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Abstract. We review some recent results on large infrequent fluctuations in which
a system moves far away from a metastable state or makes a transition between
metastable states. Although fluctuations happen at random, the motion in a large
fluctuation is essentially deterministic. This makes it possible to change fluctuation
probabilities exponentially strongly by comparatively weak fields, paving the way
for selective control of escape rates. To investigate large fluctuations experimen-
tally, we trap a dielectric Brownian particle in a double-well potential created by
two independent optical beams. By analyzing thermal fluctuations, we can fully
map the three-dimensional potential. This has allowed us to put Kramers’ theory
of thermally activated transitions to a quantitative experimental test. A suitable
periodic modulation of the optical intensity breaks the spatio-temporal symmetry
of an otherwise spatially symmetric system. This has allowed us to localize a particle
in one of the symmetric wells.

1 Introduction

Large fluctuations, although infrequent, are responsible for big qualitative
changes in various types of systems and play a crucial role in many phenom-
ena. A well-known example of large fluctuations is thermally activated escape.
It gives rise to diffusion in crystals, protein folding, and is closely related to
activated chemical reactions. Fluctuating systems of interest are often far
from thermal equilibrium, as in the case of lasers, pattern forming systems
[1], parametrically driven trapped electrons [2], and systems which display
stochastic resonance [3]. Important contributions to the theory of fluctua-
tions in nonequilibrium systems have been made by Lutz Schimansky-Geier,
to whom this book is dedicated.

Understanding large fluctuations requires theoretical and experimental
study of:

e fluctuation probabilities, i.e. the probability density p(q) for a system
to occupy the state q far from the attractor q(®) in phase space. For
nonequilibrium systems there is no universal relation from which they
can be obtained, cf. [4].

e paths along which the system moves in response to random forcing. The
distribution of fluctuational paths is a characteristic of the fluctuation
dynamics. This distribution sharply peaks at a certain optimal path along
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which the system is most likely to move in an occasional event where it
fluctuates to a vicinity of a given state q far from the attractor.

e response of the fluctuation probabilities to external fields. As we will see,
this response is determined by the optimal paths. It may be exponentially
strong and may display resonant frequency dependence. Its understand-
ing paves the way for controlling fluctuations.

The fundamental role of the distribution of fluctuational paths was rec-
ognized by Onsager and Machlup [5] who obtained optimal paths for a linear
Markov system in thermal equilibrium with the bath. A theory for nonlinear
nonequilibrium Markov systems was developed by Wentzell and Freidlin [6]
(see also [7-9]). For equilibrium systems the optimal path to a given state
is the time-reversed path from this state to the stable state in the neglect
of fluctuations. This is no longer true for nonequilibrium systems, because,
in general, they lack time reversibility, as demonstrated in Ref. [10]. Even
for simple nonequilibrium systems the pattern of optimal paths may have
singular features.

Much progress has been made over the last decade in the theory of large
fluctuations, and many interesting results were obtained through digital and
analog simulations [11]. However, with a few important exceptions [12,13], it
was not until recently that systematic experimental work on large fluctuations
has occurred [2,14,15]. In this article we will summarize some of the recent
theoretical and experimental results.

In Sec. 2 below we present a general formulation of the problem of large
fluctuations, escape from a metastable state, and optimal paths for systems
driven by Gaussian noise. In Sec. 3 this formulation will be used to show that
escape probabilities can be exponentially strongly changed by a comparatively
weak ac field even if the field frequency is of the order of the relaxation rate.
In Sec. 4 we describe the technique of trapping a pm-size dielectric particle
in an optically created double-well potential, and provide the results of a
quantitative test of the Kramers escape theory. In Sec. 5 results on interwell
transitions in a periodically modulated double-well optical trap are presented.
Sec. 6 contains concluding remarks.

2 Large Fluctuations Induced by Gaussian Noise

Gaussian noise is one of the most general types of noise. Therefore, within
a phenomenological description of noise-induced fluctuations in dynamical
systems, it is of utmost interest to analyze systems driven by Gaussian noise.
A natural theoretical approach to the problem relies on the path-integral
technique [8, 16-20]. We will give a closed-form formulation for a fluctuating
system which is described by one dynamical variable ¢ [21]. This formulation
generalizes the results [20] for stationary systems to the case of periodically
driven systems. The Langevin equation of motion is of the form:

d=K(g;t) + f(t), K(g;t+7r) =K(g;t), (1)
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where 7F is the period of the driving field, and f(t) is a stationary Gaussian
noise (“colored”, in the general case). Such noise is fully characterized by the
correlation function ¢(t) = (f(t)f(0)) or the power spectrum &(w) which is
a Fourier transform of ¢(t).

