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We study a parametrically modulated oscillator that has two stable states of vibration at half the modulation
frequency �F. Fluctuations of the oscillator lead to interstate switching. A comparatively weak additional field
can strongly affect the switching rates because it changes the switching activation energies. The change is
linear in the field amplitude. When the additional field frequency �d is �F /2, the field makes the populations
of the vibrational states different, thus lifting the states symmetry. If �d differs from �F /2, the field modulates
the state populations at the difference frequency, leading to fluctuation-mediated wave mixing. For an under-
damped oscillator, the change of the activation energy displays characteristic resonant peaks as a function of
frequency.
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I. INTRODUCTION

A parametrically modulated oscillator is one of the sim-
plest physical systems that display spontaneous breaking of
time-translation symmetry. When the modulation is suffi-
ciently strong, the oscillator has two states of vibration at
half the modulation frequency, the period-2 states �1�. They
are identical except for the phase shift by �, but for each of
them the symmetry with respect to time translation by the
modulation period is broken. Fluctuations of the oscillator
lead to switchings between the states. Switching rates are
equal by symmetry, for stationary fluctuations. The switch-
ings ultimately make the state populations equal, thus restor-
ing the full time-translation symmetry. Experimental studies
of fluctuation-induced switching in classical parametrically
modulated systems were done for trapped electrons �2�, op-
tically trapped atoms �3,4�, and microelectromechanical sys-
tems �5�. The obtained switching rates are in good agreement
with the theory �6�.

The degeneracy of period-2 states can be lifted if, in ad-
dition to parametric modulation at frequency �F, a system is
driven at frequency �F /2. In the frame oscillating at fre-
quency �F /2, the period-2 states and the additional field look
static. The system reminds an Ising ferromagnet, with the
period-2 states and the additional field playing the roles of
spin orientations and an external magnetic field, respectively.
One can expect that the role of the direction of the magnetic
field is played by the phase of the additional field counted off
from the phase of one of the period-2 states. Depending on
the field phase, one or the other state should be predomi-
nantly occupied.

In this paper, we study resonant symmetry lifting in a
parametric oscillator, which occurs where the frequency of
the additional field is close to the oscillator eigenfrequency.
The field makes the rates of switching between the period-2
states, W12 and W21, different from each other. In turn, this
leads to a difference of the stationary state populations. This
difference may become large even for a comparatively weak
field, as can be surmised from the analogy with the problem
of a ferromagnet. There the change of the state populations
becomes large when the energy difference of the states due
to an external magnetic field exceeds kT, which happens al-

ready for weak fields where this difference itself is small
compared to the internal energy.

In contrast to the case of a ferromagnet, the energy of a
parametrically modulated oscillator is not conserved and its
stationary distribution is not of the Boltzmann form. How-
ever if the fluctuation intensity is small, the dependence of
the switching rates on this intensity is often of the activation
type, see Refs. �7,8� and papers cited therein. This applies
not only to a classical, but also to a quantum oscillator,
where switching is due to quantum fluctuations �9�. An ad-
ditional field changes the effective switching activation ener-
gies, and when this change exceeds the fluctuation intensity,
the overall change of the switching rates becomes large. The
effect is particularly strong if the field is resonant.

In what follows, we develop a theory of the switching
rates Wnm for a classical oscillator. We find the dependence
of the switching activation energies on the amplitude, phase,
and frequency of the additional field and on the oscillator
parameters. We first study the symmetry lifting by the field at
frequency �d=�F /2. Of particular interest here is the vicin-
ity of the bifurcation point where the period-2 states merge
because, in this range, the rates Wnm are comparatively large
and easy to control.

We are also interested in the situation where the additional
field frequency �d is close but not equal to �F /2. Here, the
field-induced modulation of the switching probabilities
causes oscillations of the state populations at frequency ��d
−�F /2�. Such oscillations, superimposed on the oscillator vi-
brations at frequency �F /2 in period-2 states, lead to vibra-
tions at frequency ��F−�d�, i.e., to a strong effective
fluctuation-induced three-wave mixing.

