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Abstract Weconside the dynamics of a nonlinear res-
onator that is nonlinearly coupled to a linear resonator
that has a relatively short decay time. In this case,
the secondary (linear) resonator adiabatically tracks
the primary (nonlinear) resonator. This model, which
is motivated by ongoing experimental work in nano-
resonators, is analyzed analytically and numerically to
show that the linear and nonlinear characteristics of the
primary resonator can be altered in a significant man-
ner by the coupling to the secondary resonator. Such an
arrangement may provide a practical means of tuning
resonator characteristics in applications.

Keywords Nano- and micro-electromechanical
systems · Nonlinear resonators · Tuning resonator
characteristics

O. Shoshani (B)
Ben-Gurion University of the Negev, 84105 Beer-Sheva,
Israel
e-mail: oriels@bgu.ac.il

M. I. Dykman
Michigan State University, 567 Wilson Road,
East Lansing, MI, USA
e-mail: dykman@pa.msu.edu

S. W. Shaw
Florida Institute of Technology, 150 W University Blvd,
Melbourne, FL, USA
e-mail: sshaw@fit.edu

1 Introduction

Nano- and micro-electromechanical systems (N/
MEMS) resonators arewidely used in a variety of appli-
cations that include inertial sensing, signal processing,
switching, and timing [1–4]. These devices possess
inherent compatibility with semiconductor technology,
the ability to fulfill miniaturization requirements, and
offer some improved performance metrics when com-
pared to their purely electrical analogs [5–8].

As the size of N/MEMS resonators is reduced, their
vibrations become nonlinear already for small ampli-
tudes [9]. Nonlinear stiffness effects in N/MEMS res-
onators commonly arise from multiple sources, such
as finite deformations that lead to nonlinear strain–
displacement relationships [10–12] and the nonlinear
nature of the electrostatic forces in capacitiveN/MEMS
[13–15]. Nonlinear damping in N/MEMS resonators
can be derived from a microscopic model, which
account for nonlinear coupling between the resonator
and a thermal bath [16,17], or from a macroscopic
model, which accounts for material viscoelasticity and
geometric nonlinearities [18].

While the linear stiffness and linear damping, which
are associated with the natural frequency and the nom-
inal quality factor (or decay time), respectively, are
of obvious interest for any resonant N/MEMS appli-
cation, the nonlinear stiffness and nonlinear damping
can also influence significantly the device figures of
merits. Examples include the degradation of frequency
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precision due to amplitude modulation (AM) to phase
modulation (PM) conversion that arises from Duffing
nonlinearity [19,20], and the degradation of nanotube
and graphene nano-resonators quality factors due to
nonlinear van der Pol-type damping [21].

Numerous studies considered different methods
of tuning the linear and nonlinear characteristics of
N/MEMS resonators. DeMartini et al. [22] experimen-
tally demonstrated a means to tune linear and non-
linear characteristics of parametrically excited MEMS
resonators by adjusting the drive DC and AC exci-
tation voltages, and the configurations of their non-
interdigitated capacitive comb fingers. Saghafi et al.
[23] conducted a theoretical and numerical study of
a bilayer microbeam and considered ways to tune the
magnitude of intrinsic nonlinear effects and the beam
dynamic range by varying the beam geometry. Li et al.
[24] experimentally demonstrated a systematic control
of the Duffing nonlinearity in MEMS resonators using
shape optimization techniques.

Several experimental observations [25–27] have
shown that when N/MEMS resonators are operated in
1:3 internal resonance conditions, the low-frequency
vibrational mode can experience: (i) a significant fre-
quency stabilization [25] (which implies that the effects
of the Duffing nonlinearity are considerably reduced),
(ii) an increase in the decay rate due tomode hybridiza-
tion [26], and (iii) amplitude dwell in which the fast-
frequency vibrational mode compensates for the low-
frequency vibrationalmode losses and practically elim-
inates its decay for a finite time [27]. In a recent study
[28], the authors theoretically analyzed the 1:3 inter-
nal resonance of nanomechanical modes and showed
that it can lead to a variety of anomalous decay behav-
iors, where both increase (as observed by [26]) and
decrease (as observed by [27]) in the decay rate of
the low-frequency mode can be obtained. Moreover,
it was shown that the coupling between the two modes
can result in an increase in the effective linear damp-
ing of the low-frequency mode for sufficiently large
amplitude, even when the system is far from internal
resonance [28]. In this work, we further theoretically
explore such interactions and show that they can be
used to tune the linear and nonlinear characteristics of
a primary resonator when it is coupled to a relatively
fast-decaying secondary resonator. The results devel-
oped here are related to the seminal work on a clas-
sical oscillators coupled to a bath of linear oscillators
[29,30]. Furthermore, the results of the current anal-

ysis can be viewed as a special case, with important
potential applications (e.g., manipulation of MEMS
resonator characteristics), of the more general analy-
ses of [16,31].