For weak noise intensities, over the noise correlation time t.or, and the
characteristic relaxation time in the absence of noise t,.;, the system will
approach the stable state ¢(©) (t) and will then perform small fluctuations
about it. To arrive to a remote point g; at the instant ¢ t, the system should
have been subjected to finite forcing over certain time. Different realizations
of the force f(t) can result in the same final state, but each of them gives
rise to a certain system trajectory q(t) [22], which is independent of the
characteristic noise intensity D = max $(w). The probability density of
realizations of f(t) is given by the functional

PIO)=exp |55 [ara j026-0)1@), )

where F(t) is a reciprocal of the noise correlation function o(t), [dt, F(t -
t1)(t, —t') = Dé(t — t').

If the noise intensity D is sufficiently small, then for all f(t) which result
in a large fluctuation to a given state, the values of the functional (2) are
exponentially small. For different f(t), they are exponentially different. Thus
one would expect that there exists a realization f(t) = fopt(t) which is ex-
ponentially more probable than the others. This optimal realization provides
the maximum to P subject to the constraint that the system (1) is driven to
a designated state gy. The path gop(t) along which the system moves when
driven by the optimal force fop(t) is the optimal fluctuational path.

From (2), the paths gopt, fopt provide the minimum to the functional
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(ti = —o0). The Lagrange multiplier A(t) relates the optimal paths fopt(2)
and gopt(t) to each other.

It is straightforward to obtain from (3) the variational equations for
Qopt (), fopt (t), Aopt (t). Care has to be taken when the boundary conditions
are discussed. In the problem of reaching the state gy at a time t;, they take
the form

ft) =0 for t— +oo, A(t) =0 for t— —oo, 4)
A(t) =0 for t>ty, q(t)—> q(o)(t) for t— —oo, q(ty)=gy.

The motion of the system after t; is not important from the viewpoint of the
fluctuation probability. Therefore the constraint on f(t) is lifted for t > ¢ 7
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[20]. Clearly, the force decays to zero for t > t;. However, for a non-white
noise, it does not become equal to zero instantaneously.

The boundary conditions for the escape problem are different. Here, the
optimal escape path corresponds to ¢(t) approaching the saddle-type periodic
or stationary state for t — oo, and A(t), f(t) — 0 for ¢t — oo [20].

From (2), the probability density for a system to be brought to the state
gs at ty is of the form

p(‘lf’tf) X €xp [—R(Qf’tf)/D] s R(qfatf) = R[‘Zoptafopt] = minR[Q;f]- (5)

The criterion of applicability of the approach is R/D > 1.

In the important case where the noise f(t) is white, we have F(t) = 6(t).
Therefore fopt(t) = Aopt(t), and the variational problem (3) is reduced to
the Wentzell-Freidlin functional R[q] = (1/2) [dt[q — K(¢;1)]* [6]. For K
independent of ¢, the optimal path is given by gopt = —K (gopt)-

Noise color and time dependence of K make optimal paths much more
complicated. Generally, the variational equation R = 0 with boundary con-
ditions (5) has several solutions. The physically meaningful solution provides
the absolute minimum to the functional R. Onset of multiple solutions is
signaled by vanishing of an eigenvalue of the operator 6°R/dx;(t)dx;(t) (z:
is ¢, f,\ for i = 1,2,3, respectively), which also shows where the pattern
of extreme paths has caustics. In contrast to standard nonlinear dynamics,
caustics are not encountered by “true” optimal paths which minimize R.

3 Logarithmic Susceptibility

The general formulation of Sec. 2 allows us to investigate how the probabil-
ities of large fluctuations are changed by an external field. This is necessary
for controlling fluctuations. Of utmost interest is the case where the field is
dynamically weak, i.e. the dynamics of the system is only weakly perturbed,
and in particular the number of attractors or saddle states is not changed.
Yet the effect of such field on the fluctuation probability may be strong [23-
25]. Of particular interest is the effect of an additive periodic force F'(¢). In
the equation of motion we set (1)

K(g;t) = Ko(g) + F(t), F(t+71r) = F(t). (6)

The force F(t) changes the activation energy R(qy,ts) for reaching a state
g5 (5). To the lowest order in F, the increment R can be easily obtained
from the variational formulation (3),

tr
5R(gsts) = /_ dt X(OF (@), x(t) = Mo(t), ()

where A(t) is the solution of the variational problem for reaching the state
gy in the absence of the driving F.
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The increment R is linear in F. Even though it is small compared with
R, it may be much bigger than the noise intensity D, in which case the
fluctuation probability is changed by the force ezxponentially strongly. This
change is fully described by the logarithmic susceptibility x(t) (7) [23,24].

