
 

Spectral Evidence of Squeezing of a Weakly Damped Driven Nanomechanical Mode
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Because of the broken time-translation symmetry, in periodically driven vibrational systems fluctuations
of different vibration components have different intensities. Fluctuations of one of the components are
often squeezed, whereas fluctuations of the other component, which is shifted in phase by π=2, are
increased. Squeezing is a multifaceted phenomenon; it attracts much attention from the perspective of high-
precision measurements. Here we demonstrate a new and hitherto unappreciated side of squeezing: its
direct manifestation in the spectra of driven vibrational systems. With a weakly damped nanomechanical
resonator, we study the spectrum of thermal fluctuations of a resonantly driven nonlinear mode. In the
attained sideband-resolved regime, we show that the asymmetry of the spectrum directly characterizes the
squeezing. This opens a way to deduce squeezing of thermal fluctuations in strongly underdamped
resonators, for which a direct determination by a standard homodyne measurement is impeded by
frequency fluctuations. The experimental and theoretical results are in excellent agreement. We further
extend the theory to also describe the spectral manifestation of squeezing of quantum fluctuations.
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I. INTRODUCTION

Whenappropriately scaled, the coordinate andmomentum
of a vibrational system or their canonical conjugate linear
combinations form two vibration components. The scaling is
done in such away that, classically, the components oscillate
with equal amplitudes in an isolated system, whereas their
phases differ by π=2. If the system is coupled to a thermal
reservoir, the vibration components fluctuate with the same
intensities, in the absence of driving. This is a consequence
of the time-translation symmetry, as incrementing the time
by a quarter of the oscillation period leads to the interchange
of the components (modulo the sign). A periodic driving
lifts the symmetry and can result in a reductionof fluctuations
of one of the components, the effect of squeezing.
Historically, squeezing was first detected in quantum optics
[1]. It attracted significant attention, since it can reduce the
fluctuations below the quantum limit imposed by the
uncertainty principle in the absence of driving [2]. This
enables high-precision measurements [3–8]. More recently,

squeezing in the quantum regime was also demonstrated in
mechanical systems [9–11].
However, the concept of squeezing of fluctuations in

vibrational systems equally applies to the classical regime.
Classical squeezing promises to reduce heating in com-
puters [12]; it also represents an important asset for
high-precision sensing [13–15] and thus paves the way
for a new generation of nanomechanical detectors at room
temperature.
Squeezing has been frequently accomplished using

parametric pumping or radiation pressure and has been
demonstrated and theoretically analyzed for microwave
[16,17] and mechanical [15,18–23] resonators as well as
for ions in a Penning trap [14]. The classical two-mode
squeezing of mechanical resonators by nondegenerate
parametric amplification has also been reported [24–26].
Along with parametric oscillators, the other vibrational

system intensely studied in different areas, from optics to
circuit quantum electrodynamics and to nano- and micro-
mechanical systems, is the Duffing (Kerr) oscillator [27].
This is an oscillator with quartic nonlinearity in the
potential. When driven by a resonant field, it can display
bistability of forced vibrations. From the time-symmetry
argument, one would expect the possibility of fluctuation
squeezing in the corresponding vibrational states. A
theory of the squeezing was developed in Ref. [28].
However, to date, squeezing in this system has been
observed only in a narrow parameter range where the
oscillator (a nanomechanical mode) was close to the cusp
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bifurcation point at which the branches of the stable
vibrational states merge [29].
Even though squeezing is a feature of one of the

vibration components, a natural question is whether the
decrease of fluctuations of a particular component is
the only manifestation of squeezing. In our experiment
we demonstrate that this is not the case. We reveal a
different manifestation of squeezing and use it to character-
ize the squeezing quantitatively. The results demonstrate, in
particular, that a driven Duffing oscillator displays strong
squeezing in a broad parameter range.
Our approach is based on measuring the spectrum of a

resonantly driven vibrational system. The spectra of fluc-
tuations of such a system and of its response to an
additional weak field display sideband peaks [30–32].
Such peaks are separated from the peak at the strong-
drive frequency and have been seen in micromechanical
systems [33]. If the vibrational system is strongly under-
damped, the peaks are well resolved. They come from the
fluctuations of the amplitude and phase of forced vibrations
about their stable values determined by the drive and
should have different heights and areas. The asymmetry
of the spectrum has been predicted to directly reflect the
squeezing [34–36].
In what follows we describe the observation of the

sideband-resolved peaks in the fluctuation spectrum of a
weakly damped driven nanomechanical resonator. Under
sufficiently strong driving the spectrum shows two per-
fectly resolved peaks symmetrically located on the opposite
sides of the driving frequency, but indeed having different
heights and areas. The fluctuations are thermal; the reso-
nant periodic drive is the only cause of the system being
away from thermal equilibrium. In contrast to the previous
experiments, no extra noise or extra drive is added. We
use the asymmetry of the spectrum to infer the squeezing
and determine the squeezing parameter. Our experimental
results agree, with no adjustable parameters, with a
theoretical model which extends the one discussed in
Refs. [30–32,35].
It is instructive to compare our method with the conven-

tional measurement of a squeezed state. The latter involves
the measurement of the individual components (quadra-
tures) of the vibrations, which is accomplished by control-
ling the phase between the vibrations and an injected signal.
The commonly employed method to detect squeezing is a
homodyne measurement. This technique has been used in
all previous demonstrations of quantum or classical noise
squeezing we are aware of, be it the case of a parametric
amplifier or a Duffing resonator [1,9–11,14–26,29]. In
contrast, our method does not require measuring the
individual vibrational components and does not involve
homodyne detection. Rather it relies on the simple standard
technique of spectral measurements. This is particularly
favorable for strongly underdamped resonators, such as the
one explored in the present work, as the power spectrum is

insensitive to frequency fluctuations as long as they are
smaller than the decay rate, while the noise quadratures of
weakly damped resonators are difficult to measure inde-
pendently because of the accumulative effect of frequency
fluctuations [37]. To the best of our knowledge, no
homodyne measurement of single-mode squeezing of a
strongly underdamped mechanical resonator has been
reported. The advantage of measuring the power spectrum
is not limited to mechanical resonators.
We also use our driven resonator to explore another

effect that occurs in nonequilibrium systems with coexist-
ing stable states. For an equilibrium dynamical system such
states can be thought of as the minima of a potential in
which the system moves. Fluctuations cause switching
between the states, forming a distribution over them. For a
small fluctuation intensity, the state populations are expo-
nentially different: in an equilibrium system, this difference
is given by the Boltzmann factor that contains the differ-
ence between the potential minima divided by kBT. Only in
a narrow range where the minima are of almost equal depth
are they almost equally populated, an analog of the first-
order phase transition.
Generically, a nonequilibrium system does not have

detailed balance and cannot be mapped onto a Brownian
particle in a potential well. Still, it can display an analog of
a kinetic phase transition where the state populations are
almost equal [30,38]. A resonantly driven bistable classical
oscillator is a system for which it was predicted where such
a transition occurs [30]. Our nanoresonator allows us to
find the kinetic phase transition in a system lacking detailed
balance and thus to quantitatively test a major aspect of the
theory of fluctuations in such systems.

II. EXPERIMENTAL SYSTEM

The classical nanomechanical Duffing resonator is real-
ized by a freely suspended silicon nitride string fabricated on
a fused silica substrate [39] whose material parameters are
reported in literature [40,41]. The string under investigation
is 270 nm wide, 100 nm thick, and 55 μm long, like the one
depicted in Fig. 1(a). Owing to their strong intrinsic tensile
prestress, these nanostring resonators exhibit ultrahigh
quality factors of several 100 000 at room temperature
[39,42]. Dielectric transduction combined with a microwave
cavity-enhanced heterodyne detection scheme is imple-
mented via two adjacent gold electrodes also apparent in
Fig. 1(a). The microwave cavity is pumped on resonance at
≈3.6 GHz to enable displacement detection while avoiding
unwanted dynamical backaction effects. The application of a
dc voltage as well as a near-resonant rf drive tone V in enables
actuation and eigenfrequency tuning of the string [39,43,44].
Moreover, the applied dc voltage also affects the damping
rate and the nonlinearity, and introduces strong coupling
between the out-of-plane and the in-plane mode when tuned
into resonance. For all measurements discussed in the
following, a constant dc voltage of 5 V is applied. Under
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that condition, the fundamental flexural out-of-plane mode
can be considered independently, such that the following
analysis is done in the single mechanical mode regime. The
experiment is performed under vacuum at a pressure of
≤10−4 mbar and at room temperature of 293 K.

III. LINEAR REGIME AND CHARACTERIZATION

The sample is characterized by measuring response
curves at various drive powers to calibrate the measure-
ment; see also Sec. II of the Supplemental Material (SM)
[45]. Aweak drive power allows for the characterization of
the system in the linear regime. The frequency response of
the resonator is measured as a function of the frequency fF
of the applied rf drive. The measured rf voltage signal is
proportional to the resonator’s amplitude. The resonance of
the fundamental out-of-plane mechanical mode is found at
f0 ¼ 6.529 MHz with a linewidth of 2Γ=2π ¼ 20 Hz,
yielding a quality factor of Q ≈ 325 000. Note that this
high quality factor is crucial for the presented work as it
enables driving the resonator to amplitudes large enough
to enter the nonlinear regime and to resolve the satellite
peaks appearing in the power spectrum, as discussed in the
following.