The amplitude of the population oscillations becomes
small when ��d−�F /2� largely exceeds the switching rates.
Yet, the rates themselves may be significantly changed by the
additional field. Of primary interest in this case are the rates
Wnm averaged over the period 4� / �2�d−�F� and their depen-
dence on the additional field amplitude Ad and frequency �d.
One may expect that, as in the case of equilibrium systems
�10–12�, the rate change is quadratic in Ad for small Ad and
corresponds to effective heating of the system by the field.
For underdamped equilibrium systems, this heating can be
resonant, as seen for modulated Josephson junctions �13,14�.
However, for somewhat stronger fields the change of the
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logarithm of the switching rate should become linear in Ad
�15,16�. This happens when the properly scaled field ampli-
tude exceeds temperature.

We show that, for a parametric oscillator, the activation
energies are indeed linear in the additional field amplitude
Ad, when it is not too small �but is also not too large�. When
the oscillator is underdamped, the factor multiplying Ad dis-
plays a characteristic, very different from equilibrium sys-
tems resonant frequency dependence. We develop a tech-
nique that allows us to find this dependence in an explicit
form. The asymptotic analytical results are compared to the
results of numerical calculations of the activation energies.

In Sec. II, we discuss the Langevin equation for a para-
metrically modulated nonlinear oscillator in the rotating
frame and give the general expression for the probability of
switching between coexisting stable vibrational states. In
Sec. III, we obtain a general expression for the correction to
the activation energy of switching and show that it is linear
in Ad. We study resonant symmetry lifting of the switching
rates. In Sec. IV, we investigate low-frequency oscillations of
the state populations and fluctuations-mediated resonant
wave mixing. In Sec. V, an expression for the period-
averaged switching rate is given. In Sec. VI, we consider
symmetry lifting and the frequency dependence of the acti-
vation energy close to the bifurcation point where the period-
2 states merge. In Sec. VII, we study the case of weak damp-
ing. We show that the change of the activation energy may
display characteristic asymmetric resonant peaks as a func-
tion of the additional field frequency. Section VIII contains
concluding remarks.

II. LANGEVIN EQUATION AND SWITCHING RATES

We will study switching between period-2 states of a non-
linear oscillator, which is parametrically modulated by a
force F cos��Ft� and additionally driven by a comparatively
weak field Ad cos��dt+�d� at frequency �d��F /2. The
Hamiltonian of the oscillator is a sum of the term that de-
scribes the motion without the extra field and the term pro-
portional to the field, Hosc=Hosc

�0� +Hosc
�d� ,

Hosc
�0� =

1

2
p0

2 +
1

2
q0

2��0
2 + F cos��Ft�� +

1

4
�q0

4,

Hosc
�d� = − q0Ad cos��dt + �d� �1�

�q0 and p0 are the coordinate and momentum of the oscilla-
tor�. We will assume that the modulation frequency �F is
close to twice the frequency of small amplitude vibrations
�0, and that the driving force F is not too large so that the
oscillator nonlinearity remains small,

��F − 2�0�, ��d − �0� � �0,

F � �0
2, ����q2� � �0

2. �2�

In what follows, for concreteness we set ��0.
Following the standard procedure �1�, we change to the

rotating frame and introduce the dimensionless canonical co-
ordinate Q and momentum P,

q0�t� = C	P cos
�Ft

2
� − Q sin
�Ft

2
�� ,

p0�t� = − C
�F

2
	P sin
�Ft

2
� + Q cos
�Ft

2
�� , �3�

where C= �2F /3��1/2. In these variables, the Hamiltonian be-

comes equal to H̃osc= �F2 /6��g�Q , P�, with g=g�0�+g�d��	�,

g�0� =
1

4
�P2 + Q2�2 +

1

2
�1 − 
�P2 −

1

2
�1 + 
�Q2,

g�d��	� = − ad�P cos��d	 + �d� + Q sin��d	 + �d�� . �4�

Here, we introduced dimensionless time 	 and dimensionless
parameters 
 and �d. These parameters characterize, respec-
tively, the detuning of the modulation frequency from twice
the oscillator eigenfrequency and the detuning of the weak-
field frequency from �F /2, i.e., an effective “beat frequency”
with the subharmonic of the strong field,