The paper is organized as follows: In Sect. 2, we
formulate the problem and show that the motion of
the relatively fast-decaying secondary resonator can be
eliminated from the governing equation under the adia-
batic approximation. In Sect. 3, we conduct an asymp-
totic analysis and obtain the main results of the paper,
consisting of closed-form expressions for the modified
linear and nonlinear characteristics of the primary res-
onator. In Sect. 4, we numerically validate our ana-
lytical predictions. In Sect. 5, we summarize our main
findings and discuss their implications.We also include
an appendix which briefly describes the microscopic
theory of a resonator that interacts with a medium
[16,19,32], since it provided the theoretical inspiration
for the current work.

2 Problem formulation

We consider a system with two resonators that are
mutually coupled. Figure 1 depicts a conceptual view
of such a system with a simplified circuit schematic for
the electronic realization of the coupling between the
resonators. This realization, via electronic coupling, is
chosen for the sake of clarity due to its simplicity; how-
ever, one can consider other types of coupling between
the resonators, such as mechanical [33] and optical
[34].

We assume that the primary resonator (with coor-
dinate q1) can experience a large amplitude oscilla-
tion around its stable equilibrium, q1 = 0, and its
potential U (q1), provides a nonlinear restoring force.
The secondary resonator (with coordinate q2) is linear
and oscillates with small amplitude around its stable
equilibrium, q2 = 0. To be consistent with the above
assumptions, we model the interaction potential of the
two resonators asUinter = −q2G(q1). Thus, theHamil-
tonian of the system is given by

H = p21/2 +U (q1) + p22/2 + ω2
2q

2
2/2 − q2G(q1).

(1)

The equations of motion of the resonators with the
inclusion of linear dampingare formally given by q̈k
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Fig. 1 Conceptual view and simplified circuit schematic of
an electronic realization. Left panel: conceptually, the two res-
onators mutually and nonlinearly coupled via an interaction
potential, −q2G(q1). The primary resonator (q1) has a non-
linear conservative restoring force, −U ′(q1), and weak linear
dissipation, −Γ1q̇1. The bath resonator has a linear conservative
restoring force,−ω2

2q2, and a relatively strong linear dissipation,−Γ2q̇2. Right panel: For micro-mechanical systems, the motion

of each resonator is detected using a parallel-plate capacitive
sensing technique. The signal from the primary resonator is fed
into a mixer, amplifiers (for control of different coefficients of
G), and an adder to form the function G(q1). The signal G(q1)
is then fed into the driving electrode of the bath resonator, and to
a differentiator and a mixer, which multiplies the signal G ′(q1)
with q2, and finally, the mixed signal q2G ′(q1) is being fed into
the driving electrode of the primary resonator

= ṗk = −2Γk q̇k −∂H/∂qk and can be explicitly writ-
ten as

q̈1 = −2Γ1q̇1 −U ′(q1) + q2G
′(q1), (2)

q̈2 = −2Γ2q̇2 − ω2
2q2 + G(q1), (3)

where the overdot denotes a time derivative, the prime
symbol differentiation of a function with respect to its
single variable, and −2Γk q̇k models the linear friction
force experienced by resonator k with k = 1, 2. Fur-
thermore, we assume that both resonators are lightly
damped (Γk/ωk � 1) and that the decay times sat-
isfy Γ2/Γ1 � 1 so that the secondary resonator will
adiabatically track the primary resonator [28].

We formally solve Eq. (3) in terms of its Green’s
function, i.e.,

q2(t) = e−Γ2t
[
q2(0) cos(ω2d t) + p2(0)

ω2d
sin(ω2d t)

]

+ 1

ω2d

∫ t

0
G(q1(τ ))e−Γ2(t−τ) sin(ω2d(t − τ))dτ,

(4)

where, due to the low level of damping in the system
(Γk/ωk � 1), we approximate the secondary resonator

damped eigenfrequencyω2d by its undamped eigenfre-
quencyω2, i.e.,ω2d = ω2

√
1 − (Γ2/ω2)2 ≈ ω2. Upon

inserting Eq. (4) into Eq. (2), we find that

q̈1 = −2Γ1q̇1 −U ′(q1) + G ′(q1)(L[q1] + F), (5)

where

L[q1] = 1

ω2

∫ t

0
G(q1(τ ))e−Γ2(t−τ) sin(ω2(t − τ))dτ,

(6)

F(t) =e−Γ2t
[
q2(0) cos(ω2t) + p2(0)

ω2
sin(ω2t)

]
.

