual trajectories along which the system moves
in a particular subspace of the coordinate space are analysed. Information about stochastic
processes obtained in this way is much more detailed than that obtained by the standard
method of measuring stationary probability distributions. In our technique, not only do we
count rare events (i.e. arrivals of the system at a given point in configuration space), but
we also learn how each of these events comes about.

The technique has been applied to the analysis of fluctuational dynamics in the analogue
electronic circuit model of (32) shown in figure 5(a), withA′ 6= 0. An experimentally
measured prehistory probability distribution for arrival at a particular point in configuration
space is shown in figure 7. It is clear that the distribution is sharp and has a well defined
ridge. From the top-plane plot and from the direct comparisons in figure 8, it is evident that
such ridges follow very closely the theoretical trajectories obtained by solving numerically
the equations of motion for the optimal paths (26).

Figure 7. Distributions of fluctuational paths for the system (32) for a termination point inside
the rectangle−0.7 6 xf 6 −0.65, 9.0 6 tf 6 9.2, with A = 0.264 andω = 1.2. The maxima
of the distributions represent the optimal paths. The theoretical extreme paths and a contour
plot of the distribution are shown on the top plane (Dykmanet al 1997c).
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3.2.3. Width of the tube of fluctuational paths.Further insight into the physical meaning
of the prehistory probability distribution can be gained from an analysis of the width of this
distribution. The distribution broadening is due to the fact that, although the system is most
likely to move to a given state along the optimal path, the actual fluctuational trajectories
deviate from the optimal path. Therefore, the width of the tube of the paths for arrival to a
given state is finite. This width is a fundamental characteristic of the fluctuation dynamics,
and it is this width that is given by the width of the prehistory distribution.

Some calculated and measured widths are shown in the inset of figure 8 (Dykmanet al
1996c). The theoretical technique developed in the cited paper is based on the analysis of
the general expression for the prehistory probability distribution (20). To evaluate the path
integral in this expression for the periodically-driven system (32) one expands the coordinate
x(t) into the orthonormal functionsψn(t) which diagonalize the second variation of the
action,

x(t) = xopt(t | xf , tf )+
∑
n

anψn(t). (33)

Figure 8. Comparison between measured optimal paths (data points) of the system (32) for three
different termination points (xf , tf ) and the theoretically predicted pattern of extreme paths (fine
lines). The periodically modulated stable state from whose vicinity the paths start is shown
by the dashed curve; the calculated switching line is indicated by the heavy full curve starting
from the cusp point. Inset: the reduced variances of the corresponding Gaussian distributions
(Dσ 2) (displaced along the ordinate axis for clarity) are compared with the theory (36) and (37)
(Dykmanet al 1996c).

It follows from (23) that the functionsψn(t) satisfy a Schr̈odinger-type equation

−ψ̈n + V (t)ψn = λnψn V (t) =
[
∂2K

∂x∂t
+ 1

2

∂2K2

∂x2

]
opt

(34)

with the boundary conditionsψn(ti) = ψn(tf ) = 0 (in (34) the derivatives ofK ≡ K(x; t)
are evaluated forx = xopt(t | xf , tf )).
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For trajectoriesx(t) close to the optimal path, thean in (33) are small, and the action
S[x(t)] is quadratic inan (unless (xf , tf ) is close to the cusp: see later),

S[x(t)] = S(xf , tf )+ s({an}) s({an}) = 1

2

∑
n

λna
2
n

S(xf , tf ) ≡ S[xopt(t | xf , tf )]. (35)

If one writes the path integral (20) as an integral over allan and substitutes equations (33)
and (35) into (20), one obtains

ph(x, t | xf , tf ) = M exp

(
− [x − xopt(t | xf , tf )]2

2Dσ 2(t | xf , tf )
)

σ 2(t | xf , tf ) =
∑
n

λ−1
n ψ

2
n(t),M = (2πDσ 2)−1/2. (36)

It can be seen from (36) that, near the maximum, the distributionph is Gaussian in the
distance of the point (x, t) from the optimal pathxopt(t | xf , tf ) (cf Dykmanet al 1992c).

It follows from equation (36) that by investigatingph not only can one find directly
the optimal path itself, but one can also analyse the shape of the tube of paths arriving at
a given point (xf , tf ). Away from the cusp point, the width of this tube is proportional to
D1/2, which justifies the expansion ofS in the coefficientsan (35).

The reduced width of the distribution (36)σ(t | xf , tf ) is given by the Green function
of (34) at zero energy. For an arbitrary periodic forceK in (32) its evaluation reduces
(Dykmanet al 1996c) to the solution of an ordinary differential equation

σ 2(t | xf , tf ) =
∫ tf

t

dt1 exp

[
− 2

∫ t1

t

dt2 β(t2)

]
(37)

β̇ + β2 = V (t) β(ti) = β(ti + T ) for ti →−∞.
Clearly, σ(t | xf , tf ) is independent ofxf , tf for tf − t � τr : it gives the reduced width
of the stationary Gaussian distribution aboutx(0)(t). As shown in the inset of figure 8,
equations (25) and (37) provide an excellent description of the experimental data.

3.2.4. Critical behaviour of the paths distribution.The only generic structurally stable
singularities of the pattern of extreme paths ofS[x] (23) in two-dimensional (2D) systems
are caustics and cusps (Arnol’d 1992). Since caustics may not be observed in the pattern
of optimal paths, it is particularly interesting to investigate the distributionph near cusp
points. At the cusp (xc, tc) one of the eigenvaluesλn becomes equal to zero (Berry 1976,
Schulman 1996) (we assume that this happens to the eigenvalueλ0). Equation (36) does
not apply if the final point (xf , tf ) is close to (xc, tc); in particular,σ diverges forλ0 = 0.

In a certain sense a cusp point is similar to the critical point of the first-order phase
transition. On one side of the cusp point there exists an area which can be reached along the
paths that belong to one or other of two coexisting types. This is similar to the occurrence
of two coexisting phases on one side of a critical point. The switching line is an analogue
of the phase transition line. As in the case of the critical point, the motion of the system
is slowed down near the cusp point, and there arises a ‘soft mode’ψc0(t). Therefore, the
width of the prehistory probability distribution should critically increase.

In contrast to a true critical point, at the cusp point the spectrumλn is discrete,
and therefore one would expect that Landau-type theory should apply to the prehistory
distribution. We now present results for the case where the final point (xf , tf ) is precisely
the cusp (Dykmanet al 1996c).
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It is known from optics and quantum mechanics (Berry 1976, Schulman 1996) that at
the cusp point it is necessary to keep, in the expansion of the actionS (35), the higher-order
terms in the amplitudea0 of the ‘soft mode’ψ0(t),

S[x(t)] = S(xc, tc)+ sc({an}) sc({an}) ≈ 1

4
g0a

4
0 +

1

2

∑
n>0

λna
2
n +

1

2
a2

0

∑
n>0

gnan (38)

ψ0(t) ≡ ψc0(t) ∝ exp

[ ∫ t

dt ′ β(t ′)
]
.

Absence of the terma3
0 in the expansion (38) is the signature of the fact that we are dealing

with the cusp point. We note that all eigenvaluesλn are positive if the final state (xf , tf )
lies near the stable state, and they change sign along extreme paths only provided such a
path encounters a caustic, which does not happen for physically meaningful extreme paths,
that is for optimal fluctuational paths. A cusp point is the only point on the optimal path
where the eigenvalueλ0 becomes equal to zero.

If we change to integration over the coefficientsan in the path integral (20), and
integrate over allan>0 with account taken of equations (35) and (38) we obtain the prehistory
probability distribution for the paths coming to the cusp point in the form

ph(x, t; xc, tc) = Mc

∫ ∞
−∞

da0 exp[−F(a0|xc, tc)/D]

× exp

[
− [x − xopt(t | xc, tc)− a0ψc0(t)]2

2Dσ 2
c (t | xc, tc)

]
(39)

F(a0 | xc, tc) = 1

4
ga4

0 g = g0− 1

2

∑
n>0

λ−1
n g

2
n.

The functionσ 2
c in (39) is given by equation (36) with the termn = 0 being eliminated

from the sum;Mc ≡ Mc(t) is a normalization constant.
Very close to the cusp point, i.e. for very small (tc − t) the shape of the distribution

(39) is dominated by diffusion, so that the distribution is Gaussian; the terma0ψc0 can be
neglected, andσc(t) ≈ (tc− t)1/2.

For larger (tc− t) we have from (39)

ph(x, t; xc, tc) = M̃c exp

{
− g

4D

[
x − xopt(t | xc, tc)

ψc0(t)

]4}
τr & tc− t � D1/2g1/2/ψ̇2

c0(tc). (40)

Equation (40) shows that, at the cusp point, fluctuations about the optimal path become
strongly non-Gaussian, and there occurscritical broadeningof the paths distribution. In the
range (40) the shape of the distribution of fluctuational paths to the cusp point is described
by the Landau-type expression for the distribution of fluctuations of the order parameter
near the critical point, with the width being dependent on the distancet − tc to the cusp
point along the optimal path. The prehistory probability distribution can be used to reveal
this new critical effect.

The characteristic width of the distribution (40) is∼D1/4, and its broadening is
determined by the soft modeψc0(t). This mode is localized within the rangetc− t . τr. For
tc− t � τr the distribution (39) goes over into the stationary Gaussian distribution about the
attractorxeq(t). The measured and calculated evolutions of the distribution with (tc− t) are
in good agreement: see figure 9. The critical behaviour of the distribution of paths coming
to a cusp point is much more pronounced than that of the statistical distribution near a cusp,
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Figure 9. Cross sections of the prehistory probability distribution for fluctuations to the cusp
point in figure 8 (xc ≈ −0.70, tc ≈ 7.69) for three values oft . The distribution is Gaussian
very close to, and far from, the cusp; but is critically broadened and strongly non-Gaussian,
cf equation (40), at intermediate values oft (Dykmanet al 1996c).

where it is seen primarily in a blowing up of the prefactor (Dykmanet al 1994e, Maier and
Stein 1996a).

3.3. Time asymmetry of classical fluctuations

The results discussed briefly above demonstrate clearly that patterns of optimal paths, and
some of the singularities in these patterns, are experimentally observable, and that it is much
easier to observe these singularities than the features of the tails of a stationary probability
distribution. The role of these tails and of large fluctuations in general is particularly
important (Landauer 1975, 1978, 1988) for systems away from thermal equilibrium, as
there is no general principle that determines the fluctuation probabilities in such systems.

It is legitimate, therefore, to pose a question about general properties of fluctuation
dynamics and patterns of optimal paths in non-equilibrium systems. One of the most
important properties that we address here is the symmetry, with respect to time inversion,
between optimal fluctuational paths and relaxational paths in the absence of fluctuations, and
in what follows we limit the discussion to Markov systems. This symmetry is a feature of
systems in thermal equilibrium. The very occurrence of a fluctuational path which is a time-
inversed relaxational path is a consequence of microscopic reversibility of closed systems,
and in that sense is trivial, but here we are talking about theoptimal paths. The time-
reversal symmetry between optimal fluctuational and relaxational paths in linear Markov
systems was first shown by Onsager and Machlup (1953).

The paths symmetry in thermal Markov systems is a consequence of detailed balance
and applies to various types of Markov systems, including dynamical ones (Ventcel’ and
Freidlin 1970, Graham and Tél 1986, Dykmanet al 1989, Maier and Stein 1993b) or
systems described by master equations (Huntet al 1990, Rosset al 1992, Dykmanet al
1994c). The condition of detailed balance states that each individual transition in the system
is balanced, i.e. the number of transitionsx→ x′ per unit time is equal to the number of
transitionsx′ → x (for states with continuous even variablesx one should speak about
the densities of transitions, i.e. the relative number of transitions per infinitesimal ‘volume’
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centred atx). This condition always holds true in systems in thermal equilibrium (Landau
and Lifshitz 1980), as there are no currents in such systems. It requires that the probabilities
of elementary transitionsw(x→ x′) be balanced (cf Kac 1959, Graham 1973) so that the
ratio of the probabilities of forward and backward transitions between two states is equal to
the ratio of the probabilities of the transitions via an intermediate state. In other words, the
ratio of the probabilities of transitions back and forth is independent of the path (cf Dykman
et al 1994c).

w(x→ x′)
w(x′ → x)

= w(x→ x1)

w(x1→ x)

w(x1→ x′)
w(x′ → x1)

. (41)

In particular, as applied to systems described by the Langevin equation (21) in the case
of a time-independent forceK(x), equation (41) holds if the integral

∫
dxK(x) is

path-independent, i.e. the force is gradient,K(x) = −∇U(x). The symmetry between
optimal and relaxational paths in this case was discussed in section 3.2.1. We note that the
condition (41) on its own does not guarantee that there is detailed balance in the system, as
there still may be stationary solutions with current, as happens in the case of a Brownian
particle in a tilted washboard potential (Graham and Tél 1986, Risken 1993).

In terms of the transition probability densitiesρ(xf , tf | xi , ti), the condition of detailed
balance for the stationary distributionρ(x) for a closed system in the absence of magnetic
field and rotation takes the form (Van Kampen 1990)

ρ(x2, t | x1, 0)ρ(x1) = ρ(x1, t | x2, 0)ρ(x2) (t > 0). (42)

Since for Markov systems the joint transition probability density factorizes into the
probability densities of individual transitions,

ρ(xf , tf ;x, t | xi , ti) = ρ(xf , tf | x, t)ρ(x, t | xi , ti), tf > t > ti

it follows from the definition of the prehistory probability density (20) and (42) that

ph(x, t;xf , tf ) = ρ(xf , tf | x, t)ρ(x, t | xi , ti)
ρ(xf , tf | xi , ti)

ti→−∞= ρ(xf , tf | x, t)ρ(x)
ρ(xf )

= ρ(x, |t − tf | | xf , 0) t < tf (43)

(Schulman 1991, Morilloet al 1997).
Equations (43) show that, for Markov processes obeying detailed balance, the time

evolution of the prehistory probability distribution is identical (Morilloet al 1997) to the
evolution of the corresponding (i.e. measured for the same remote state (xf , tf )) conditional
probability of the reciprocal transition (the relation of the prehistory probability distribution
to the ‘conventional’ transition probability in systems with detailed balance, as well as
transient effects, were discussed by Vugmeisteret al (1997)). Thus, one can investigate
experimentally the presence (or lack) of detailed balance for a given stochastic process by
measuring the time evolution of both distributions.

To understand in more detail how an experiment on temporal asymmetry can be
performed let us consider a typical large fluctuation. As before (figure 4), a componentx of
some dynamical variablex departs temporarily from the vicinity of the stable state, moves
to a remote statexf and then returns. Extending our discussion in the previous section,
however, we will now be interested not only in the outgoing (fluctuational) path away from
the attractor, but also in the relaxational path back to the attractor again. The variablex
might represent the voltage(s) in an electrical circuit (e.g. in an analogue experiment), or the
phase of the order parameter in a SQUID (superconducting quantum interference device)
(Kautz 1996) or in an optically bistable device (Dykmanet al 1995a), or the number
densities of species in a chemical reaction (Dykmanet al 1994f).
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An important feature of Markov systems is that, once the optimal outburst of the random
forcefopt(t) has brought the system to a given statexf , the random force immediately (over
its correlation time, which is equal to zero for white noise) dies down to its mean-square
root value (Dykman 1990). Therefore, the system is then moving ‘on its own’, i.e. the
section of the trajectory after (xf , tf ) should correspond just to therelaxational path—the
path the system would follow if it had been prepared in the state (xf , tf ) and then let go,
with noise being weak.

Optimal relaxational paths down to the stable state are the paths in the absence of noise.
They are also described by the Hamiltonian equations (26), with the solution

ẋ =K(x; t) p = 0. (44)

The set of trajectories (44) approaching the stable state of the system and the corresponding
fixed point x = xeq, p = 0 in phase space, forms the stable invariant manifold of this
fixed point. We note that, in contrast to the relaxational paths (44), optimalfluctuational
paths lie on theunstableinvariant manifold of the same fixed point, as we discussed above,
and for these paths the momentump is not equal to zero. However, although the decay
of fluctuations was well understood (Van Kampen 1990), whether or how the growth of
a fluctuation along the optimal path, which corresponds to the trajectory of the unstable
manifold, might be observed experimentally remained uncertain for a long time.

The results discussed above demonstrate, however, the physical reality both of the
optimal fluctuational paths and of the singular features in their pattern: see also Dykman
et al (1992c, 1996a), Luchinsky (1997) and Luchinsky and McClintock (1997). Thus,
a direct experimental investigation of time symmetry properties of fluctuational motion
becomes possible with only a minor modification of the original experimental technique
(see section 3.2.1). In the modified technique (Luchinsky 1997, Luchinsky and McClintock
1997) the state of the system is monitored continuously until eventually, as shown in
figure 10(a), a large fluctuation reaches the voltagexf . But now the interesting region
of the path includes not only the fluctuational partf coming from the stable state to
xf , but also the relaxational partr leading back towards the stable state, and both
parts of the path are stored. An ensemble average of the corresponding trajectories
(figure 10(b)), built up over a period of time (typically weeks), creates the distribution
pf (x, t) ≡ ρ(xf , tf ;x, t | xi , ti)/ρ(xf , tf | xi , ti) which applies fort > tf as well as
t < tf , and gives the probability density of the system being atx at time t (with t > tf or
t < tf ) if it was atxf at time tf = 0 andxi ≈ xeq at time ti →−∞.

We now consider the application of these ideas to the fluctuations of three very different
example systems that can be used to describe a wide range of physical phenomena (Dykman
et al 1995d, Van Kampen 1990, Risken 1993, Haken 1975).

3.3.1. Symmetry of fluctuations in equilibrium Markov systems.Our first example is the
overdamped Duffing oscillator (31) already discussed above (section 3.2.1), modelling a
bistable system in thermal equilibrium near one of its stable states. Figure 10(a) shows
a measuredpf (x, t). It is evident that the relaxational and fluctuational parts of the
distribution are symmetrical, which would only be expected under conditions of detailed
balance. Indeed, one can rewrite equation (43) for the functionpf (x, t) for t > 0 as

pf (x, t) = ρ(x, t | xf , 0)ρ(xf , 0 | xi , ti)
ρ(xf , 0 | xi , ti) = ρ(x, t | xf , 0) t > 0. (45)

The aforementioned symmetry follows directly from comparison of equations (43) and (45).
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(a)

(b)

Figure 10. (a) The probability distributionpf (x, t) built up by ensemble averaging a sequence
of trajectories like those in figure 4 for the thermal equilibrium system (31). The top plane
plots the positions of the ridges ofpf (x, t) for the fluctuational (open circles) and relaxational
(asterisks) parts of the trajectory for comparison with theoretical predictions (curves) based on
(26). (b) Direct comparison of the measured fluctuational (circles) and time-reversed relaxational
(asterisks) ridges of the distribution in (a) with the theoretical prediction (full curve) from (26),
demonstrating the time-reversal symmetry of the two kinds of path (Luchinsky 1997).

One also sees from figure 10(a) that the ridges of the distribution follow closely the
deterministic trajectory found from (26), plotted as the full curve in figure 10(b). Hence, in
the macroscopic limit, where the width of the distribution tends to zero (becauseD → 0)
and one observes only the positions of the ridges, the paths to/fromxf themselves become
symmetric in time.

An immediate question arising from the Hamiltonian theory relates to the physical
significance of the quantityp, which plays the role of a momentum in (26). This point
is sometimes glossed over in the literature, with some authors describingp as a mere
‘theoretical abstraction’. However, as is clear from the way we derived the Hamiltonian
equations (26), the momentump(t) on the optimal path is directly proportional to the
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optimal forcefopt(t) that drives the system to a given remote state (Dykman and Krivoglaz
1979, 1984, Dykman 1990). Therefore, in our analogue experiment,p can be identified
as the averaged value of the force driving the fluctuation, which is of course accessible
to experimental measurement (as is also the case for the random force in Monte Carlo
simulations of stochastic processes). Thus, it becomes possible to perform direct tests of
the prediction of an optimal force.

Luchinsky and McClintock (1997) have made simultaneous measurements ofx(t) and
of the corresponding trajectories of the random forcef (t) in the analogue model of (31)
during transitions between the potential wells, i.e. settingxf = 0 on the local potential
maximum. Examples of actual trajectories (of the random forcef (t)) during escapes from
each of the potential wells are shown as a function of the coordinate in the inset of figure 11,
where they are compared to the theoretical escape paths obtained from equations (26) in
the phase space (x, p) of the auxiliary Hamiltonian system. A distribution was built up by
ensemble averaging a few hundred such trajectories, and the positions of the maxima of this
distribution are shown in figure 11 for comparison with the theoretical escape trajectories.
We emphasize that, in the limit of weak noise, such escape events are extremely rare.
Although their statistics are consequently rather poor, the data clearly demonstrate: (i) that
the averaged value of the force driving the fluctuation follows closely the deterministic
trajectory corresponding to theoptimal force; (ii) that p can be related to thisoptimal force;
(iii) that, as anticipated,p 6= 0 during the fluctuational part of the path andp = 0 within
experimental error during the relaxational part; and (iv) that the Hamiltonian theory (curves)
describes very well both parts of the fluctuation.

Figure 11. Demonstration of time-asymmetricfeatures of fluctuations in the thermal equilibrium
system (31). The inset showsp(x) for two typical transitional paths fromx = −1 to x = 1 (full
jagged line) and in the opposite direction (dotted jagged line). The main figure shows the paths
traced out by the ridges of thepf (p, x) distribution created from an ensemble average of such
transitions. The transitional path fromx = −1 to x = 1 is shown by squares, and the reverse
transition by filled circles. The full and dashed curves are the corresponding paths predicted
from (26) (Luchinsky and McClintock 1997).

3.3.2. Asymmetry of fluctuations in non-equilibrium systems.Our second example is the
archetypal non-equilibrium system (32) of section 3.2.2. This system does not obey the
detailed balance condition, and the ridges of the fluctuational and relaxational parts of
the measuredpf (x, t) are found to differ markedly in shape (Luchinsky and McClintock
1997). The paths that they trace out (data points), compared in figure 12(a) with theoretical
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(a)

(b)

Figure 12. Fluctuational behaviour measured and calculated for an electronic model of the non-
equilibrium system (32) withA = 0.264,D = 0.012. (a) Fluctuational and relaxational paths
(red circles and blue asterisks, respectively) to/from the remote statexf = −0.46, t = 0.73,
found by tracing the ridges of a measuredpf (x, t) distribution. The time-dependent stable and
unstable states nearx = −1 andx = 0 are shown by dashed curves. The fluctuational and
relaxational paths calculated from (26) are shown as red and blue curves, respectively. (b) The
measuredpf (x, t) for a remote statexf = −0.63, t = 0.83 that lies on the switching line.
(c) Fluctuational (red circles) and relaxational (blue asterisks) paths determined by tracing the
ridges of the distribution in (b), and compared with the corresponding (red and blue) theoretical
curves predicted from (26) (Luchinsky and McClintock 1997).

predictions (curves) calculated from (26), clearly demonstrate that the most probable
fluctuational trajectory to (xf , tf ) doesnot correspond to what one would obtain by time
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(c)

Figure 12. Continued.

Figure 13. A block diagram of the analogue electronic circuit modelling the Maier and Stein
system (46).

reversing the relaxational trajectory. Figure 12(b) shows the measuredpf (x, t) when xf
is placed on the calculatedswitching line (Dykman et al 1994e; and see section 3.2.2),
a singularity separating regions that are approached via different fluctuational paths. The
relaxational tail leading back to the stable statexeq(t) is common to the two fluctuational
paths that form the resultant corral (Dykmanet al 1996a). From figure 12(c) we see that
the ridges of the distribution are strongly asymmetric in time, but agree well with the
fluctuational and relaxational paths predicted from (26).

Our third example (figure 13) is the system suggested by Maier and Stein (1993b, 1996a,
1997) in their analysis of the escape problem in non-equilibrium systems. It describes the
motion of an overdamped particle in the two-dimensional drift field with the drift term of
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the form ofK1(x1, x2) = (x1−x3
1−αx1x

2
2,−x2−x2

1x2), whereα is a parameter. It has point
attractors at (±1, 0) and a saddle point at (0, 0). In describing the motion of the particle
we will use the variablesx, y instead ofx1, x2, as was done in the original work by Maier
and Stein. If the particle is subject to additive isotropic white noisef(t) its position on
(x, y)-plane will satisfy the coupled Langevin equations

ẋ = x − x3− αxy2+ fx(t)
ẏ = −y − x2y + fy(t) (46)

〈fi(t)〉 = 0 〈fi(s)fj (t)〉 = Dδij δ(s − t).
SinceK is not a gradient field (unlessα = 1), the dynamics will not satisfy detailed
balance.