The above arguments apply also to the problem of escape, in which case
one should set the upper limit of integration in (7) ¢; — co. However, care has
to be taken here of the fact that the optimal path for escape is an instanton.
The function Ag(t) is other than zero in a time interval on the order of
the correlation time of noise or the relaxation time of the system, and it
is exponentially small otherwise. At the same time, the optimal fluctuation
may occur at any time %o, in the absence of periodic driving. The field F(t)
lifts this time degeneracy. It synchronizes optimal escape trajectories (one
per period) so as to minimize the activation energy of escape. Therefore one
may expect that the change of the escape activation energy

00

éRescape = n%(i)n/ th(t - tO)F(t)- (8)

—0o0

A derivation for white-noise driven systems is given in [24].

8 T T T T
10 .
= 0 e c\b
E6-§o d
= =
T LB
- =
4 -10

1 L

6 8 10
2|Fl| /D

Fig. 1. The logarithm of the time-average escape rate W as a function of the scaled
amplitude 2|F3|/D of the driving field F(t) = 2Re [F} exp(swrt)] for an overdamped
Brownian particle. The curves a to d refer to the dimensionless frequency wr =
0.1,0.4,0.7,1.2, and Ko(q) = —q + ¢* in Eq. (6). Inset: time dependence of the
logarithm of the instantaneous escape rate for the same frequencies and 2|F1|/D =
10 (¢ = wrt), illustrating loss of synchronization of escape events with increasing
wr (optimal escape paths remain synchronized) [25]

The increment (8), although linear in the field amplitude, is essentially
nonanalytic in the field. A counterintuitive feature of this expression is that
the escape rate is modified exponentially strongly even where the field fre-
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quency largely exceeds the escape rate. This is qualitatively different from
the situation considered in “conventional” stochastic resonance, where the
analysis is limited to the low-frequency adiabatic modulation, and the escape
rate is determined by the instantaneous barrier height.

Using the logarithmic susceptibility, one can find not only the exponent,
but also the prefactor in the escape rate, and thus obtain a complete nonadi-
abatic solution of the escape problem for an overdamped periodically driven
system [25]. The prefactor problem has attracted much attention since the
Kramers paper [26] where it was considered for systems in thermal equilib-
rium. Much work was done to generalize the Kramers results to nonequi-
librium Markov systems ([27] and references therein). A driven overdamped
system is the prototypical nonequilibrium system where an explicit solution
was obtained both for the exponent and the prefactor [25]. We note that the
technique [25] can be generalized to other systems where escape occurs over
an unstable limit cycle.

The explicit solution [25] shows how the time dependence of the instan-
taneous escape rate W (t) varies with field frequency wr. For small wp, the
time dependence of W (t) is exponentially strong, W « exp[—&F(t)/ D] where
k = [dtx(t). For higher field frequencies, it becomes much weaker, as seen
from Fig. 1.

4 Testing Kramers’ Theory of Escape

A simple physical system which embodies fluctuation-induced escape is a
mesoscopic particle suspended in a liquid and confined within a metastable
potential well. The particle moves at random within the well until a large fluc-
tuation propels it over an energy barrier. An optically transparent dielectric
sphere can be readily trapped with a strongly focused laser beam, creat-
ing an optical gradient trap, i.e. “optical tweezers” [28]. Techniques based
on optical tweezers have found broad applications in contactless manipula-
tion of objects such as atoms, colloidal particles, and biological materials.
Fluctuation-induced escape can be studied using a dual optical trap gener-
ated by two closely spaced parallel light beams, as illustrated in Fig. 2. Such
trap was implemented initially to study the synchronization of interwell tran-
sitions by periodic forcing [29].

A particle in a double-well trap can be used to understand transition rates
in a stationary potential, and thus to provide a rigorous test of the multidi-
mensional Kramers rate theory with no adjustable parameters. It can also be
used to investigate transition rates in an ac-modulated potential. Quantita-
tive measurements require that the confining potential be adequately char-
acterized and under the control of the experimentalist.