IV. NONLINEAR REGIME AND
DUFFING MODEL

Increasing the drive power leads to the well-known
Duffing response [27,46–49]. In this model the vibration
of the single mode is described by the displacement qðtÞ
which obeys the equation

q̈þ 2Γ _qþ ω2
0qþ γq3 ¼ F cosðωFtÞ þ ξðtÞ: ð1Þ

Here, ω0 ¼ 2πf0 is the angular eigenfrequency, Γ the
damping rate, γ the nonlinearity parameter, F and ωF ¼
2πfF are the amplitude and frequency of the external
driving, and ξðtÞ is the thermal noise. The effective mass
of the resonator is, for the time being, set to m ¼ 1.
In a stationary vibrational state the coordinate qðtÞ ¼
A cos ðωFtþ θÞ oscillates at the drive frequency with a
phase θwith respect to the drive. The vibration amplitude A
is given by the solution of the cubic equation,
A2
jf½δω − 3γA2

j=ð8ω0Þ�2 þ Γ2g ¼ F2=4ω2
0, where δω ¼

ωF − ω0 is the frequency detuning, jδωj ≪ ω0 for the
considered near-resonant driving. The Duffing equation
reflects the fact that the vibration frequency of a nonlinear
resonator depends on its amplitude. It can have one or three
positive solutions. In the latter case, only the solutions
with the largest and the smallest amplitude, Ahi and Alo,
are stable. An example of the measured amplitude as a
function of the frequency detuning δω is shown in Fig. 1(b)
by black dots. The solid line represents a fit of the Duffing
model [Eq. (1)].
Only one fitting parameter, the Duffing nonlinearity

parameter γ, is required, since the eigenfrequency ω0,
the damping rate Γ, as well as the calibration of the driving
force F are known from the characterization in the linear
regime [45]. The nonlinear response curves obtained for
different values of the rf drive power P ¼ −31 dBm
[shown in Fig. 1(b)], −30 dBm (shown in the SM [45]),
−25 dBm, −20 dBm, and −18 dBm are all fit using a
single value of γ. As the amplitude of the resonator is
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FIG. 1. (a) Scanning electron micrograph of the doubly clamped silicon nitride string resonator (green) and two adjacent gold
electrodes (yellow) for dielectric control. Schematic of electronic setup is detailed in the SM [45]. (b) Duffing response curve for an
external drive of −31 dBm (black dots) and fit of the Duffing model [Eq. (1)]. The red (yellow) line denotes the high (low) amplitude
solution marked “hi” (“lo”), while the orange line represents the unstable solution. Dashed gray line indicates the theoretically calculated
critical switching point. (c) Phase space representation of the effective Hamiltonian function hðx1; x2Þ. Indicated are the high- (“hi,” red)
and low- (“lo,” yellow) amplitude solution. The Hamiltonian function hðx1; x2Þ scaled by 8ωFδω

2=ð3γÞ is plotted using the parameterffiffiffi
3
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measured in volts, the fit yields a nonlinearity parameter in
units of V−2s−2. The obtained value, 9.28 × 1016 V−2s−2,
can be converted into γ ¼ 1.54 × 1026 m−2s−2 using the
amplitude conversion procedure described in the SM [45].

V. THEORY: SQUEEZING IN THE POWER
SPECTRUM OF A WEAKLY DAMPED

OSCILLATOR

The theoretical analysis of the resonator dynamics is done
by switching to the rotating frame, qðtÞ ¼ x1ðtÞ cosðωFtÞ þ
x2ðtÞ sinðωFtÞ and _qðtÞ ¼ −ωF½x1ðtÞ sinðωFtÞ−
x2ðtÞ cosðωFtÞ�, where the quadratures x1ðtÞ and x2ðtÞ
are new conjugate variables. Using the standard rotating
wave approximation, one finds that the time evolution of
these variables is described by the equations

_x1 ¼
∂hðx1; x2Þ

∂x2 − Γx1; ð2Þ

_x2 ¼ −
∂hðx1; x2Þ

∂x1 − Γx2; ð3Þ

with the Hamiltonian function

hðx1; x2Þ ¼
3γ

32ωF
ðx21 þ x22Þ2 −

δω

2
ðx21 þ x22Þ −

F
2ωF

x1: ð4Þ

In writing Eqs. (2) and (3) we have, for the time being,
disregarded the noise. A contour plot of the function
hðx1; x2Þ in the range of the bistability is shown in Fig. 1(c).
A remarkable feature of our high-Q nanostring resonator

is that the damping rate Γ is small not only compared to the
eigenfrequency ω0, but also compared to the frequency
detuning δω and/or the typical frequency change due to the
nonlinearity γA2

j=ωF. Therefore the damping can be treated
as a small perturbation of the Hamiltonian dynamics of an
auxiliary “particle” with coordinate x1 and momentum x2.
In this limit of weak damping, the extrema j ¼ hi; lo of h
correspond to the two stable states of forced vibrations [50].
At the extrema, x2;j ¼ 0, whereas jx1;jj ¼ Aj gives the
vibration amplitude, if one disregards corrections ∝ Γ2.
The Hamiltonian dynamics for Γ ¼ 0 is characterized by
the frequency ωj of small-amplitude vibrations about the
extrema of hðx1; x2Þ,

ωj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð1Þ
j ωð2Þ

j

q
; ð5Þ

where ωð1Þ
j ¼ 3γA2

j=8ωF − δω and ωð2Þ
j ¼ 9γA2

j=8ωF − δω

(we note that ωð1;2Þ
j can be positive or negative, but their

product is positive). The frequency is different in the high-
and low-amplitude states. In the considered weak-damping
case, Γ ≪ ωj.

We now reintroduce noise into the equations for the
quadratures and discuss thermal fluctuations about the
stable states. Even though the nanoresonator under inves-
tigation is small, thermal fluctuations at room temperature
are weak. If there is no driving [F ¼ 0 in Eq. (4)], clearly
hx1i ¼ hx2i ¼ 0, while the mean-square values of the
quadratures are the same, and for the considered weak
nonlinearity hx21i ¼ hx22i ¼ kBT=ω2

0.
To analyze the squeezing of fluctuations about the states

of forced vibrations for the case of weak damping, we
linearize the equations of motion about the stable vibra-
tional states ðx1j; x2jÞ keeping the lowest-order terms in the
decay rate Γ (such linearization may be insufficient in the
case of extremely weak damping, as discussed in Sec. I.E of
the SM [45]). From Eqs. (1)–(3), the resulting equations for
the increments δx1;2 in the presence of noise are

δ_x1 ¼ ωð1Þ
j δx2 − Γð1þ μjÞδx1 þ ξx1ðtÞ; ð6Þ

δ_x2 ¼ −ωð2Þ
j δx1 − Γð1 − μjÞδx2 þ ξx2ðtÞ: ð7Þ

Here, μj ¼ 6γA2
j=ð3γA2

j − 8ωFδωÞ and we have disre-
garded terms ∝ Γ2. Functions ξx1ðtÞ and ξx2ðtÞ describe
the noise that drives the quadratures. In the phenomeno-
logical model Eq. (1) these functions are given by the real
and imaginary parts of iξðtÞ expðiωFtÞ=ωF. If the noise
comes from the same coupling to a thermal bath that
leads to the vibration decay, on the timescale ≫ω−1

F it is
zero mean, Gaussian and δ correlated, and the components
ξx1 , ξx2 are independent and have equal intensity,
hξx1ðtÞξx1ð0Þi¼hξx2ðtÞξx2ð0Þi¼ð2ΓkBT=ω2

FÞδðt− t0Þ. The
power spectrum of the fluctuations of the oscillator
coordinate in the approximations (6) and (7) is given by
Eq. (S13) of the SM [45].
A qualitative feature of the driven resonator is that the

mean-square fluctuations of the in-phase and quadrature
components of the coordinate are no longer equal and, for
one of them, can be smaller than in the absence of the drive.
This is the squeezing effect. In the considered case where
the vibrations in the rotating frame are weakly damped, the
mean-square fluctuations in the state j are (see the SM [45])

hδx21ij ¼
kBT
2mω2

F
ð1þ e−4φjÞ; ð8Þ

hδx22ij ¼
kBT
2mω2

F
ð1þ e4φjÞ; ð9Þ

where the expression

expð4φjÞ ¼ ωð2Þ
j =ωð1Þ

j ð10Þ

defines the squeezing parameter φj. Here, we have reintro-
duced the effective mass of the nanoresonatorm to facilitate
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the comparison with the experiment. In the absence of
driving, we find Aj ¼ 0 and thus φj ¼ 0, such that we
recover the equipartition theorem, hδx21i ¼ hδx22i. For the
large-amplitude stable state φj ≡ φhi > 0, whereas for the
small-amplitude state φj ≡ φlo < 0. Obviously, the maxi-
mum squeezing attainable is a 50% reduction of the
squeezed quadrature according to Eqs. (8) and (9).
Remarkably, the squeezing appears directly in the power

spectrum of the resonator [34,35]. In the weak-damping
limit Γ ≪ ωj, one obtains

QjðωÞ ≈
ΓkBT
4πmω2

F

cosh 2φjðcosh 2φj � 1Þ
ðω − ωF ∓ SjωjÞ2 þ Γ2

for jω − ωF ∓ Sjωjj ≪ ωj; ð11Þ

with Shi ¼ þ1 for the large-amplitude stable state and
Slo ¼ −1 for the small-amplitude stable state, respectively
[45]. The power spectrum QjðωÞ consists of two
Lorentzian peaks centered at the frequencies ωF � Sjωj

with the half-width given by the damping rate of resonator
in the absence of driving Γ. They can be thought of as the
Stokes and anti-Stokes components of the Raman scatter-
ing of the driving field by the small-amplitude vibrations
of the resonator near the corresponding stable state.
Importantly, the very state is formed by the drive. The
ratio of the intensities of the satellite peaks,