 =
�F��F − 2�0�

F
, �d =

�F�2�d − �F�
F

,

	 =
tF

2�F
. �5�

The parameter ad=Ad�6� /F3�1/2 is the dimensionless ampli-
tude of the additional driving field. In obtaining Eq. �4�, we
used the rotating wave approximation and disregarded fast
oscillating terms �exp�±in�Ft� ,n
1. In the quantum for-
mulation, the eigenvalues of g�0��Q , P� give the scaled
quasienergy of the system �9�, and in what follows for brev-
ity we call g quasienergy.

We will assume that the interaction with a bath that leads
to dissipation of the oscillator is sufficiently weak, so that the
oscillator is underdamped. Then, under fairly general as-
sumptions �17�, in the rotating frame dissipation is described
by an instantaneous friction force �no retardation�. Also the
noise spectrum is, generally, practically flat in a compara-
tively narrow frequency range of width 
F /�F centered at
�0; this is the most interesting range, since the oscillator
filters out noise at frequencies far from this range. Therefore,
with respect to the slow time 	, the noise can be assumed
white. The oscillator motion is described by the Langevin
equation, which can be conveniently written in a vector form
as

q̇ �
dq

d	
= K + f�	�, K = K�0� + K�d�, �6�

with

K�0� = − �−1q + �̂ � g�0�, K�d��	� = �̂ � g�d��	� . �7�

Here, all vectors have two components, q��Q , P�, K
��KQ ,KP�, and ����Q ,�P�, while �̂ is the permutation ten-
sor, �QQ=�PP=0, �QP=−�PQ=1. The parameter �−1 in Eq. �6�
gives the oscillator friction coefficient in the units of F /2�F.
We use for � and 
 the same notations as in Refs. �6,9�.
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Because of the extra field �ad, the function K�d� explicitly
depends on time.

The function f�	� is a random force. Its two components
are independent white Gaussian noises with the same inten-
sity �17�,

�fQ�	�fQ�0�� = �fP�	�fP�0�� = 2D��	� .

The noise intensity D is the smallest parameter of the theory.
If both the friction force and the noise come from coupling to
a thermal reservoir at temperature T, then we have D
=6�kT /F��F

2 �the parameter D corresponds to D�−2 /2 in
Ref. �6��.

A. Oscillator dynamics in the absence of noise

In the absence of noise and the symmetry-breaking field
�Ad, in the range


B
�1� � 
 � 
B

�2�, 
B
�1,2� = � �1 − �−2�1/2 �8�

the parametrically modulated oscillator has two stable
period-two states q1,2

�0� and an unstable state qb
�0�. These states

are the stationary solutions of equation K�0�=0. They merge
for 
=
B

�1�. The stable states 1, 2 are inversely symmetrical,

q2
�0�=−q1

�0�. For concreteness, we choose

Q1
�0� = − Q2

�0� � 0.

The vibration amplitude in the unstable state is zero, qb
�0�

=0. For 
�
B
�2�, the state q=0 becomes stable and there

additionally emerge two unstable period-2 states �1�.
We will be interested in a comparatively weak symmetry-

breaking field. Respectively, we will assume that the reduced
field amplitude ad is small, so that the field does not lead to
new stable states. It just makes the stationary states periodic,
for �d�0, or shifts them, for �d=0. The correspondingly
modified states are given by the periodic solutions of equa-
tion q̇=K or by equation K=0. In the laboratory frame, the
periodic stable states q1,2�	� correspond to oscillator vibra-
tions at frequency �F /2 weakly modulated at frequency
��F−2�d� /2. They have spectral components at �F /2 ,�d,
and the “mirror” frequency ��F−�d�.