The circuit model of (46) is of some interest, not least because it demonstrates the ease
with which the analogue technique may be applied to coupled equations. A block diagram
is shown in figure 13:f ′x(t

′) and f ′y(t
′) are respectively thex and y components of the

noise voltage applied to the circuit, andt ′ is the real time. The differential equations for
the voltages appearing at points B and A in the circuit, in terms of the voltagesy(t ′) and
x(t ′) at the outputs of the corresponding operational amplifiers, are respectively

C2
dx

dt ′
+ 1

R6
(x3− x)+ 1

R5
xy2+ 1

R4
f ′x(t

′) = 0

C1
dy

dt ′
+ 1

R3
y + 1

R2
xy2+ 1

R1
f ′y(t

′) = 0

(47)

which can be rewritten as

R4C2
dx

dt ′
= −R4

R6
(x3− x)− R4

R5
xy2− f ′x(t ′)

R1C1
dy

dt ′
= −R1

R3
y − R1

R2
xy2− f ′y(t ′).

(48)

If we choose circuit parameters

R1 = R2 = R3 = R4 = 100 k� R = 10 k� C1 = C2 = 10 nF (49)

introduce a time constantτ = R1C1 = R4C2 and set the parameterα = R4/R5,
equations (48) reduce to

τ
dx

dt ′
= x − x3− αxy2− f ′x(t ′)

τ
dy

dt ′
= −y − x2y − f ′y(t ′)

(50)

whose parameters are readily related to those in the model (46) by means of the scaling
relations

t = t ′

τ
f (t) = −f ′(t ′).

The circuit model was driven by two uncorrelated noises and its response was analysed using
the Microstar data acquisition system described in section 2. The prehistory/posthistory
probability distribution was measured in the usual way, except that the termination point
was specified in terms of a small rectangle centred on (xf , yf ).

In measurements of the paths starting and ending in one and the same stable state, the
lack of detailed balance and the asymmetry of the optimal fluctuational and relaxational
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(a)

(b)

Figure 14. Fluctuational behaviour measured and calculated for the Maier and Stein non-
equilibrium system (46), which has a stationary non-gradient field, witha = 10, D = 0.014.
(a) Thepf (x, y) distribution created by ensemble-averaging fluctuational paths leading from
S = (1, 0) to remote points atxf = (0.44± 0.35). (b) Paths traced out by the ridges of the
distribution in (a) for fluctuational motion (red circles), and by those of the corresponding
distribution for relaxational motion (blue asterisks), compared with fluctuational (red) and
relaxational (blue) optimal paths calculated from (26). (c) As in (b), but for thesingle remote
statexf = (0.32, 0) on the switching line (Luchinsky and McClintock 1997).

paths become strikingly apparent. Figure 14(a) shows the measured probability distribution
Pf (x, y) for fluctuations to the two different remote states (xf , yf ) placed symmetrically on
either side of they-axis; here,Pf (x, y) is the integral over the timet of the probability
distribution pf (x, y, t; xf , yf , tf ), i.e. the projection of the distributionpf onto thex–y
plane with tf = 0 as before. When the paths traced out by the ridges are plotted
(figure 14(b)), it can be seen: (i) that the fluctuational trajectories are completely different
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(c)

Figure 14. Continued.

from the relaxational ones; and (ii) that they are in good agreement with the fluctuational
and relaxational trajectories predicted from (26). Figure 14(c) shows the corresponding
picture measured for fluctuations to asingle remote statexf on the switching line (lying
on thex-axis, by symmetry arguments). The two fluctuational paths to the remote state
are, again, markedly different from the common relaxational path leading back to the
stable state (1, 0). Both parts of the trajectory are well described by the corresponding
optimal paths calculated from (26). In this case too, therefore, the observations link a
lack of detailed balance to the temporal asymmetry of fluctuational and relaxational paths,
and demonstrate the non-differentiability (Graham and Tél 1985) of the generalized non-
equilibrium potential; the closed loops traversed during fluctuations verify the expected
(Onsager 1931, Landau and Lifshitz 1980) occurrence of flows in the stationary state of
non-equilibrium systems.

3.3.3. Singularities in the noisy exit problem and time symmetry-breaking.Analogue
simulations have proven to be very effective as a tool for the investigation of escape rates and
effective activation energies of escape in systems lacking detailed balance. Some results
are discussed below in sections 4.3.1 and 6.2, including the results on a fundamentally
important (Gabrielseet al 1985, Dehmelt 1990) periodically-driven nonlinear oscillator,
which was essentially the first model of a physical system without detailed balance where
escape rates were calculated explicitly (Dykman and Krivoglaz 1979). Singularities in the
pattern of optimal paths of the driven oscillator were found numerically by Chinarovet al
(1993), including the fact (later explained analytically (Dykmanet al 1994e)) that caustics
may emanate from unstable stationary states in systems lacking detailed balance.

Here we will present, in the context of an exit problem, recent results by Luchinsky
et al (1997) on the relationships between the onset of focusing singularities and nonanalytic
behaviour of an ‘activation energy’, broken time symmetry and lack of detailed balance,
using as an example the system (46) considered by Maier and Stein (1993a, b, 1996a, 1997).
This system is bistable, but because of the symmetry the escape rates are the same for each
of the attractors (±1, 0). In the weak noise limit, the escape rate is then given by the lowest
non-zero eigenvalueλ1 of the Fokker–Planck operator which corresponds to the Langevin
equations (46) (Risken 1993). For smallD the eigenvalueλ1 becomes exponentially small.
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In this limit the mean first passage time (MFPT)〈texit〉 is well approximated byλ−1
1 . We note

that the exponential slowness of the decay justifies application of the eikonal approximation
and the prehistory formulation discussed above to the dynamics of large fluctuations about
metastable states.

For weak noise intensity, the escape from a domain of attraction typically follows a
unique trajectory. This most probable escape path (MPEP) corresponds to the heteroclinic
Hamiltonian trajectory of the auxiliary system described by the equations (26). The
trajectory starts from the fixed point that corresponds to the attractor of the initial system
(the pointxeq = (±1, 0), p = 0 for the (46) system) and goes to the fixed point which
corresponds to the saddle point of the dynamical system (xs = 0, p = 0 in the case of (46)).
In the case of a time-independent HamiltonianH , the motion occurs with zero energy.

The MPEP actionδW ≡ S(xs) governs the weak noise behaviour of the MFPT. To
leading order the MFPT is of the activation type, i.e.

〈texit〉 ∼ constant× eδW/D D→ 0. (51)

So δW is interpreted as an activation energy of escape (Dykman and Krivoglaz 1979).
In the system (46), whenα = 1, the dynamics of the particle satisfy detailed balance,

and the pattern of optimal trajectories emanating from(xeq, p = 0) contains no singularities.
It was found earlier (Maier and Stein 1993b, 1996a) that, asα is increased, the first focusing
singularity on the MPEP (initially lying along thex-axis) appears whenα = αc ≡ 4. It
signals the appearance of a transverse ‘soft mode,’ or instability, which causes the MPEP to
bifurcate. Its physical origin is clear: asα is increased, the drift toward the attractor (1, 0)
‘softens’ away from thex-axis, which eventually causes the on-axis MPEP to split. The
two new MPEPs move off-axis, causing the activation energy (previously constant) to start
decreasing. So the activation energy as a function ofα is non-analytic atα = αc (Maier
and Stein 1996a).

To test these theoretical predictions Luchinskyet al (1997) have investigated escape
events in an analogue electronic model of the system (46) (see figure 13). Transition
probabilities were measured by a standard level-crossing technique. Experimental
investigations of the optimal fluctuational and relaxational trajectories were based on the
experimental technique described in the previous section. Luchinskyet al (1997) have also
carried out a complementary digital simulation of (46) using the algorithm of Mannella
(1997).

Some activation energy results are shown in figure 15. Part (a) plots the MFPT〈texit〉 as
a function of inverse noise intensity 1/D for the special caseα = 1. In this case, the drift
field is the gradient of the potentialU(x, y) = (y2(1+ x2) − x2 + x4/2)/2, andδW can
be obtained exactly (δW = 2U ). The analogue and digital results are in good agreement,
and demonstrate that the noise dependence of the MFPT is indeed of the activation type
predicted by the theory (see also section 4.1 where the results for a different system lacking
detailed balance are discussed). Activation energies determined from the slopes of a series
of plots like those in figure 15(a), yielded the results shown in figure 15(b), where they are
compared with theoretical values ofδW determined from the true (least action) MPEP or
MPEPs (Maier and Stein 1993b, 1996a). At the predicted critical valueαc = 4, marked
changes in the activation energy are evident.

To verify experimentally the expected relationship between the bifurcation of the MPEP
and the bifurcation of the activation energy, Luchinskyet al (1997) have measured 2D
prehistory probability distributions of fluctuational trajectories bringing the system into
the vicinity of the separatrix between the two wells (they-axis). In the limit of low
noise intensity, the maxima of the corresponding distributions trace out optimal trajectories.
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Figure 15. (a) The mean first passage time as a function of inverse noise intensity 1/D for
α = 1, from analogue experiment (bars), numerical simulation (circles) and calculation (full
line). (b) The inter-well activation barrierδW , as a function ofα, from analogue experiment
(crosses), numerical simulation (squares) and theory (full curve). The variation of the prefactor
with α (circles and dotted curve) is discussed in the original paper (Luchinskyet al 1997).

The positions of these maxima are compared to the calculated MPEPs forα = 6.67 in
figure 16(a). It is clear that the typical fluctuational path corresponding to escape from the
domain of attraction of (xs, 0) follows very closely one of the predicted MPEPs.

To seek further experimental insight into the character of the broken symmetry for the
MPEP, Luchinskyet al (1997) have also followed the dynamics of the relaxational part of
the escape paths, after they have crossed they-axis separatrix (in the general case, only
one side of the separatrix can be reached along optimal paths coming out of a given stable
state (Dykmanet al 1994e)). The positions of the maxima of the measured relaxational
distributions are compared with the corresponding theoretical trajectories in figure 16(b). It
can be seen from the figure that forα > αc the MPEP breaks time-reversal symmetry in
the sense that the average growth and average decay of fluctuations (Onsager 1931) traced
out by the ridges of the corresponding distributions take place along trajectories that are
asymmetric in time. That is, forα > αc the MPEP isnot a time-reversed relaxational
trajectory.

The inset in figure 16(b) shows the distribution of points where the escape trajectories
hit the y-axis separatrix (i.e. the exit location distribution). Its shape is nearly Gaussian,
as expected from the saddle-point approximation of Maier and Stein (1996a, 1997). The
maximum is situated near the saddle point clearly demonstrating that, in the limit of weak
noise, exit occurs via the saddle point—a result which has been obtained independently by
several groups (see Matkowsky and Schuss 1983, Freidlin and Wentzell 1984, Dykman and
Krivoglaz 1984, Day 1987 and references in these papers; cf Maier and Stein 1996b).



Analogue studies of nonlinear systems 927

(a)

(b)

Figure 16. Measured positions of the ridges (first moments) forα = 6.67 of (a) the fluctuational
part (full circles) and (b) the relaxational part (pluses) of the escape trajectories. Nearby
theoretical trajectories are shown by curves. The inset shows the exit location distribution
along they-axis (Luchinskyet al 1997).

We note that, because of the symmetryy → −y of the Maier and Stein system (46),
the MPEPyopt = 0 can remain unchanged up to the valueαc = 4, whereas the system
lacks detailed balance wheneverα 6= 1. Thus, for 1< α < 4 the dynamics of the most
probable fluctuational trajectories is a mirror image of the relaxational dynamicsonly along
the x-axis; everywhere else in the domain of attraction of (±1, 0) the outward optimal
trajectories are not antiparallel to the inward relaxational trajectories, and the resulting
loops enclose non-zero area (Freidlin and Wentzel 1970).

This prediction has been tested experimentally (Luchinskyet al 1997) by tracing out
optimal paths to/from specified remote states both on and off thex-axis, for 1< α < αc.
Some results are shown in figure 17 forα = 3.5. It is evident that the ridges of the
fluctuational (full circles) and relaxational (pulses) distributions follow closely the theoretical
curves. For an off-axis remote state (figures 14(a) and (b), 17(a)), they form closed loops
of non-zero area, thus demonstrating again the expected rotational flow of the probability
current in a non-equilibrium system (Onsager 1931). The corresponding ridges for an on-
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(a)

(b)

Figure 17. Demonstration of the ‘local’ character of detailed balance and time-reversal symmetry
of (46) for α = 3.5. (a) Measured positions of the ridges of the fluctuational (full circles) and
relaxational (pluses) parts of the trajectories from (1, 0) to (0.3, 0.3), compared with theoretical
predictions (curves) by Maier and Stein (1993a, 1996a). (b) The same for trajectories extending
to the on-axis remote state (0.1, 0) (Luchinskyet al 1997).

axis remote state (figure 17(b)) are antiparallel, indicating that symmetry is preserved along
the x-axis.

Luchinskyet al (1997) conclude that these results have demonstrated that, in the limit
D→ 0, detailed balance and time-reversal symmetry can be considered as local properties
along the MPEP of the system in the sense discussed above, and that the bifurcation
phenomenon can be related to local time-reversal symmetry breaking along the MPEP:
results that may be important for 2D stochastic ratchets (e.g. Slateret al 1997) where
symmetry plays an important role.

3.4. Status of the experiments on large fluctuations

The results described above in this section, as well as those discussed in sections 4.1 and 6
show that, after so many years of investigating theprobabilities of large fluctuations, it has
now become possible to use the prehistory formulation as a basis for experiments on the
fluctuationdynamics. The work on Markov systems presented above has already verified
several long-standing theoretical predictions, including the very observability of optimal
fluctuational paths, narrowness of the tube of fluctuational paths, symmetry between the
growth and decay of classical fluctuations in equilibrium Markov systems (Onsager 1931,
Onsager and Machlup 1953, Landau and Lifshitz 1980), the breaking of this symmetry under
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non-equilibrium conditions where systems lack detailed balance (Ventcel’ and Freidlin 1970,
Dykman and Krivoglaz 1979, Jauslin 1987a b, Maier and Stein 1993a, 1997), the relationship
of the lack of detailed balance to the onset of singularities in the pattern of optimal paths, as
well as the character of these singularities (Dykmanet al 1994e, Maier and Stein 1996a, b,
Dykmanet al 1996c, Smelyanskiyet al 1997a), including occurrence of switching between
optimal paths and critical broadening of the paths distribution.

In fact, the very possibility of experimentalobservationof fluctuation dynamics was
crucial for stimulating theoretical interest, and in the last decade it has made fluctuation
dynamics an active area of theoretical and experimental efforts, with many novel effects yet
to be explored, and with various possible applications. We will mention further research
(Luchinskyet al 1998) on the important problem of escape from a metastable state for the
Maier and Stein system (46), investigations of the dispersion of the prehistory distribution
and the conditions under which it is non-monotonic (Arrayaset al 1998a), studies of the
possibility (Smelyanskiy and Dykman 1997, Vugmeister and Rabitz 1997) of highly effective
control of large fluctuations and work on how to control the rate and direction of diffusion
in periodic systems (Arrayaset al 1997, 1998b).

4. Stochastic resonance

Stochastic resonance (SR) has been much in the news recently, partly on account of
its wide occurrence in many areas of science. In this section, we first present a very
succinct introductory review of SR—which, as already mentioned, was first measured
experimentally in an analogue electronic circuit (Fauve and Heslot 1983)—and then describe
how subsequent electronic experiments have made major contributions to the development
of a mature understanding of SR and of several related phenomena.

4.1. What is stochastic resonance?

Stochastic resonance (SR) is commonly said to occur when a weak periodic signal in a
nonlinear system is enhanced by an increase of the ambient noise intensity; a stronger
definition requires that the signal-to-noiseratio (SNR) should also increase. The usual
observation is that the signal amplitude increases with increasing noise intensity, passes
through a maximum and then decreases again. Thus, the general behaviour is somewhat
similar to a conventional resonance curve, but the response is plotted as a function of
noise intensity instead of frequency. The SNR typically displays very similar behaviour
except that it falls very rapidly before the onset of the counter-intuitive increase; in the case
of systems with thresholds, or two-state systems (or where the signal from a continuous
system is passed through a two-state filter prior to analysis), this initial decrease in the SNR
is not seen. In the strongly nonlinear (large signal/weak noise) regime, the variation of the
response with noise intensity can be more complicated (see later).

The SR phenomenon appears to be widespread. After being introduced as a possible
explanation of the earth’s ice-age cycle (Benziet al 1981, Nicolis 1982), SR has
subsequently been observed or invoked in contexts that include lasers (McNamaraet al
1988, Vemuri and Roy 1989, Fiorettiet al 1993, Iannelli et al 1994), passive optical
systems (Dykmanet al 1991c, Grohset al 1994, Jost and Saleh 1996, Vaudelleet al
1998), tunnel diodes (Mantegna and Spagnolo 1994), a Brownian particle in an optical
trap (Simon and Libchaber 1992), a magnetoelastic ribbon (Spanoet al 1992), crayfish
and rat mechanoreceptors (Douglasset al 1993, Collinset al 1996), a bistable SQUID
(superconducting quantum interference device) (Hibbset al 1995), arrays of SR elements
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(Lindner et al 1995), ion channels (Bezrukov and Vodyanoy 1995), magnetic systems
(Grigorenko et al 1997), various types of electronic models (e.g. Fauve and Heslot
1983, Gammaitoniet al 1989, Dykmanet al 1990c, d, Anishchenkoet al 1993, 1994),
including models of coexisting periodic attractors (Dykmanet al 1993b, 1996a), subcritical
bifurcations (Vohra and Bucholtz 1993), systems with threshold (Ginglet al 1995),
and transient dynamics (Iwaniszewski 1995), a quantum two-level system (Lofstedt and
Coppersmith 1994), an array of coupled bistable systems (Morilloet al 1995, Bulsara and
Gammaitoni 1996), a system driven by quasimonochromatic (harmonic) noise (Neiman
and Schimansky-Geier 1994), excitable neurons (Longtin 1995) and chemical systems
(Leonard and Reichl 1994, Dykmanet al 1995c). There have recently been two topical
conferences (Mosset al 1993, Bulsaraet al 1995), several general scientific articles
(Wiesenfeld 1993, Moss and Xing Pei 1995, Moss and Wiesenfeld 1995, Bulsara and
Gammaitoni 1996) and topical reviews (Jung 1993, Moss 1994, Wiesenfeld and Moss
1995, Dykmanet al 1995d, e, 1996b, Gammaitoniet al 1998), including one (Dykmanet al
1995d) that specifically attempts to place SR in its scientific and historical context, and to
connect it to related phenomena in physics.

In bistable systems, the underlying mechanism of SR is easily appreciated, and in fact
has been known since the work by Debye (1929) on reorienting polar molecules. In a
static double-well potential with equally-deep wells, the effect of an additive low-frequency
periodic force is to tilt the wells first in one direction, and then in the other, so that
one of the wells become deeper than the other, in turn. The effect of additive noise is, on
average, to induce fluctuational transitions to the deeper well. For very weak noise intensity,
there will on average be no transitions within a half cycle of the periodic force; for very
strong noise intensity the directions of transitions will be random, virtually unaffected by
the periodic force; and for an optimum noise intensity, the probability of such transitions
occurring coherently twice (once in each direction) per full cycle of the periodic force will
be maximized. Thus noise can effectively amplify small coordinate variations within one
of the potential wells, caused directly by the rocking effect of the periodic force, to an
amplitude corresponding to the coordinate separation of the potential minima—which can
be made large, resulting in a correspondingly large susceptibility, and frequency dispersion
(Debye 1929).

SR was originally discussed (Benziet al 1981, Nicolis 1982) for a bistable system and,
in the following years, it was widely assumed that bistability was an essential prerequisite
for the phenomenon to occur. The description of SR as a linear response phenomenon
(see section 4.2) led naturally, however, to the realization that SR can also occur without
bistability (Stockset al 1992) and to the observation of the phenomenon in an underdamped,
monostable, nonlinear oscillator (Stockset al 1993c). In fact, it is well known that the
response of a monostable system to signals in certain frequency ranges can be strongly
increased by noise, for example just by raising the temperature. Examples range from
currents in electron tubes to optical absorption near absorption edges in semiconductors.
For underdamped oscillators, a temperature-induced shift and broadening of the absorption
peaks, i.e. ‘tuning’ by external driving due to the oscillator nonlinearity, was first discussed
by Ivanovet al (1966); complete classical and quantum theories of these effects were given
by Dykman and Krivoglaz (1984).

Some non-conventional forms of SR, including monostable SR, were reviewed by
Dykmanet al (1993d). Since then, forms of SR without bistability have been identified in a
system with a cyclic variable (Wiesenfeldet al 1994), a class of systems where the signal is
applied as a multiplicative force (Vilar and Rubi 1996) and thresholdless systems (Bezrukov
and Vodyanoy 1997). SR in a monostable SQUID model has recently been shown (Kaufman
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et al 1996) to meeta fortiori even the stronger of the above definitions: the observed noise-
induced SNR enhancements were comparable both in magnitude and form with those of
conventional SR. We consider monostable SR in more detail in section 4.3.2.

Throughout the development of the subject area, analogue electronic experiments have
played a major role. We have already cited a few of the key papers, and will refer to some
more of them below; for a fuller bibliography, reference should be made to the review
articles on SR and the conference proceedings already mentioned.

4.2. Stochastic resonance as a linear response phenomenon

When it was first discovered, and for some time afterwards, SR seemed a rather mysterious
phenomenon and a number of highly sophisticated theoretical approaches were proposed
(see citations in, for example, the reviews by Jung 1993, Moss 1994, Wiesenfeld and Moss
1995). Only some years later was it appreciated (Dykmanet al 1990c, d, Gammaitoni
et al 1998) that a much simpler formalism—linear response theory(LRT)—would suffice
to describe what was often the most interesting limit in practice, where the signal was
relatively small; an analytic theory of the more complicated effects that occur for stronger
signal strengths (Dykmanet al 1990c, 1993f, Zhouet al 1990, Stocks 1995) has also
been developed, and has been confirmed in considerable detail through analogue electronic
experiments. LRT has the particular advantage, however, that it places SR in perspective
and enables it to be understood in the context of other more familiar phenomena in physics
(Dykmanet al 1995d). It therefore provides the best starting point for understanding SR.

If a system with a coordinatex is driven by a weak forceA cos�t then, according to
LRT (Landau and Lifshitz 1980), a small periodic term will appear in the ensemble-averaged
value of the coordinateδ〈x(t)〉, oscillating at the same frequency� and with amplitudea
proportional to that of the force:

δ〈x(t)〉 = a cos(�t + φ) ≡ Re[χ(�)A e−i�t ] A→ 0 (52)

a = A|χ(�)| φ = −arctan[Imχ(�)/Reχ(�)].

This equation holds for dissipative and fluctuating systems that do not display persistent
periodic oscillations in the absence of the forceA cos�t and where the correlations of
fluctuations decay in time. The susceptibilityχ(�) contains all information on the response
of the system to a weak driving force. It gives both theamplitudeof the signal,a, and
its phase lagφ with respect to the force (and the partial amplitudes and phase lags for
vibrations at the combination frequencies). Equation (52) can be easily generalized to the
case where the force is of a more general nature than just an additive coordinate-independent
force described by an extra term−Ax cos�t in the Hamiltonian. In particular, we consider
below cases where the force is coordinate dependent (a multiplicative force), or where it is
the intensity of the noise driving the system (e.g. the temperature, if the noise is of thermal
origin) that is modulated periodically. Provided that the amplitude of the modulation is
weak enough, the response of the system will always be linear and described by (52).

The periodic term (52) induced by the force gives rise to aδ-shaped spike in the spectral
density of fluctuations (SDF)

Q(ω) = lim
τ→∞(4πτ)

−1

∣∣∣∣ ∫ τ

−τ
dt x(t)exp(iωt)

∣∣∣∣2 (53)

at the frequency� of the force. Theintensity (i.e. the area) of this spike is equal to one
fourth of the squared amplitude of the corresponding vibrations, i.e. to1

4A
2|χ(�)|2. The
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signal-to-noise ratioR can thus be written

R = 1
4A

2|χ(�)|2/Q(0)(�) (A→ 0) (54)

whereQ(0)(ω) is the SDF in the absence of the periodic driving. The evolutions of the
susceptibility and ofQ(0)(ω) with varying noise intensityD therefore show immediately
whether or not SR (in terms of the strong definition, as an increase in SNR with increasing
D in a certain range ofD) is to be expected at a given frequency.