I ðþÞ
hi =I ð−Þ

hi ¼ 1= tanh2ðφhiÞ; ð12Þ

I ðþÞ
lo =I ð−Þ

lo ¼ tanh2ðφloÞ; ð13Þ

is determined by the squeezing parameter φj. The squeez-
ing parameter can thus be directly found from the power
spectrum. An advantageous feature of the ratios Eqs. (12)
and (13) is their independence of the temperature.
Therefore, even if the nanoresonator is slightly heated
by the drive, they should not change.
We emphasize that the peak intensities I ð�Þ are well

defined if the satellite peaks are well resolved. This condition
is met, as seen from Eq. (11), provided the widths of the
peaks are small compared with the distance between them,
i.e., Γ ≪ ωj. The latter inequality has a simple physical
meaning: in the rotating frame, the vibrations about the
stable state of forced oscillations of the nonlinear resonator
are underdamped; see also Secs. I.D and I.E of the SM [45].
This is a stronger condition than the condition that the
nanoresonator mode is underdamped in the laboratory frame,
i.e., Γ ≪ ω0. However, for weakly damped nonlinear nano-
resonators of current interest, including the one studied in
this paper, the condition Γ ≪ ωj holds in a broad range of
the amplitudes and frequencies of the driving field.
The relations (12) and (13) do not hold in the

quantum regime, ℏω0 ≳ kBT. The power spectrum (i.e.,

the fluorescence spectrum) is symmetric with respect to the
drive frequency for kBT ≪ ℏω0 [31]. However, quantum
fluctuations of the driven nonlinear mode are squeezed. The
variances of the in-phase and quadrature components are
different. In the strongly underdamped regime discussed
here, there is an alternative spectral measurement that
allows one to find the squeezing parameter both in the
classical and quantum regimes. This measurement involves
driving the mode by an additional weak probe drive
F0 expð−iω0tÞ at frequency ω0 close to the strong-drive
frequency ωF. Such drive leads to an additional term in
the mode displacement, which oscillates at frequencies
ω0 and 2ωF − ω0, δhqðtÞi ¼ χðω0ÞF0 expð−iω0tÞ þ
Xðω0ÞF0 exp½−ið2ωF − ω0Þt� [30,32]. In a nanomechanical
resonator, spectral peaks at the frequency of the probe drive
have been observed in Ref. [51]. The susceptibility χðωÞ
directly reveals the squeezing in the strongly underdamped
regime. Both Im χðωÞ and jχðωÞj2 display two narrow
sideband peaks, with the ratio of their areas determined by
the squeezing parameter [45]. Squeezing of quantum
fluctuations about a metastable state occurs also in a driven
oscillator resonantly coupled to a two-level system [52].

VI. EXPERIMENTAL OBSERVATION OF
THE THERMAL SQUEEZING IN THE

POWER SPECTRUM

To validate these theoretical findings, we apply a
resonant sinusoidal drive tone to the fundamental flexural
mode of the nanostring (fF ¼ f0) and record power spectra
for different drive powers using a spectrum analyzer
operated in the FFT mode. Under resonant driving, the
resonator has one stable vibrational state, with the param-
eters in Eqs. (5)–(11) corresponding to the high-amplitude
state Ahi. Figure 2(a) displays power spectra for drive
powers in the range between −45 and −5 dBm, with a
color-coded signal power (dBm). The bright, narrow line
centered at zero corresponds to forced vibrations at fF. The
drive tone is flanked by two satellite peaks. Their separa-
tion from the drive tone is symmetric and increases with
drive power. We identify these sideband-resolved satellite
peaks with the thermal noise-induced small-amplitude
vibrations around the stable state of the driven resonator.
Thus the peaks should be centered at the frequencies
ωF � ωhi.
The experimentally observed satellite peaks are com-

pared with the theoretical prediction of Eq. (5) in Fig. 2(a),
where the calculated positions of the peaks are shown as
open red circles. For better visualization, only a few distinct
points are plotted. We find the experimental data to
coincide with the theory, and also recover the expected
scaling of the splitting of the satellite peaks with the drive
power ωhi ∝ A2

hi ∝ F2=3 ∝ P1=3.
Another remarkable feature of the satellite peaks is

apparent from their intensities. Figure 2(b) depicts a line
cut extracted from Fig. 2(a) at−20 dBm. Each peak is fitted
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by a Lorentzian with a linewidth of 2Γ=2π ¼ 20 Hz, as
shown in Fig. 2(b). As predicted by the theoretical model,
this linewidth coincides with that of the linear resonance of
the string [45]. Clearly, the satellite peak at higher fre-
quency is much brighter than that at the lower frequency.
This observation is in agreement with the theoretical model,
which predicts nonequal intensities of the satellite peaks as
a result of the classical squeezing of thermal fluctuations.
More precisely, as outlined in Eq. (12) for the high-

amplitude state Ahi, a higher intensity is expected for the
satellite peak at the higher frequency. Following the model,
the ratio of the areas enclosed by the peaks is simply related
to the squeezing parameter φj. The areas extracted from the
fit are plotted in Fig. 2(c) as a function of the drive power,
where green corresponds to the brighter, higher-frequency

peak and blue to the lower-frequency peak. The exper-
imental data are compared with the theoretical predictions
which are shown in Fig. 2(c) by the red lines [45]. As
suggested by the theoretical model, a pronounced differ-
ence in the areas is observed. The ratio of the areas is
plotted in Fig. 2(d), and again, we find very good agree-
ment between the experimental data (black dots) and the
theoretical predictions (red line).
The theoretical calculations of the areas and their ratio

shown in Fig. 2 are obtained from a more general analysis
of the power spectrum. This analysis is not limited to the
condition Γ ≪ ωj and thus takes into account the over-
lapping of the satellite peaks. It is provided in Secs. I C and
I D of the SM [45]. The ratio of the areas for the limit
of small damping, Eqs. (12) and (13), is also included in
Fig. 2(d) as a gray line. In this limit the ratio is independent
of the drive power; it provides the fundamental limiting
value for the ratio of the areas of the satellite peaks. For
our high-Q nanostring resonator, the measured ratio
approaches this value as the separation of the peaks
increases with the increasing drive power.
The squeezing parameter φhi extracted from the areas of

the satellites discussed in Figs. 2(c) and 2(d) can be
employed to compute the mean-square fluctuations of
the in-phase and quadrature component of the stable state
of forced vibrations using Eqs. (8) and (9). Figure 3(a)
compares the experimentally obtained fluctuations [hδx21ihi
and hδx22ihi represented as black (gray) dots, respectively]
with the theoretical model accounting for the partial overlap
of the satellite peaks [45] (red lines). The mean square of
the thermomechanical fluctuations at 293 K is included
as a black solid line, clearly showing that a significant
squeezing of the in-phase quadrature is accomplished.

Drive power

Thermal

Thermal

(a) (b)

FIG. 3. Variance of in-phase and quadrature fluctuations around
the stable state of forced vibrations as a function of (a) drive
power and (b) detuning. Black and gray dots show the in-phase
and quadrature values extracted from the experimentally deter-
mined satellite area ratio, respectively, whereas red lines show the
corresponding theoretical model including the partial overlap of
the peaks (no free parameters; see SM [45]). Black lines in (a) and
(b) indicate the thermomechanical fluctuations at 293 K.
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FIG. 2. (a) Color-coded power spectra showing the increasing
splitting of the satellite peaks with the increasing drive power for
the drive frequency fF ¼ f0, where the resonator is monostable.
Red open circles denote the calculated positions of the satellite
peaks. The central line at f − fF ¼ 0 is plotted with a reduced
brightness to improve the visibility of the satellites. (b) Line cut
along the white dotted line in (a) illustrating the satellite peaks as
well as their Lorentzian fits for a drive of −20 dBm. The central
line at f ¼ fF (gray line) is truncated. (c) Area of the high-
(green) and low- (blue) frequency satellite peaks extracted from
the Lorentzian fits as a function of the drive power. Red lines
show the theoretical prediction that takes into account the partial
overlap of the peaks. (d) Ratio of the areas of the satellite peaks as
a function of drive power. Red and gray lines show, respectively,
the theoretical prediction that takes into account the partial
overlap of the peaks (see SM [45]) and the one based on Eq. (12).
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According to the theory, the satellite peaks in the power
spectrum also depend on the detuning of the drive fre-
quency fF − f0. We therefore repeat the measurement
routine, now for a fixed drive power of −20 dBm and a
variable detuning of the drive. The resonator is initialized in
the high-amplitude state by sweeping up the drive fre-
quency from 30 kHz below f0 to the desired fF before
recording the power spectrum.
Figure 4(a) displays the power spectra as a function of

the detuning fF − f0. For large negative detuning,
fF − f0 < 0, only the satellite peak at a higher frequency
can be discerned; its distance from the drive tone fF
increases with the increasing −ðfF − f0Þ. For small
detuning, both satellite peaks are resolved. They are at
equal distances from fF, which only slightly increase with
fF − f0 for fF − f0 > 0. In contrast, the intensities of the
peaks are increasing. The splitting at zero detuning equals
the one shown in the resonantly driven case discussed in
Fig. 2(a) for a drive power of −20 dBm.
Interestingly, the satellite peak at higher frequency

vanishes abruptly for the detuning of 190 Hz, whereas
the lower frequency one remains. However, the lower-
frequency peak exhibits a discontinuity at 190 Hz, and
continues with a larger splitting, a different slope, and a
strongly reduced intensity. At the same detuning of 190 Hz
the amplitude at the drive tone drops to a drastically smaller
value, as shown in Fig. 4(b). This is a signature of the
resonator switching from the high-amplitude state Ahi to the
low-amplitude state Alo. The displayed signal power has
been extracted from a line cut in Fig. 4(a) at the driving
frequency, f ¼ fF. Since the measurement routine to
record each of the power spectra in Fig. 4(a) exposes
the resonator to the drive for more than one minute, this
represents a much slower measurement than a typical