(7)

The functional L[q1] describes the retarded reaction of
the secondary resonator on the primary resonator, and
F(t) describes the response of the primary resonator to
the initial state of the secondary resonator.

3 Asymptotic analysis

For weakly nonlinear interaction between the res-
onators, we can use the method of averaging [35,36],
i.e., we assume that q1(t) = A(t)eiω1t + A∗(t)e−iω1t
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and q̇1(t) = iω1[A(t)eiω1t − A∗(t)e−iω1t ], where A∗
is the complex conjugate ofA, and the complex ampli-
tude A(t) remains almost constant over the period
T = 2π/ω1 of the linearized resonator, ω2

1 = U ′′(0).
Thus, G(q1(t)) can be replaced by its Fourier series
G(q1(t)) = ∑

n cn(A(t),A∗(t))einω1t , where c−n =
c∗
n . Consequently, the functional L[q1] can be rewritten
as

L[q1] =
∫ t

0

∑
n

cn(τ )

2iω2
[e−Γ2(t−τ)+i[nω1τ+ω2(t−τ)] − e−Γ2(t−τ)+i[nω1τ−ω2(t−τ)]]dτ. (8)

Since cn(t) are functions of A(t) and A∗(t), they also
vary slowly in time. Thus, to the leading order we can
approximate Eq. (8) as follows:

L[q1] ≈
∑
n

cn(t)

2iω2

∫ t

0
[e−Γ2(t−τ)+i[nω1τ+ω2(t−τ)] − e−Γ2(t−τ)+i[nω1τ−ω2(t−τ)]]dτ

=
∑
n

cn(t)

2ω2
einω1t

[
1 − e−[Γ2+i(nω1−ω2)]t

−(nω1 − ω2) + iΓ2
+ 1 − e−[Γ2+i(nω1+ω2)]t

(nω1 + ω2) − iΓ2

]
. (9)

For times that are larger than the relaxation time of the
secondary resonator, t � Γ −1

2 , the functional L[q1] is
further simplified and yields

L[q1] ≈
∑
n

ω2
2 − n2ω2

1 − 2inω1Γ2

(ω2
2 − n2ω2

1)
2 + (2nω1Γ2)2

cn(t)e
inω1t .

(10)

Hence, for t � Γ −1
2 , the equation of motion of the

primary resonator, Eq. (5), reduces to

q̈1 +U ′(q1) = −2Γ1q̇1 + G ′(q1)
∑
n

ω2
2 − n2ω2

1 − 2inω1Γ2

(ω2
2 − n2ω2

1)
2 + (2nω1Γ2)2

cn(t)e
inω1t .

(11)

This approximation applies even for resonant situa-
tions, where ω2 is close to a multiple of ω1.

In what follows, we focus only on times that are
larger than the relaxation time of the secondary res-
onator, t � Γ −1

2 , where the secondary resonator is
adiabatically tracking the primary resonator and acts
as a thermal reservoir. In fact, we have also assumed

here that the functions cn(t) vary slowly over the time
Γ −1
2 . This is a restriction on the nonlinearity and the

decay rate of the primary resonator.
For the weak coupling that we consider, the only

terms to keep in the sum over n in Eq. (11) are the res-
onant terms, which oscillate, with the slowly varying
amplitude and phase, at the same frequency as q1(t).
For G ′ = constant, these are terms with n = ±1,

whereas ifwe take into account the term∝ q1 inG ′(q1),
we have to keep the resonant terms with n = ±2 and
n = 0. This is used in the calculation in the next section.