Describing SR in terms of a susceptibility in this way is particularly advantageous
for systems that are in thermal equilibrium, or in quasi-equilibrium. In such cases the
fluctuation–dissipation relations (Landau and Lifshitz 1980) can be used to express the
susceptibility in terms ofQ(0)(ω)

Imχ(ω) = πω

D
Q(0)(ω) Reχ(ω) = 2

D
P
∫ ∞

0
dω1Q

(0)(ω1)
ω2

1

ω2
1 − ω2

(55)

where P denotes the Cauchy principal value andD corresponds to the temperature in
energy units. It follows from (54) and (55) that it should be possible to predict the onset
of SR in a given system purely from the evolution of its SDFQ(0)(ω) with noise intensity
(temperature), without knowing or assuming anything at all about the equations that describe
its dynamics, i.e. for a system treated as a ‘black box’. The susceptibility can also be
obtained by analytic solution of the Fokker–Planck equation (Dykmanet al 1993a), leading
to an identical result.

These ideas were first tested (Dykmanet al 1990c, d) through an analogue simulation
of underdamped one-dimensional Brownian motion

ẍ + 20ẋ + ∂U
∂x
= f (t)+ A cos(�t) (56)

〈f (t)〉 = 0 〈f (t)f (t ′)〉 = 40Dδ(t − t ′)
in the simple symmetric bistable potential (30). The circuit model was very similar to that
of figure 2, except that theV2 term was not inverted before being fed back to point A.
Two different kinds of measurements were made on the system. First, SDFs were measured
for several values ofD with the weak periodic force applied (A 6= 0), and the SNR was
determined through measurements of the ratio of the height of the spike at� to that of
the noisy background (Fauve and Heslot 1983). These direct measurements of the SNR are
shown as square data points in figure 18. Secondly, SDFs were measured in the absence of
the periodic force (A = 0) for several different noise intensities. These results were used to
compute the SNR to be expected on from the LRT relations (54) and (55) which are shown
as ‘pluses’ in the figure. The agreement between the theory and the direct measurement is
satisfactory, within the scatter of the data. Given that there are no adjustable parameters,
it may be considered an impressive vindication of the LRT approach to SR. Of course, the
SDFQ(0)(ω) for insertion in (54) and (55) does not necessarily need to be measured, as
here. It can also be calculated analytically over a wide range of parameters (Dykman and
Krivoglaz 1984, Dykmanet al 1988, 1989).

Note that the onset of SR in a bistable system can be understood in terms of the
evolution withD of its SDF and, in particular, the broadening of the zero-frequency peak
(Beasleyet al 1983, Dykmanet al 1988, 1989) associated with the interwell fluctuational
transitions. As the peak broadensQ(0)(�), for � finite but small, rises exponentially fast.
Thus from (55), it is clear that both Reχ(ω) and Imχ(ω) for ω = � will also increase
exponentially fast. It is clear from (52) and (54) thata andR will also both increase with
D. This perception of bistable SR is, of course, a counterpart of the picture of noise-
enhanced hopping between the wells in response to the external driving, which was put
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Figure 18. A demonstration (Dykmanet al 1990c) that stochastic resonance can be described in
terms of linear response theory (LRT). The squares represent direct measurements of the scaled
signal-to-noise ratioR̄ for the system (30) and (56); the pluses represent LRT calculations based
on measuredspectral densities and the use of (54) and (55).

forward by Debye (1929). Clearly, the LRT approach is not limited to systems in a static
bistable potential, or to bistable systems in general, for that matter. And indeed, as we will
see later, these ideas led directly to the prediction and observation of SR in monostable
systems.

Surprisingly, perhaps, the obvious advantages of LRT in relation to SR—its simplicity,
beauty and universality—took some time to win general acceptance. So a supplementary test
of the LRT picture was performed through direct measurements and calculations (Dykman
et al 1992b) of the phase shiftφ between the periodic force and the system’s response. The
system chosen for study was the overdamped double-well Duffing oscillator, i.e. essentially
the same as (56) but with the inertial term missing

ẋ + ∂U
∂x
= f (t)+ A cos(�t) (57)

〈f (t)〉 = 0 〈f (t)f (t ′)〉 = 2Dδ(t − t ′)

whereU(x) is again the quartic bistable potential (30). The circuit model used was similar
to that of figure 5(a). The phase shiftφ was determined by measuring ensemble averages
〈q(t)〉 and comparing the resultant sinusoid directly with the weak periodic driving force
A cos(�t). Results are shown by the data points of figure 19. It can be seen that, as
D is increased,−φ starts from a very small value, rises extremely fast, passes through
a maximum and then decreases more slowly again. The prediction of earlier theories
(Nicolis 1982, McNamara and Wiesenfeld 1989, Presillaet al 1989), based on the two-state
approximation, is shown by the dashed curve. A theory able to describe the continuous
system under consideration is readily constructed (Dykmanet al 1992b) on the basis of LRT.
It leads to explicit expressions for the phase shift and SNRR that are valid for relatively
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low noise intensities and driving frequencies�

φ = −arctan
(�/�r)(�

2
rW +�2D)

�rW 2+�2D
(58)

R = πA2

4D2

�2
rW

2+�2D2

�2
rW +�2D

�,D � �r W � D (59)

whereW is the inter-well transition probability in the absence of periodic forcing, and
the reciprocal relaxation time�r = U ′′(x = ±1) = 2. For very smallD, where
W � (�2/�2

r )D, it follows from (59) thatR ' πA2/4D, φ ' −�/�r. Thus for a
fixed forcing frequency�, R decreases with increasingD, whereasφ remains small and
nearly independent ofD. For larger values ofD, it is straightforward to demonstrate that
(59) implies thatR will pass through a minimum and then increase again (i.e. onset of the
SR phenomenon) untilD ∼ 1U/2, when the theory is no longer applicable (see the full
curve in the inset to figure 19) because the interwell transitions cease to be distinct events.
We would comment that the failure of the theory at largeD occurs because the expressions
used forQ(0)(ω) then become poor approximations; it is not a failure of LRT as such. We
would also comment that the LRT predictions of an initial fall inR with increasingD and
of the existence of the minimum inR have been observed in many experiments, and were
remarked upon and treated in anad hoc fashion by McNamara and Wiesenfeld (1989) but
have not been accounted for quantitatively by any theory of SR other than LRT (Dykman
et al 1990c, d).

Figure 19. The phase shift−φ (degrees) between the periodic force of amplitudeA and the
averaged coordinate〈x(t)〉 measured (Dykmanet al 1992b) as a function of noise intensityD
in the electronic model of (30) and (57) for� = 0.1 and:A = 0.04 (circles);A = 0.2 (squares).
The full curve is a theoretical prediction based on LRT and the fluctuation dissipation theorem;
the dashed curve represents the prediction (60) of (two-state) theories (Nicolis 1982, McNamara
and Wiesenfeld 1989, Presillaet al 1989) that make no explicit allowance for the effect of
intra-well vibrations. The inset compares experiment and LRT prediction for the normalized
signal-to-noise ratio in the region of the minimum inR.

In agreement with equation (58),|φ| rises steeply from itsD→ 0 value, passes through
a maximum atD = Dmax< 1U , and then decreases again with further increase ofD. For
the parameters used in the experiment, a maximum value of−φ = 68◦ is predicted to occur
at Dmax = 0.08, which is to be compared with the experimental observation forA = 0.04
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of −φ = (66±2)◦ atD = 0.08±0.01. In accordance with the LRT prediction, the decrease
of |φ| for D > Dmax is much more gradual than the rapid increase seen belowDmax. The
measuredφ is relatively insensitive toA. The LRT prediction for the effect of noise on
the phase shift, based on the full set of equations forQ(0) (Dykman et al 1992b), which
goes beyond the range specified in (58), (59), is shown by the full curve in figure 19. It is
evident that the analogue results are in excellent agreement with the theory. This form of
behaviour was also confirmed by Morillo and Gómez-Ord́oñez (1993) by numerical solution
of the Fokker–Planck equation.

It is reasonable to wonder why the variation ofφ with D for SR in model (1)
should benon-monotonic(figure 19), whereas the corresponding variation ofφ with �

in a deterministic resonance is well known to be monotonic, as also were the earlier
predictions (Nicolis 1982, McNamara and Wiesenfeld 1989, Presillaet al 1989) for SR.
An answer is readily inferred by physical intuition. For very smallD � 1U , where the
system is effectively confined to a single well, we may expectφ to be small because�
is small compared with the reciprocal characteristic time of intra-well motion—for very
largeD � 1U , where the double-well character of the potential has become irrelevant, we
may also expectφ ' 0, for the same reason—so, at the intermediate values ofD where
SR occurs, any significant phase lag associated with the SR must inevitably give rise to a
maximum in|φ|, just as observed. Earlier theories failed to predict this behaviour because,
unlike the theory described above, they are effectively two-state treatments that take no
account of the intra-well vibrations. This is easily shown (Dykmanet al 1992b) because,
if the intra-well vibrations are ignored, the expression for the phase shift (58) immediately
reduces to the original Nicolis (1982) result

φ = −arctan(�/W) (60)

shown by the dashed curve in figure 19.
Observation of the phase lags, as described here and by Gammaitoniet al (1991a, b),

strengthens the analogy between bistable SR and conventional forms of resonance. We
would stress, however, that it is only an analogy in the case of (57) because, although
a description of SR in terms of a residence time distribution enables some resonance-
like behaviour to be explored (Gammaitoniet al 1995), it remains true (Fox 1989) that
there is no matching of� to any internal vibrational frequency of the system. This is
to be contrasted with SR in underdamped monostable systems (Stockset al 1992, 1993c)
discussed in section 4.3.2, which is a true resonance phenomenon where external noise is
used to tune the natural oscillation frequency of the system to that of the periodic force.

Digital simulations (Dykmanet al 1993g) have shown that LRT also provides a
satisfactory description of the system behaviour even when� has become so large that
the SR effect has disappeared, andR just decreases monotonically with increasingD. LRT
has both advantages and disadvantages, as compared to other theoretical treatments. The
main disadvantage is that it will only yield quantitatively accurate results whenA is small
enough for the system to be within its regime of linear response; but this is, of course, a
condition that is often fulfilled in practice. It should be noted, however, that the quality of
the results obtained will naturally depend on the accuracy of theQ(0)(ω) used in (55) for
the calculation ofχ(�).

We now address the vexed question of whether an SR-displaying system (a ‘stochastic
resonator’) can improve the SNR of a given signal. There has been much confusion on
this point in the literature, with more than one research group claiming that absolute SNR
improvements have been observed in experiments. However, Dykmanet al (1995d) and
DeWeese and Bialek (1995), using different LRT-based arguments, have pointed out that,
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for small-amplitude signals, the SNR at the output of a system driven by a stationary
Gaussian noise does not exceed that at the input, even if the system displays SR. Indeed,
the Fourier components of the noise are statistically independent and the total power of
the noise4(�) d� in a small spectral interval d� about the frequency of the signal� is
small. The signal-to-noise ratio at the input is given by1

4A
2/4(�), whereas that at the

output is 1
4|χ(�)|2A2/[|χ(�)|24(�) + Q′(0)(�)]. The quantityQ′(0)(�) gives the value

of the spectral density of fluctuations in the system at frequency� as it would be if there
was no signal and the spectral components of the noise at frequency� were suppressed,
i.e. as if the power spectrum of the input noise had a hole at frequency�. By construction
Q′(0)(�) > 0, which proves the statement. (In linear systems, on the other hand, which
do not mix frequencies,Q′(0)(�) = 0 and the signal-to-noise ratio at the output must be
the same as at the input.) These points deserve, and have recently received (Dykman
and McClintock 1998), emphasis, given the level of misinformation in some of the recent
literature on SR.

The situation with large-amplitude signals (beyond the LRT range) is less clear.
Generally, such signals are distorted by a nonlinear system: the response to a sinusoidal
signal has overtones, and therefore may not be characterized by the SNR at the signal
frequency. In some models the SR effect decreases with signal amplitude for large signals
(Jung and Ḧanggi 1991), whereas for specific types of nonlinear signals and/or definitions
of the SNR, an increase of the SNR has been reported by Loerinczet al (1996) and by
Khovanov and Anishchenko (1997).

4.3. Non-conventional forms of stochastic resonance

The LRT picture led quickly to the realization that SR need not be restricted to systems of the
kind that can be characterized by static bistable potentials, in which it had been discovered.
One consequence was, as already mentioned, the observation of SR in monostable systems
(see section 4.3.2). Another was the observation of SR in bistable systems whose attractors
are coexisting limit cycles (rather than the minima of a static potential) which we now
consider. As we shall see, the phenomenon can be discussed in terms of LRT although,
since the system now under consideration is of the non-equilibrium type, the susceptibility
cannot be obtained through the fluctuation dissipation relations (55).

4.3.1. Stochastic resonance for coexisting periodic attractors.The system considered by
Dykman et al (1993b, 1994c) was the underdamped single-well Duffing oscillator (8) and
(9) driven by a nearly resonant forceF cosωF t with the frequencyωF close to the oscillator
eigenfrequencyω0 such that

0, |δω| � ωF γ δω > 0 δω = ωF − ω0. (61)

It is of particular interest in view of its importance in nonlinear optics (Gibbs 1985,
Drummond and Walls 1980, Flytzanis and Tang 1980, Goldstone and Garmire 1984) and
its relevance to experiments on a confined relativistic electron excited by cyclotron resonant
radiation (Gabrielseet al 1985, Dehmelt 1990). Provided thatF 2 � ω4

0(δω
2 + 02)/|γ |,

and that the noise is weak, the resultant comparatively small amplitude(�(ω2
0/|γ |)1/2)

oscillations ofx(t) can conveniently be discussed in terms of the dimensionless parameters
(Dykman and Krivoglaz 1979)

η = 0/|δω| β = 3|γ |F 2

32ω3
F (|δω|)3

α = 3|γ |D/8ω3
F0 (62)
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which characterize respectively the frequency detuning, the strength of the main periodic
field and the noise intensity. The bistability (Landau and Lifshitz 1976) in which we are
interested arises for a restricted range ofη andβ, within the triangular region bounded by
the full lines of figure 20. Thus, as the amplitude of the periodic force is gradually increased
from a small value at fixed frequency (see the vertical line a–a′), the system moves from
monostability (one small-amplitude limit cycle), to bistability (two stable limit cycles of
different radii) and then back again to monostability (one large-radius limit cycle). The
effect of weak noisef (t) is to cause small vibrations about the attractors, and to induce
occasional transitions between them when the system is within the bistable regime. Since
the system is far away from thermal equilibrium, the transition probabilities are not given
by the classical Kramers (1940) theory. As mentioned above, the nearly resonantly driven
oscillator was the first physical system without detailed balance where escape rates were
explicitly calculated (Dykman and Krivoglaz 1979). The inter-attractor transitions give rise
to a stationary distribution of the oscillator over the attractors. They also give rise to an
SR effect which, as we shall see, occurs in the close vicinity of the kinetic phase transition
(KPT) line (Dykman and Krivoglaz 1979, Dykmanet al 1990e), represented by a dashed
curve in figure 20, where the stationary populations of the two attractorsw1 andw2 are
equal,

w1 ≈ w2. (63)

Figure 20. The phase diagram for the system (8) and (61) in terms of reduced parameters (62):
the cuts a–a′ and p′–p–p′′ are discussed in the text (Dykmanet al 1993b).

Our principal aim is to consider the response of the system (8) to an additional weak trial
forceA cos(�t + φ). In stationary conditions, the response to this field in the presence of
the strong driving field can still be described, in terms of LRT, by a susceptibility. The trial
force beats with the main periodic force and thus gives rise to vibrations of the system, not
only at�, but also at the combination frequencies|�±2nωF | (and also at|�±(2n+1)ωF |
in the case of nonlinearity of a general type). We are interested in the case where the strong
and trial forces are both nearly resonant: that is,ωF and� both lie close to the oscillator
eigenfrequencyω0. This is the case for which the response to the trial force is strongest.
It is at its most pronounced at frequency� and at the nearest resonant combination, which
for (8) is |� − 2ωF |. The amplitudes of vibrations at these frequencies can be described
respectively by susceptibilitiesχ(�) andX(�), so that trial-force-induced modification of
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the coordinatex, averaged over noise, can be sought in the form

δ〈x(t)〉 = ARe{χ(�) exp[−i�t − iφ] +X(�) exp[i(2ωF −�)t ] − iφ]}. (64)

Within the KPT range,|Imχ(�)| displays a high narrow peak, whose width is given by the
transition rates and is therefore strongly noise dependent (Dykman and Krivoglaz 1979).
The rapid rise in susceptibility with noise intensity corresponds precisely to SR because,
according to (64), the areas of the peaks in the power spectrum at frequencies� and
|�− 2ωF | are

S(�) = 1
4A

2|χ(�)|2 S(|�− 2ωF |) = 1
4A

2|X(�)|2. (65)

An intuitive understanding of the predicted mechanism of stochastic amplification (Dykman
and Krivoglaz 1984) can be gained by noting that the trial force modulates the driving
force (and the coordinatex(t)) at frequency|� − ωF | and that, when|� − ωF | is small
compared to the dynamical relaxation rate0, the dynamic response of the system is almost
adiabatic. In terms of the phase diagram figure 20, the beat envelope then results (Dykman
et al 1993b) in a slow vertical oscillation of the operating point. If the operating point is
taken to be p, and its range of modulation p′–p′′ is set to straddle the KPT line as shown,
then the role of the fieldA cos(�t + φ) is precisely the same as the role of the field in the
case of a static potential: it alternately biases one of the stable states (a periodic attractor,
in the present case) with respect to the other, i.e. it strongly modulates populations of the
attractors (in the quasistatic limit). Note that this modulation does not occur away from the
KPT line, where the populations are always very different.

If the noise intensity is optimally chosen, then the modulated system will have a tendency
to make inter-attractor transitionscoherently, once per half-cycle of the beat frequency. The
net effect of the noise is, therefore, to increase the modulation depth of the beat envelope
of the response, thereby increasing the components of the signal at frequencies� and
|�− 2ωF |.

Experimentally, the response of the system (8), (9) and (62), and the variation of the
signal-to-noise ratio withα, were investigated (Dykmanet al 1993b, 1994c) by use of the
electronic model described in section 2.1. In terms of scaled units the circuit parameters
were set, typically, to: 20 = 0.0397,ω0 = 1.00, γ = 0.1, ωF = 1.072 00,� = 1.070 97
and, to seek SR near the KPT,F = 0.068 and the amplitude of the trial forceA = 0.006.
A spectral density of fluctuations of the coordinatex(t) (about〈x(t)〉 for A = 0) recorded
with the above parameter values forα = 0.061 and 16 384 samples in each realization, is
shown in figure 21. The smooth background is the supernarrow spectral peak of Dykman
et al (1990e), which is due to fluctuational transitions between the attractors and has a
maximum at the field frequencyωF ; its width is given by the transition probabilities and
remains very much smaller than 20. The delta function spikes, indicated by raised points
of the discrete spectrum, are clearly visible, not only at the trial force frequency (�), but
also as predicted at the mirror-reflected frequency (2ωF −�). Note that the value of�, the
number of points in eachx(t) realization and the sample interval were chosen to be such
that the signals at� and (2ωF − �) each fell within individual bins of the discrete SDF,
and such that there were several bins in between them.

The signal-to-noise ratiosR, determined in the usual way from measurements of the
delta spikes and the smooth background, are plotted (data points) as functions of noise
intensity α in figure 22 forβ = 0.814, η = 0.236. It is immediately evident that there
is a range ofα within which R increaseswith α. It is also apparent that, for both the
main and the mirror-reflected signals, the form ofR(α) in figure 22 is remarkably similar
to that observed for conventional SR. That is,R initially decreases withα, on account of
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Figure 21. The power spectral densityQ(ω) measured (Dykmanet al 1993b) for the electronic
model of (8), (9) and (61), with the contents of each FFT memory address shown as a separate
data point on a highly expanded abscissa; a smooth curve, peaking atωF , is drawn through the
background spectrum; vertical lines indicate the delta spikes resulting from the trial force.

Figure 22. The signal-to-noise ratioR of the response of the system (8), (9) and (61) to a weak
trial force at frequency�, as a function of noise intensityα, in experiment and theory (Dykman
et al 1993b): at the trial frequency� (circle data and associated theoretical curve); and at the
‘mirror-reflected’ frequency (2ωF −�) (squares). For noise intensities near those of the maxima
in R(α), the asymptotic theory is only qualitative and so the curves are dotted.

the increase in its denominator. With further increase ofα, the inter-attractor transitions
come into play and can be effectively synchronized by the trial force, giving rise to an
increase inR through the stochastic amplification mechanism discussed above. Finally, for
still largerα, R decreases again partly owing to the continuing rise in its denominator and
partly because transitions are then occurring very frequently, within individual periods of
the trial force, with a corresponding reduction in the proportion of the phase-coherent jumps
that are responsible for the amplification.

A quantitative theory of the phenomenon is readily constructed through an extension
(Dykmanet al 1989, 1994c) of the formalism introduced by Dykman and Krivoglaz (1979).
It leads to contributions to the susceptibilities from inter-attractor transitions of the form

χtr(�) = w1w2

2ωF (ωF − ω0)
(u∗1 − u∗2)

µ1− µ2

α

[
1− i(�− ωF )

W12+W21

]−1

(66)
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Xtr(�) = u1− u2

u∗1 − u∗2
χtr(�) µj =

√
β

(
∂Rj

∂β

)

wherew1 and w2 are the populations of the attractors 1 and 2, andW12 and W21 are
the probabilities of transitions between them, which are of the activation typeWij ∝
exp(−Ri/α). (ui and u∗i , which define the positions of the attractors in the rotating
coordinate frame, can be regarded as constants for givenη, β; and µi determine how
fast the activation energies vary with the reduced squared field amplitudeβ ∝ F 2.) It is
evident that the contributions (66) come into play if, and only if, the system is within the
KPT range where the populations of the unperturbed attractors are comparable; otherwise,
the factorw1w2 ∝ exp(−|R1−R2|/α) will be exponentially small. Within the KPT range,
however, the susceptibilities will be large because they are proportional to the large factor
|µ1 − µ2|/α; the rapid increase ofWij with noise intensity then ensures that there will be
a range ofα in which both susceptibilities increase very rapidly withα, consistent with
the experiments. The full theory (Dykmanet al 1994c) includes the effect of intra-attractor
vibrations and leads to the curves of figure 22. Given the large systematic errors inherent
in the measurements—arising, for example, fromδω (61), a small difference between large
quantities which, inβ (62), is then raised to its third power—the agreement between theory
and experiment can be considered excellent.

We emphasize that, in contrast to conventional bistable SR (see previously and Jung
1993, Moss 1994, Wiesenfeld and Moss 1995 and Dykmanet al 1995d), stochastic
amplification occurs herenot at the relatively low frequency of the nearly periodic inter-
attractor hopping but, rather, at� close to the much higher (tunable) frequencyωF of the
main periodic driving force. To emphasize the distinction, it seemed appropriate (Dykman
et al 1993b, 1994c) to refer to the new form of SR ashigh-frequency stochastic resonance
(HFSR).

There is an interesting connection between HFSR and four-wave mixing in nonlinear
optics (Shen 1984). In effect, the results correspond to noise-enhanced amplification of the
signal wave, and noise-enhanced generation of the idler wave. The mechanisms areresonant
and, although they have the appearance of four-wave mixing, they actually correspond to
multiple-wave processes: in terms of quantum optics, the oscillator absorbs and re-emits
many quanta of the strong field. The very high amplification/generation coefficients arise
partly from their resonant character and partly from the fact that the signal sizes correspond,
not to the amplitudes of vibrations about the attractors but, as usual in bistable SR, to the
‘distance’ between the attractors (to their coordinate separation for conventional SR, and
approximately to their difference in amplitude in the present case).