(Duffing) response curve measurement, such as the one
shown in Fig. 1(b).
The observed satellite peaks on the opposite sides of the

critical detuning Δfcr ≡ ðfF − f0Þcr ≈ 190 Hz are associ-
ated with the high- and low-amplitude state Ahi and Alo of
the resonator. They are compared in Fig. 4(a) with the
theoretical prediction for the two stable states, which are
superposed on the measured data as red and yellow open
circles, respectively. In both states, we find the experiment
and the theory to coincide completely.
We repeat the analysis described for the resonantly

driven case of Fig. 2 and extract the areas of the high-
and low-frequency satellite peaks for each power spectrum
by fitting two Lorentzians (not shown). When the resonator
is in the high-amplitude state, i.e., for a detuning below
Δfcr, both satellite peaks are resolved and appear for a
certain range of detunings. The ratio of the obtained areas
of the peaks for this detuning is shown in Fig. 4(c) as black
dots. Like for the resonantly driven case, this quantity is
associated with the squeezing parameter.
According to the theory of Sec. V, the ratio of the areas of

the peaks depends on the detuning of the drive frequency.
For the high-amplitude stable state, it is asymmetric with
respect to f0 and decreases as the detuning varies from
negative to positive. The experimental data in Fig. 4(c) are
compared with the theoretical prediction for the weak-
damping limit, Eq. (12) (gray line), and for the more
general approximation that takes into account the small
overlapping of the satellite peaks [45] (red line). Once
more, the agreement between the experiment and the theory
is remarkable. The resulting mean-square fluctuations of
the in-phase and quadrature component about the stable
state of forced vibrations are presented in Fig. 3(b), again
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demonstrating the squeezing of the in-phase quadrature
with respect to the thermomechanical fluctuations.
Above the switching point, fF − f0 > Δfcr, the reso-

nator is in the low-amplitude state, and only one satellite
peak is resolved. Therefore the ratio of the areas of the
peaks and thus the squeezing parameter cannot be evalu-
ated here. Notice, however, that the data clearly show the
anticipated reversal of the intensities of the satellite peaks
between the two stable solutions, as predicted by Eqs. (12)
and (13): While the high-frequency satellite peak has a
higher intensity for the high-amplitude stable state, the low-
frequency peak is the dominating one for the low-amplitude
state. In addition, while the ratio of the areas of the peaks
for the high-amplitude state has decreased to a value ≈1 in
the vicinity of the switching point fcr, for the low-
amplitude state the ratio is large, according to the theory,
which explains why the low-frequency satellite peak is
resolved whereas the high-frequency peak cannot be
detected.
For a positive or negative detuning exceeding 400 Hz,

Fig. 4(a) exhibits only one peak, and the slope of its
frequency versus the drive frequency is −1. Such slope and
a single peak in the power spectrum are expected for an
oscillator in the absence of a driving force. Experimentally,
for still larger detuning, we are not able to resolve thermal
motion of the driven resonator, as is also the case for the
undriven resonator. We attribute this to an insufficient
displacement sensitivity of the detection setup far away
from the driving frequency or in the absence of the drive,
while the thermally induced spectral features are resolved
near fF. Apparently, the displacement sensitivity increases
in the presence of the driving, which is likely a conse-
quence of our heterodyne microwave-cavity assisted dis-
placement detection scheme [39].

VII. CRITICAL SWITCHING POINT

Finally, we discuss the switching between the two stable
states of the Duffing resonator. It is characterized by two
rates, that from the high-amplitude to the low-amplitude
state, Whi→lo, and that from the low-amplitude to the high-
amplitude state, Wlo→hi. At the critical frequency detuning
these rates are equal, Whi→lo ¼ Wlo→hi. Respectively, the
stationary populations of the stable states are also equal.
The rates change with the parameters exponentially
strongly. Therefore, away from the critical value of the
detuning, the populations of the states are strongly different
and only one state is “visible.” If the detuning is slowly
varied across the critical value, the oscillator should switch
from one state to the other in a very narrow range. For weak
damping, Γ ≪ δω, the theoretical value of the critical
detuning [30], in terms of the parameters of the studied
nanoresonator, is Δfcr ≈ 904.6 s−1ðV in½V�Þ2=3. It is shown
in Fig. 1(b) as a vertical dashed gray line at V in ¼
17.8 mV (−31 dBm).

Experimentally, the interchange of the most probable
states at the critical point can only be observed in a slow
measurement. Clearly, the response curve shown in
Fig. 1(b) does not reveal this point, since the detuning
was swept in both directions fast enough to allow the
system to stay in the metastable high- or low-amplitude
state well beyond the critical point, until close to the
bifurcation point.
In contrast, the response curve shown in Fig. 4(b) results

from a much slower measurement, as described above. This
allows the resonator to approach its most probable stable
state for every applied detuning and clearly demonstrates
sharp switching between occupying practically one or the
other state.
The switching point observed in Fig. 4(b) is expected to

be close to the theoretical critical switching point, which is
shown by a dashed gray line (V in ¼ 65 mV). Indeed, the
difference between the experimental and theoretical values
is only 40 Hz. This difference can be attributed to a slight
nonadiabaticity of the frequency sweep. Futhermore, given
the statistical nature of the switching, slow room temper-
ature fluctuations cannot be ruled out as an alternative
source of the discrepancy, because the effect of a typical
eigenfrequency drift of almost 1 kHz=K could not be
completely eliminated, even though the eigenfrequency
was redetermined prior to every measurement. In the future,
the results can be extended to measure the individual
switching rates using different sweep times [53–55].
We emphasize that, in the regime we have studied, the

driven resonator has no detailed balance. Understanding
fluctuation-induced transitions between the stable states of
systems lacking detailed balance, i.e., generically, for all
systems away from thermal equilibrium, is of interest for
various areas of physics, chemistry, and biology. The weak-
damping regime attained in the present work is particularly
important, as the phase space of the system is two dimen-
sional rather than the effectively one-dimensional phase
space close to bifurcation points. A high-dimensional phase
space significantly complicates the theoretical analysis of
the switching rate. To the best of our knowledge, the
present results show the first quantitative comparison with
analytical results obtained for systems lacking detailed
balance.

VIII. CONCLUSIONS

In conclusion, we report a new manifestation of squeez-
ing of thermal fluctuations in a broad parameter range of a
resonantly driven nanomechanical mode. The squeezing is
indirectly determined by measuring the power spectrum of
the mode in the sideband-resolved regime, where the
spectrum exhibits two well-separated peaks symmetrically
positioned with respect to the drive frequency. The peaks
can be thought of as Stokes and anti-Stokes component
in a Raman scattering picture with the caveat that the
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underlying process is multiphoton, as multiple photons of
the resonant driving field are involved.
The sidebands feature unequal intensities. The ratio of

the intensities is determined by the squeezing parameter. It
was directly read out from the experimental data, thus
providing a novel way not only to infer but also to
quantitatively characterize squeezing.
Our findings are supported by a theoretical model which

is in excellent agreement with the experimental data with
no free parameters. The model shows that, for the reso-
nantly driven underdamped Duffing resonator, the
squeezed quadrature can be suppressed by a factor of 2,
giving rise to a 3 dB limit, as in the case of parametrically
induced squeezing [18]. Importantly, no fine-tuning to a
specific operation point is required for obtaining squeezing
in a high-quality-factor resonator.
Squeezing of thermal fluctuations about the state of

forced vibrations in weakly damped nonlinear systems is a
generic concept as it is related to the breaking of the
continuous time-translation symmetry by the drive. The
same applies to the asymmetry of the power spectrum and
the response spectrum. Therefore, the squeezing and the
asymmetry are intrinsically related to each other and we use
one of them to characterize the other.
At the same time, it should be noted that the spectral

characterization of the squeezing is an indirect one. For
applications in precision sensing, care should be taken to
ensure that no extra noise is added by themeasurement setup.
An important advantageous feature of characterizing

squeezing of thermal (and quantum) fluctuations in driven
mesoscopic vibrational systems from a spectral measurement
is its insensitivity to weak-frequency noise. This is important
both for nanomechanical resonators, as the ones studied here,
and also for microwave cavity modes. In these systems, the
mode eigenfrequencies display slow fluctuations with 1=f-
type spectrum. Such fluctuations lead to a small broadening
of the spectral peaks and a very small change of the peak
intensities. Thus they make a small effect on the measured
squeezing parameter. In contrast, they significantly compli-
cate thehomodynemeasurement forweakly damped systems,
as discussed in Sec. II.F of the SM [45].
A promising application is the possibility of employing

driven weakly damped modes as detectors of weak signals at
frequency fS close to the drive frequency, jfF − fSj ≈ ωj.
Driven modes can resonantly amplify such signals, which
can be thought of as a multiphoton analog of stimulated
Raman scattering. The amplification is determined by the
squeezing [45], which in turn allows one to determine the
squeezing parameter from the response spectrum.
Importantly, the corresponding spectral measurement can
be done also in the quantum regime [45], where, as shown in
Ref. [31], the sidebands in the emission spectrum are
symmetric independent of the squeezing parameter.

Data and analysis code are available at [56].
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In this Supplemental Material we provide a theoretical analysis of the thermal noise squeezing and how such
squeezing shows in the power spectrum of a driven Duffing resonator, as well as the manifestation of squeezing
in the spectra of response to an extra weak field, which is pronounced in the both classical and quantum regimes.
We also discuss the characterization of the nanomechanical resonator, the calibration of the detection setup,
the analysis of the data provided in the main text, and present further supplementary experimental data. We
conclude by demonstrating the impact of frequency fluctuations on the direct homodyne detection of the noise
quadratures of a weakly damped nanomechanical resonator.

I. THEORY

A. The Duffing model

The fundamental mode of the silicon nitride nanostring resonator under investigation is well described by the model of the
Duffing resonator. The beam displacement q at the antinode follows the equation

Üq + 2Γ Ûq + ω2
0q + γq3 = F cos(ωF t) + ξ(t) , (S1)

in which Γ is the damping coefficient, ω0 is the mode eigenfrequency, γ is the Duffing nonlinearity parameter, F is the amplitude
of the external driving, and ωF is the driving frequency. In our experiment we have γ > 0. The vibrations have inversion
symmetry, and therefore there is no term ∝ q2 in Eq. (S1). Here for brevity we have set the effective mass of the resonator at the
position of the antinode m = 1; alternatively, one can think that the forces F and ξ(t) incorporate the factor 1/m.

The term ξ(t) represents the thermal noise. Since the frequencyω0 is small compared to kBT/~ and compared to the reciprocal
correlation time of the thermal reservoir (thermal phonons, in our system), the dissipation has no delay and the noise ξ(t) is
zero-mean, Gaussian, and δ-correlated. With the effective mass taken explicitly into account, the noise correlator reads 〈ξ(t)〉 = 0
and 〈ξ(t)ξ(t ′)〉 = δ(t − t ′) 4ΓkBT/m, where T is the room temperature.