3.1 Essential leading-order nonlinear terms

Restricting our attention to the essential leading-order
nonlinear terms, we take U (q1) = ω2

1q
2
1/2 + γ q41/4;

the non-secular term βq31/3 renormalizes γ , to the sec-
ond order in β, which we assume to have been taken
into account. Furthermore, we assume that G(q1) can
be similarly represented, G(q1) = G1q1 + G2q21/2 +
O(q31 ), where G1 ≡ G ′(0) and G2 ≡ G ′′(0). Conse-
quently, we obtain the following approximated equa-
tion for the complex amplitude of the primary resonator

Ȧ = − Γ1A
(
1 + α1

Γ2

Γ1
+ α2

Γ2

Γ1
|A|2

)

− iA
{

α1

(
ω2
2 − ω2

1

2ω1

)
+

[
α2

(
3ω2

2 − 20ω2
1

4ω1

+8ω1

ω2
2

(Γ 2
2 + ω2

1)

)
− 3γ

2ω1

]
|A|2

}
, (12)

where the coupling to the secondary resonator is cap-
tured by the terms with coefficients
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Fig. 2 Variation in the normalized linear damping (Γeff/Γ1) and
frequency (ω̃1/ω1) parameters of the primary resonator as a func-
tion of the normalized eigenfrequency of the secondary resonator
(ω2/ω1) for Γ2/Γ1 = 103 and different levels of the linear cou-
pling strength: G1 = 0.2 (black), G1 = 0.4 (purple), G1 = 0.6
(blue), G1 = 0.8 (green), and G1 = 1 (red). Left panel: The
effective linear damping reaches its maximum value when the

two resonators interact resonantly at ω2/ω1 = 1 (indicated by
the vertical dashed line). Right panel: The primary resonator
shifted eigenfrequency increases for ω2 < ω1 and decreases
for ω2 > ω1. We emphasize that the theory applies for weak
coupling of the resonators, which means that we only study the
regime where |ω̃1 − ω1| � ω1. (Color figure online)

α1 = G2
1

(ω2
2 − ω2

1)
2 + (2Γ2ω1)2

,

α2 = G2
2

(ω2
2 − 4ω2

1)
2 + (4Γ2ω1)2

. (13)

From Eq. (12), we deduce that the interaction of
the primary resonator with the secondary resonator
modifies the linear and nonlinear terms in the equa-
tion of motion for the coordinate q1 of the primary
resonator. To be specific, we see that at the lead-
ing order, the interaction between the two resonators
leads to the following changes in this equation: (i)
an increase in the linear decay rate Γ1eff = Γ1 +
α1Γ2; (ii) the addition of new nonlinear cubic (van
der Pol type) damping term −α2Γ2|A|2A; (iii) a shift
in the eigenfrequency Δω1 = α1(ω

2
2 − ω2

1)/(2ω1);
and (iv) a modification to the Duffing nonlinearity
−iα2

[
(3ω2

2 − 20ω2
1)/(4ω1) + 8ω1(Γ

2
2 + ω2

1)/ω
2
2

] |
A|2A. Hence, Eq. (12) is consistent with the complex
amplitude equation that one gets from the averaging
method for the following phenomenological model

q̈1 + 2(Γ1eff q̇1 + α2Γ2q
2
1 )q̇1 + ω̃2

1q1 + γ̃ q31 = 0,

(14)

where the square of the shifted eigenfrequency is given
by ω̃2

1 = ω2
1 − α1(ω

2
2 − ω2

1), and the modified Duffing
parameter is given by γ̃ = γ − 2

3α2[(3ω2
2 −20ω2

1)/4+
8ω2

1(Γ
2
2 + ω2

1)/ω
2
2].

We note that the linear characteristics (i.e., the
linear damping and eigenfrequency) are functions of
the linear coupling strength G1 and therefore can be
tuned by variation of G1 (Fig. 2). Due to the pres-
ence of a Lorentzian function α1(ω2) in the effec-
tive linear damping Γ1eff = Γ1 + α1Γ2, it reaches
a maximum value when the eigenfrequencies of the
isolated secondary and primary resonators are equal,
ω2 = ω1. This result is not surprising as it cor-
responds to a resonant interaction between the res-
onators, which only occurs when ω2 ≈ ω1 for linear
coupling. Alternatively, this coupling-induced decay
rate can be understood in terms of the standard Fermi
golden rule [37]. It is quadratic in the linear cou-
pling strength G1 and is proportional to the “density
of states” 1/[(ω2

2 − ω2
1)

2 + (2Γ2ω1)
2] of the effective

reservoir provided by the secondary resonator. The pri-
mary resonator shifted eigenfrequency ω̃1 increases for
ω2 < ω1 and decreases for ω2 > ω1. This change in
the shifted eigenfrequency ω̃1 can be related to a lin-
ear anti-crossing (eigenvalue veering) with a frequency
splittingof the twoeigenfrequencies of the linearly cou-
pled (G1 	= 0, G2 = 0) dynamical system [38].