The prediction and demonstration of HFSR for periodic attractors, and its similarity
(figure 22) to conventional SR, led to a broader and more general perception of the physical
nature of bistable SR. Like the onset of supernarrow peaks in the power spectra, conventional
SR and HFSR are both critical phenomena that arise in the range of the KPT. While HFSR
is to be anticipated for coexisting stable limit cycles with equal periods, low-frequency SR
is a more robust effect. It arises, not only for systems fluctuating in simple double-well
potentials but also for systems where one (or both) of the attractors is chaotic (Anishchenko
et al 1993, 1994); it follows from the analysis by Dykman and Krivoglaz (1979) that low-
frequency SR is also to be anticipated for periodic attractors, provided the oscillator lacks
inversion symmetry, so that the centres of the coexisting periodic attractors have different
locations. Since noise gives rise to fluctuational hopping between any types of attractors, SR
is actually a phenomenon characteristic ofall systems with coexisting attractors, regardless
of the nature of those attractors, provided only that the system lies within its KPT range (63).
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4.3.2. Stochastic resonance in monostable systems.As already remarked above, the LRT
perception of SR embodied in equations (52), (54) and (55) immediately implies that SR
can be anticipated quite generally in systems which, within a certain frequency range,
exhibit a sharp increase of the susceptibilityχ(ω) with increasing intensityD of the driving
Gaussian noise. The effect may be expected to be particularly strong if the response is
resonant, as is the case for a noise-driven underdamped nonlinear oscillators (Dykman
and Krivoglaz 1984). Because of nonlinearity, the frequency of the oscillator vibrations
ω(E) depends on the energyE (measured from the bottom of the potential well). Because
of the noise, the oscillator has a distribution over energy (the Boltzmann distribution, in
the case of systems in thermal equilibrium). Therefore, it also has a distribution over
vibrational frequency. With increasing noise intensity this distribution changes and, in
particular, vibrations can be excited with frequencies that were effectively unavailable for
smaller noise intensity. Consequently, the response at such frequencies can be strongly
enhanced by noise.

The resonant susceptibility of nonlinear oscillators has been analysed in detail
theoretically, as this is one of only a few exactly solvable nonlinear problems (Dykman and
Krivoglaz 1984). Explicit analytical results have been obtained for an arbitrary ratio between
the relaxation rate and the noise-induced frequency straggling (Dykman and Krivoglaz
1971), and a general numerical algorithm has been formulated for calculating the shape of
the power spectrum near its maximum (Dykmanet al 1989). In particular, the sharp change
of the power spectrum of the oscillator, including its exponential increase with increasing
noise intensity, was discussed in the above papers. The appearance of an additionalzero-
dispersionspectral peak (ZDP), in cases where the damping is extremely small and the
oscillator frequencyω(E) is non-monotonic as a function of energy, was predicted and
discussed by Soskin (1989, 1992).

The model used (Stockset al 1992) to predict and observe SR in monostable systems
and investigate its characteristic features is the tilted single-well Duffing oscillator driven
by Gaussian white noise plus a weak periodic force

ẍ + 20ẋ + dU(x)

dx
= f (t)+ A cos�t

U(x) = 1

2
x2+ 1

4
x4+ Bx (67)

0 � 1 〈f (t)〉 = 0 〈f (t)f (t ′)〉 = 40Dδ(t − t ′).
It is effectively identical to the symmetrical single-well Duffing oscillator (8) except for the
Bx term in the potential. We consider two distinct cases, depending on the magnitude of
|B|.

In case (a), where|B| < 8/(7)3/2 ≈ 0.43, the variation of the oscillator’s eigenfrequency
ω(E) with energyE measured from the bottom of the potential well is monotonic (Dykman
et al 1990b), as sketched in figure 23(a). In the absence of the periodic force (A = 0),
for small noise intensityD, a narrow Lorentzian peak of width∼0 occurs in the SDF
at frequencyω(0). As D is increased, the peak broadens asymmetrically (Dykman and
Krivoglaz 1971) towards higher frequencies, as discussed earlier. For an� > ω(0), initially
on the tail of the peak, i.e.(�− ω(0)) > 0, the magnitude ofQ(0)(�) therefore increases
extremely rapidly (Dykman and Krivoglaz 1971) withD, as does also the generalized
susceptibilityχ(�). One would expect, therefore, to observe SR in this case even though the
system is monostable, withU(x) a smooth single-well potential. The resonance maximum
is to be expected whenD has been ‘tuned’ to adjust the characteristic energyẼ ∼ D such
thatω(Ē) ∼ �.
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Figure 23. Sketches to show the dependence of the eigenfrequencyω(E) on energyE measured
from the bottom of the potential well for the system (67): (a) for|B| < 0.43; (b) for |B| > 0.43
(Stockset al 1993c). Frequencies� at which a weak periodic force will be amplified by SR
are indicated.

In case (b) with|B| > 0.43, on the other hand,ω(E) is non-monotonic (Dykman
et al 1990b), as sketched in figure 22(b). In the absence of the periodic force (A = 0), the
system exhibits noise-induced spectral narrowing (Dykmanet al 1990b); and, for sufficiently
small values of the damping constant0, exceedingly sharp ZDPs of width∝01/2 appear
(Soskin 1989, 1992) close to the frequencyωm of the extremum where dω(E)/dE = 0
(respectively,E = Em). A set of power spectraQ(0)(ω) showing the evolution of the ZDP
with increasingD, measured in an analogue electronic experiment (Stockset al 1993c), is
shown in figure 24. The magnitude of the ZDP rises exponentially with increasingD. Just
as in case (a) the corresponding rapid increase ofχ(�) implies a manifestation of SR for
� close toωm. Since the ZDP arises only when vibrations of energy∼Em are excited, the
intensity of the ZDP displays an activation dependence on noise intensity. This suggests
that the SR effect in case (b) may be very pronounced. Case (a) is, of course, the more
generic, as it applies to any underdamped system (Dykman and Krivoglaz 1984), and here
too the SR effect can be quite pronounced (Dykmanet al 1996a). Note, however, that
systems with one or more zero-dispersion points, as in figure 22(b), are not uncommon: see
section 7.2.

To test these predictions, evidence was sought (Stockset al 1993c) of SR in an electronic
model of (67); it was very similar to that shown in figure 2, except that an additional constant
voltage representing the asymmetry termB in (67) was added at point A. The parameter
values used were0 = 0.011, A = 0.020 andB = 0 or B = 2.00 for cases (a) or (b),
respectively. The value of0 was again too small to be determined reliably from the circuit
components (owing to the effect of stray capacitance and other non-idealities); instead, it
was measured in a separate experiment. The model was driven with quasi-white noise from
an external noise generator, and with a weak periodic force from an HP3325 frequency
synthesizer. The resultant fluctuatingx(t) was digitized in 1024 point blocks and ensemble
averaged by a Nicolet LAB80 data processor to yield〈x(t)〉. By averaging in the time
(rather than the frequency) domain, as discussed in section 4.2, it was possible to make
measurements of the phase shiftφ between the drive and the response (Gammaitoniet al
1991a, Dykmanet al 1990c, d, 1992b) as well as yielding directly the amplitudea of the
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Figure 24. Spectral densities of fluctuations measured (Stockset al 1993b) for an analogue
electronic circuit model of (67) withA = 2 and: (a)D = 0.100; (b) 0.203; (c) 0.320; (d) 0.409;
(e) 0.485; (f) 0.742. The zero-dispersion peak is the sharp ‘spike’ that first appears in (d) and
then grows rapidly with increasingD.

response. Measurements were made of the stochastic amplification factor (Jung and Hänggi
1991)

S(D) = a(D)/a(0) (68)

and of the corresponding value ofφ over a wide range ofD for the two cases (a) and (b).
Some typical measurements of the noise-induced power gain are shown by the data

points in figure 25 (whereS2 is plotted rather thanS for more convenient comparison
with earlier SR results). It is immediately evident that, both for case (a) (squares) and for
case (b) (circles),S2 at first increases rapidly with noise intensity, but then passes through
a maximum and decreases again, albeit more slowly. That these data should bear a striking
resemblance to those obtained for conventional SR (Jung 1993, Moss 1994, Wiesenfeld and
Moss 1995, Dykmanet al 1995d) is, of course, no coincidence. Note that, in the case of
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Figure 25. The squared stochastic amplification factorS2 measured (Stockset al 1993c) for
case (a) (squares) and case (b) (circles) as a function of noise intensityD for the electronic
circuit model of (67) withA = 0.02 is compared with the theoretical predictions (full curves)
obtained from the fluctuation dissipation theorem.

Figure 26. The phase difference−φ (in degrees) between the driveB cos�t and the response
〈x(t)〉 measured (Stockset al 1993c) for case (a) (squares) and case (b) (circles) as a function
of noise intensityD for the electronic circuit model of (67) withA = 0.02 is compared with
the theoretical predictions (full curves) obtained from the fluctuation dissipation theorem.

a linear system (harmonic oscillator),S2 would not increase at all but would remain equal
to unity irrespective of the value ofD. As anticipated, the maximum is much larger for
case (b) than for case (a); it can be shown (Stockset al 1992) that, in case (b) for sufficiently
small0, not only the signal but also the SNR increases with increasingD within a certain
range. We note, however, that as always in SR this increase is achieved at the expense of
very poor signal transduction for small noise intensity.

The measured phase lag−φ between the drive and response is plotted for case (a)
(squares) and case (b) (circles) in figure 26. The forms of−φ(D) for the two cases
are strikingly different, but they can readily be understood qualitatively by analogy with
a conventional (deterministic) resonance. In case (a) forD = 0, the periodic driving
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force is being applied at a frequency well beyond the natural frequency of the system,
� > ω(0) (see figure 23(a)). Consequently−φ is close to 180◦. As D is increased,
however, the ‘natural frequency’ω(E) is effectively being tuned past the fixed driving
frequency. Near resonance−φ passes through 90◦ and, in the highD limit where the
‘natural frequency’ substantially exceeds�, −φ decreases towards 0◦ exactly as would
be seen in a conventional resonance. The phase changes for case (b), while quite
different, can be accounted for in a very similar way. In this case, the ‘natural frequency’
ω(E) always exceeds that of the drive� (figure 23(b)), and so the phase lag−φ is
always less than 90◦, although it approaches 90◦ near the resonance maximum, just as
expected.

A quantitative theoretical description of these phenomena is readily developed using the
LRT relations. The squared amplitude of the response is justa2 = A2|χ(�)|2, so that

S2 = [a(D)/a(0)]2 = |χ(�)|2{[ω(0)2−�2]2+ 402�2}. (69)

The quantityQ(0)(ω) in (55), the SDF in theabsenceof the periodic force, was obtained
from equation (20) of Dykmanet al (1990b) (which specifies for the model (67) the general
expressions of Dykman and Krivoglaz (1984)) also using their equations (4a), 4(b), (14),
(A7), (A9) and a numerical solution of their (16). Values ofS2 and φ calculated in this
way for (67) with the parameters used in the circuit are plotted (full curves) as functions
of D in figures 25 and 26 for comparison with the experimental measurements. Given that
there are no adjustable parameters, the agreement between experiment and theory can be
regarded as excellent.

A closely related effect, in which a noise-induced increase occurred in the resonant
response of an underdamped nonlinear oscillator, was investigated by Dykmanet al (1996a)
for the case of subharmonic ‘two-photon’ absorption. The oscillator was excited at nearly
half its eigenfrequency and, here too, noise was used to tune the system to resonance,
resulting in large changes in the susceptibilities. Formally, the response to the driving is
nonlinear but, in the approximation where only resonant effects are taken into account, the
theory can effectively be reduced to a quasilinear one. Sharp and very strong increases
of the appropriate nonlinear susceptibility with increasing noise intensity were observed
in the ranges where the frequency of the field� was close to one half of the oscillator
eigenfrequencyω0, or to one half of the zero-dispersion frequencyωe.

Although the results of figure 25 show dramatic noise-induced signal enhancements
they do not, even for case (b), quite satisfy the stronger definition of SR (increase of the
SNR) mentioned earlier; a smaller value of0 would have been needed (Stockset al 1992)
for this to be so. It was pointed out by Soskin (private communication), however, that
much stronger SR effects were to be anticipated in underdamped SQUIDs (superconducting
quantum interference devices), even for relatively large values of0. His hypothesis was
tested (Kaufmanet al 1996) by experiments on an analogue electronic model of a SQUID.

The dynamics of the magnetic flux through a periodically-driven SQUID loop can
be described in terms of a resistively shunted model (Barone and Paterno 1982) whose
governing equation, after appropriate changes of variable (see, e.g., Kaufmanet al 1996)
can be written

ẍ + 20ẋ + dU

dx
= f (t)+ A cos(�t)

U(x) = 1

2
B(x − xdc)

2− cosx (70)

〈f (t)〉 = 0 〈f (t) f (t ′)〉 = 40Dδ(t − t ′)
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corresponding to classical motion in the potentialU(x) under influence of the additive noise
f (t). We consider the case where the amplitudeA of the periodic force is small, where
the constant0 is also small so that motion in the potential is underdamped and where the
relative magnitudes ofB andxdc are such that the potential has a single potential well.

The correspondingω(E) dependence calculated for the SQUID potential (70) with
B = 0.3 and xdc = 0, shown in figure 27, exhibits a local maximum and two local
minima within the range plotted. Each of these extrema may be expected to produce a
ZDP in Q(0)(ω) that could in principle give rise to SR. To test this inference, Kaufman
et al (1996) built an analogue electronic model of equations (70), as shown in block form
in figure 28. A′ cos�′t ′ andf ′(t ′) are respectively a signal and an external noise applied
to the underdamped nonlinear oscillator.A′ is the amplitude of the signal in volts,f ′(t ′)
is the value of the noise voltage applied to the circuit, and�′ and t ′ are the real frequency
and time in units of Hz and s, respectively. Setting to zero the total currents at the inputs

Figure 27. Calculated variation of the eigenfrequencyω(E) with energyE for the potential
(70) with B = 0.3, xdc = 0 (Kaufmanet al 1997). The dashed lines indicate the positions of
the first three extremaωm1 = 0.372,ωm2 = 0.600 andωm3 = 0.506.

Figure 28. A block diagram of the analogue electronic circuit model of (70). Its behaviour can
conveniently be analysed in terms of the voltagesVA, VB, VC andVD at the points indicated
(see text) (Kaufmanet al 1997).
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of the operational amplifiers whose outputs areVA andVB, respectively, we obtain

VA

RG
+ C1

dVA

dt ′
+ f

′(t ′)
RN
+ A

′ cos(�′t ′)
RF

− (R5/R4)VB

R2
+ VD

R1
= 0 (71)

C2
dVB

dt ′
+ VA

R3
= 0. (72)

The trigonometric IC was configured to give an output of 10 sin[50(y1 − y2)], where the
two inputs y1 and y2 are in volts and the argument of the sine is in degrees. The IC
operation is restricted to lie within the range±500◦. In order to increase the dynamic range
of x encompassed by the model, an analogue multiplier was used as shown to convert the
argument to the double angle. The voltage at its output, in terms of the voltageVC at the
input of the trigonometric IC and the constant voltagesV1 andV2, and allowing for internal
scaling by a factor of 0.1, is

VD = 0.1[10 sin(50(V1− VC))]
2+ V2 (73)

or, in terms of the double angle, now expressed in radians,

VD = 5

(
1− cos

[
π

1.8
(V1− VC)

])
+ V2. (74)

The voltageVC is just

VC = −R7

R6
VB. (75)

Eliminating VA, VC and VD from (71), (72), (74) and (75), and writingVB ≡ x, the
differential equation for the voltagex in the circuit can therefore be written

R1C1R3C2
d2x

dt ′2
+ R1

RG
R3C2

dx

dt ′
+ R1R5

R2R4
x − 5

(
1− cos

[
π

1.8

(
V1+ R7

R6
x

)])
− V2

= R1

RF
A′ cos�′t ′ + R1

RN
f ′(t ′) (76)

where we have chosen

RN = RF = 100 k� R1 = R3 = 100 k�

R4 = R5 = R6 = 10 k� R7 = 11.459 k�

RG = 22 M� C1 = C2 = 10 nF V1 = −0.9 V.

The multi-well and single-well cases of the potential (26) correspond to different values of
the parametersR2 andV2. For example, on introducingR2 = 100 k�, V2 = −3.93 V, the
time constantτ ′ = R1C1/

√
5 = R3C2/

√
5 and the damping constant0′ = R1/(RG

√
5),

equation (32) can be reduced to

τ ′2ẍ + 0′τ ′ẋ + 0.2(x − 1.07)+ sin(2x) = 0.2A′ cos�′t ′ + 0.2f ′(t ′) (77)

whose parameters are readily related to those in the model (70) by means of the scaling
relations

x → 2x τ = τ ′√
2

t = t ′

τ
� = �′τ 0 = 0′

√
2

B = 0.1 xe = 2.14

A = 0.2A′ f (t) = 0.2
√

2f ′(t ′).
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The nominal value of 20 was 0.001 44; the actual (see section 2.1) value, measured
experimentally by two independent methods (McClintocket al 1993), was found to be
20 = 0.0012 for the multi-well case and 20 = 0.0011 for the single-well case.

When the model was driven by quasi-white noise from an external noise generator, with
A = 0, the measured spectral densityQ(0)(ω) underwent dramatic changes of shape with
increasingD, as shown in figure 29. The three ZDPs appeared sequentially asD ‘tuned’
the oscillator to different ranges ofω(E). When the weak periodic forceA cos(�t) was
also added, with� chosen to lie close to the frequency of the local maximum ofω(E) and
the corresponding ZDP where|χ | is expected to be strongly noise dependent, the SNR was
found to vary with increasingD as shown by the data points of figure 30. At first the SNR
falls, as one might expect on intuitive grounds, but there follows a range ofD within which
the SNR markedlyincreaseswith increasingD, i.e. a strong manifestation of SR, before
falling again at very highD.

Figure 29. The spectral density of fluctuationsQ(ω) measured (jagged curve) for the analogue
electronic model of equations (70) withA = 0, B = 0.3, xdc = 0, compared with the calculated
behaviour (smooth curves), for three noise intensitiesD (Kaufmanet al 1997). One ZDP is
seen forD = 1.0, and three forD = 3.1. Note the differing ordinate scales.

The theory of these phenomena has been developed (Kaufmanet al 1996, 1997) on the
usual LRT basis: first, the power spectral densitiesQ(0)(ω) in the absence of the periodic
force were calculated for different values ofD, by means of an algorithm similar to that
described previously (Dykmanet al 1989, 1990b); second, the calculatedQ(0)(ω) was
inserted in equations (54) and (55) to yield the SNR, as required. The theory, shown by
the full curves of figures 29 and 30, is in satisfactory agreement with the measurements.
It demonstrates that the size of the increase in SNR is related to the magnitude of0 and
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Figure 30. The signal-to-noise ratio (SNR) measured (data points) as a function of noise intensity
D for the analogue electronic model of equations (70) withA = 0.016,� = 0.62, B = 0.3,
xdc = 0, compared with the behaviour predicted (full curve) by LRT, equations (54) and (55),
using the calculated spectral densitiesQ(ω) of which three examples are plotted as dashed lines
in figure 29 (Kaufmanet al 1997).

that, if 0 is made small enough, there is in principle no limit to the rise in SNR that can be
achieved. Note also that the above SQUID parameters, used by Kaufmanet al (1996), were
chosen so as to provide a monostable potential mainly in order to emphasize the marked
difference between zero-dispersion SR and conventional SR; but zero-dispersion SR also
occurs in SQUIDs with multi-well potentials (Kaufmanet al 1997) where it exhibits some
interesting features.

In the light of these results from the analogue electronic model, we may conclude that
zero-dispersion SR is to be anticipated in underdamped SQUIDs. The optimal frequencies
for the SR, i.e. the ZDP frequencies, are tunable over a very wide range—in principle,
running from near zero up to a maximum value not much less than the Josephson plasma
frequency—by adjustment of the applied static magnetic field and/or the inductance of the
loop. Although the SNR at the output of an SR (or any other) device cannot exceed that at
the input (see section 4.2), noise can still be used to improve the output SNR of signals for
a specific nonlinear device, as in the present case. The performance of a high-frequency
SR device based on an underdamped SQUID would probably be comparable with that of
low-frequency SQUID-SR devices (Hibbset al 1995), and it would have the additional
advantage of being tunable over a wide range of frequencies and SQUID parameters.

4.3.3. Stochastic resonance for periodically modulated noise intensity.We now discuss
SR phenomena that can occur (Dykmanet al 1992a) in a bistable system when the noise
and the periodic force are introduced multiplicatively, so that the former is modulated by
the latter. Periodically modulated noise is not uncommon and arises, for example, at the
output of any amplifier (e.g. in optics or radio astronomy) whose amplification factor varies
periodically with time. It is of obvious importance, therefore, to establish whether or not
a modulated zero-mean noise can give rise to a periodic signal in the system it is driving.
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Such an effect would not, of course, occur in a linear system where the signal is directly
proportional to the driving noise so that they must both, on average, vanish. We shall see
that in anonlinear system, however, a periodic signal does arise and, furthermore, that in
a bistable system a form of SR can occur for periodically modulated noise intensity. It has
some novel features that are strikingly different from those in conventional SR.

Dykman et al (1992a) considered an overdamped Brownian particle moving in an
asymmetric bistable potential

ẋ + U ′(x) = f (t) ≡ ( 1
2A cos(�t)+ 1)ξ(t) (78)

U(x) = − 1
2x

2+ 1
4x

4+ λx.
Here,λ characterizes the asymmetry of the potential. For−2/(3

√
3) < λ < 2/(3

√
3) the

potentialU(x) has two minima, i.e. the system is bistable. The functionξ(t) represents
white Gaussian noise of intensityD, so that

〈f (t)f (t ′)〉 = 2Dδ(t − t ′)
[

1+ A cos(�t)+ A
2

8
(1+ cos(2�t))

]
(79)

i.e. the intensity of the driving forcef (t) is periodic in time. In what follows, we assume
the modulation to be weak,A� 1, and neglect the term proportional toA2 in (79).

For sufficiently weak noise, whenD is much less than the depths1U1,2 of the potential
wells,

D � 1U1,1U2 1Un = U(xs)− U(xn) n = 1, 2

U ′(x1,2) = U ′(xs) = 0 x1 < xs < x2 (80)

the motion of the system consists mostly of small intra-well fluctuations about the
equilibrium positionsx1,2. Occasionally, there will be large fluctuations, sufficient to cause
inter-well transitions. Periodic modulation of the noise influences both types of fluctuation,
and so there are two contributions to the signal〈x(t)〉: one from the modulation of the
intra-well fluctuations; and the other from the modulation of the populationsw1,2(t) of the
wells 1, 2

〈x(t)〉 '
∑
n=1,2

〈x(t)〉nwn(t) (81)

where〈 〉n implies averaging over thenth well. In the spirit of LRT, we assume that the
periodic response to the modulation can be described by a generalized susceptibilityκ(�)

〈x(t)〉 = 〈x〉(0) + ARe[κ(�) exp(−i�t)] (82)

where the superscript (0) means that the corresponding quantity refers to the caseA = 0.
We consider the response for the physically important case of low-frequency modulation,

� � U ′′(x1,2), where the adiabatic approximation holds. Both the intra-well fluctuations
and the transition probabilitiesW12 andW21 are then the same as they would be for white
noise of instantaneous intensityD (1+ A cos�t). The well populationsw1 andw2 for
periodically modulated noise depend on the relationship between� and theWnm.

To lowest order in the modulation amplitudeA, the probabilityWnm of an n → m

transition is

Wnm ≡ Wnm(t) ' W(0)
nm

(
1+ A1Un

D
cos�t

)
(83)

whereW(0)
nm ∝ exp(−1Un/D) is the usual Kramers transition rate. The corresponding

periodic modulation of the well populationsw1,2 is described by the balance equation
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ẇ1 = −W12w1 + W21w2. The periodic redistribution over the wells gives a contribution
κtr(�) to the susceptibilityκ(�) of the form

κtr(�) = − 1

D
(x1− x2)(1U1−1U2)w

(0)
1 w

(0)
2

W(0)

W (0) − i�

W(0) = W(0)
12 +W(0)

21 (84)

w
(0)
1 = W(0)

21 /W
(0) w

(0)
2 = 1− w(0)1 .