It is convenient to switch to the rotating frame and to introduce the scaled complex vibration amplitude y,

q(t) =

√
2ωFΓ

3γ
[
y(t)eiωF t + y∗(t)e−iωF t

]
, Ûq(t) =

√
2ωFΓ

3γ
(iωF )

[
y(t)eiωF t − y∗(t)e−iωF t

]
. (S2)

The relations with the two quadratures defined in the main text are simply x1 =
√

8ωFΓ/(3γ)Re y and x2 = −
√

8ωFΓ/(3γ) Im y.
In the rotating wave approximation (RWA), we obtain from Eq. (S1) the equation of motion for y(t) in the form

Ûy = i
∂hy

∂y∗
− Γy − iΓξy(t); hy = Γ

[
1
2
|y|4 −Ω|y|2 − β1/2

y (y + y∗)
]
. (S3)

Here Ω = δω/Γ, with δω = ωF − ω0 being the frequency detuning of the drive from the mode eigenfrequency; it is assumed to
be small for resonant driving, ω0,ωF � |δω |. Parameter βy is the scaled driving strength and ξy(t) is Gaussian noise,

βy =
3γF2

32ω3
FΓ

3
, ξy =

√
3γ

8ω3
FΓ

3
ξ(t)e−iωF t , 〈ξy(t)ξ∗y (t

′)〉 =
4α
Γ
δ(t − t ′) , α =

3γkBT
8ω3

FΓ
. (S4)
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The evolution of y(t) occurs slowly, on a timescale of∼ Γ−1. On such timescale the correlator 〈ξy(t)ξy(t ′)〉, which is fast oscillating
in time, can be disregarded, i.e., ξy(t) is correlated only with ξ∗y (t). The function hy is the scaled Hamiltonian h introduced in
Eq. (4) of the main text, see also Fig. 1c.

In the absence of noise, the stationary solutions of Eq. (S3) give the scaled complex amplitude of forced vibrations yj , where
j enumerates the solutions,

yy = −
iβ1/2

y

1 + iΩ − i
��yj ��2 , (S5)

or

φy(|yj |2) = 0 , φy(x) = x
[
1 + (x −Ω)2

]
− βy (S6)

The cubic equation φy(|yj |2) = 0 can have three real roots. This occurs in the region of vibration bistability, which is bounded
by the bifurcational values of the dimensional parameter βy

(βy)B1,B2 =
2

27
[Ω(Ω2 + 9) ± (Ω2 − 3)3/2] . (S7)

The smallest and the largest roots |yj |2 correspond to the stable vibrational states of the driven mode (denoted in the main text by
lo and hi, respectively), the intermediate root corresponds to an unstable stationary state. The squared resonator amplitudes are
A2
j = (8ωFΓ/3γ)1/2

��yj ��2 with j = hi, lo. An example of the dependence of Aj on the drive frequency is shown as the response
function in Fig. 1b of the main text.

B. Linearized dynamics

The noise leads to fluctuations of the driven resonator. For weak noise the major effects are small-amplitude fluctuations about
the stable vibrational states and rare events where the noise causes transitions between the states [S1]. A simple approach to the
analysis of the small-amplitude fluctuations is based on linearizing the equation of motion Eq. (S3) about the stable vibrations
states [S1–S3]. The linearized equations for δyj(t) = y(t) − yj read

δÛyj = −Γ
(
1 + iΩ − 2i

��yj ��2) δyj + iΓy2
j δy
∗
j − iΓξy . (S8)

The dynamics of δyj(t) is similar to the dynamics of a linear damped harmonic oscillator subject to noise. The characteristic
frequency scale of the fluctuations is determined by the eigenvalue of Eq. (S8) Γνy, j ,

ν2
y, j =

(
3
��yj ��2 −Ω) (��yj ��2 −Ω)

+ 1 =
(
ωj/Γ

)2
+ 1 (S9)

with ωj given by Eq. (5) of the main text. We note that νy, j ≈ ωj/Γ for ωj � Γ.

C. The power spectrum

Fluctuations of the complex amplitude y(t) lead to fluctuations of the coordinate q(t) of the nanoresonator. Such fluctuations
are of considerable broad interest, given that the driven nanomechanical resonator is a system far away from thermal equilibrium.
They can be directly measured in the experiment by measuring the power spectrum of the nanoresonator. For the periodically
driven nanoresonator the power spectrum is defined as

Q(ω) =
1
π

Re
∫ ∞

0
dt eiωtQ̄(t),

Q̄(t) =
ωF

2π

∫ 2π/ωF

0
dt ′ [〈q(t + t ′)q(t ′)〉 − 〈q(t + t ′)〉〈q(t ′)〉] . (S10)

Since the dynamics of the nanoresonator is mostly oscillations at frequency ωF with the amplitude and phase that vary slowly
over time ∼ 1/ωF , the spectrum Q(ω) has peaks centered in a range ∼ |δω|,Γ around the drive frequency ωF (and −ωF , strictly
speaking).

Mark Dykman
Line
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Near ωF the spectrum Q(ω) is given by the power spectrum of the complex amplitude y(t), as seen from Eq. (S2),

Q(ω) ≈
2ωFΓ

3πγ
Re

∫ ∞

0
dt ei(ω−ωF )t 〈[y∗(t) − 〈y∗〉] [y(0) − 〈y〉]〉 . (S11)

In the range of bistability, 〈y〉 is approximately the sum of the values yhi,lo weighted with themean occupation of the corresponding
states. For weak noise, these occupations are of the same order of magnitude only in a very narrow parameter range (the region
of the kinetic phase transition [S1]). Away from this region only one of the stable states is mostly occupied. Also, if the
measurement is done over a time which is small compared to the reciprocal rate of interstate transitions, 〈y〉 should be replaced
by the value yj in the state in which the system was prepared. Then Q(ω) is given by the partial spectrum

Q j(ω) =
2ωFΓ

3πγ
Re

∫ ∞

0
dt ei(ω−ωF )t

〈
δy∗j (t) δyj(0)

〉
. (S12)

For a long observation time, in addition to the partial spectra given by Eq. (S12) the full spectrum Q(ω) displays an extremely
narrow peak in the region of the kinetic phase transition [S3], which has been seen in micromechanical resonators driven by a
noise that imitated a relatively high-temperature thermal noise [S4]. In this work we do not consider this peak, since our primary
interest focuses on the spectra Q j(ω).
It is straightforward to calculateQ j(ω) in the region where the motion around the stable states can be linearized and is described

by Eq. (S8). Such calculation was done in the quantum [S2] and classical [S3] theory, giving

Q j(ω) =
ΓkBT
2πω2

F

(
ω − ωF + 2Γ

��yj ��2 − δω)2
+ Γ2

(
1 +

��yj ��4)[
(ω − ωF )

2 − Γ2ν2
y, j

]2
+ 4Γ2(ω − ωF )

2
. (S13)

The total area of the power spectrum Eq. (S13) is

Ij ≡

∫
dω Q j(ω) =

kBT
2ω2

F

[
1 +
|yj |4

ν2
y, j

]
. (S14)

It exceeds the area of the power spectrum in the absence of the drive, which is given by the above expression with |yj |2 set equal
to zero. This facilitates the observation of the satellite peaks of the power spectrum of the driven resonator even where in the
absence of the driving the resolution of the experiment did not allow us to reliably detect the power spectrum.

For the discussion of the squeezing effect it is convenient to consider the areas of the power spectrum for ω > ωF and for
ω < ωF , which we denote as I(+)j and I(−)j , respectively. They have the form

I
(±)

j =
1
2
Ij ± ∆Ij , ∆Ij =

kBT
2πω2

F

2|yj |2 −Ω√
ν2

y, j − 1
arctan

(√
ν2

y, j − 1
)
. (S15)

This expression can be analytically continued in a standard way to the region νy, j < 1. The definition of the areas in Eq. (S15)
takes into account the overlapping, for not too large νj , of the satellite peaks centered at ≈ ±Γνj . This analytic expression is used
in the comparison with the experiment in Figs. 2 and 3 of the main text.

The results for the two areas of Eq. (S15) are shown in Fig. S1 for the high amplitude state. Here we compare these analytic
results with the results of the following procedure, which is also the procedure used to extract the satellite areas from the
experimental data. The power spectrum Q j(ω), Eq. (S13), is fit by two Lorentzians, with the maxima in the regions ω > ωF and
ω < ωF , respectively. The areas of the satellite peaks is then found from the parameters of the Lorentzians. Figure S1a and b
display these areas as a function of the scaled driving strength βy and the scaled detuning δωF/Γ, respectively. The upper x-axis
converts these values into the real drive power and detuning, for the parameters of the nanomechanical resonator studied in the
experiment. The parameters are chosen to match those discussed in Figs. 2b and c, as well as Fig. 3c of the main text. There is a
good agreement between the areas of the satellite peaks found from the Lorentzian fits and the areas of the parts of the analytical
spectrum at ω > ωF and ω < ωF given by Eq. (S15).

D. Squeezed thermal fluctuations for weak damping

The power spectrum Q j(ω) has a particularly simple form in the case of weak damping, where νy, j � 1. Here Q j(ω) has two
distinct, non-overlapping satellite peaks at frequencies ωF ± Γνy, j . Similar peaks emerge in the response of the resonator to an
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(a) (b)

Figure S1. The red dash-dotted and dashed lines show the integrals of Eq. (S15) for the high amplitude state, I(+)hi and I(−)hi , respectively.
The integrals are scaled by kBT/(2ω2

F ). The green and blue dots are obtained by fitting the power spectrum Qhi(ω) of Eq. (S13) (scaled by
kBT/(2ω2

F )) by two Lorentzians centered at the maxima of Qhi(ω). a Comparison as a function of scaled driving strength βy at zero detuning
δωF = 0. b Comparison as a function of scaled detuning δωF/Γ at βy = 700.

extra drive [S1]. It should be emphasized that the weak-damping condition implied here is much stronger than the condition
Γ � ω0 of the nanoresonator to be underdamped. The advantageous feature of the resonator studied in this work is that both
conditions are met in the experiment, in a certain range of the amplitude and frequency of the driving field.

To analyze the dynamics in the weak-damping limit we re-write Eqs. (S8) separating the terms of the first order in the friction
coefficient Γ. From Eq. (S5), to the leading order in Γ we have y2

j ≈ ȳ2
j with a real positive ȳ2

j ∝ Γ
−1 given by Eq. (S16) below.