Similarly, the nonlinear characteristics (i.e., the van
der Pol damping and modified Duffing parameter) are
functions of the nonlinear quadratic coupling strength
G2 and therefore can be tuned by variation of G2

(Fig. 3). Due to the presence of a Lorentzian function
α2(ω2) in the van der Pol damping term 2α2Γ2q21 q̇ , it
reaches a maximum value when the eigenfrequency of
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Fig. 3 Variation in the normalized nonlinear damping
(ω1α2Γ2/γ ) and stiffness (i.e., Duffing, γ̃ /γ ) parameters of the
primary resonator as a function of the normalized eigenfrequency
of the secondary resonator (ω2/ω1) for Γ2/Γ1 = 103, γ = 1
and different levels of the nonlinear coupling strength: G2 = 1
(black), G2 = 2 (purple), G2 = 3 (blue), G2 = 4 (green), and

G2 = 5 (red). Left panels: The van der Pol damping reaches its
maximum value when the two resonators interact resonantly at
ω2/ω1 = 2 (indicated by the vertical dashed line). Right panel:
ThemodifiedDuffing parameter γ̃ can deviate dramatically from
its nominal value γ at relatively low frequencies of the secondary
resonator and can even change sign. (Color figure online)

the secondary resonator is close to twice the eigenfre-
quency of the primary resonator, ω2 ≈ 2ω1. The result
can be understood as a nonlinear resonant interaction
between the resonators, which can only occur when
ω2 ≈ 2ω1 for this type of quadratic coupling, pro-
vided Γ1 � ω1 and Γ2 � ω2. Alternatively, this can
also be understood in terms of the Fermi golden rule,
whereG2 is the “matrix element” of the interaction and
1/[(ω2

2−4ω2
1)

2+(4Γ2ω1)
2] is the “density of states” of

the effective reservoir provided by the secondary res-
onator at twice the eigenfrequency of the primary res-
onator. The modified Duffing parameter γ̃ can deviate
dramatically from its nominal value γ for a range of
frequency ratios of the resonators (ω2/ω1 < 5) and
in the vicinity of the nonlinear resonance condition
(ω2 = 2ω1). More importantly, it can also change sign,
i.e., changing from hardening nonlinearity (γ̃ > 0) to
softening nonlinearity (γ̃ < 0). This variation of γ̃

leads to a peculiar change in the effective vibration fre-
quencyωeff

1 ≈ ω̃1+3γ̃ |A|2/2ω̃1, which is attributed to
a nonlinear counterpart of frequency anti-crossing due
to nonlinear resonance [28]. However, as we show in
the following subsection, even for significantly higher
frequencies (say,ω2/ω1 = 10),which are far fromnon-
linear resonance conditions, γ̃ can be twofold smaller
than its nominal value γ .

3.2 Analytical solution of the complex amplitude
equation

Equation (12) yields the following pair of evolution
equations for the complex amplitudemodulus and argu-
ment (A = |A|eiφ)

|Ȧ| = −|A|(Γ1eff + α2Γ2|A|2), (15)

φ̇ = −Δω1 + 3γ̃

2ω1
|A|2. (16)

Equations (15)–(16) can be solved in closed form

|A(t)| = |A(0)|e−Γ1eff t

[
1 + α2Γ2

Γ1eff
|A(0)|2(1 − e−2Γ1eff t )

]−1/2

,

(17)

φ(t) = φ(0) − Δω1t + 3γ̃

4ω1α2Γ2
ln

[
1 + α2Γ2

Γ1eff
|A(0)|2(1 − e−2Γ1eff t )

]
. (18)
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From the closed-form solution of the amplitude (mod-
ulus), Eq. (17), we can deduce the following: due to the
presence of the van der Pol damping (−α2Γ2|A|2A),
which arises from the nonlinear interaction (G2, α2)

between q1 and q2, we see that if α2Γ2|A(0)|2/Γ1eff ∼
O(1) or bigger, then the amplitude of the primary res-
onator (2|A(t)|) will decay in a non-exponential man-
ner (faster than exponential), and the decaywill become
exponential only for large time,where t � Γ −1

1eff . These
asymptotic non-exponential and exponential decays of
the amplitude are given by

|A(t)| =|A(0)| [1 + 2α2Γ2|A(0)|2t]−1/2
for Γ1eff t � 1,

(19)

|A(t)| =
√

Γ1eff |A(0)|2
Γ1eff + α2Γ2|A(0)|2 e

−Γ1eff t for Γ1eff t � 1.