We will limit ourselves to the analysis of switching in the
parameter range �8�. In this range escape from a period-2
state leads to switching to a different period-2 state. For

�
B

�2�, escape may result in a transition to the zero-
amplitude state �from which the system may also escape to
one of the period-2 states�. The results of the paper immedi-
ately extend to this range, but this extension will not be
discussed. Therefore we use the terms “escape” and “switch-
ing” intermittently.

B. Switching rates: General formulation

The noise f�t� leads to fluctuations about the stable states
and to interstate transitions. When the noise is weak, fluctua-
tions have small amplitude on average. Interstate transitions
require large outbursts of noise and therefore occur infre-
quently. For Gaussian �-correlated noise the probability of a
transition from nth to mth stable period-2 state has activation

dependence on the noise intensity D and is given by the
expression �7,8�

Wnm = CW exp
−
Rn

D
� ,

Rn = min �
−�

�

d	 L�q̇,q;	�, L =
1

4
�q̇ − K�2. �9�

The quantity Rn is the activation energy of a transition. It is
given by the solution of a variational problem. The minimum
in Eq. �9� for Rn is taken with respect to trajectories q�	� that
start for 	→−� at the initially occupied stable state qn�	�
and asymptotically approach qb�	� for 	→�. The optimal
trajectory qn opt�	� that minimizes Rn is called the most prob-
able escape path �MPEP�. The system is most likely to fol-
low this trajectory in a large fluctuation that leads to escape.

The prefactor in the transition probability is CW�F /�F in
unscaled time t. It weakly depends on the noise intensity and
will not be discussed in what follows.

The variational problem �9� for Rn can be associated with
the problem of dynamics of an auxiliary system with La-
grangian L and coordinates q= �Q , P�, and with Hamiltonian

H = H�0� + H�d�, H�0� = p2 + pK�0�,

H�d� = pK�d�. �10�

In terms of this auxiliary Hamiltonian system, the MPEP of
the original dissipative system corresponds to a heteroclinic
trajectory that goes from the periodic �or stationary, for �d
=0� state �qn�	� ,p=0� to the periodic state �qb�	� ,p=0�.

III. PERTURBATION THEORY FOR ACTIVATION
ENERGY

When the additional field �ad is weak, the activation en-
ergy Rn is close to its value R�0� for ad=0, which is the same
for the both states n=1,2. Even though the field-induced
correction to R�0� is small compared to R�0�, it may signifi-
cantly exceed the noise intensity D. Then the overall change
of the transition probability Wnm will be exponentially large.

The correction to the activation energy was studied earlier
for thermal equilibrium systems additionally modulated by a
comparatively weak periodic field �15,16�. As mentioned in
the Introduction, it was found that the correction to Rn is
linear in the field amplitude. The factor multiplying the am-
plitude gives the logarithm of the transition probability and
therefore was called the logarithmic susceptibility �LS�. We
show now that the correction to the activation energy for a
parametrically modulated oscillator is also linear in the am-
plitude of the additional field, �Rn=Rn−R�0��ad, and find
the proportionality coefficient, that is the LS.

Because of the modulation at frequency �F, the oscillator
is far away from thermal equilibrium even without the field
�ad. This leads to a significant difference of the problem of
switching from that for equilibrium systems. Its physical ori-
gin is the lack of time reversibility in nonequilibrium sys-
tems. As a result, the auxiliary Hamiltonian system described
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by the Hamiltonian H�0� �10�, which gives optimal fluctua-
tional trajectories and the MPEP of the original dissipative
system, is nonintegrable �18�.