In our experiment [14], each of the two focussed beams produces a stable
three-dimensional trap as a result of electric field gradient forces exerted on
a transparent dielectric spherical silica particle of diameter 2R = 0.6 pm.
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Fig. 2. Rendering of two focused laser beams, the equilibrium positions of the
particle (rings), and a transitional path between the beams

Displaced typically by 0.25 to 0.45 um, the beams create a double-well po-
tential, with the stable positions of the particle center at r; and rs. The
stability perpendicular to the beam axis is due to the Gaussian transverse
beam profile gradient; in the beam direction the potential gradient is derived
from the strong focusing of the objective lens [28]. Relatively infrequent ther-
mally activated random transitions between the potential wells occur through
a saddle point at ry as depicted in Fig. 2. The experimental setup is discussed
elsewhere [14].

The experimental outputs are the three spatial coordinates of the center
of the particle sampled at 5 ms intervals r(t;). The particle spends most
of its time in the vicinity of the stable points r; and r, with infrequent
transitions between them. As a result of the short equilibration time of the
sphere in water (y~! = M/6mnR ~ 1077 s, where 7 is the viscosity of water
and M is the particle mass), the velocity of the Brownian particle relaxes to
equilibrium on a scale much shorter than the sampling time. The stationary
spatial probability density is

p(r) = Z~  exp[~U(r)/ksT]. (9)

Eq. (9) enables us to compute, from the observations of the particle fluc-
tuations, the full three-dimensional confining potential U(r). Results for a
particular two-beam trap are shown in Fig. 3. We choose the z axis to be in
the direction from one beam to the other and the z axis along the beams’
propagation direction. The potential minima, r; and rs, lie in the symmetry
plane y = 0 formed by the beam axes. Fig. 3a shows a 2-dimensional cross-
section, at y = 0, of the potential with energy contours at 1.0 kT intervals,
distinguished by differing shading. If, for a given z, we find the minimum of
U(r) over y and 2, we obtain the familiar one-dimensional representation of
a double-well potential shown in Fig. 3b. In the y-direction, the potential has
only one well, as seen from Figs. 3c,d.

The striking feature of the effective potential evident in Fig. 3a is the
strong symmetry breaking about the focal plane, which is the symmetry
plane of the beams, unperturbed by the particle. The symmetry breaking
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leads to the single saddle point in U (r) instead of two saddle points as might
be inferred from Fig. 2. This aspect of the potential is not an artifact of
specific experimental conditions, such as non-parallel optical beams, but is
a consequence of the beam-particle interaction. The dielectric particle acts
as a spherical lens to refocus the beam inside the sphere. When the particle
is displaced in the +z direction above the focal plane, the electromagnetic
field is most strongly ”squeezed” into the particle, thus minimizing the free
energy of the polarized particle in the field.

In the vicinity of r;, r2, and r,, the potential U(r) is quadratic in the
displacements ér = r — r; with ¢ = 1,2, s. In order to obtain the eigenvalues
|wi|? of the corresponding quadratic form for a given potential, we performed
a least-squares fit to the data in the vicinity of r;. The characteristic fre-
quencies |w;| are small compared to the damping rate -y, so the particle is
overdamped.

A quantitative description of thermally activated escape from a one-
dimensional metastable potential was given by Kramers [26] and subsequently
extended to multidimensional potentials [30]. For an overdamped Brownian
particle in a potential U(r), the Kramers transition rate is

(1,1 @)y
WK = WK exp (- AU/kgT), WK =2 W W w

e O L

where AU is the height of the potential barrier, whereas ng ) and w®@ char-
acterize, respectively, the curvatures of the potential at the saddle point and
at the minimum from which the system escapes, in the normal jth directions,
with (o.:s(;l))2 < 0. Therefore, with knowledge of the potential, not only the
exponential term, but also the prefactor can be explicitly computed.

Eq. (10) was tested by systematically varying AU. The transition rates
Wmeas were obtained from the mean dwell time in each state (or by fitting an
exponential to a histogram of dwell times) as a function of AU/kgT. The data
demonstrate the Arrhenius-like character of the rates. A more definitive test
is shown in Fig. 4. Here, the Kramers rates, WX | calculated from Eq. (10)
using the experimentally determined curvatures, are plotted along the vertical
axis vs. W™eas on the horizontal axis. The solid line of slope one denotes the
coincidence of theory and experiment. The data fall remarkably close to the
line, yielding a striking confirmation of the multidimensional Kramers theory
of transition rates [26).