(20)

Similarly, from the closed-form solution of the phase
(argument), Eq. (18), we deduce the following: For
γ̃ /γ 	= 1 and 3(γ̃ − γ )/(4ω1α2Γ2) ∼ O(1) or bigger,
the phase dynamics is highly affected by the nonlinear
interaction (G2, α2) between q1 and q2, and for large
time, where t � Γ −1

1eff , there is only a linear shift of
the eigenfrequency due to the linear interaction of the
resonators (G1, α1). These asymptotic behaviors of the
phase are given by

φ(t) = φ(0) + 3γ̃

4ω1α2Γ2
ln

[
1 + α2Γ2

Γ1eff
|A(0)|2(1 − e−2Γ1eff t )

]
for Γ1eff t � 1,

(21)

φ(t) = φ(0) + 3γ̃

4ω1α2Γ2
ln

[
1 + α2Γ2

Γ1eff
|A(0)|2

]
− Δω1t for Γ1eff t � 1

(22)

In the remainder of this paper, we use a fixed set
of system parameters: ω1 = 1, ω2 = 10, Γ1 =
10−3, Γ2 = 1, G1 = 4,G2 = 5, γ = 1, to illus-
trate the linear and nonlinear characteristics of the pri-
mary resonator. Figure 4 depicts the amplitude and
phase dynamics of the primary resonator for the ini-
tial conditions A(0) = 10i . Due to the linear interac-
tion of the resonators (G1, α1), there is almost a three-
fold increase in the linear decay rate Γ1eff/Γ1 = 2.63,

and the eigenfrequency is shifted downward by 8%,
Δω1/ω1 = 0.08. The nonlinear interaction of the res-
onators (G2, α2) is responsible for the van der Pol
nonlinear damping term with a coefficient of α2Γ2 =
2.7 × 10−3, which significantly changes the ampli-
tude dynamics and leads to a non-exponential decay,
and for a twofold decrease in the Duffing parameter
γ̃ /γ = 0.49. The asymptotic behaviors of Eqs. (19)–
(22) clearly govern the amplitude and phase dynamics
at small and large times.

4 Numerical validation

To validate our single-mode theoretical approximation,
we rewrite the full equations, Eqs. (2)–(3), in terms
of the complex amplitudes, i.e., qk(t) = Ak(t)eiωk t +
A∗
k(t)e

−iωk t and q̇k(t) = iωk[Ak(t)eiωk t−A∗
k(t)e

−iωk t ],
where k = 1, 2, and set U (q1) = ω2

1q
2
1/2 + γ q41/4,

G(q1) = G1q1 +G2q21/2. Thus, we obtain the follow-
ing equations for the evolution of the complex ampli-
tudes

Ȧ1 = e−iω1t

2iω1
[q2(G1 + G2q1) − γ q31 − 2Γ1q̇1], (23)

Ȧ2 = e−iω2t

2iω2

[(
G1 + G2

2
q1

)
q1 − 2Γ2q̇2

]
. (24)

Note that no approximations were made in the deriva-
tion of Eqs. (23)–(24), and they yield exact solu-
tions for the complex amplitudes, A1(t) and A2(t),
of the full equations, Eqs. (2)–(3). Hence, by solving
Eqs. (23)–(24) numerically we can confirm the approx-
imate asymptotic behavior of the complex amplitude,
A(t) = |A(t)|eiφ(t), given by Eqs. (17)–(18). Fig-
ure 5 shows a comparison between the numerically
calculated exact equations and the theoretical approx-
imation for the same system parameters as in Fig. 4
(ω1 = 1, ω2 = 10, Γ1 = 10−3, Γ2 = 1, G1 =
4,G2 = 5, γ = 1) and three different initial condi-
tions: (i) High initial energy of the primary resonator—
A1(0) = 10i and A2(0) = 0.01. (ii) Moderate ini-
tial energy of the primary resonator—A1(0) = i and
A2(0) = 0.01, and (iii) low initial energy of the pri-
mary resonator—A1(0) = 0.1i, A2(0) = 0.01. Note
that these three cases can actually be captured by a sin-
gle case starting from high initial energy of the primary
resonator; however, for the sake of exposition, we treat
them separately.
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Fig. 4 Analytical estimations of the amplitude and phase
dynamics of the primary resonator. Left panel: amplitude dynam-
ics according to the closed-form solution (black curve) Eq. (17)
and its asymptotic behaviors for t → 0 (blue curve), i.e.,

|A(0)| [1 + 2α2Γ2|A(0)|2t]−1/2
, and t → ∞ (red curve), i.e.,√

Γ1eff |A(0)|2
Γ1eff+α2Γ2|A(0)|2 e

−Γ1eff t . Right panel:Phase dynamics accord-

ing to the closed-form solution (black curve) Eq. (18) and its
asymptotic behaviors for t → 0 (blue curve), i.e., φ(0) +