In obtaining (84) from (81)–(83), we have neglected the deviations of〈xn〉 from xn in
comparison with|x2− x1|. According to (83) and (84),

|κtr(�)| ∝ ζ exp(−ζ ) ζ = |1U1−1U2|/D (85)

i.e. the inter-well transitions contribute toκ(�) provided that the potential is asymmetric.
This is easily understood qualitatively. For a symmetric potential, the wells are equally
populated irrespective of noise intensity and so the modulation of the latter does not influence
the populationsw1 andw2. For asymmetric potentials, on the other hand, the ratio of the
populationsw(0)1 /w

(0)
2 ∝ exp[(1U2−1U1)/D] depends sharply on the noise intensity, and

will be strongly influenced by the modulation ofD. It is also evident that, for very largeζ ,
a weak modulation will not result in a substantial redistribution over the wells because the
productw1w2 ∝ exp(−ζ ) will remain exponentially small:|κtr(�)| must, therefore, vary
non-monotonically withζ ∝ D−1, with a maximum atζ = 1, and increase rapidly withD
in the range exp(ζ )� 1. This increase can in itself give rise to stochastic resonance, since
the periodic signal is rising rapidly with increasing noise intensity.

However, the intra-well fluctuations are also to be considered. Their contribution to
the susceptibilityκ(�) is connected with the local asymmetry of the potential about each
of its minima, just as for the zero-frequency peaks in the power spectra of single-well
underdamped systems (Dykmanet al 1991a). The partial susceptibility for thenth well,
κn(�), can be obtained for smallD by expandingU ′(x) in (78) to second order in (x− xn)
and calculating (x − xn) formally to second order inf (t). For�� U ′′(xn) one arrives at
the expression

κn(�) = −U ′′′(xn)[U ′′(xn)]−2D/2. (86)

The susceptibilityκ(�) as a whole is then given by the sum of the above contributions

κ(�) =
∑
n=1,2

κn(�)w
(0)
n + κtr(�) (87)

which is a general form of the susceptibility of a bistable system for low noise intensities
(Dykmanet al 1989).

Equations (82), (84), (86) and (87) describe completely the periodic response of the
system to periodically modulated noise. As usual, we characterize the influence of the
noise intensity on the response by the signal-to-noise ratioR equal to the ratio of theδ-like
spike in the power spectral density of the fluctuations of the system (53) giving rise to the
SNR R (54). Note that in contrast with conventional bistable SR (section 4.2), and SR
for monostable systems (section 4.3.2), the effective susceptibilityκ(�) is not now given
directly by the fluctuation dissipation theorem in terms ofQ(0)(ω).

The most interesting and important situation arises when the main contributions to both
κ(�) andQ(0)(�) are due to fluctuational inter-well transitions. In this case, (54) simplifies
and, allowing for the explicit form (Dykmanet al 1990c, d) ofQ(0)(�), one can (Dykman
et al 1992a) obtain

R ' Rtr = π

4
A2ζ 2W

(0)
12 W

(0)
21 /(W

(0)
12 +W(0)

21 ). (88)
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It can be seen from (83) and (85) thatRtr ∝ ζ 2 exp(−1U/D), where 1U =
max(1U1,1U2) is the depth of the deeper potential well. For non-equal well depths,
it is obvious thatRtr increases sharply with increasingD, i.e. stochastic resonance occurs.
We emphasize that (88) holds forζ not too large: this is because the contributions toκ(�)

andQ(0)(�) from the inter-well transitions are proportional to exp(−ζ ) compared to the
intra-well contribution (cf equations (84)–(87)) and, for largeζ , they become small.

The theory was tested (Dykmanet al 1992a) by means of an analogue experiment
modelling (78). The circuit was very similar in design to that shown in figure 5(a), except
for: (i) provision of a constant voltage at point A to produce the asymmetry termAx;
and (ii) application of the scaled periodic force and the noise via an additional analogue
multiplier to provide the necessary modulation, creating thef (t) term. Measurements of
the signal-to-noise ratioR are shown by the square data points in figure 31. We note
immediately the occurrence of SR: the rate of increase ofR is faster thanD, so that it
does not represent merely the proportionality of the modulation toD in (79). The lower
full curve in figure 31 represents a fit of the theory (54), (86) and (87) to the experimental
data, allowing for the explicit form (Dykmanet al 1992b) ofQ(0)(�), demonstrating the
universal character of the shape of the SR.

Figure 31. Measurements (square data points) of the signal-to-noise ratioR (×15) for
periodically modulated noise compared with theory (curves) as a function of reduced noise
intensityD/1U with A = 0.14, λ = 0.2, � = 0.029 (Dykmanet al 1992a). The circle data
represent measurements on the same circuit withadditive periodic forcing (conventional SR)
under similar conditions compared with the theory (upper curves).

It is interesting to compare SR for periodically modulated driving noise with
conventional SR (circle data and upper curve in figure 31) in periodically driven systems
wheref (t) in (78) is replaced by

f̃ (t) = ξ(t)+ A cos�t. (89)

The most substantial difference is that, in the present case, SR occurs for an asymmetric
bistable potential with wells of different depths (see (85); (88)), whereas conventional SR
can be regarded (Dykman and Krivoglaz 1979, 1984, Dykmanet al 1990c, d) as a kinetic
phase transition phenomenon that is at its most pronounced for equally populated stable
states, i.e. for equal well depths. The asymmetry of the model (78) is controlled byλ,
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ζ ≡ |1U1−1U2|/D ' 2|λ|/D (90)

for |λ| � 1, andR would, therefore, be expected (88) to increase rapidly withλ, whereas,
for additive periodic forcing,R decreases rapidly (Dykmanet al 1990c, d) with increasing
|λ|. These ideas were confirmed directly by the experimental data of figure 32(a). According
to (88) and (90),R ∝ λ2 for small |λ|; but for large|λ| the increase saturates because the
depth of the deeper well increases, with a corresponding decrease in the contribution to
R from inter-well transitions. We note that, for periodic forcing of the system described
by (78) and (89),R should be larger than for periodic modulation of the noise for the
same dimensionless amplitudeA, just because of the additional asymmetry factorζ 2 in
(88). It can be seen from figure 31 that the theory (full curves) is in good agreement
with the experiment. The results of figure 32(b) demonstrate that the signal-to-noise ratio
saturates with increasing amplitude of the periodic modulation. The effect is more striking

Figure 32. Measurements of the signal-to-noise ratio for periodically modulated noise (square
data points) and foradditive periodic forcing, i.e. conventional SR (circle data) under similar
conditions, forA = 0.15, D1U = 0.303 and� = 0.029. (a) The measurements are plotted
directly as a function of the asymmetry parameterλ for comparison with theory (curves).
(b) (signal/noise)1/2 is plotted as a function of signal amplitudeA at the input, for the sameD
and�, with λ = 0.2: note the linear dependence seen for small signals and the saturation for
strong signals, in the case of periodically modulated noise (Dykmanet al 1992a).
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than the corresponding saturation in conventional SR, for which the additive periodic force
distorts the shape of the potential; cf Dykmanet al (1993c) where nonlinear effects for
large-amplitude modulation in conventional SR are considered.

It is also interesting to note that the anisotropy of the potential, which gives rise to SR
for periodically modulated noise, can also give rise to SR when the periodic modulation is
parametric with the force proportional to the coordinate. This type of SR has been reported
for a parametrically-driven magnetoelastic ribbon (Spanoet al 1992); it would also be
anticipated in parametrically-driven bistable electronic systems (Debnathet al 1989) if the
potential were made asymmetrical.

In concluding this subsection we would comment that, just as in the case of conventional
SR, the main features of SR with periodically modulated noise can be well described within
the scope of LRT. The marked differences predicted to exist between these two types of
SR, and in particular their quite different characteristic variations ofR with the asymmetry
of the potential, including the rapid decrease ofR for additive periodic forcing, have been
convincingly confirmed by the analogue electronic experiments.

4.4. Noise-enhanced heterodyning

In the well known phenomenon of heterodyning, two high-frequency fields—an ‘input
signal’ and a ‘reference signal’—are mixed nonlinearly to generate a heterodyne signal
at the difference frequency. Mixing of this kind occurs quite generally in any nonlinear
system. The addition of noise usually results in a decrease in the amplitude of the heterodyne
signal (and its SNR), because the frequency response of the system becomes correspondingly
broadened. Nonetheless, it has been shown theoretically and experimentally (Dykmanet al
1994a) that, in bistable systems of the kind that exhibit SR (see section 4.2), the heterodyne
signal (and SNR) can sometimes be enhanced by an increase in the noise intensity. We now
discuss how this comes about. We consider an overdamped bistable system driven by three
time-dependent forces representing respectively the reference and input signals, and noise:

dx

dt
= −U ′(x)+ Arefx cosω0t + Ain(t) cos(ω0t + φ(t))+ f (t). (91)

Here, the terms proportional toAref and proportional toAin(t) are respectively the high-
frequency reference signal corresponding to a local oscillator of frequencyω0 (applied
multiplicatively), and the modulated high-frequency input signal (applied additively). The
functionsAin(t) andφ(t) vary slowly compared to cosω0t , and it is their variation in time
that has to be revealed via heterodyning. The heterodyning can be characterized by the
low-frequency signal at the output,x(sl)(t) = x(t) (the overbar stands for averaging over
the period 2π/ω0), for Ain = constant andφ = �t + constant, with� � ω0, i.e. for a
monochromatic input signal whose frequencyω0+� is slightly different from the frequency
ω0.

Dykman et al (1994a) considered the case where the double-well potentialU(x) has
equally deep wells, as in standard stochastic resonance, and for convenience chose it to be
the quartic potential (30). Its minima occur atxn = (−1)n, n = 1, 2, and the characteristic
(dimensionless) relaxation time of the systemtr ≡ 1/U ′′(xn) = 1/2. The analysis is not,
of course, limited to the particular form of equations (30) and (91) and, in fact, the effect
occurs in both overdamped and underdamped systems. The effect has also been observed
in a totally different class of system—a bistable all-optical cavity (Dykmanet al 1995a).
However, the explicit expressions take on a simpler form for the model (30) and (91); they
are further simplified in the case when the frequencies of the input and reference signals
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are high compared with the reciprocal relaxation time of the system,

ω0� t−1
r (tr = 1

2). (92)

The termf (t) in (91) is a random force. It is assumed to be a zero-mean Gaussian noise.
Dykmanet al (1994a) allowed for a form of this noise with two independent components, at
low and high frequencies respectively, with the latter being randomly modulated vibrations
at frequencyω0:

f (t) = flf (t)+ fhf(t) fhf(t) = Re(f̃hf(t) exp(−iω0t)). (93)

The power spectrum8lf (ω) of the low-frequency noiseflf (t) is assumed to be flat up to
ω ∼ ωc� t−1

r (ωc may be small compared toω0). The power spectrum offhf(t) is assumed
to be centred atω0 and also flat over a range greatly exceedingt−1

r .
For ω0 � t−1

r the motion of the system consists of fast oscillations at frequencyω0

(and its overtones) superimposed on a slow motion. To first order inω−1
0 , the equation for

the slow part of the coordinate takes the form

x(0) ≈ x(sl)

ẋ(sl) = −U ′(x(sl))+ A(t) sinφ(t)+ f (0)(t) A(t) = Aref

2ω0
Ain(t) (94)

where

f (0)(t) = flf (t)− Aref

2ω0
Im f̃hf(t) 8(0)(ω) ≈ D/π for ω . ωc (95)

D = Dlf + (A2
ref/2ω

2
0)Dhf.

These equations are of a familiar form. For the case whereA(t) andφ(t) vary slowly over
the timetr, the dynamics of the system (30), (94) and (95) have already been investigated
in great detail in the context of SR and, as discussed in section 4.2, the system can be well
described in terms of LRT provided thatA is small enough. In the particular case of a
periodic input signal,Ain = constant,φ = �t + constant, the average (slow) part of the
coordinate〈x(sl)(t)〉 varies periodically at the low modulation frequency�, and the power
spectrum of the coordinate containsδ-spikes at the frequenciesn� on top of the broad
spectrum. For smallA ∝ Ain the vibrations of〈x(sl)(t)〉 are practically monochromatic,
〈x(sl)(t)〉 = a0+ a sinψ(t), with their amplitudea and phaseψ given by the expression

a sinψ(t) = −A Im(χ(�) e−iφ(t)) φ(t) = �t + constant. (96)

For small noise intensities (1U � D) in the case of a symmetric double-well potential
U(x), the susceptibilityχ(�) is (Dykmanet al 1994a) of the form

χ(�) = 1

t−1
r − i�

+ W

4D

(x2− x1)
2

W − i�
. (97)

Here,W ≡ W12 + W21 ∝ exp(−1U/D) is the relaxation rate of the populations of the
stable states. It is seen from (96) and (97) that, sinceW increases sharply with the noise
intensityD, the amplitude of the heterodyne signal at the difference frequency� increases
with noise intensity in a certain range ofD, too. Just as in standard SR, the noise-enhanced
heterodyning (NEH) can be characterized by the SNRR which can be shown to be given
by

R = π A
2(x2− x1)

2

16D2

W 2+�2t2r D̃
2

W +�2t2r D̃
D̃ = 4D(x2− x1)

−2 (98)

�, D̃ � t−1
r W � D̃
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to lowest order in the small parameters in (98), cf (59) (where�r is the reciprocal oftr in
(98) and it has been set thatx2 − x1 = 2). It follows from (98) (and also from the more
general expression for the SNR) that, in the range of noise intensities where

�D̃tr . W . t−1
r (99)

the SNRincreaseswith increasing noise intensity. The increase is quite sharp, being nearly
exponential. This means that noise-enhanced heterodyning would be expected to arise in a
bistable system, whether driven by a low- or a high-frequency noise (or both).

An intuitive picture of the physical mechanism underlying NEH is as follows. The
reference force provides a modulation of the potential(−1/2)Arefx

2 cosω0t which is even
in the coordinate, and therefore does not break the symmetry of the system. The phases
of the vibrationsδxref(t) about the minima of the wells caused by this signal differ byπ

(i.e. the vibrations are in counterphase). The situation is quite different for the input signal
Ain. This signal, being additive, breaks the symmetry of the potential, and the amplitude
and phase of the periodic vibrations of the coordinateδxin(t) at the signal frequencyωin

are the same in the absence of the reference signal for both wells (the vibrations are in
phase). When both forces are present, they combine nonlinearly giving rise to potential
terms oscillating at combination frequencies, and in particular to a term at the difference
frequency|ω0 − ωin| which is proportional, approximately, to the product ofδxref × δxin.
This term defines the slow motion of the system. Obviously, it isantisymmetric: its sign
is opposite for the two wells.

The amplitude of the fast oscillations induced in the system by the superimposed
reference and input signals varies slowly in time, as the effects of the individual signals tend
alternately to reinforce or cancel each other. These amplitude variations occur in antiphase
between the two wells: when the amplitude of the fast oscillation is relatively large in one
well, it is relatively small in the other, andvice versa. The particular well for which the
fast vibrations are of the larger amplitude at a given time will also be the one from which
fluctuational transitions are most likely to occur. This is because the centre of oscillations is
then shifted furthest towards the saddle, much like the case of quasimonochromatic noise in
the adiabatic limit (Dykman 1990; see also section 6). In the presence of noise, therefore,
there is an enhanced probability of an inter-well transition occurring once per half-cycle of
the difference frequency, thereby effectively amplifying the heterodyne signal in very much
the same way as a low-frequency additive signal can be amplified in conventional bistable
SR.

The occurrence of NEH was sought and investigated experimentally using the circuit
model shown in figure 33. It was driven by a signalA′in cos(ω′0+�′)t ′ and a multiplicatively
applied reference signalA′ref cosω′0t

′. HereA′in andA′ref are the amplitudes of the signals
in volts, f ′(t ′) is the actual value of the noise applied to the circuit, andω′0 and t ′ are the
real frequency and time, respectively. The actual differential equation for the voltagex ′ in
the circuit was of the form

R1C1
dx ′

dt ′
= R9

R6

R1

R3
x ′ − R9

100R7

R5R1

R4R3
x ′3+ R9

10R8

R1

R3
A′refx

′ cosω′0t
′

+R1

R2
A′in cos(ω′0+�′)t ′ + f ′(t ′) (100)

with

R1 = R2 = R3 = R4 = R7 = R8 = 10 k�

R5 = R9 = 50 k� R6 = 200 k� C1 = 30 nF.
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Figure 33. A block diagram of the electronic circuit used to investigate noise-enhanced
heterodyning, modelling the motion of an overdamped particle (91) in the potential (30):
Fref(t

′) = A′ref cosω′0t
′ andFin(t

′) = A′ref cos(ω′0 + �′)t ′; the noise inputf ′(t ′) can be either
exponentially correlated quasi-white noise or high-frequency narrow-band noise (Dykmanet al
1994a).

Figure 34. Normalized heterodyne signalS and signal-to-noise ratioR (inset) as functions of
the intensity of the low frequency noiseD for ω0 = 1.885,� = 0.008 (Dykmanet al 1994a).
The squares represent the experimental data; the curves represent the theory, which has been
dotted in the range of largeD where it is only qualitative.

After appropriate scalings (Dykmanet al 1994a), and changingx ′ → x, (100) goes over
into (91) for the potential (30). The circuit was driven by noise from a feedback shift-
register noise generator and by two sinusoidal periodic forces from Hewlett–Packard 3325B
frequency synthesizers.

Measurements of the amplitude of the heterodyne signalS = a2/Ain, and the SNRR
(98) and their dependences on noise intensity, are compared with the theoretical predictions
(curves) based on (96) and (98) in figure 34. It is clearly seen that the dependence of the
signal amplitude onD is of the form of an asymmetric resonant curve, which is extremely
steep on the small-D side. This form is typical of SR (see section 4.2). For smallD,
where the system is effectively confined to one well of the potential, the signal magnitude
corresponds in effect to the value it would have for heterodyning in a single-well nonlinear
potential, and is extremely small. The dependence of the SNR onD (inset) is also similar
to that seen in stochastic resonance: for very smallD where the inter-well transitions do
not come into play,R decreases with increasingD, but then it displays a sharp increase.
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We notice that the maximum ofR(D) is shifted to higher noise intensities compared to that
of the amplitude of the heterodyne signal. The experimental data are in good qualitative
and quantitative agreement with the simple theory (curves) outlined above and described in
more detail by Dykmanet al (1994a). There are no adjustable parameters.

It follows from (94) and (98) that the SNR, for a given effective noise intensityD,
should be proportional to the squared amplitudes of both the reference and input signals,
and inversely proportional to the squared reference frequencyω0. These and several other
predictions of the theory were observed to hold over a broad range of parameters (Dykman
et al 1994a).

It is evident that, in close analogy to conventional SR, NEH in a bistable system can
produce a very substantial enhancement of the heterodyne signal over that obtained by
heterodyning in, for example, a single-well nonlinear system. The same is not true, however,
of the SNR. Notwithstanding the huge noise-induced rises seen inR(D) in NEH, and in
conventional SR, the SNR does not quite reach the value it would have for the sameD in
a single-well system. Nonetheless, we note that NEH offers a method by which the SNR
can be protected against changes in the ambient noise level, if the average operating point
is chosen to be very close to, but slightly beyond, the maximum inR(D). In applications
where it is important for the SNR to be stable, this could prove to be a useful feature.
Another advantageous feature of NEH is that it provides high-frequency selectivity.

Building on the understanding gained from studies of the analogue electronic model,
both SR and NEH were subsequently observed in a passive nonlinear optical system
(Dykmanet al 1995a, b).

4.5. Noise-induced linearization

Finally, in this section on SR, we discuss the closely related phenomenon ofnoise-induced
linearization which was identified in the course of experiments on SR, using analogue
electronic models (Dykmanet al 1994b). The unexpected observation was that the signal
distortion introduced by passage through a nonlinear system could usually be reduced by the
addition at the input of external white noise of sufficient intensity. (For convenience, we will
concentrate on the effects of white or quasi-white noise. Most of the discussion, however,
is applicable qualitatively, and sometimes quantitatively, to the case of non-white noise,
provided that its correlation time is shorter than the characteristic reciprocal frequencies
of interest.) The scenario was found to hold experimentally for many different nonlinear
systems, including monostable as well as bistable, underdamped as well as overdamped,
chaotic as well as regular, and for signals of various shapes. Because the resultant linearized
outputx(t) is inevitably noisy, we consider how the ensemble average〈x(t)〉 of the output
varies with relevant parameters, for example with the noise intensity at the input.

A simple example of the effect was obtained from the standard SR system (30) and (57)
modelling overdamped Brownian motion. Consider the periodic signal before and after
passage through the system. Some results are shown in figure 35 showing that for very
weak noise the response is similar to a square wave (Dykmanet al 1993f) but that, as the
noise intensity increases, the original sinusoidal wave is gradually restored. If the sinusoidal
signal is replaced with a sawtooth waveform, much the same behaviour is observed, as
shown in figure 36.

The basic idea of linearization by added noise is, of course, already familiar from
specific observations and applications in science and engineering, for example the removal
of digitization steps in the output of an ADC, the linearization of periodic signals in
neurophysiological experiments (Frenchet al 1972) or the linearization of the response
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Figure 35. Noise-induced linearization for a sine wave passing through an electronic model
of the overdamped double-well system given by equations (30) and (57). The periodic force
at the input is shown in the upper trace. The ensemble-averaged response〈q(t)〉, measured at
the output, is shown for different noise intensitiesD in the lower traces. The amplitudes of the
latter have been normalized so as to be comparable with the amplitude of the force, for easier
comparison of their relative shapes (Dykmanet al 1994b).

Figure 36. Noise-induced linearization for a sawtooth wave passing through an electronic
model of the overdamped bistable system given by equations (30) and (57). The periodic force
at the input is shown in the upper trace. The ensemble-averaged response〈q(t)〉, measured at
the output, is shown for different noise intensitiesD in the lower traces. The amplitudes of
the latter have been normalized so as to be comparable with the amplitude of the force, for
easier comparison of their relative shapes (Dykmanet al 1994b).

of ring-laser gyroscopes at low angular velocities (Vogelet al 1987a). The results under
discussion suggested, however, that noise-induced linearization may exist as a more general
phenomenon than had been appreciated, thus further illustrating the idea (Millonas 1996)
that the role of noise in a dynamical system may often be, in a sense, creative.

Note that we use the word linearization in two rather different senses, and that these are
exemplified by the results of figures 35 and 36. The fact that a sinusoidal input can pass
through the system without significant change of shape, as occurs for strong noise in the
lowest trace in figure 35, implies linearity in the direct sense, i.e. a proportionality between
the amplitudes of output and input; this need not necessarily, however, imply that the
constant of proportionality must be frequency independent. On the other hand, the results
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of figure 36, for a sawtooth waveform containing not only the fundamental frequency but
also its higher harmonics, imply the occurrence of linearization in the ‘Hi-Fi’ sense that the
system becomes non-dispersive within a certain frequency range when the noise intensity is
large enough. In many cases of physical interest nonlinearity of the response arises because
the frequency of the driving force (or its overtones) is close to some eigenfrequency of the
system (or its overtones), or is related in a certain way to the relaxation time of the system.
It is to be expected for such systems that linearization of the response in the sense of
proportionality of output and input will not necessarily imply suppression of the frequency
dispersion. (Obviously, one could try to devise special circumstances which might violate
this rule. One possible example would be a logarithmic amplifier. However, even though
this would be dispersion-free but highly nonlinear for low noise intensities, it seems likely
nonetheless that the response would be eventually linearized by noise, just like the other
cases that we consider.)

The physical origin of both forms of signal restoration can readily be understood, at
least qualitatively, in the following terms. Where the amplitude response of a system to a
periodic force is nonlinear, this arises because the amplitude of the vibrations induced by
the force is comparable with, or larger than, some characteristic nonlinear length scale of the
system. The scale in question (which may depend on frequency, see later) is determined by
the structure of the region of phase space being visited by the system and by corresponding
features in the dynamics. The effect of noise is to smear the system over a larger region of
phase space, so that a variety of different scales and frequencies then become involved in the
motion, even in the absence of periodic driving, and the effective characteristic scale will
usually increase as a result. For sufficiently large noise intensities, therefore, the amplitude
of the force-induced vibrations will become small compared to the scale (e.g. small compared
to the average size of the noise-induced fluctuations), so that the nonlinearity of the response
is correspondingly reduced. The system is then spending an increased proportion of its time
far away from its attractor(s), at coordinate values where the timescale that characterizes
the motion is in general quite different and sometimes shorter than that for small noise
intensities. Consequently, there will be one or more ranges of frequency for which dispersion
is likely to decrease (Stockset al 1996). Although the linearization and the suppression of
the dispersion arise, ultimately, through the same physical processes—the effect of noise in
smearing the system over a larger region of its phase space—they do not necessarily become
important at the same noise intensity. Dykmanet al (1994b) and Stockset al (1996) have
given detailed analyses of noise-induced linearization phenomena in the standard SR system
(30) and (57).