To the first order in Γ

yj ≈ ȳj

(
1 −

i
ȳ2
j −Ω

)
, ȳ2

j

(
ȳ2
j −Ω

)2
= βy . (S16)

Equations (S8) for the small deviations δyj, δy∗j from the stable states can be written as

δÛyj = i
∂δhj

∂δy∗j
− Γ(δyj + µjδy∗j ) − iΓξy(t) , δhj = Γ(2ȳ2

j −Ω)|δyj |
2 +

1
2

ȳ2
j

[
(δy∗j )

2 + δy2
j

]
. (S17)

Here, the Hamiltonian δhj is the expansion of the Hamiltonian hy, Eq. (S3), about ȳj to the second order in δyj, δy∗j . Parameter
µj = 2ȳ2

j/(ȳ
2
j − Ω) was introduced in the main text. It should be noted that the phase of the scaled complex amplitude yj in a

stable state j is “pinned” to the phase of the driving field. This phase directly reflects the broken time-translation symmetry of the
stable state. The Hamiltonian δhj thus also “knows” about the phase of the field. This leads to the terms ∝ (δyj)2, (δy∗j )

2. If there
were no such terms, the quadratures of the fluctuations about the stable state would be equal (we recall that these quadratures are
given by the scaled Re δyj and −Im δyj , respectively). Indeed, as seen from the expression for the correlators ξy(t), in this case
we would have 〈δy2

j 〉 = 〈(δy
∗
j )

2〉 = 0. However, the latter expression does not apply to our driven nonlinear resonator.
Since, as noted above, for weak damping yj ∝ Γ−1/2 and Ω ∝ Γ−1, the Hamiltonian δhj is independent of Γ. This Hamiltonian

can be diagonalized by the Bogoliubov (squeezing) transformation

δyj = u j cosh ϕj − u∗j sinh ϕj , (S18)

so that the new Hamiltonian for the variables u j contains only |u j |
2 and not u2

j , (u
∗
j )

2. This condition is met if we set

tanh
(
2ϕj

)
=

ȳ2
j

2ȳ2
j −Ω

. (S19)
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The resulting equation of motion is

Ûu j = i
∂δhj

∂u∗j
−Γu j−Γµju∗j−iΓξj(t) , δhj = SjΓνy, j |u j |

2 , Sj = sgn(2ȳ2
j−Ω) , ξj(t) = ξy(t) cosh ϕj−ξ

∗
y (t) sinh ϕj . (S20)

In this expression only the leading-order termwith respect to Γ should be taken into account in νy, j , i.e., νy, j = [(3ȳ2
j−Ω)(ȳ

2
j−Ω)]

1/2.
Clearly, Γνy, j is independent of Γ. The coefficient Sj = ±1 is given by the sign of 2ȳ2

j −Ω. Parameter ϕj is simply related to the
standard [S5] parameters (r, θ) of the squeezing transformation: r = ϕj, θ = 0 for Sj = 1, and r = |ϕj |, θ = π for Sj = −1.
To the lowest order in Γ, the variable u j is oscillating as exp[iSjΓνy, j t]. The coefficient Sj reflects the fact that, in the range of

bistability, u j is rotating in the opposite directions for the large and small amplitude stable states where, as it is well-known for
the Duffing resonator, 2ȳ2

j − Ω is positive or negative, respectively. Function u∗j (t) is rotating in the direction opposite to u j(t).
Therefore, for small Γ (or equivalently, for νy, j � 1), the term ∝ µj in Eq. (S20) can be disregarded. Then, using the Stratonovich
convention for averaging δ-correlated noise, we see from Eqs. (S4) and (S20) that

〈|u j |
2〉 ≈ 2α cosh 2ϕj , (S21)

whereas the mean value 〈u2
j 〉 ≈ −i(2α/νy, j) sinh 2ϕj is much smaller and can be disregarded. As a result we have for the average

values of the quadratures

〈(Re δyj)2〉 ≈
α

2

(
1 + e−4ϕ j

)
, 〈(Im δyj)2〉 ≈

α

2

(
1 + e4ϕ j

)
, (S22)

which demonstrates the squeezing of thermal fluctuations about the stable state of forced vibrations. Going back to the unscaled
quadratures x1,x2, Eq. (S22) gives

〈δx2
1〉 =

kBT
2ω2

F

(
1 + e−4ϕ j

)
, 〈δx2

2〉 =
kBT
2ω2

F

(
1 + e4ϕ j

)
. (S23)

Equation (S20) for u j has a simple solution

u j(t) = exp[−(Γ − iSjΓνy, j)t]
[
u j(0) − iΓ

∫ t

0
dt ′ exp[(Γ − iSjΓνy, j)t ′] ξj(t ′)

]
. (S24)

With this solution, using Eqs. (S11) and (S18) we obtain

Q j(ω) ≈
ΓkBT
4πω2

F

cosh 2ϕj (1 + cosh 2ϕj)

(ω − ωF − SjΓνy, j)2 + Γ2 for
��ω − ωF − SjΓνy, j

�� � Γνy, j ,

Q j(ω) ≈
ΓkBT
4πω2

F

cosh 2ϕj (cosh 2ϕj − 1)
(ω − ωF + SjΓνy, j)2 + Γ2 for

��ω − ωF + SjΓνy, j
�� � Γνy, j . (S25)

The power spectrum Eq. (S25) coincides with Eq. (11) of the main text if one takes into account thatSj = 1 for the high amplitude
stable state and Sj = −1 for the low amplitude stable state. The spectrum consists of two Lorentzian peaks with half width Γ.
The peaks are located at the drive frequency shifted up and down by the frequency of vibrations in the rotating frame about the
stable state j. We emphasize that, since we kept only the leading-order terms in the decay rate Γ, Eq. (S25) applies only in the
frequency ranges of the peaks.

It is instructive also to compare the areas of the satellite peaks described by Eq. (S25) with Eq. (S15) for the areas of the peaks
on the opposite sides of ωF . From Eq. (S25), the areas of the peaks are

I
(±)

j =
kBT
4ω2

F

cosh 2ϕj (cosh 2ϕj ± 1) =
kBT
4ω2

F

[
1 +

ȳ4
j

νy, j
±

2ȳ2
j −Ω

νy, j
Sj

]
. (S26)

One can easily see that this expression coincides with Eq. (S15) if in the latter equation one goes to the limit νy, j � 1 and
replaces |yj |2 with ȳ2

j , which corresponds to keeping the terms of the lowest-order in Γ.
The central feature of the spectrum Eq. (S25) is that the two satellite peaks of Q j(ω) have different amplitudes and areas. This

is a direct indication of the squeezing of the vibrations about the stable state. We emphasize that this is not the cause of the
squeezing. Both the difference in the areas and the squeezing are a consequence of the broken time translation symmetry in a
periodically driven system, and because of that they are immediately related to each other. This is why measuring the ratio of
the peak heights allows one to directly determine the squeezing parameter ϕj in the underdamped system and thus, if we use the
conventional notations of quantum optics, the squeezing parameter r = |ϕj |.

Mark Dykman
Pencil
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E. Asymmetry of the satellite peaks

In calculating the spectrum Q j(ω) in the previous section we expanded the Hamiltonian hy to second order in δy, δy∗.
Disregarding higher-order terms may be inconsistent in the limit of small decay rate Γ. These terms describe the nonlinearity of
the vibrations about the stable states in the rotating frame. Such nonlinearity leads to the dependence of the vibration frequency on
the vibration amplitude. Thermal fluctuations of the amplitude then translate into thermal fluctuations of the vibration frequency
and thus lead to broadening of the satellite peaks. Such broadening is well understood for nonlinear resonators in the absence of
strong periodic driving [S6].

A quantum theory of the nonlinearity-induced spectral broadening of the peaks of Q j(ω) was discussed in Ref. [S7]. Here we
will briefly outline the corresponding classical theory. As indicated in the main text, the amplitude dependence of the vibration
frequency comes from the Duffing nonlinearity in the first order of the perturbation theory. More generally, it is well-known
from classical mechanics [S8] that the first-order terms in the amplitude dependence of the vibration frequency come from the
terms in the Hamiltonian that are nonzero when averaged over the vibration period. In the case of the Duffing resonator the
corresponding term is γq4/4 which, for q = A cos(ω0t + φ), has the period-averaged value 3γA4/32.

In line with the above argument, to find the amplitude dependence of the vibrations in the rotating frame about a jth state one
has to do the following steps:

• Expand the full Hamitlonian hy about ȳj to the 4th order in δyj, δy∗j .

• Express δy, δy∗ in terms of u j,u∗j

• Out of all quartic terms in u j,u∗j keep only the term ∝ |u j |
4, as this is the only term that does not oscillate in the harmonic

approximation.