5 Dynamical Symmetry Breaking
and ac-Induced Localization of a Particle

We now discuss observations on modulation of escape rates by an ac-field. The
effect is particularly interesting for a particle in a spatially periodic potential,
as it gives rise to directed diffusion [31]. It follows from the results of Sec. 3
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Fig. 3. The potential energy of the particle in the double-well trap as determined
by experiment. (a) Energy contours for a cross-section in the = — z plane containing
the two stable points and the saddle point. (b) The energy, minimized with respect
to y and z, as a function of z. (c) Same as in (a), but in the y — z plane. (d) The
energy, minimized with respect to z and 2, as a function of y [14].

that, for a generic periodic potential, an ac field performs more work on the
particle as it moves along the optimal escape path in one direction than in
the other, thereby more strongly reducing the corresponding potential barrier
and producing diffusion in that direction.

An effect closely related to directed diffusion but more amenable to testing
using optical trapping is ac-field induced localization in one of the wells of a
symmetric double-well potential. We expect both these effects to occur if the
applied field breaks the spatio-temporal symmetry of the system [23,32-34].
The ratio of the stationary populations w;,ws of the wells is determined by
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Fig. 4. Comparison of the measured transition rates W™*** and the rates calculated
from the three-dimensional Kramers theory, WX using the measured curvatures
of the potential wells. The squares represent escapes from the well at r; and the
triangles represent escapes from the well at ry. The line of slope one indicates the
result expected if the three-dimensional Kramers theory correctly predicted the
measured transition rates [14]

the ratio of the rates W;; of the interwell transitions,
'U}l/’lUQ = W21/W12 [0 8 exp([J(AUl) - 5(AU2)] /kBT), (11)

where §(AU,,2) are field-induced corrections to the activation energies of
escape from the wells 1,2, which are given by (8).

The experiment is conducted by setting the static barrier height AU; =
AU, = AUy =~ 8kpT. Optical intensity of a beam is then modulated by
an electro-optic device, giving rise to modulation of the reduced barrier
height AU/kpT with an amplitude ~ 2.5. The modulation frequency w/2m
is varied between 1 to 100 Hz. This may be compared to the mean unmod-
ulated transition rate W ~ 0.1s7!. The form of the modulation is AU(t) =
AUy + Afsin(wt) + (1/2) sin(2wt + ¢)]. A useful feature of this waveform is
the presence of the control parameter ¢. As shown in the insets to Fig. 5,
the sign of the barrier height shift during the first part of the cycle can be
inverted between left and right hand wells if the phase angle is shifted by =.
The potential is not invariant under ¢ — t + m/w,r — —r (with r measured
from the inversion center in the absence of modulation), and this leads to
breaking of the spatial symmetry over a cycle of the modulation.

The modulation of the escape rates results in unbalanced averaged occu-
pation probabilities of the left and right wells. In the experiment, they differ
by 20% for the modulation amplitude used. This is sufficient to create sig-
nificant directional diffusion, and demonstrates onset of dynamical symmetry
breaking.
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Fig. 5. Plots of the time-dependent switching probabilities out of a double-well
potential over a cycle wt of the modulating waveform. The upper and lower panels
show the role of the phase angle ¢ in controlling the transition rates. Solid lines show
the theoretical results based on Eq. (8). Insets show the instantaneous difference
between the heights of the potential barriers in the two wells.

6 Conclusions

In summary, we have shown how to describe the dynamics of large fluctu-
ations. It follows from the results that the response of flyctuation proba-
bilities to an ac-field can be described in a fairly universal way using the
notion of logarithmic susceptibility. Even where this quantity may not be
calculated, it can be measured experimentally and then used for selective
control of fluctuations. We have also shown that thermal fluctuations can be
used to measure the complete confining potential of a particle in an optical
trap. Our results provide a direct quantitative confirmation of the full three-
dimensional Kramers theory of transition rates, throughout a broad range of
barrier heights and potential well shapes, measured independently. By mod-
ulating the barrier height with a weak biharmonic waveform, the particle can
be induced to favor occupying a particular well in a symmetric double-well
potential. This dynamic symmetry breaking is readily controlled by manipu-
lation of the relative phase of the two components of the waveform.
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