3γ̃
4ω1α2Γ2

ln
[
1 + α2Γ2

Γ1eff
|A(0)|2(1 − e−2Γ1eff t )

]
, and t → ∞ (red

curve), i.e.,φ(0)+ 3γ̃
4ω1α2Γ2

ln
[
1 + α2Γ2

Γ1eff
|A(0)|2

]
−Δω1t . (Color

figure online)
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Fig. 5 Numerical and theoretical predictions of the amplitude
and phase dynamics of the primary resonator. The amplitude
(left panel) and phase (right panel) dynamics are shown for three
different initial conditions: (i) A1(0) = 10i, A2(0) = 0.01—
gray curves, (ii) A1(0) = i, A2(0) = 0.01—blue curves, and
(iii) A1(0) = 0.1i, A2(0) = 0.01—red curves. The light solid

curves indicate the result of the direct numerical integration of
Eqs. (23)–(24), and the dark dashed curves indicate the theoret-
ical predictions from Eqs. (17)–(18). The inset in the left panel
shows the time evolution of the amplitude on the time interval
0 < Γ1t < 0.02

Direct numerical integration of the full equations
and the theoretical estimates are in excellent agreement
(Fig. 5). In fact, the only clear difference between the
numerics and the theory is the presence of fast oscil-
lations that appear in the numerical solutions of the
amplitude and phase (see the inset of the left panel in
Fig. 5) due to the presence of non-secular terms that are
not filtered out in the full equations, Eqs. (23)–(24). The
numerical results also confirm that the nonlinear effects
are most pronounced for highinitial energy of the pri-

mary resonator (|A1(0)|2), that is, at the beginning of
the ring down (t → 0), and as the systemdecays toward
its zero energy state (t → ∞), only linear effects per-
sist. Note that the current numerical integration only
validates the theory for a specific set of parameters and
hence canbe consideredonly as a validation to the proof
of concept. A detailed numerical analysis that includes
parameter sensitivity analysis and numerical investiga-
tion of the theory limitations are out of the scope of the
current paper and will be considered in future studies.
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5 Closing remarks

In this paper, we analyzed the nonlinear interaction
of mutually coupled resonators with significantly dif-
ferent decay rates, namely slowly decaying nonlinear
(primary) resonator, which is nonlinearly coupled to
a relatively fast-decaying linear resonator. We showed
that such an interaction can change both the linear and
nonlinear characteristics of the primary resonator. That
is, by coupling a nonlinear resonator to relatively fast-
decaying linear resonator, we can change its eigenfre-
quency, linear damping, andDuffing parameter and add
new nonlinear van der Pol damping term to the res-
onator dynamics.

Theoretically, we view this interaction between res-
onators with significantly different decay rates as a
discrete and finite version of the microscopic theory
of a resonator that interacts with a medium, where the
“medium” is the secondary resonator. Due to the nature
of this interaction (only two resonators), the modified
linear and nonlinear characteristics of the primary res-
onator depend on the eigenfrequency of the secondary
resonator rather than on a continuous spectrum as in the
standard case, in which the medium is modeled by infi-
nite number of harmonic oscillators (see “Appendix”
for brief description of the standard model of the bath
with a large number of degrees of freedom and with a
quasi-continuous frequency spectrum).

Practically, the results of this paper show a poten-
tial method for tuning parameters in nano- and micro-
mechanical systems, allowingone to adjust the response
of a resonator according to desired specifications by
controlling its interaction with a fast-decaying linear
resonator. This ability to tailor a desired nonlinear
response of a resonator can be extremely useful in
NEMS andMEMS applications. A prime example is in
the case of closed loop oscillators used in timekeeping,
and the ability to reduce the Duffing nonlinearity is an
important step in reducing noise [39–42].
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Appendix A: Brief discerption of the microscopic
theory of a resonator that interacts with a medium

We consider the total Hamiltonian of a nonlinear res-
onator with a potential U (x) that is coupled to a
medium of harmonic oscillators. The analysis is well-
known [16,19,31,32,43–46]; here, we briefly outline
it for completeness. The total Hamiltonian includes the
resonator Hamiltonian Hr , the medium Hamiltonian
Hm , and the interaction Hamiltonian Hinter and reads

H = v2

2
+U (x)+ 1

2

∑
k

(p2k +ω2
kq

2
k )−G(x)

∑
k

εkqk .