The above routine has to be augmented to allow for the fact that the cubic terms δh(3)j = ȳj |δyj |2 · (δyj + δy∗j ) will contribute
to the amplitude dependence of the frequency when taken to the second order of the perturbation theory. The corresponding
terms renormalize the coefficient in front of the term ∝ |u j |

4. The result is as if the relevant quartic term in u j,u∗j of the effective
Hamiltonian has the form

δh(4)j =
1
2
Γ Bj

��u j

��4 , Bj =
1
2

(
3 cosh2 2ϕj − 1

)
−

ȳ2
j exp(−2ϕj)

Sjνj

(
9
2

cosh 4ϕj − 3 sinh 4ϕj +
3
2

)
. (S27)

The parameter Bj is determined by the ratio β = βy/Ω
3. A plot of V = 2Bj and ν0 = νj/Ω as functions of this ratio for the large-

and small-amplitude attractor is shown in Fig. 9 of Ref. [S7]. The Hamiltonian δh(4)j has to be added to δhj in the equation of
motion for u j , Eq. (S20). The resulting equation has the same general form as the equation of motion of an anharmonic Duffing
resonator with eigenfrequency ΓSjνj in the presence of relaxation and noise, but with no driving. Using the results [S7, S9] we
can write the power spectrum of the resonator near frequency ωF + ΓSjνy, j in the form of a series

Q j(ω) ≈
kBT

4πω2
F

cosh 2ϕj

(
cosh 2ϕj + 1

)
Re

∑
n

φ j

(
n,ω − ωF − ΓSjνy, j

)
, (S28)

φ j(n,ω′) =
4n(Λj − 1)n−1(Λj + 1)−(n+1)

Γ(2ℵjn − 1) − iω′
. (S29)

Here,

Λj = (1 + 2iBjα cosh 2ϕj)/ℵj , ℵj = (1 + 4iBjα cosh 2ϕj)
1/2 [Reℵj > 0] . (S30)

Near frequency ωF − ΓSjνj the power spectrum has the form

Q j(ω) ≈
kBT

4πω2
F

cosh 2ϕj

(
cosh 2ϕj − 1

)
Re

∑
n

φ j[n,−(ω − ωF + ΓSjνy, j)] . (S31)

The shape of the spectra in Eqs. (S28) and (S31) is determined by the parameter Bjα, i.e., by the effective nonlinearity of the
vibrations about the stable vibrational state. If |Bj |α � 1, the main contribution to the spectra comes from the term n = 1 and the
spectra are close to the Lorentzian spectra of Eq. (S25). However, if |Bj |α & 1, the shape of the satellite peaks strongly differs
from the Lorentzian shape. Since |Bj | ∼ 1, the important parameter of the spectral shape is α. This parameter characterizes the
ratio of the broadening of the spectrum due to thermal fluctuations of the vibration amplitude and the decay rate. Equations (S28)
and (S31) allow one to calculate the shape of the spectrum for an arbitrary α and to see the evolution of the spectrum with
increasing α.
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We wish to make the following two comments: First, the nonlinearity of the vibrations about the stable states, although it can
dramatically change the shape of the peaks at frequencies ωF ± SjΓνy, j for weak damping, does not change the area of these
peaks, to the leading order. Second, it is important to keep in mind that Eq. (S25) applies in the weak damping approximation
discussed in section I.D. In this approximation, the decay rate has to be small, so that the satellite peaks described by Eq. (S25)
are well resolved. However, it should be not too small if one approximates the shape of the peaks by a Lorentzian.

F. Characterizing sideband squeezing in the quantum regime

The previous analysis referred to the classical regime, where squeezing is explicitly seen in the intensities of the sideband
spectral peaks in the power spectrum. In the quantum regime, of primary interest is the emission (fluorescence) spectrum of the
driven mode. It is determined by the correlation function of the ladder operators a and a†. For the considered unit-mass mode,
its shape away from ωF is described by Eq. (S10) in which one should replace q(t + t ′) with (~/2ω0)

1/2a†(t + t ′) and q(t ′) with
(~/2ω0)

1/2a(t ′).
As indicated in the main text, it was noticed in Ref. S2 that in the ultra-quantum regime, where the Planck number n̄ =
[exp(~ω0/kBT) − 1]−1 is very small, n̄ � 1, the sideband peaks in the emission spectrum of a resonantly driven mode have equal
areas. This means that the squeezing is not seen in the emission spectrum, in contrast to the classical regime.

However, the squeezing itself exists. In the considered case of a strongly underdamped mode, using the results [S7] one can
show that the (unscaled) variances σ2

j ,in and σ
2
j ,quad of the in-phase and quadrature components of the mode displacement are

σ2
j ,in =

~

4ωF
(2n̄ + 1)(1 + e−4ϕ j ), σ2

j ,quad =
~

4ωF
(2n̄ + 1)(1 + e4ϕ j ). (S32)

This expression can also be obtained fromRef. S10 in the limit of weak damping. In the classical limit kBT � ~ω0 the expressions
for σ2

j ,in and σ
2
j ,quad go over into the expressions (S23) for 〈δx2

1〉 and 〈δx2
2〉, respectively. In contrast, in the low-temperature limit

kBT � ~ω0 one sees that σ2
j ,in = (~/4ωF )[1 + exp(−4ϕj)] is below the standard quantum limit ~/2ωF for an undriven mode.

In the side-band resolved regime the squeezing can be revealed via a spectral measurement at any temperature by measuring
the spectrum of the response of the mode to a weak probe driving field F ′ exp(−iω′t) with the frequency ω′ close to the
frequency of the strong field ωF . As indicated in the main text, such response can be characterized by the susceptibilities
χ(ω′) and X(ω′) that relate the probe-induced forced vibrations δ〈q(t)〉 to the amplitude F ′ of the probe field, δ〈q(t)〉 =
χ(ω′)F ′ exp(−iω′t) + X(ω′)F ′ exp[−i(2ωF − ω

′)t]. These susceptibilities were discussed earlier [S1, S3]). In the present
notations, the susceptibility χ(ω′) of the mode in a state j is

χj(ω
′) =

i
2ωF

Γ − i(ω′ − ωF ) + i(δω − 2Γ |yj |
2)

Γ2ν2
y, j − 2iΓ(ω′ − ωF ) − (ω′ − ωF )

2
. (S33)

Of particular physical interest is the value of Im χj(ω). On the one hand, it gives the quadrature of the displacement δ〈q(t)〉
at frequency ω′. On the other hand, it determines how much energy the resonator absorbs from the probe field at frequency
ω′[S11]. It follows from Eq. (S33) that the integral of the absorption coefficient over the frequency is positive,

∫
dω′ Im χj(ω

′) =

π/2ωF > 0, which is a well-known general property of a weakly nonlinear oscillator in a stationary regime. However, along with
absorbing, a nonequilibrium mode can also amplify the probe field in the resonator (for example, amplify the electromagnetic
field in a cavity) at the expense of the energy of the strong field ∝ F. This happens in the frequency range where Im χj(ω

′) is
negative.

Along with Im χj(ω
′), of interest is also the function |χj(ω′)|2, which determines the squared amplitude of the forced

vibrations at the probe field frequency. In the sideband resolved regime, both Im χj(ω
′) and |χj(ω′)|2 have Lorentzian peaks at

ω′ − ωF = ±Γνy, j with halfwidth Γ

Im χj(ω
′) ≈

1
4ωFνy, j

Γνy, j ± (δω − 2Γ |yj |
2)

[(ω′ − ωF ) ± Γνy, j]2 + Γ2 ,

|χj(ω
′)|2 ≈

1
16ω2

FΓ
2ν2

y, j

[Γνy, j ± (δω − 2Γ |yj |
2)]2

[(ω′ − ωF ) ± Γνy, j]2 + Γ2 ,
��Γ2ν2

y, j − |ω
′ − ωF |

2 | . Γ2 (S34)

As seen from Eq. (S33), the function Im χj(ω
′) has a positive peak at frequency ω′ ≈ ωF + SjΓνy, j , which corresponds to

absorption of the probe field, and it has a negative peak at ω′ ≈ ωF − SjΓνy, j , which corresponds to amplification of the probe
field [S1].

From Eqs. (S19) and (S34) one can readily find that the ratio of the areas of the peak of Im χj(ω
′) at ω′ ≈ ωF +SjΓνy, j to the

area of the peak of |Im χj(ω
′)| at ω′ ≈ ωF − SjΓνy, j is equal to tanh2 ϕj , to the leading order in 1/νy, j . Similarly, the ratio of
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the areas of the corresponding peaks of |χj(ω′)|2 is tanh4 ϕj . These ratios are thus determined by the squeezing parameter, both
in the classical and in the quantum regimes. This shows that fluctuation squeezing in a resonantly driven mode has a pronounced
spectral manifestation not only in the classical, but also in the quantum regime.

II. EXPERIMENTAL SETUP, CHARARCTERIZATION AND CALIBRATION

A. Sample and experimental measurement setup

The nanomechanical resonator under investigation is a doubly clamped silicon nitride string resonator. It is 270 nm wide,
100 nm thick and 55 µm long and flanked by two adjacent gold electrodes for dielectric control. A schematic of the dielectric
measurement setup is depicted in Fig. S2. A microwave signal (µw) is used to resonantly pump the microwave cavity, which is
bonded to one of the electrodes. The transmitted and modulated microwave cavity signal (RF) is demodulated by IQ-mixing it
with a reference signal (LO). The output signal is low-pass filtered (LP), amplified (AMP) and its frequency spectrum is recorded
using a spectrum analyzer (SA). Only for the measurement shown in Fig. 1b of the main text as well as Fig. S3a, c and Fig. S5 a
fast lock-in amplifier is employed. The dc voltage (dc) and the rf drive tone (rf) of frequency fF are combined with a bias tee and
applied to the other electrode. A microwave bypass enables the combination of dielectric actuation and detection. More details
about the dielectric control scheme can be found in Refs. S12–S14.

rf

 µw-
cavity

AMP SA

µw 

LP

RF

LO

dcbypass

2 µm

Figure S2. Simplified electronic set-up for dielectric actuation and displacement detection.

B. Calibration using the linear response function

In the measurement we cannot access the amplitude A and the force F directly. However we know the amplitude of the rf
input voltage Vin that drives the capacitor containing the dielectric nanostring and we measure the output voltage signal Vout close
to the eigenfrequency of the resonator ω0. We assume these quantities to be proportional to the driving strength F and to the
amplitude A, respectively,

A = a Vout , F = bVin . (S35)

This allows us to calibrate the driving strength with the benefit of excluding a parameter for further analysis. For weak driving
power, the resonator is in the linear regime and the vibration amplitude A is given by the well known Lorentzian response
A2 = (F/2ω0)

2 /
(
δω2 + Γ2) . Rewriting the Lorentzian response function with the use of Eq. (S35) leads to

V2
out =

Γ2

δω2 + Γ2 · c · V
2
in, (S36)

where the dimensionless parameter c = (b/a)2/(4ω2
0Γ

2) is the calibration factor. At fixed rf input voltage Vin (or drive power),
we fit Vout with the Lorentzian function Eq. (S36) (see Fig. S3a), yielding an eigenfrequency f0 = ω0/2π = 6.529MHz and a
linewidth 2Γ/2π = 20Hz. The same linewidth is found by a ringdown measurement (see Fig. S3b). Driving the system on
resonance (δω = 0) gives the maximum output signal Vout,max, and it follows that V2

out,max = c V2
in. This procedure is repeated for

different drive voltages Vin (expressed as drive power in the main text). The obtained ratios V2
out,max/V

2
in are fit with the constant

c. We obtained a calibration factor c = 0.0062(3).
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Figure S3. a Linear response measurement (black dots) as well as Lorentzian fit (red line) for the eigenfrequency and linewidth evaluation
as well as for the driving strength calibration. b, Ringdown measurement (black dots) along with exponential fit (red line), confirming the
linewidth measured in linear response. c Nonlinear response measurement (black dots) with fit of the Duffing model (red, yellow, and orange
line represents stable high amplitude, stable low amplitude and unstable solution, respectively). Amplitude and frequency detuning of the
backbone point highlighted in green are used for the amplitude calibration.