The harmonic oscillator provides a familiar example in which the two types of
linearization are quite distinct: the response is always linear, the amplitude of the
forced vibrations being proportional to the amplitude of the force; at the same time,
dispersion can be very strong, particularly for an underdamped oscillator in the range of its
eigenfrequency. For nonlinear systems, the narrow peaks in spectral densities of fluctuations
are eventually (Dykman and Krivoglaz 1984) broadened by an increase in noise intensity;
for underdamped systems, one of the basic broadening mechanisms comes about because the
eigenfrequencies of vibration depend on amplitude, so that the broader the distribution over
amplitude becomes, due to the increasing fluctuations, the broader becomes the distribution
over eigenfrequencies (Dykman and Krivoglaz 1984, Dykmanet al 1989, Dykman and
McClintock 1992).

It is important to note, and it is clear from the above example, that the same
physical processes which give rise to noise-induced linearization can also, under special
circumstances, give rise to the opposite effect of noise-induced delinearization. The latter
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phenomenon is to be anticipated if the additional frequencies that become involved (as the
result of an increase in noise intensity) resonate with the periodic force or with one of its
harmonics, as in zero-dispersion phenomena (see section 4.3.2), or if the noise modifies
the characteristic reciprocal relaxation time of the system so that it corresponds to the
frequency of the periodic force, as in conventional stochastic resonance. In such cases,
just as seen above for the system (30) and (57), it is to be expected that the promotion
of nonlinearity by noise at intermediate intensities will be followed by the more general
phenomenon of noise-induced linearization at still higher noise intensities owing to the
usual noise-induced broadening of the relevant spectral peak(s). We have also observed and
investigated sequential noise-induced delinearization/linearization phenomena in dynamical
systems quite different from (30) and (57): cf the theoretical results cited and experimental
results on an underdamped monostable oscillator discussed in section 4.3.2, as well as the
results on the nonlinear response of such an oscillator (Dykmanet al 1996a).

5. Transient effects

It often happens that one or more of the parameters characterizing a system change
systematically with time. Consequently, the distributions of its coordinates and momenta
also evolve with time. If a swept parameter changes slowly enough, the system may usually
be regarded as remaining in quasi-equilibrium; the distributions are therefore almost the same
as they would be for fixed values of the parameter in question. If the parameter changes
relatively fast, however, this kind of adiabatic approximation is inapplicable because the
system never has time to approach equilibrium, and a satisfactory description in general
represents a difficult problem. Of particular interest is the situation that arises when the
parameter is swept past some critical point of the system where a bifurcation occurs: critical
slowing down means that, sufficiently close to the bifurcation, an adiabatic approximation
will always fail. A well known physical example is that of a laser close to threshold, where
the pump parameter moves past the critical value for the onset of lasing. In this section
we consider two extreme situations, both of which have been investigated successfully
through analogue electronic experiments. First, in section 5.1, we discuss an example of
what happens when the swept parameter movescontinuouslypast a critical value; then,
in section 5.2, we consider an interesting phenomenon that occurs when the parameter is
switcheddiscontinuouslyfrom a sub-threshold to a super-threshold value, thereby placing
the system transiently in an unstable state which subsequently decays.

5.1. Swept-parameter systems

Analogue experiments on symmetrical bifurcating swept-parameter systems (Stockset al
1989c, 1990) and their comparison with the theories of Torrent and San Miguel (1988),
Van den Broeck and Mandel (1987), Zeghlacheet al (1989), Torrent and San Miguel
(1988) and Torrentet al (1990) have already been reviewed in detail (Dykmanet al 1994c)
elsewhere. In this subsection we consider, instead, an example of an interesting phenomenon
that occurs when the bifurcating system has a small—perhapsvery small—asymmetry.

The investigations (Mosset al 1985a, Kondepudiet al 1986a, b) addressed the question
of sensitivity in symmetry-breaking transitions, in quite general terms. They were motivated
by attempts (Kondepudi and Nelson 1983, 1985) to account for the chiral symmetry of
biological molecules and, in particular, to try to explain why the lower energy enantiomer
has apparently been selected by evolution (Mason 1985), even though the energy difference
between L- and D-amino acids is much smaller thankBT . The difference, due to
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parity-violating weak neutral current interactions (the so-called Z-force) is so small that,
on purely energetic grounds, L-amino acids would be expected to outnumber their D-amino
acid enantiomers by only 1 part in 1017; yet life is based on L-amino acids. As a possible
explanation, Kondepudi and Nelson (1983, 1985) suggested that a very slow passage through
a bifurcation could amplify a tiny effect of this kind because of the extreme sensitivity of the
system to a small symmetry-breaking force when near the critical point. Ifx is the amplitude
of the solution that experiences symmetry-breaking then, by elimination of the fast modes
(Haken 1977, Nicolis and Prigogine 1977), one can obtain an equation of the form

ẋ = −Ax3+ B(λ− λc)x + Cg (101)

whereA, B andC are constants that depend on the system,λ is the control parameter that
is to be swept andg is a small interaction or bias that selects among the broken-symmetry
states. Note that (101) is very general: its form is determined by the symmetry that is
broken, not by details of the particular system (Guckenheimer and Holmes 1983).

The steady states of (101) are shown in figure 37. Withg = 0, and assuming weak
additive noise, each of the supercritical branches

x = ±
√
B(λ− λc)/A (102)

will be selected with equal probability asλ is swept throughλc. Wheng 6= 0, however, the
bifurcation is no longer of the pitchfork type where two stable solutions and an unstable one
merge together; rather, the two stable branches are then separated by a minimum distance
3(Cg/2A)1/3. Far above or below the critical point, the displacement of thex ' 0 solution
due to non-zeroCg is ∼Cg/B(λ − λc). Thus, the effect ofCg � 1 is much larger near
the critical point than away from it. The theory (Kondepudiet al 1986a) predicts that state
selection will be strongly enhanced by a slow sweep ofλ pastλc.

Figure 37. A pitchfork bifurcation showing: (a) perfect symmetry, withg = 0; and (b) in the
presence of a symmetry-breaking interaction withg > 0 (Kondepudiet al 1986a).

The electronic model used (Kondepudiet al 1986a) for testing these ideas is shown
diagrammatically in figure 38; for convenience,λc was set to zero. The voltage representing
the changing parameterλ(T ) was derived from a sweep generator, and a switch was used
to short circuit the integrator and setx = 0 prior to the start of each sweep. Small non-
idealities in the components meant that it was impossible to setg = 0 rigorously: the
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Figure 38. A block diagram of the electronic circuit model of (101). The shorting switch on the
integrator can be closed with a pulse att = 0 to setx(0) = 0 but it is normally open (Kondepudi
et al 1986a).

Figure 39. Examplex(t) trajectories measured forg = −0.016,Vn = 0.50 V. Negative branch
selection as in (a) is about 8.3 times as probable as positive branch selection as in (b), in this
example. The full curves are the measured deterministic steady states (Kondepudiet al 1986a).

smallest value achievable in practice wasg ' 0.003 V which was, however, almost an
order of magnitude smaller than the smallest value that was set explicitly.

Two typical trajectories measured for the swept system are shown in figure 39: the
lower of these is more probable than the upper. To obtain the evolution of the probability
distribution, 5000 such trajectories were collected and ensemble averaged at different fixed
times, yielding the results shown in the lower part of figure 40. The upper evolution shows,
for comparison, what happens whenλ is not swept, but the system is just released atx = 0
in the presence of noise. The selectivityS of the more probable state has been increased
from 1.7 (static release) to 21.6 (sweptλ). A comparison of measured and calculated
values ofS for g = 0.016, ε1/2 = 0.133, an integrator time constant ofτi = 100 µs
and different sweep rates is given in table 1 (Kondepudiet al 1986a); the theory is only
applicable when the sweep rate is fast enough for the probability density to be approximated
by a drifting Gaussian. The agreement between theory and experiment may be regarded as
satisfactory.
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Figure 40. Measured time-evolving probability distributionsP(x, t) for two different sets of
circumstances. (a) The unswept system, with fixedλ, settingx = 0 at t = 0. (b) Under swept-
parameter conditions, sweepingλ from −1 V→ +1 V at the rate 32 V s−1. The same noise
level applied in both cases and the same magnitude ofg was used, though its sign was reversed
to illustrate selection of both branches. Note that the selectivityS was very much larger in
case (b) with the swept parameter (Kondepudiet al 1986a).

Table 1. Selectivity as a function of inverse sweep rate.

(Sweep rate)−1

(s V−1) MeasuredS CalculatedS

0.023 5.54 4.27
0.046 6.53 5.80
0.092 8.24 8.43
0.174 9.12 12.88
0.348 13.5 NA
0.700 18.6 NA

Hegstrom and Kondepudi (1990) have outlined a scenario with a constant flow of
reactants into a pool of area 10 km2 and of several metres depth. Over a period of 50 000–
100 000 years, there would have been a 98% chance that the Z-force would have caused
selection of the lower energy enantiomer, so life would then have evolved in that form.
Whether or not symmetry breaking actually occurred at the pre-biotic stage, and the nature of
the process(es) through which it occurred, continue to be vigorously debated (Cline 1996)—
but the electronic experiments show beyond reasonable doubt that the underlying mechanism
proposed by Kondepudi and Nelson (1983, 1985) does work. It is not strongly influenced
by correlation time, in the case of exponentially correlated coloured noise (Kondepudiet al
1986b), and it is potentially applicable in a variety of scientific and technological contexts.
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5.2. Decay of unstable states and transient multimodality

If a control parameter, for exampleλ in (101) with Cg = 0, is changed discontinuously
from below to above its critical value, the system will find itself in an unstable state. How
this state subsequently decays will obviously depend on the nature of the system under
study, and on the kind and intensity of the noise. A convenient way of characterizing the
decay is in terms of nonlinear relaxation times (NLRTs) which are defined in terms of the
transient moments. For a processx(t) defined by a Langevin-like equation of the general
form

ẋ = v(x, t)+ g(x, t)ξ(t) (103)

the NLRT associated with the average (over realizations of the noiseξ(t)) of a quantity
φ(x) is defined (Binder 1973, Ŕacz 1976) by

Tφ =
∫ ∞

0

〈φ(t)〉 − 〈φ〉st

〈φ〉i − 〈φ〉st
dt. (104)

Here, 〈φ〉i is the average value ofφ in the initial state,〈φ(t)〉 is the average value of
φ during the evolution from a given initial distribution to the final stationary distribution,
where the average value ofφ is given by〈φ〉st. Depending on the particular problem and
for appropriate choices of the quantityφ(x), this may be a definition of a certain global
time scale for the relaxation of initial conditions towards the steady state. The interest of
this definition lies in the fact that the NLRTs can be usually calculated via techniques based
on knowledge of the evolution operator of the probability densities. The formalism can
be systematized in a way which parallels the calculation of the first passage time (FPT)
moments and has turned out to have some practical and theoretical advantages over them.
Its usefulness has been checked in the context of white noise (Jiménez-Aquinoet al 1988,
Casademuntet al 1989a), but the advantages have been found particularly marked in the
case of coloured-noise problems (Casademunt and Sancho 1989).

The NLRT has been measured and investigated in analogue electronic experiments
(Casademuntet al 1989c). It was studied for both white noise and (exponentially correlated)
coloured noise, fixed initial conditions and distributed initial conditions; and in the latter
case, for coloured noise, a distinction was made between coupled initial conditions where
a correlation exists between fluctuations just before and after the change in the control
parameter, and uncoupled initial conditions where the noise sources before and after the
change are uncorrelated. These experiments (Casademuntet al 1989c), and their comparison
with the body of theory introduced by the Barcelona group (Casademunt and Sancho 1989,
Casademuntet al 1989a, b) have been reviewed by Dykmanet al (1994d), and need not
be discussed further here. It is worth emphasizing, however, that the analogue experiments
were very readily able to provide all the permutations of noise and initial conditions that
were required.

Following Iwaniszewskiet al (1994), we now describe investigations of an interesting
phenomenon,transient multimodality(TM), that can occur during the decay of an unstable
state. In TM, there is a period during the evolution of the system when the number of
maxima in the probability distribution is larger than it is in either the initial or final state, i.e.
for a sizeable interval of time, the system can be found with comparable probability in any
one of a number of states that is larger than the number of its steady states. Such behaviour
was first reported by Baraset al (1983), Frankowicz and Nicolis (1983) and Frankowicz
et al (1984) in theoretical studies of explosive chemical reactions and combustion. Later
on the possibility of TM was mentioned for some optically bistable systems (Broggi and
Lugiato 1984a, b, Broggiet al 1985; Lugiatoet al 1986) and for Brownian particles in
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shear flows (Wio and Zanette 1993). The theoretical predictions were confirmed by means
of numerical simulations (Baraset al 1983, Frankowicz and Nicolis 1983, Broggi and
Lugiato 1984a, b, Broggiet al 1985, de Pasquale and Mecozzi 1985, Mitschkeet al 1985)
and experiments on optical bistability (Lugiatoet al 1986, Mitschkeet al 1985, Lange
et al 1985, Lange 1988, Naliket al 1989), an electronic circuit (Mitschkeet al 1985),
a laser with a saturable absorber (Arimondoet al 1987), a semiconductor laser (Spano
et al 1990), electrohydrodynamic convection in nematic liquid crystals (Kaiet al 1992),
combustion processes (Lemarchandet al 1989) and also through studies of the dynamics
of error growth in numerical calculations (Nicolis and Nicolis 1991).

The usual theoretical description associates TM with evolution in a potential with a
flat plateau, for which critical slowing down occurs (Broggi and Lugiato 1984a, Broggi
et al 1985). The fluctuations driving the system accelerate the evolution of some
stochastic realizations over the flat region, after which the system is rapidly switched to
the vicinity of a stable statexs. Since some stochastic realizations still remain at the
plateau region one observes the bunching of trajectories in two places, namely at the
plateau and in the bottom of the potential well. Thus the probability distribution possesses
two maxima. This phenomenon arises some time after the initial probability distribution
peak reaches the plateau and it disappears again once an appropriate mass of probability
distribution (i.e. a sufficient proportion of stochastic trajectories) has left the flat part of the
potential.

Such behaviour can occur (Valleet al 1990, Coletet al 1991) if the evolution of a system
is characterized by two different time scales. The longer one results from the long induction
stage at the potential plateau. It is of the order of the mean first passage time (MFPT)T

needed to reach the edge of the flat region. However, because of the essential role played by
fluctuations at this stage of the evolution, the actual value of this time for a given realization
is distributed within an interval of the order of the variance1T of the MFPT, which is of
the same order asT . The shorter time scaletd is associated with the deterministic transit
from the edge of the plateau to the bottom of the potential. In terms of these time scales
the type of evolution can be characterized by the ratioη = td/1T . TM is possible provided
η < 1. In contrast, ifη > 1, most of the stochastic trajectories leave the plateau region
before any of them reach the vicinity ofxs. Thus the probability of finding the system
somewhere between the plateau and the bottom is large and, consequently, the probability
distribution peak travels continuously towards its stationary position. The relationη < 1
is known (Caroliet al 1980) to apply close to a marginal state (U ′(x) = U ′′(x) = 0) but
not in the vicinity of an arbitrary unstable statexu (U ′(xu) = 0, U ′′(xu) < 0). Hence,
some authors (Broggiet al 1985; Arimondoet al 1987, Coletet al 1991) conclude that,
generally, TM is not expected during relaxation from the top of a potential barrier. The
parabolic curvature of the barrier does not generate two different time scales if the noise
intensity is not small (otherwise there arises the logarithmic Suzuki time (Suzuki 1976)). It
should be noted, however, that this conclusion stemmed from the analysis of only one type
of potential, namely the quartic potential

U(x) = 1
4bx

4+ 1
2ax

2 (105)

(with b > 0, a < 0) that is usually considered while dealing with the decay of an unstable
state (e.g. Suzuki 1976).

Iwaniszewski (1992a) showed, however, that TM should also arise during evolution
from an unstable statexu. This effect applies to a very wide class of systems, even in
cases very far from marginality. It turns out that the type of evolution (continuous or TM)
to be anticipated depends only on the sign of the fourth derivative of the potential in the
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unstable state—if it is negative some new peaks must appear before the initial maximum at
xu disappears. However, it also means that the potential’s curvature at the unstable state is
much steeper than in the parabolic case, so that the system should leave the vicinity ofxu

very quickly. We now consider how to reconcile this result with the earlier discussion in
terms of time scales.

Iwaniszewskiet al (1994) considered a one-dimensional overdamped oscillator subject
to the force derived from a double-well potential and a Gaussian white noise. Its evolution
is governed by the Langevin equation

ẋ = −U ′(x)+ ξ(t) (106)

with a symmetrical sixth-order polynomial potential

U(x) = 1
6cx

6+ 1
4bx

4+ 1
2ax

2. (107)

The parametera < 0 fulfils the requirement of instability atxu = 0, b determines the sign
of d4U

dx4 |x=0 and c > 0 ensures the existence of stable states±xs. The noiseξ(t), of zero
mean, is characterized by its correlation function

〈ξ(t)ξ(t ′)〉 = 2Dδ(t − t ′) (108)

whereD is the noise strength.
Analogue experiments were used to confirm that TM really occurs during the decay of

an unstable state. The circuit used to model (106)–(108) is shown schematically in figure 41
(cf Casademuntet al 1989c). Two independent Gaussian, exponentially correlated noises
4 and Z are supplied from feedback shift-register noise generators. Since the noises’
correlation times are of the order of one tenth of the time constant of the Miller integrator,
they are perceived as effectively white noises with correlation functions

〈4(τ)4(τ ′)〉 = 2θξV
2
ξ δ(τ − τ ′) (109)

〈Z(τ)Z(τ ′)〉 = 2θζV
2
ζ δ(τ − τ ′) (110)

whereV 2
ξ andV 2

ζ are the variances of the noise voltages. A square-wave signal periodically
operates a solid-state switch S (DG303ACJ) to alter the system between two versions of
the circuit. The first one (disconnected in figure 41) prepares the required distribution of
initial conditions and it operates within a linear Langevin equation

dVx
dτ
= −λVx + Zζ (τ). (111)

Since the half-period of the switching signal is much longer than the relaxation time of
this circuit, the stationary distribution of (111), namely a Gaussian distribution centred at
Vx = 0, is generated. During the second half-period the main circuit comes into action (see
figure 14) giving

dVx
dτ
= −γV 5

x − βVbV 3
x − (α1Va + α2V

2
b )Vx +4(τ). (112)

All of the parameters indicated by small Greek letters in equations (109)–(112) can be
expressed [25, 26] in terms of component values in the electronic system.

After the scalingsVx = Ax and τ = Bt , (109) and (112) yield the required equations
(106)–(108) while equations (110) and (111) guarantee a Gaussian initial distribution with
a varianceρ0. The four voltagesVa, Vb, Vξ andVζ are set externally to vary the parameters
of the potentialU(x), the noise strengthx and the widthρ0 of the initial distribution.

The output, a time-dependent voltageVx(t), was analysed by means of a Nicolet NIC-80
computer system. For each realization ofx(t) an initial state was first prepared according
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Figure 41. A block diagram of the electronic circuit used to investigate the evolution of
equation (106) with randomly distributed initial conditions. The signals connected to the top of
the multipliers are added to the results of the multiplication (Iwaniszewskiet al 1994).

to (111) with the required statistics (an appropriate value ofρ0). Then, as the system
was switched to the main circuit, the Nicolet ADC was triggered and an input sweep was
acquired: 1024 values ofVx(t) were digitized and recorded at equal time intervals, with
12-bit precision. The sweep was analysed by examining each 16th value and incrementing
the corresponding point of a 64-level distribution. The process then repeated, building up
a set of 64 64-point distributions separated by equal intervals of time, and was continued
until the statistics were adequate. It turned out that 2× 104 realizations were sufficient.

The results obtained confirmed immediately the existence of TM in (106)–(108). An
example of the time evolution of the probability distributionW(x, t) for b < 0 is exhibited as
a three-dimensional plot in figure 42(a). The existence of a time regime within which three
probability distribution peaks coexist is clearly evident. A comparison of the experimental
histograms of the instantaneous probability distribution for several different fixed times
is shown in figure 42(b). Notwithstanding the statistical fluctuations in the shape of
W(x, t), the trimodal character of the probability distribution at intermediate times is clearly
demonstrated.

Iwaniszewski (1992b) showed that, for the potential (107), TM can appear not only for

b < 0 but also for some positive values ofb, namely forb < bc =
√
− 5

3ac. An example of
the evolution of the probability distribution measured for positiveb is given in figure 43.
It is seen, that, within the experimental accuracy, the evidence of TM is very weak. Over
a comparatively long period of time, the probability distribution remains very flat, almost
uniform, and the difference between the heights of the maxima and minima is very small,
so that the effect of TM is rather insignificant. As the value ofb was reduced frombc the
phenomenon of TM became more clearly resolved, although it lasted for a very short time.
As b crossed zero the coexistence of three probability distribution peaks became evident
and the TM persisted for a very long time. Such behaviour agrees well with the previous
analysis of Iwaniszewski (1992b) which distinguished short life (0< b < bc) and long life
(b < 0) forms of TM. In the former case, the properties of the potential determine the finite
time of coexistence of the three peaks, while in the latter case it is only the strength of the
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(a)

(b)

Figure 42. Time evolution of the probability distributionW(x, t) for a = −2, b = −2.47,
c = 1, ρ0 = 0.01 andD = 0.02: (a) a three-dimensional plot; and (b) a plot of the lower
part of the instantaneous probability distribution fort = 0.56 (short-dashed curve), 0.58 (dotted
curve), 0.60 (full curve), 0.63 (dot-dashed curve) and 0.65 (long-dashed curve) (Iwaniszewski
et al 1994).

noise that determines the time at which the middle peak disappears. Hence, ifq is very
small, the effect will be observed over rather a long period and TM eventually seems to
disappear because of the experimental indistinguishability of the middle maximum and the
minima.

Iwaniszewski (1992b) also showed that both sources of randomness, i.e. the random
initial conditions and the stochastic force, affect the appearance of TM. The simpler case
for theoretical treatment is that of deterministic evolution with a Gaussian distribution over
initial states of widthρ0. He performed some calculations for smallρ0. In particular, he
derived formulae for the critical timetcr and positionxcr of the appearance of new maxima
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Figure 43. Cuts through the probability distributionW(x, t) for a = −2, b = 0.99, c = 1,
ρ0 = 0.01 andD = 0, at times: t = 0.93 (dotted curve), 0.99 (full curve), and 1.04 (dashed
curve) (Iwaniszewskiet al 1994).

(i.e. values which satisfyW ′(xcr, tcr) = W ′′(xcr, tcr) = 0)
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√(
b

c

)2

− 200a

49c
(114)

where the stable states±xs of the potentialU(x) are given as

x2
s = −

b

2c
+ 1

2c

√
b2− 4ac (115)

and

p = b

2c
+ 1

2c

√
b2− 4ac. (116)

These formulae, which approximate well the exact numerical data of Iwaniszewski (1992b),
are compared with the experimental data in figures 44 and 45 for several values ofρ0

(D = 0). The dependence ofxcr on the initial distribution widthρ0 is small compared
to the experimental inaccuracy, so only the experimental data forρ0 = 0.01 are shown
on figure 44. Due to some slight asymmetries in the circuit the probability distribution is
not exactly symmetric, and so the positions of left and right critical points are indicated
separately; the averages of the left and right critical time values are shown by the data in
figure 45.

The experimental uncertainties in the shape ofW(x, t) make it impossible to identify
the exact time of appearance of a new maximum. To be sure that a given small hump is
indeed a new probability distribution peak, and not just a fluctuation, the value oftcr is
slightly overestimated. Thus, the experimental data in figure 45 are slightly greater than
the analytic ones. Similarly, since a new maximum tends almost immediately after its
appearance to the vicinity of its stationary position (see figure 3 in Iwaniszewski 1992b),
the experimental values ofxcr are a little higher than the theoretical ones. Another source
of error, believed to be unimportant, must come from the finite grid of voltage values—the
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Figure 44. The absolute value of the positionxcr at which new extrema appear, plotted as a
function ofb for a = −2, c = 1, ρ0 = 0.01 andD = 0. The full curve represents the theory of
equation (114) and the data points represent the experimental results for the extrema located to
the left (dots) and to the right (triangles) with respect to the unstable pointxu. The position of
the stationary maximumxs (115) is shown by the broken curve (Iwaniszewskiet al 1994).