(25)

The equations of motion resulting from Eq. (25) are

ẍ = −U ′(x) + G ′(x)
∑
k

εkqk, (26)

q̈k = −ω2
kqk + εkG(x). (27)

We formally solve Eq. (27) in terms of its Green’s func-
tion, i.e.,

qk(t) = qk(0) cos(ωk t) + pk(0)

ωk
sin(ωk t)

+ εk

ωk

∫ t

0
G(x(τ )) sin(ωk(t − τ))dτ. (28)

Upon inserting Eq. (28) into Eq. (26), we find that

ẍ = −U ′(x) + G ′(x)(L[x] + F), (29)

where

L[x] =
∑
k

ε2k

ωk

∫ t

0
G(x(τ )) sin(ωk(t − τ))dτ, (30)

F(t) =
∑
k

εk

[
qk(0) cos(ωk t) + pk(0)

ωk
sin(ωk t)

]
.

(31)

Using integration by parts, we can rewrite Eq. (30) as

123



O. Shoshani et al.

L[x] = − G(x(t))
∑
k

ε2k

ω2
k

+ G(x(0))
∑
k

ε2k

ω2
k

cos(ωk t)

−
∑
k

ε2k

ω2
k

∫ t

0
ẋ(τ )G ′(x(τ )) cos(ωk(t − τ))dτ.

(32)

We assume that themediumcontains an infinite number
of harmonic oscillators with a continuous spectrum.
Consequently, we approximate the sum over k as an
integral. Toward this end, we define the spectral density
of the bath as g(ω)dω = ∑

ω<ωk<ω+dω ε2k /ω
2
k .

Using Eq. (32) along with the assumption of a con-
tinuous spectrum of the medium, we rewrite Eq. (29)
as

ẍ + G ′(x)
∫ t

0
Γ (t − τ)ẋ(τ )G ′(x(τ ))dτ

+ V ′
ren(x) = G ′(x)F̃, (33)

where Γ (t − τ) = ∫ ∞
−∞ g(ω) cos(ω(t − τ))dω is

the memory of the friction, Vren(x) = U (x) +
1
2G

2(x)
∫ ∞
−∞ g(ω)dω is the renormalized potential of

the resonator, and F̃ = F+G(x(0))
∫ ∞
−∞ g(ω) cos(ωt)

dω is a noise term.
The statistical properties of the noise term F are

determined as follows: We assume that at t = 0,
the interaction between the bath and the resonator is
turned on and considers an ensemble of initial states in
which x(0) is held fixed but the initial bath variables
qk(0), pk(0) are drawn at random from a canonical dis-
tribution characterized by a temperature T , i.e.,

P({qk, pk}|x(0) = x) ∝ e−Hm/kBT . (34)

With this conditional probability for the bath variables,
the noise term F obeys the fluctuation–dissipation rela-
tions

〈F〉P = 0, 〈F(t)F(τ )〉P = kBTΓ (t − τ), (35)

and hence, it is a colored Gaussian noise. Note that
for a flat spectrum of the bath weighted with the cou-
pling (the so-called Ohmic dissipation), we can use
the Markovian approximation, where Γ (t − τ) =
2〈g〉δ(t − τ) and 〈g〉/π is the averaged value of the
spectrum. Hence, Eq. (33) reduces to

ẍ + 2〈g〉G ′2(x)ẋ + V ′
ren(x) = G ′(x)F, (36)

and F becomes a white Gaussian noise.
Comparison between Eqs. (14) and (36) reveals

that, for both cases of discrete and continuous spec-
trum baths, the linear coupling is the source of the
induced linear damping and the shift in the eigenfre-
quency of the resonator, and the nonlinear coupling
leads to nonlinear damping and modifications in the
nonlinear conservative terms of the resonator. How-
ever, for the case of a continuous spectrum bath there
are also fluctuating back-action terms that come along
with the damping terms and balance them, i.e., the
linear damping is associated with an additive noise
term 2〈g〉G ′2(0)ẋ ←→ G ′(0)F̃ and the nonlinear
damping with a multiplicative noise 2〈g〉[G ′2(x) −
G ′2(0)]ẋ ←→ [G ′(x) − G ′(0)]F̃ .
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