C. Duffing nonlinearity parameter

From Eq. (S5) one can express the detuning δω in terms of the amplitude A of the forced vibrations on the high-amplitude
branch. Using the scaling relations Eq. (S35), we can write

δω

Γ
=

3γ̃
8ω0Γ

V2
out −

√√√
c

(
V2
in

V2
out

)
− 1, (S37)

where we have introduced the Duffing parameter γ̃ = γ · a2 expressed in units of [1/(V2s2)]. In the nonlinear regime, we fit the
nonlinear amplitude response function by plotting δω as a function of the r.h.s. of Eq. (S37) with the high amplitude branch for
Vout and using γ̃ as the single fitting parameter. For the power P = −31 dBm, which is used to obtain the results shown in Fig. 1b
of the main text, and for P = −30 dBm shown in Fig. S3c we find the scaled Duffing parameter to be γ̃ = 9.28 · 1016 V−2 s−2.
Alternatively and independently, γ̃ can be determined from the relation between the maximal value of the amplitude of the
nanoresonator measured in volts, Vout,max, and the frequency detuning of the drive δωmax at which this maximal value is reached
on the upper branch of the response curve, see Fig. S3c, i.e., from the so-called Duffing backbone curve

γ̃V2
out, max =

8
3
ω0δωmax , (S38)

The value of γ̃ ' 9.3 · 1016 V−2 s−2 obtained from the measurements based on Eq. (S38) for five values of the input power
coincided with the value given above, providing an independent proof of the applicability of the Duffing model in the studied
parameter range.

With the measured calibration factor c, the scaled Duffing parameter γ̃, the eigenfrequency, and the decay rate of the mode,
we have fully determined the parameters of the theoretical model, Eq.(1) of the main text, except for the scaling a.

D. Amplitude conversion

To find the scaling a and thus to convert the measured displacement amplitude in volts Vout into the amplitude A in meters we
use the procedure described in Ref. S15. It relies on the fact that our nanoresonator can be reliably modeled by a string. For a
string, the value of γ in the units of (m · s)−2 can be obtained using the nonlinear dependence of its bending-induced elongation
on the vibration amplitude. This effect is often referred to as geometric nonlinearity [S16]. For the nanoresonators of the type
studied in this paper, this is the major nonlinearity mechanism. It yields the theoretical value

γth = π4 E
4l4ρ

≈ 1.54 · 1026 m−2s−2 , (S39)

where E = 160 GPa [S17] is the Young’s modulus and ρ = 2800 kg/m3 is the mass density [S18].
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Using the relation between γ̃ and γ, we obtain

a = (γ̃/γ)1/2 ≈ (γ̃/γth)
1/2 ' 2.45 × 10−5m/V . (S40)

Finally, we note that the amplitude conversion factor a can alternatively be determined from the thermomechanical fluctuations
of the resonator, provided the thermal motion of the undriven nanostring is resolved. This is not the case in the presented
experiment, such that the amplitude conversion of our data relies on the nonlinear method described above.

E. Additional data: Power spectra as a function of the drive power for fixed detuning near the critical switching point

As an additional measurement we apply a fixed detuning of 190Hz to the actuation frequency (close to the measured critical
switching point) and sweep the drive power from -45 dBm up to -4 dBm, comparable to the measurement under resonant drive
in the main text (Fig. 2a). The resulting power spectra as a function of drive power are shown in Fig. S4a. In contrast to the
data obtained for a resonant drive, we observe an additional, single lower frequency satellite. This satellite is observed for a
weak drive (below -30 dBm). For a strong drive (above -15 dBm), two symmetrical satellites are observed, similarly to the data
obtained for a resonant drive. In the regime in between, each power spectrum shows either the former or the latter satellites,
such that both satellite branches are visible. By calculating the expected satellite splitting, we can assign the single satellite to
the low amplitude state of the Duffing resonator (yellow circles) and the two symmetric satellites to the high amplitude state (red
circles). In the intermediate drive range, the Duffing resonator is in the bistable regime and depending on the initial conditions
the system chooses either the high or the low amplitude solution, consequently we see a switching behaviour between the two
possible satellite branches. This is particularly apparent from Fig. S4b, which plots the amplitude response at the drive tone
as a function of the drive power, as in Fig. 4b of the main text. For a weak drive (below -30 dBm), the resonator is always in
the low amplitude state, whereas for a large drive (above -15 dBm), the system is only found in the high amplitude state. In the
intermediate region, the amplitudes jumps back and forth, leading to the behavior observed for the satellite branches. As before,
the area of the satellites can be extracted by a Lorentzian fit and the calculated ratio of the areas is plotted in Fig. S4c. We can
only report a ratio for the high amplitude solution, as only one of the two satellites of the low amplitude solution is resolved in
the experiment. Again the calculated area ratio is in a good agreement with the theory, where the red line corresponds to the
theoretical calculation including the overlap of the two peaks and the gray line to the additional weak damping approximation.
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Figure S4. Power spectra as a function of the drive power for a fixed detuning of 190Hz. (a) Color coded power spectra showing the satellite
splitting and intensity as a function of the drive power. Red (yellow) open circles denote theoretically calculated satellite positions for the
high (low) amplitude solution in the weak-damping approximation, that applies only where the satellite peaks are well-resolved. (b) Extracted
amplitude of the response at the drive tone as a function of the drive power. (c) Ratio of the satellite areas when the resonator is in the high
amplitude state. Gray (red) line shows the theoretical prediction in the weak damping approximation (more general linearized approximation
taking into account the overlap of the satellite peaks).
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F. Additional data: Frequency fluctuations and direct homodyne detection of the noise quadratures

In an attempt to complement and validate the spectral measurements of the thermal squeezing, we perform a homodyne
measurement to resolve the in-phase and quadrature component of the thermal fluctuations around the stable state of forced
vibrations. To this end, the fast lock-in amplifier is employed as described in section II.A. In order to capture the thermomechanical
noise in the linear regime, the lock-in bandwidth needs to exceed the linewidth of the resonator, 2Γ/(2π). We employ a lock-in
bandwidth of 50Hz with a fourth order filter. For a constant drive frequency and power, the in-phase and quadrature signal is
captured over a time interval of 20 s to sample the underlying noise distribution in approx. 5,000 points.
Figure S5a shows the measured phase-dependent noise of the resonantly driven resonator ( fF = f0) for a drive power of
−56 dBm in the linear response regime. Theoretically, we expect to find a circularly symmetric noise distribution centered
around a point which is displaced from the origin by the drive. For the case of thermal noise, we expect a Gaussian distribution
with a variance of 77 · 10−12 V2. It is immediately apparent that the data (black dots) is not in agreement with this expectation.
Rather than a circular distribution, we find a ’banana’ following the black line which corresponds to the phase space representation
of a frequency sweep through the resonance. This indicates that the system does not stay on resonance for the duration of the
measurement. The distored shape of the noise distribution is thus attributed to frequency fluctuations of the resonator, as
discussed in Ref. [S19]. For the case of a strongly resonantly driven high Q resonator, these frequency fluctuations translate
into fluctuations of the quadrature x1 which are much larger than the thermomechanical fluctuations and thus obviate their
experimental determination in a homodyne measurement.

A more thorough understanding of the impact of frequency fluctuations can be obtained from Fig. S5b which illustrates the
in-phase and quadrature components x1 and x2 of the response of the driven resonator in the linear regime. It is immediately
apparent that near zero detuning ( fF = f0) the in-phase component x1 scales linearly with the detuning. More precisely,
δx1 ≈ δΩF/(2Γ2ω0) around ωF = ω0 for frequency fluctuations of amplitude δΩ. This implies that for weakly damped
resonators, even weak frequency fluctuations lead to a large broadening of the measured x1. The quadrature component x2 is
only quadratically sensitive to frequency fluctuations. On the other hand, as discussed in the main text, the frequency fluctuations
only lead to a negligible broadening of the power spectrum as long as they are weak (< Γ). Therefore the spectral measurement
is better suited to characterize the squeezing of high Q resonators.

In principle, the eigenfrequency fluctuations of the resonator can be tracked and compensated with the lock-in amplifier’s
integrated phase-locked loop (PLL) option. This indeed removes the distorted shape of the noise distribution (see pink dots in
Fig. S5a). However, the feedback controller produces additional noise which is injected into the resonator [S20]. Therefore, the
resulting circularly symmetric noise distribution is still not suitable to extract the thermomechanical fluctuations of the resonator.

Figure S5. In-phase and quadrature component of the response of the driven high Q resonator. (a)Homodyne measurement of the in-phase and
quadrature component of the driven resonator’s response. The black dots show the noise distribution for a resonant drive in the linear regime.
The pink dots show the noise distribution when repeating the measurement under active frequency stabilization using a phase-locked loop.
The solid line illustrates the phase space representation of the full resonance curve, and the gray crosses mark a detuning of ±Γ/(2π) from
resonance. (b) Calculated in-phase and quadrature components x1 and x2 of the response of the driven resonator using the same parameters.
The gray shaded region also marks a detuning of ±Γ/(2π).
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That being said, squeezed quadratures of high Q resonators elude a homodyne measurement. As a matter of fact, to the best
of our knowledge, homodyne detection of squeezing of a high Q resonator mode has not been accomplished, neither in the
mechanical nor in the microwave domain. Therefore, the presented method of inferring squeezing from the sideband-resolved
power spectrum gives access to the noise quadratures in a regime where they cannot be directly determined.
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