Figure 45. The timetcr at which new extrema appear, plotted as a function ofb for a = −2,
c = 1 andq = 0. The full curve represents the theory of equation (113) and the data points
represent the experimental results, taken as the average of the times at which the left and right
maxima appear. The variance of the initial distribution, from top to bottom, isρ0 = 0.01, 0.02,
0.05, 0.10 and 0.20 (Iwaniszewskiet al 1994).

whole range of voltages (which was about 15–20% greater than the distance between the
stationary maxima) was divided into 64 intervals. Despite the non-ideality introduced by
this coarse-graining, remarkably good agreement was obtained between the theoretical and
experimental results.

Iwaniszewskiet al (1994) go on to consider in detail the relationships between the shape
of the potential, time scales an the possibility of TM during relaxation from an unstable
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state. They also discuss the relationship between marginality and TM. The analogue model,
and its observed behaviour, underpinned and motivated the discussion by tying the theory
closely to what could be observed in an actual experiment.

6. Phenomena induced by quasimonochromatic noise

Most of the work discussed in the preceding sections has related to the effects of white
noise (WN) on nonlinear systems—effects that stem from the analysis pioneered by Einstein
(1905) and Smoluchowski (1906). However, as previously remarked, WN is an idealization.
In the real world, noise is seldom white. (Recall that, even in WN experiments, the WN has
to be replaced by exponentially correlated noise (ECN) whose correlation time is very short
compared to all characteristic times of the system under study.) It is, therefore, necessary
to establish what happens when the noise iscoloured, i.e. has a power spectrum that cannot
be considered to be flat within the frequency range of interest.

In the last decade there have been many attempts to investigate the effects induced by
non-white noises. The majority of these have been devoted to ECN, and often this very
specific type of noise has been referred to just as ‘coloured noise’. Detailed reviews of the
earlier work can be found in the articles by Sancho and San Miguel (1989), Lindenberget al
(1989a, b), Grigolini (1989), Ḧanggi (1989), Brandet al (1989) and Dykman and Lindenberg
(1994). The noise colour significantly enriches the fluctuation dynamics, particularly where
the characteristic correlation time of the noise is not small compared to the relaxation time
of the system. In many physical situations, however, the driving noise is more complicated
than ECN. In particular, its power spectrum may be peaked near some characteristic
frequency or frequencies, and it is obviously important to investigate whether and how
such structure may influence the response of the system. In fact, it would be reasonable to
save the term ‘coloured’ just for such a noise, as the most common example of it is the
incoherent electromagnetic field of light with a given colour. In what follows we call it
quasimonochromatic noise (QMN).

The occurrence of unusual effects in fluctuations of systems driven by quasimonochro-
matic noise was predicted, and many of these effects were analysed in Dykman (1990). We
will now discuss the effects of QMN and their observation through analogue simulations.

6.1. Quasimonochromatic noise and its generation

The simplest form of the QMN is the noise with the power spectrum (Dykman 1990)

8(ω) = 40D

(ω2− ω2
0)

2+ 402ω2
0 � ω0. (117)

Such noise corresponds to fluctuations of the coordinate of an harmonic oscillator of
frequencyω0

f̈ (t)+ 20ḟ (t)+ ω2
0f (t) = ξ(t) (118)

driven by white noiseξ(t) with correlator

〈ξ(t)ξ(t ′)〉 = 40Dδ(t − t ′). (119)

Following traditional notations, we define the noise power spectrum (117) without the factor
of 2π used in (53) for the spectral density of fluctuations of a dynamical system. In cases
where the noise originates from a coupling between the oscillator and a heat bath, the
characteristic noise intensityD represents the temperature. Note that the noise with the
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spectrum (117) is also calledharmonic noise(Igarashi and Munakata 1988, Ebeling and
Schimansky-Geier 1989, Schimansky-Geier and Zülicke 1990), usually referring to a range
where0 andω0 are of the same order of magnitude; we shall reserve QMN to describe the
limit 0 � ω0 where some of the most interesting new effects occur. Fluctuations of this
general type are seen in a wide variety of physical systems, for example off-shore structures
subject to waves, systems coupled to localized vibrations, in solids or large molecules.

The power spectrum (117) of QMN, plotted in figure 46 for a particular choice of
parameters, is obviously very different from that of WN, which would be flat, or of ECN,
which would decrease with frequencyω as (1+ ω2τ 2

c )
−1, whereτc is the correlation time

of the noise. Not surprisingly, therefore, the effect of QMN on physical systems can
be very different from that of WN or of ECN, and has been shown to possess some
distinctive features (Dykman 1990, Dykmanet al 1991b, 1993e, Millonas and Dykman
1994, Einchcomb and McKane 1995). This is especially true in relation to bistable systems,
including the simplest one, the symmetrical overdamped system

ẋ + U ′(x) = f (t) U(x) = − 1
2x

2+ 1
4x

4 (120)

that we have already considered in several different contexts. Analogue techniques are in
many ways ideal for investigating problems involving QMN because they cope relatively
easily with the widely differing time scales involved. Circuit models of the type described
above can be used. The only differences from the methods discussed previously are that
the driving noise must of course be QMN rather than WN and that, as we shall see, it
is sometimes necessary to analyse thex(t) data in a different way. The necessary QMN
is readily created experimentally by ‘filtration’ of quasi-white noise through an harmonic
oscillator. A suitable circuit (Dykmanet al 1993e) is sketched in figure 47. In this example,
the integrators had equal time constantsτI = R3C1 = R2C2 = 1 ms. Because the quasi-
white input noiseξ(t) had a correlation timeτN = 4.53 µs� τI , it was perceived by the
circuit as white, with characteristic intensity

D = 1

20

〈V 2
N〉τN

τI
(121)

where 〈V 2
N〉 was the mean-square ECN noise voltage at the input. The outputf (t) from

the circuit was QMN with the spectrum (117). Its parameters were nominally given by the

Figure 46. A typical power spectral density8(ω) for quasimonochromatic noise (QMN), as
given by (117).
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Figure 47. A block diagram of the underdamped harmonic oscillator circuit used to convert
white noiseξ(t) at the input into QMNf (t) at the output (Dykmanet al 1993e).

resistancesR1− R3 as

ω2
0 = R2/R1 20 = R2/R3 (122)

but, for 0 < 0.1, were in practice determined (Dykmanet al 1993e) from direct
measurements of the mean-square velocity, using the fact that〈ḟ 2〉 = D, and by a resonance
technique.

6.2. Transitions in a bistable potential

Fluctuational transitions between the stable statesx = ±1 of the system (120) occur under
QMN in a manner quite different from those under WN as discussed in section 3, where it
was sufficient to reach the saddle point for the transition to happen with probability∼1/2.
It was shown theoretically (Dykman 1990), and is also depicted in figure 48(a), that under
QMN the excursions of the coordinate can go far beyond the potential barrier top (PBT)
without the system leaving the potential well in which it started. This characteristic feature
of QMN-driven systems was demonstrated (Dykmanet al 1991b, 1993a) with an analogue
electronic model of (120). Two samples of the fluctuating voltage in the circuit representing
x(t) in (120) are shown in figure 48(b). They correspond to fluctuations about the stable
statesx1 = −1 andx2 = 1 and each exhibits occasional large fluctuations. It is apparent
that in the course of such fluctuationsx(t) crosses the boundary pointxtop = 0 several times
forwards and backwards, and then goes back to the initially occupied state without making
a transition. Paths culminating in transitions to the other state are very much less frequent.

This behaviour can be understood intuitively (Dykman 1990) by noticing that, for
ω0 � 0, the coordinatex(t) mostly performs fast random oscillations at the frequency
ω0, with an amplitude that varies relatively slowly, over the time∼0−1. However, for a
transition to occur, it is necessary for thecentre of oscillationsto leave the first potential
well and cross the central potential maximum; it is not sufficient just forx(t) to do so. The
picture becomes particularly simple provided the characteristic time scales of the motion
are widely separated

0 � t−1
r � ω0 (123)

where tr is the relaxation time of the system (tr = 1
2 in the case of (120)). Writing the

time-dependent coordinate of the system as a sum of the fast oscillating (at frequencyω0)
and smooth parts,

x = xc(t)+ x+(t) eiω0t + x−(t) e−iω0t (124)
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Figure 48. (a) Sketch of QMN dynamics in a general bistable potentialU(x). The coordinate
oscillates (arrowed bold curve) with amplitude 2x+ about a centre of motionx(ad)

c , and can pass
the potential barrier top (PBT) on each cycle without making a transition out of the initially
occupied potential well. (b) Two samples ofx(t) measured withD = 192 for the analogue
electronic circuit model of (117), (118) and (120), exhibiting an example of an occasional large
fluctuation from each of the attractors that fails to produce an inter-well transition (Dykmanet
al 1991b).

one can deduce that, in the spirit of the averaging method of Arnol’d (1978), the motion of
the centre of oscillationsxc(t) may be regarded as occurring within a smoothed potential

V (xc, x+, x−) ≡ 1

2π

∫ 2π

0
dψ U(xc+ x+ eiψ + x− e−iψ) ≈ ω0

2π

∫ 2π/ω0

0
U(x(t)) dt. (125)

For the quartic potential (120) the smoothed potential (125) is given by the expression

V (xc, x+, x−) = − 1
2x

2
c + 1

4x
4
c + 3x2

cx
2
+ (126)

plus terms independent ofxc.
The amplitude of the oscillations (i.e. the amplitude of the random forcef (t)) varies

over the time∼0−1. Therefore, if the relaxation time of the system is much less than
0−1, the centre of oscillations will follow variations in the amplitude of the oscillations
adiabatically, so that it always remains at the minimum of the effective potentialV (125),

∂V

∂xc
= 0. (127)

The full curves of figure 49 show howV varies withxc for five values ofx+. The heavy-
dashed curve represents the equilibrium value ofxc as given by (127), and the light-dashed
curves represent the extreme limits of oscillationxc− 2x+, xc+ 2x+.

It is interesting to note that, as the amplitude of the oscillations increases from zero,
the lower limit xc− 2x+ moves at first towards lowerx but then, atx = −√5/3≈ −1.29,
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Figure 49. The smoothed potentialV (xc) (full curves) given by (125) for the system (117)–(120)
for the five different oscillation amplitudesx+, reading from bottom to top: 0, 0.1, 0.2, 0.3,
0.4. For clarity, the curves have been shifted up by the amounts indicated by their intersections
with the right-hand ordinate axis atxc = 0. The heavy-dashed curve shows the evolution ofxc,
plotted horizontally, as a function ofx+. The extreme limits of oscillationxc − 2x+, xc + 2x+
are shown by the light-dashed curves (Dykmanet al 1995f).

turns back towards the positivex-direction. One would expect this feature (Dykman 1990)
to lead to the appearance of a singular point in the stationary probability distributionP(x),
a prediction to which we will return in section 6.3.

Mean escape ratesT between the two potential wells have been measured (Dykman
et al 1993e) for the QMN-driven model, yielding the results shown in figure 50. They are
plotted as lnT againstD−1 for comparison with the theoretical expression

T ∝ exp(Rit/D) (128)

with Rit = ω2
0/30 for (120) (Dykman 1990). The analogue data (pluses) lie on a straight

line to an excellent approximation. For the two sets of parameters used, the gradients were
found to be: Rit = 1600 for ω0 = 9.81, 0 = 0.021; andRit = 719 for ω0 = 9.95,
0 = 0.045. These results are to be compared with the theoretical predictions of 1528 and
733, respectively, with which they agree within experimental error. The results were also
confirmed by digital simulations (crosses). It is interesting to note thatRit is substantially
larger than the activation energy required to reach the PBT: the probability of reaching
the PBT exceeded the transition probability by a factor of approximately 100, thereby
emphasizing one of the major differences between QMN and WN, for which the factor
would be two.

6.3. The stationary distribution

From the picture of random motion of the QMN-driven system as fast oscillations
superimposed on the slow drift of their centre (cf figure 49), it is possible to infer the form
of the probability distribution. At a givenx, this distribution is determined, to logarithmic
accuracy, by the probability density for an oscillating coordinate to reach thisx as the
amplitude of fluctuational vibrations increases. For very small fluctuations (compared to
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Figure 50. Dependence of the mean escape time〈T 〉 on the noise strengthD, plotted for
comparison with (128). The pluses and crosses represent analogue and digital simulations,
respectively, for: (a)ω0 = 9.81, 0 = 0.021; (b)ω0 = 9.95, 0 = 0.045. The straight lines are
fits to the analogue data (Dykmanet al 1993e).

the distance to the saddle point), the extremes of the motionx(t) (light-dashed curve) are
approximately symmetrical about the stable state atx = −1 (where we assume the system to
be localized initially). As the fluctuation amplitude increases, however, the hardening of the
potentialV for the centre of oscillations forxc < −1, and its softening forxc > −1, cause
|xc| to decrease. Eventually, the latter effect dominates the evolution of the lower extreme
−2|x+| + xc of the oscillatingx(t) and this extreme passes its limiting value and starts to
increase. With further increase in the oscillation amplitude, the minimum inV (xc) becomes
shallower and moves towardsxc = 0. For the oscillation amplitude 2|x+| = (2/3)1/2

this minimum reachesxc = 0 and sticks there (and so doesxc), so that the motion with
higher amplitudes just consists of vibrations symmetrically distributed aboutxc = 0. The
extremes of the motion will increase equally towards positive and negativex with increasing
fluctuation amplitude, as shown in the latter case by the abrupt change in slope of the light-
dashed curve on the left of figure 49. One would expect to see a corresponding change in
the gradient of thelogarithm of the probability distributionP(x) at the point where reaching
x via oscillations aboutxc ≈ −1 is replaced by that via oscillations aboutxc = 0.

Without going into the full quantitative theory of the shape of the probability distribution
we can put these ideas onto a more quantitative basis by noticing that, according to
equation (118), the distribution of theamplitude 2|f+| of the vibrations of the force
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f (t) ≈ f+(t) exp(iω0t)+ CC is Gaussian,

Pf (|f+|) ≈ constant× exp(−2ω2
0|f+|2/D). (129)

On the other hand, the amplitude of the fast oscillations of the coordinatex+ is related tof+
just by the expressionx+ = f+/iω0, which immediately follows from the equation of motion
with account taken of the fact that the frequencyω0 exceeds all dynamical frequencies of
the system. Therefore, the distribution overx+ has a form

P(|x+|) ∝ exp(−2ω4
0|x+|2/D). (130)

When the system reaches the pointx, which for definiteness we consider to be the left-hand
limit of motion in the left-hand potential well, then

x = xc− 2x+. (131)

The position of the centre of oscillations is related to the amplitude|x+| by the adiabatic
condition (127), giving

xc(−1+ x2
c + 6x2

+) = 0 (132)

which has three real solutions forxc when (1− 6x2
+) > 0. The range of validity of each

solution is determined by demanding that the stationary point of the smoothed potential
(126) be a minimum,∂2V/∂x2

c > 0. Thus, we obtain

xc =
−

√
1− 6x2+ (x+ <

√
1/6)

0 (x+ >
√

1/6)
(133)

as the explicit expression for the heavy-dashed curve in figure 49. It is convenient to recast
(131) and (133) as expressions for the amplitudex+ in terms ofx:

x+ =
−

1
10(2x +

√
10− 6x2) (x+ <

√
1/6)

− 1
2x (x+ >

√
1/6).

(134)

Equations (130) and (134) provide the explicit form of the probability distribution overx

(Dykman 1990). Clearly, this distribution displays a discontinuity atx = −√5/3, which is
the analogue of the caustic-related discontinuities in white-noise-driven systems discussed
in section 3. The related switching of optimal paths is discussed in section 6.4.

The non-analytic behaviour of the probability distribution was obtained in the double-
adiabatic approximation where the vibrations of the system follow adiabatically the
vibrations of the random force, and the position of the centre of oscillations follows
adiabatically the instantaneous value of the vibration amplitude. If the latter approximation
is weakened and non-adiabatic corrections in the parameter0tr are taken into account, the
square-root singularity of the logarithm of the probability distribution is replaced by a steep
function, which was obtained by Dykmanet al (1991b, 1993e) to the lowest order in0tr
and is shown by curve (c) in figure 51.

Some analogue experimental results are plotted for comparison with theory in figure 51.
Curve (a) represents the simplest version of the theory, leading to the singularity in lnP(x)

discussed above. Curve (b) shows the experimental measurements showing that indeed
there is no singularity but, rather, a region where lnP(x) is extremely steep compared to
the equivalent results for driving by WN (Dykmanet al 1993e). These data are in good,
although not perfect, agreement with curve (c) representing the non-adiabatic theory. For
larger negative values ofx, the gradient of|lnP | evidently decreases again. The crossover
from larger to smaller slope of|lnP | occurs in a narrow region around aswitching point
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Figure 51. The probability distributionP(x) for the system (117)–(120), plotted in the form
D ln(P ) whereD is the noise intensity, as a function of negativex. Curve (a) is the adiabatic
theory; the jagged curve (b) represents experimental measurements on an analogue electronic
model of (117)–(120); and curve (c) shows the theory corrected to first order in non-adiabatic
effects. The parameters in all cases wereD = 700,ω0 = 9.81 and0 = 0.021 (Dykmanet al
1995f).

xsw which may be estimated from the experimental data asxsw ≈ −1.5. It is naturally
associated with the fact that for|x| > |xsw| the distribution is formed by fluctuations that
first drive xc to the pointxc = 0 and then continue to increase in the amplitude so that
eventually a given pointx is encountered by fluctuational vibrations aboutxc = 0 (Dykman
1990). The dependence of lnP on x in this range is given by equations (130) and (134).

6.4. Large fluctuations and observation of a switching point

As discussed above in section 3, a powerful method of investigating large occasional
fluctuations is to examine their prehistory by building the probability distribution of paths
ending at the point of interest (Dykmanet al 1992c). In applying this technique, we ask
the question: if a rare fluctuation carries the system to a final pointxf at a timetf , what
is the probability that it passed through a pointx at time t? The answer is given by the
prehistory probability distributionph(x, t; xf , tf ); usually, for convenience, we settf = 0
as before.

The method used for the measurement ofph(x, t; xf , 0) in an experimental system
fluctuating under WN was described in section 3. However, as we mentioned, the original
theoretical formulation of the prehistory problem (Dykmanet al 1992c) applies irrespective
of the type of noise. In the case of QMN we are primarily interested in the motion of
the centre of oscillationsxc, rather than in the oscillations themselves, and therefore it is
particularly convenient to adopt an approach in which the prehistory ofxc is followed.
Respectively, successive realizations ofx(t) are examined until one is found that arrives at
xf . Taking this point as the zero of time (tf = 0) and working backwards, the path of the
centre of oscillations leading to the final point is recorded and added to the distribution.
The process then repeats, building up a prehistory distributionPh(xc, t; xf , t) of xc for that
value ofxf .

For values ofxf lying well away from the switching pointxsw the dependence of
Ph(xc, t; xf , 0) on xf is smooth: a small variation ofxf gives rise to a small change of
the optimal path of the centre of oscillationsxc(t) along which the system arrives atxf ,
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as the centre of oscillations remains close to the corresponding stable statexst = ±1. One
would expect that this might no longer be true for the pointsxf lying on the other sides
of xsw, because the corresponding paths should be topologically different: the points with
|xf | > |xsw| are reached along paths where the centre of oscillationsxc is brought first to the
point xc = 0 and then sticks to it while the amplitude of the vibrations aboutxc increases
and eventually becomes equal to|xf |. The width of the range ofxf where the switching
occurs between the two types of path is proportional to the noise intensity and is therefore
expected to be small.

These theoretical arguments have been confirmed (Dykmanet al 1995f) through
analogue electronic experiments. Some typical measurements of the prehistory probability
density Ph(xc, t; xf , 0) for xf close to the experimentally found valuexsw ≈ −1.5 are
plotted in figure 52. Forxf = −1.55 (figure 52(c)) the position of the centre of oscillations
at the instantt = 0 of arrival atxf , and for some time before this arrival, lies with very
high probability atxc = 0, in agreement with what has been said above. It can be seen from
figures 52(b) and (a), however, that thet = 0 peak corresponding toxc lying close to the
stable positionxst = −1 is growingrapidly with decreasing|xf |. There must clearly be a
critical value ofxf (evidently of magnitude slightly smaller than 1.5—this is in agreement
with the data in figure 51 where the change in slope occurs for|x| slightly less than 1.5),
which we may identify with the switching pointxsw, at which the integrated intensities of
the twot = 0 peaks atxc ' xst = −1 and atxc = 0 will be equal. Asxf moves away from
xsw, the relative intensities of these peaks, and correspondingly the relative probabilities of
the two types of path, vary very rapidly as discussed above.

Yet another interesting feature of the prehistory probability density seen from figure 52
concerns the behaviour ofPh(xc, t; xf , 0) for large |t |. The theoretical formulation of
the prehistory problem (Dykmanet al 1992c) referred to the case where the probability
of reaching a small vicinity of the given state from the corresponding metastable state
was larger than the probability of switching between the states. Therefore, when the
trajectory of the system was traced back in time it would approach, over the relaxation
time or the correlation time of noise (0−1, in the present case), whichever is larger, the
vicinity of the metastable state. However, if the trajectory is traced further backward in
time, up to the times exceeding the reciprocal rates of interstate transitions, one would
find that eventually the prehistory probability density goes over into the full stationary
distribution of the system, rather than the quasistationary distribution about the appropriate
metastable state. This is precisely what happens in the system under consideration for
|xf | < |xsw|.

The situation is different for|xf | > |xsw|. In this case the probability of reaching a
givenxf is less than the probability of transitions between the stable states (Dykman 1990).
Therefore, prior to reaching a pointxf the system, whichever stable state it occupied initially,
will have become equally distributed over the both states, and the fluctuation that brought
it to xf might have started in either of these states. This is, of course, a consequence of
the symmetry. However, it is clear that the prehistory probability densityPh(xc, t; xf , 0)
should immediately start splitting with increasing|t | into two peaks that correspond to
small-amplitude fluctuations about the stable states, as observed (instead of remaining a
single peak over the time∼0−1 and then splitting into the two peaks due to the inter-well
transitions). There is also a small central peak atxc = 0 seen in figures 51(a)–(c) which
reflects a comparatively large probability of fluctuations bringing the centre of oscillations
to x = 0; this peak arises from the competition between a large prefactor and a small
exponential factor in the occupation probability of the state, and it diminishes rapidly with
decreasing noise intensity.
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(a) (b)

(c)

Figure 52. The prehistory probability distributionPh(xc, t; xf , 0) of the centre of oscillations
xc for arrivals at the final points: (a)xf = −1.5; (b) xf = −1.52; (c) xf = −1.55 (Dykman
et al 1995f).

We note that, historically, these theoretical and experimental results on QMN-driven
systems preceded the extensive results on switching between optimal fluctuational paths for
various types of white-noise-driven systems discussed in detail in section 3.

7. Deterministic nonlinear phenomena

The phenomena discussed above have all been stochastic in character and, arguably,
it is under these conditions that the analogue technique is at its most effective and
powerful. One reason is that extraneous noise generated by active components such as
multipliers or operational amplifiers usually has an insignificant effect compared to the
external noise applied to the model (although there are exceptions, cf Mannellaet al 1986).
Analogue models have also, however, been used to investigate a wide range of deterministic
phenomena, including a pioneering investigation of human heart rate variability (Van der Pol
and Van der Mark 1928), hopping between strange attractors as a possible explanation of 1/f
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noise (Arecchi and Lisi 1982), chaos in driven nonlinear oscillators (Holmes 1979, Linsay
1981, Testaet al 1982) and in the Lorenz system (Robinson 1990), multiperiodic orbits in
a pendulum with a vertically oscillating pivot (Smith and Blackburn 1994), synchronized
chaos in coupled oscillators (Heagyet al 1994), modulation-induced negative differential
resistance (Dowet al 1987, Gwakiet al 1993) and zero-dispersion nonlinear resonance
(Luchinskyet al 1996a, 1997). We now consider the latter two cases, as examples.

7.1. Modulation-induced negative differential resistance

Modulation-induced negative differential resistance (MINDR) was first observed, by chance,
in an analogue electronic model; only later was it explained and discussed theoretically (Dow
et al 1987). It arises in damped bistable systems when driven by a multiplicative periodic
force: a parameter regime exists within which the response amplitudedecreaseswith
increasing drive amplitude, and it is this counter-intuitive effect that constitutes MINDR.
The phenomenon is at its most pronounced in overdamped, deterministic, bistable systems,
but it is also robust in the presence of moderate levels of noise and inertia (Gwakiet al
1993). MINDR was discovered in the cubic bistable system

ẋ = −x3+ λ(t)x2−Qx + R (135)

with the constantsQ = 3 andR = 0.7. The periodically varying parameterλ(t) = λ(t + τ)
is conveniently written in the form

λ(t) = λ0+ V0h(t) (136)

whereh(t) is a normalized modulation of zero mean, satisfying

τ−1
∫ τ

0
dt |h(t)| = 1

∫ τ

0
dt h(t) = 0. (137)

The system (135) is a particular example of the more general system

ẋ = f (x)+ V0h(t)g(x) (138)

for which, in the present case,

f (x) = −x3+ λ0x
2−Qx + R g(x) = x2. (139)

For fixed values ofλ0 andV0, we define the response amplitudeA(λ0, V0) as the difference
between the extreme valuesx+ andx− of x(t). The squares in figure 53(a) represent data
from an electronic model withλ0 = 3.6± 0.1. They show how the response amplitudeA
varies with the drive amplitudeV0 of a square-wave modulation with fixed periodτ = 1/6,
such that

h(t) = +1 for 06 t 6 τ/2
h(t) = −1 for τ/26 t 6 τ. (140)

The squares in figure 53(b) show how the extremesx± of the response vary with drive
amplitude. These experimental data of figure 53 reveal immediately that there is a range of
negative differential resistance where dA/dV0 < 0. The bold and thin curves in each case
represent numerical solutions of the equations

1
2τ =

∫ x+

x−
dx[f (x)+ V0g(x)]

−1 (141)

1
2τ =

∫ x−

x+
dx[f (x)− V0g(x)]

−1 (142)
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Figure 53. (a) Response amplitudeA = |x+ − x−| of the cubic bistable system (135) and (136)
as a function of drive amplitudeV0. The data are measurements from an analogue electronic
model withλ0 = 3.6± 0.1, and the lower and upper full curves represent theory forλ0 = 3.60
and 3.65, respectively. The dashed curve shows the corresponding behaviour calculated for
a sine wave withλ0 = 3.6. In each case, the regions of negative slope correspond to the
occurrence of MINDR. (b) Curves showing the corresponding values of the limitsx± (Dow et
al 1987).

for V0 = 3.60 andV0 = 3.65, respectively. They are clearly in good agreement with the
experimental data. The dashed curves in figures 53(a) and (b) show what happens when
the square-wave modulation is replaced with a sine wave: MINDR is again evident, but the
effect is weaker.

MINDR has been analysed in detail by Lambert (Dowet al 1987) in the extreme limit
of large-amplitude, high-frequency, modulation, such that

V0→∞ τ → 0 1
2V0τ = µ (143)

whereµ is finite. In this limit, for square-wave modulation, equations (141) and (143)
reduce to ∫ x+

x−

dxf (x)

[g(x)]2
= 0 (144)∫ x+

x−

dx

g(x)
= µ. (145)

For the electronic circuit model, withf (x) andg(x) given by (139), we obtain

−ln(x+/x−)+ λ0(x
−1
− − x−1

+ )− 1
2Q(x

−2
− − x−2

+ )+ 1
3R(x

−3
− − x−3

+ ) = 0

x−1
− − x−1

+ = µ.
It can thus be seen that, for largeV0, the boundsx± and hence also the response amplitude
A approach universal functions of the parameterµ, which are independent ofτ and V0

separately. In this limit,τ is effectively just a scaling factor for the drive amplitudeV0.
These universal functions have been calculated (Dowet al 1987). The results were

generalized to describe the response to a periodic force of arbitrary form through the
introduction as acoefficient of castellationε that gives a measure of the departure from
a square-wave shape: for a square wave,ε = 0. MINDR is difficult to treat analytically in
the presence of noise, or where there is an inertial term in the equation of motion. Digital
techniques have been used, however, to show that the phenomenon persists in the presence
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of moderate inertia and noise, but that it can be destroyed if they become too large (Gwaki
et al 1993).

7.2. Zero-dispersion nonlinear resonance

Zero-dispersion nonlinear resonance (ZDNR) is an interesting phenomenon that can occur
in a periodically-driven underdamped oscillator whose eigenfrequency (without the driving
force, and in the absence of damping) possesses one or more extrema as a function of
energy, i.e. the same kind of oscillator that can exhibit noise-induced spectral narrowing
(Dykman et al 1990b), zero-dispersion peaks (Soskin 1989, 1992, Stockset al 1993c)
and zero-dispersion stochastic resonance (Stockset al 1992, and see section 4.4). Many
real physical systems including, for example, SQUIDs (Barone and Paterno 1982, Kautz
1996), relativistic oscillators (Kim and Lee 1995, Luchinskyet al 1996b), electrical
circuits (Hayashi 1964), and polymeric molecules, are of this type. ZDNR was discovered
theoretically by Soskin (1994) for a zero-dispersion oscillator in the absence of damping,
and was subsequently observed experimentally and described theoretically for a weakly
dissipative system (Luchinskyet al 1996a). The status of research on ZDNR has been
summarized by Soskinet al (1997). The phenomenon has some features that, at first sight,
are rather surprising. For example, there can be a strong response to the external driving
force even in the absence of matching between the driving frequency and any eigenfrequency
of the (undriven, undamped) system. An analogue electronic model has been used both to
demonstrate and investigate the phenomenon. In particular, its bifurcation diagram in the
plane of the driving force parameters has been constructed by locating the transition lines
separating different regimes of behaviour.

To understand the physical origins of ZDNR, we take as an example a one-dimensional
potential system subject to a weak linear friction and a weak periodic force, such that

ẋ = p ṗ = −dU(x)

dx
− 0p + h cos(ωf t). (146)

Our goals will be to find period-1 orbits and to describe the transition regimes. (Note that
higher-order resonances can be treated in a similar way.) With these aims, we transform to
the slow variables actionI and phase differencẽψ = ψ − ωf t between the force and the
response; we neglect high-frequency oscillatory terms. Then (146) can be reduced to

İ = −hx1 sin(ψ̃)− 0I ˙̃
ψ = ω − ωf − dx1

dI
h cos(ψ̃) (147)

whereω ≡ ω(I) is the eigenfrequency corresponding toI , andx1 is the first harmonic in
the Fourier expansion ofx:

x ≡ q(I, ψ) = 2
∞∑
n=0

xn(I ) cos(nψ). (148)

The period-1 orbits are located by finding the stationary solutions of (147) with non-zero
action. These can be of two types

ψ̃st = −arcsin{0Ist/[hx1(Ist)]} (149)

ψ̃st = arcsin{0Ist/[hx1(Ist)]} − π (150)

whereIst satisfies the equation

ω(Ist)− ωf = ±hdx1(Ist)

dIst

(
1−

(
0Ist

hx1(Ist)

)2)1/2

(151)
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Figure 54. The typical dependence of (ω − ωf ) on the actionI for a system with a minimum
in ω(E) (full curve), and solutions of (149) for stationary actions. The dotted curve represents
±hx′1[1 − (0I/hx1)

2]1/2. The intersections corresponding to stable points (attractors) and
unstable ones (saddles) are labelled S1–S3 and U1 and U2, respectively (Luchinskyet al 1996a).

in which the plus and minus refer to (149) and (150), respectively. Equation (151) can be
solved explicitly for very smallh, or numerically for largerh: see figure 54. It is clear
from inspection that, just as in the dissipationless case (Soskin 1994), there will be a range
of ωf for which the extremum of the full curve comes above the abscissa (ω = ωf ) line
but still intersects the upper dashed curve nearIm, i.e. a large-amplitude response can exist
even ifωf is beyond the spectrum of eigenfrequencies.

For further analysis, we turn to an example (Dykmanet al 1990b) of a simple
quartic single-well potential whose dependence of eigenfrequency on energy possesses an
extremum,

U(x) = 1

2
ω2

0x
2+ 1

3
βx3+ 1

4
γ x4 9

10
<

β2

γω2
0

< 4. (152)

Note that, although theU(x) considered by Dykmanet al (1990b) contained a linear term,
it is reducible to (152) by a suitable change of variable. For (152) withω0 = 1, β = 5/3,
γ = 1, there is a minimum inω(I): ωm = 0.805; Im = 0.187;ω′′m ≡ d2ω(Im)/dI 2

m = 10.5;
x1m ≡ x1(Im) = 0.325. Figure 55 shows the bifurcation diagram in the plane of the
driving force parameters for0 = 0.011. Its structure is typical of that expected for any
system with an extremum in eigenfrequency as a function of energy (or action). The data
points represent measurements on an analogue model of (146) and (152) of similar design
to those already described. The theoretical curves were obtained from the condition that
curves corresponding to the left-hand and right-hand sides of (149) touch rather than cross
each other (cf figure 54). They are in good agreement with the experimental data. Within
the region bounded by the full curves (exceptvery close to the cusps of the full curves),
point S1 in figure 54 is well separated in action from S2/S3. The response corresponding
to S2/S3 is always strongly nonlinear. The response corresponding to S1 is linear in
the region far below the upper full curve. It starts to be nonlinear when closer to the
line but even then it is still significantly smaller than S2/S3; in order to distinguish S1
from S2/S3, we shall refer to it as ‘linear’ within the whole region bounded by the full
curves.

The evolution of the phase space of the slow parameters asωf increases for fixedh is of
particular interest, and has been calculated numerically as shown in figure 56. One can see
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Figure 55. The bifurcation diagram in the plane of the driving force parameters for (146) and
(152) with ω0 = γ = 1.0, β = 5/3, 0 = 0.011 (the normalization of the vertical axis is
x1m/(0Im) = 159.0). Full curves bound the region within which both the linear (S1) and one
or both of the nonlinear (S2, S3) responses can exist: the upper curve (theory) and triangles
(analogue electronic simulation) mark the boundary of the linear response, and the lower curve
and squares mark that for the nonlinear responses. Dashed curves bound the region whereboth
nonlinear responses (S2, S3) coexist: the upper dashed curve (theory) and circles (simulation)
mark the boundary for the lower action attractor (S2), and the lower dashed curve and diamonds
mark that for the larger action attractor (S3). The calculated ZDNR/NR transition is shown by
the dotted curve. The inset provides an enlarged plot of the region near the cusp (Luchinsky
et al 1996a).

a distinct difference in the structure of the BAs of the nonlinear responses at differentωf .
At smallerωf (figures 56(a) and (b)), the phase difference between attractor and saddle (the
outer saddle, in cases where the BA has two saddles) for each BA is negligible, whereas
for largerωf (figures 56(c)–(e)) it is of the same order as the characteristic width of the
BA. This holds true throughout the whole region enclosed by the full curves in figure 55
(except,very close to the bifurcation curves), the two types of behaviour being separated
by the dotted curve. In analogy with the dissipationless case (Soskin 1994), the parameter
ranges to the left and right of the dotted curve can be consistently defined as the zero-
dispersion (ZDNR) and conventional (NR) stages of nonlinear response (and the definition
can be formulated in a similar way for the original system (146) in terms of a stroboscopic
Poincaŕe section).

In the dissipationless case, the transition between the ZDNR and NR stages as parameters
change occurs (Soskin and Luchinsky 1995) throughseparatrix reconnection(Howard and
Hohs 1984), resulting in a different topology of separatrices between regions of trapped
and untrapped motion: the separatrices are homoclinic or heteroclinic for ZDNR or NR,
respectively (Soskin 1994, Soskin and Luchinsky 1995). In the presence of dissipation,
the transition occurs typically via asaddle connection(Guckenheimer and Holmes 1983)
as can be seen from figures 56(b) and (c). It also results in a change of topology of
the BAs of the nonlinear responses. Just before the bifurcation, at the ZDNR stage, the
basin of attraction (BA) corresponding to the larger action attractor (S3) encompasses the
other one (S2), whereas the opposite applies for the NR stage just after the bifurcation:
see figures 55(b) and (c). Note that the transition can also occurcontinuouslyvia a path
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Figure 56. Calculated evolution with driving frequencyωf of the basins of attraction (BAs)
of nonlinear responses in a 2π band of the phase space of the slow variables (I ordinate,ψ̃
abscissa) for the same system as in figure 55 but averaged over the high-frequency oscillations
(equations (147) and (148)) forh = 0.0143 and: (a)ωf = 0.8; (b) 0.83; (c) 0.85; (d) 0.88;
(e) 0.92. The boundaries of the BAs of S2 (S3) and trajectories emerging from the saddles are
drawn by full (dashed) curves. One can obtain the complete phase space by repeating the above
picture with a period 2π in ψ̃ . (Luchinskyet al 1996a).

around the central cusp point (figure 54, inset). Because the separation between the cusp
and the lower full curve tends towards zero as0→ 0, however, this possibility can usually
be ignored. Beyond the close vicinity of the cusp, the frequencyω

(tr)
f of the ZDNR/NR

transition can be shown to satisfy an asymptotic (h → 0) formula which is valid for the
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general case rather than for (152) only:

ω
(tr)
f = ωm+ sgn(ω′′m)(|ω′′m|/2)1/3

[
3

2
hx1m

{
(1− η2)1/2− η

(
π

2
− arcsin(η)

)}]2/3

(153)

η ≡ 0Im

hx1m
< 1

[
0

|ω′′m|I 2
m

]2/3

�
[
ω
(tr)
f − ωm

ω′′mI 2
m

]1/2

� 1.

It can be found more exactly by numerical solution of (147) (figure 54).
There is another non-trivial bifurcation that has no analogue in the dissipationless case:

the alternation between the BA of one attractor either encompassing the other one, or
simply moving around it (figures 55(c)–(e)), as the frequency is changed (for smaller
0, a similar alternation takes place at the ZDNR stage too). These bifurcations are of
the saddle connection type too and, together with the ZDNR/NR transition, they are
characteristic of any oscillatory system whose variation of eigenfrequency with energy
possesses an extremum. The ZDNR/NR and encompassing/moving around bifurcations
are of particular interest because they may be expected to give rise to unusual fluctuational
phenomena.

Of course, in the presence of noise, previously stable states become metastable. Escape
from an attractor takes place with overwhelming probability via one of the saddle points
of its BA (Dykman and Krivoglaz 1979, Freidlin and Wentzell 1984). Thus, the transition
of a saddle point from the BA of one nonlinear response to the other at the ZDNR/NR
bifurcation would be expected to result in a jump-wise change in the probabilities of
fluctuational transitions between the nonlinear and linear responses (in figures 56(b) and
(c), the trajectory outgoing to the right from the saddle point with a lower action goes
to the attractor corresponding to linear response): for ZDNR, just before the bifurcation,
there are no direct transitions between attractors S1 and S2, whereas, for NR, just after the
bifurcation, there are no direct transitions between S1 and S3. A similar effect should occur
at global bifurcations of the ‘encompassing/moving around’ type. Note that these various
changes cannot be described in terms of frequency–response curves (Hayashi 1964) because
nothing happens to the attractors themselves at a global bifurcation.

One may expect that the sequence of global bifurcations undergone by a ZD oscillator
should manifest itself in some very unusual dependences of the fluctuational inter-attractor
transition probabilities on parameters of the driving force. They have yet to be studied
in detail, but it is interesting to consider briefly stationary fluctuations in the system.
It can be shown that, for small enoughh, there is a repopulation of the attractors
associated with the ZDNR/NR transition: during the ZDNR stage, the population of
attractor S3 is bigger than that of S2, whereas it is the other way round for NR. As
discussed by Luchinskyet al (1995), this repopulation produces corresponding changes in
the fluctuation spectra which are at their most pronounced for intermediate noise intensities
and amplitudes of the driving force. The spectral density of fluctuations of the coordinate
consists typically of a narrow transition peak at the frequency of the driving force which
is due to fluctuational transitions between the metastable states, Stokes and anti-Stokes
bands which are due to small fluctuations around S2 and S3, and a comparatively broad
peak atω0 caused by small fluctuations near S1 (cf Dykman and Krivoglaz 1979, 1984,
Dykman et al 1989). The repopulation of S2 and S3 reverses the relative amplitudes of
the Stokes and anti-Stokes bands and can also result in a rather unusual dependence of
the intensity of the transition peak on the frequency of the driving force: quite unlike
the case of the Duffing oscillator (Dykmanet al 1994c), it can have a two-humped
structure.
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Studies of ZDNR and associated phenomena are still in their infancy, and many puzzles
remain to be resolved including, in particular, those associated with chaos (Neimanet al
1995) and with fluctuational effects (Luchinskyet al 1995). It seems likely that the former
will be treated mainly via digital approaches, and the latter mainly via analogue experiments
of the kind discussed in this review.

8. Future directions

The examples discussed above are intended to convey some idea of the versatility,
convenience and power of analogue electronic modelling. Despite its simplicity, the
technique can be applied to problems at the forefront of statistical mechanics (see, e.g.,
section 3) as well as to a wide range of applied research. It is of particular value on
occasions when nonlinear dynamical systems are to be explored and their behaviour has to
be qualitatively understood over a wide range of parameters, for instance in the development
of the Josephson junction voltage standard (Kautz 1996), analyses of the action potential
in the giant axon of a squid (Starzak 1984), studies of chaotic behaviour in nonlinear
oscillators (see, e.g., references in section 1 and at the start of section 7), investigations
of stochastic resonance (section 4) and the pilot experiments (section 4.6) preparing the
way for studies of noise-enhanced optical heterodyning (Dykmanet al 1995a). Given
that the technique needs only a small addition—usually just a handful of standard cheap
ICs—to the equipment already available in most laboratories, we suggest that it could
with advantage be applied much more widely, in undergraduate teaching as well as in
research.

What of the future? Well, in the long term, one can guess that the advantage in speed
sometimes held by analogue over digital methods at the moment will probably disappear as
processor speeds inexorably rise. Of course, the frequency responses and quality of analogue
components (e.g. multipliers) are also likely to improve, permitting faster operation of the
analogue models. Nonetheless, part of their present convenience lies in the possibility of
creating them on simple open mounting boards with pressure contacts, thereby setting an
effective upper frequency limit of perhaps∼1 MHz: at frequencies much higher than this
stray capacitance and inductance, and phase shifts across the circuit, become important and
very careful component layout on a printed circuit board is then essential. However, there
are good reasons to suppose that—even without its present speed advantage—the peculiar
merits of the analogue technique will ensure its continued use for the forseeable future in
many areas of science and technology. Of the features discussed in section 1, the most
relevant here is the close relationship to real experiments and the possibility to explore, in
real time and visually, a broad range of parameter values.

In the medium term, one can be confident in predicting that research on stochastic
systems of all kinds will continue to be extremely active in exploiting the advantages
of analogue techniques. One of the fastest developing areas is the physics of large rare
fluctuations (sections 3 and 6), which is still at a relatively early stage of its evolution,
and where we forsee intense activity over the coming decade, with theory and experiment
advancing together in a mutually supportive way. Up to now, analogue models have
constituted theonly experimental means of investigating the dynamics of large fluctuations:
the nonlinear dynamics of large fluctuations would probably not have reached its current
status as a subject area without the possibility ofobserving optimal fluctuational paths,
together with the singularities in their pattern, and the shape of the tube of fluctuational paths.
In addition to further intensive experimentation of a similar kind during the next few years,
we anticipate that optimal paths will also be observed and studied in natural systems—using
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ideas and techniques, for example measurements of the prehistory probability distribution,
already developed and tested on the analogue models.

Important stochastic problems ripe for immediate investigation using the techniques
described above include, for example: the relationship between singularities of the pattern
of optimal paths and theories of phase transitions, including the dynamics of soft modes near
critical points; the recently introduced theory of the logarithmic susceptibility (Dykmanet al
1997a, Smelyanskiyet al 1997b), which urgently requires experimental verification/testing,
especially in the context of a variety of diverse applications, for example the selective control
of diffusion by ac fields; and the characteristic behaviour expected near nascent cusp points
of infinite codimension (Maier and Stein 1996a), including saddle-point avoidance and non-
Gaussian exit location distributions (section 3.3.3). Amongst applications of the basic ideas
and results on fluctuating nonlinear systems are numerous biological problems, in addition
to those representing applications of stochastic resonance (Bulsaraet al 1995, Collinset al
1995, 1996, Wiesenfeld and Moss 1995), that are already yielding, or likely to be amenable,
to analogue approaches. They exist on all length/complexity scales from the molecular
level up to the complete organism. Examples include the old problem of the passage of
currents through ion channels in a cell membrane (Eisenberget al 1995, Eisenberg 1996a, b),
Brownian ratchets (Astumian 1997), and the relationship between noise and chaos in the
human cardiovascular system (Cammet al 1996).

Analogue modelling techniques of the kind described in this review seem certain to play
an important role in the solution of these and of other problems, doubtless including many
that are as yet unformulated, in the years to come.
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Arrayás M, Casado J M, Ǵomez Ord́oñez J, McClintock P V E, Morillo M and Stein N D 1998aPhys. Rev. Lett.

80 2273–6
Arrayás M, Mannella R, McClintock P V E, McKane A J and Stein N 1997 Current reversals in a ratchet driven

by quasimonochromatic noiseNoise in Physical Systems and1/f Fluctuationsed C Claeys and E Simoen
(Singapore: World Scientific) pp 381–4

——1998 Current reversal in a correlation ratchet, to be published
Astumian R D 1997Science276 917–22
Astumian R D and Bier M 1994Phys. Rev. Lett.72 1766–9
Baras F, Nicolis G, Mansour M M and Turner J W 1983J. Stat. Phys.32 1–23
Barone R and Paterno G 1982Physics and Applications of the Josephson Effect(New York: Wiley)
Barton D 1991Physics World4 56–60
Beasley M R, D’Humieres D, Huberman B A, Vos R F, Arecchi F T and Lisi F 1983Phys. Rev. Lett.50 1328–30
Ben-Jacob E, Bergman D J, Matkowsky B J and Schuss Z 1982Phys. Rev.A 26 2805–16
Benzi R, Sutera S and Vulpiani A 1981J. Phys. A: Math. Gen.14 L453–L457
Berry M V 1976 Adv. Phys.25 1–26
——1977J. Phys. A: Math. Gen.10 2061–81
Bezrukov S M and Vodyanoy I 1995Nature378 362–4
——1997Nature385 319–21
Binder K 1973Phys. Rev.B 8 3423–8
Boltzmann L 1904 On statistical mechanics (address given to the Scientific Congress in St Louis, 1904) reprinted

in Theoretical Physics and Philosophical Problemsed B McGuinness (Dordrecht: Reidel) pp 159–72
Brand H R, Doering C R and Ecke R E 1989J. Stat. Phys.54 1111–19
Bray A J and McKane A J 1989Phys. Rev. Lett.62 493–6
Bray A J, McKane A J and Newman T J 1990Phys. Rev.A 41 657–67
Bryant P and Wiesenfeld K 1986Phys. Rev.A 33 2525–43
Bryant P, Wiesenfeld K and McNamara B 1987Phys. Rev.A 36 752–5
Broggi G and Lugiato L A 1984aPhys. Rev.A 29 2949–52
——1984bPhil. Trans. R. Soc., LondonA 313 425–8
Broggi G, Lugiato L A and Colombo A 1985Phys. Rev.A 32 2803–2812
Bulsara A R, Chillemi S, Kiss L B, McClintock P V E, Mannella R, Marchesoni F, Nicolis C and Wiesenfeld K (eds)

1995 Fluctuations in physics and biology: stochastic resonance, signal processing and related phenomena
Nuovo CimentoD 17 653–987

Bulsara A R and Gammaitoni L 1996Physics TodayMarch 39–45
Camm A Jet al 1996Circulation 93 1043–65
Caroli B, Caroli C and Roulet B 1980PhysicaA 101 581–7
Carroll T L and Pecora L M 1993Phys. Rev. Lett.70 576–9
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Jiménez-Aquino J I, Casademunt J and Sancho J M 1988Phys. Lett.133A 364–8
Jost B M and Saleh B E A 1996Opt. Lett.21 287–9
Jung P 1993Phys. Rep.234 175–295
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Morillo M and Gómez-Ord́oñez J 1993Phys. Rev. Lett.71 9–11
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