The Hamiltonian dynamics described by the full Hamil-
tonian H �10�, which includes the additional time-dependent
field �ad, is also nonintegrable. However, for small ad the
heteroclinic Hamiltonian trajectory qn opt�	� that gives the
MPEP remains close to the unperturbed heteroclinic trajec-
tory qn opt

�0� �	� for ad=0. Then, as in the case of modulated
equilibrium systems �15,16�, the lowest-order correction
in ad to the variational functional Rn �9� can be found by
calculating the perturbing term in the Lagrangian along
qn opt

�0� �	�.
The trajectory qn opt

�0� �	� is a real-time counterpart of an
instanton �19� and is often called a real-time instanton. It
goes from 	→−� to 	→�. As in the case of standard in-
stantons, q̇n opt

�0� �	� looks like a pulse. It is large only for a
time of the order of the relaxation time of the system in the
absence of noise. The position of the center of the pulse on
the time axis 	c is arbitrary.

Periodic modulation lifts the degeneracy with respect to
	c. It synchronizes switching events. It is this synchroniza-
tion that leads to the correction to Rn being linear in ad for a
nonzero frequency detuning ��d�. The synchronization corre-
sponds to calculating the field-induced correction �Rn using
as a zeroth-order approximation the unperturbed MPEP for
the nth state qn opt

�0� �	−	c� and adjusting 	c in such a way that
the overall functional Rn=R�0�+�Rn be minimal. That is, 	c is
found from the condition of the minimum of the function
�Rn�	c�,

�Rn = min
	c

�Rn�	c� ,

�Rn�	c� = − �
−�

�

d	 �n�	 − 	c�K�d��	� ,

�n�	� =
1

2
�q̇n opt

�0� �	� − K�0��qn opt
�0� �	��� . �11�

Clearly, 	c is determined modulo the dimensionless modula-
tion period 2� / ��d�. Generically, there is one MPEP per pe-
riod that provides the absolute minimum to Rn.

Equation �11� shows that the correction to the activation
energy of escape is indeed linear in ad. The coefficient at ad
is determined by the Fourier components �̃n�±�d� of the
function ��	�,

�̃n��� = �
−�

�

d	 ei�	�n�	� . �12�

The function �n�	� and its Fourier transform �̃n��� give the
LS in the time and frequency representation. They are of
central interest for the studies of symmetry lifting and
switching-rate modulation. Interestingly, the functions
�n�	� , �̃n��� have two components each, even though there is
only one additional force that drives the oscillator. This leads
to important consequences discussed below and is in contrast

to the case of a modulated equilibrium system.
We note that the condition d��Rn�	c�� /d	c=0, Eq. �11�,

corresponds to the condition that the Mel’nikov function
M�	c� defined for our Hamiltonian system with two degrees
of freedom as

M�	c� = �
−�

�

d	 �H�0��	 − 	c�,H�d��	 − 	c;	�� , �13�

be equal to zero. Here, �A ,B� is the Poisson bracket with
respect to the dynamical variables of the auxiliary system
q ,p. The Poisson bracket is evaluated along the unperturbed
trajectory qn opt

�0� �	−	c� ,pn opt
�0� �	−	c�. Respectively, the func-

tions q ,p in H�0� ,H�d� are evaluated at time 	−	c, which is
indicated by the first argument in H�0� ,H�d�; the second argu-
ment in H�d� indicates the explicit time dependence of H�d�,
Eq. �10�, due to the field �ad. For systems with one degree of
freedom, the condition M�	c�=0 shows that 	c for the un-
perturbed trajectory is chosen in such a way that this trajec-
tory is close to the trajectory qn opt�	−	c� ,pn opt�	−	c� �20�.
For our system, the condition M�	c�=0 is necessary for the
applicability of perturbation theory. The corresponding
analysis will be provided elsewhere.

A. Symmetry lifting by a field at subharmonic frequency

The analysis of the switching rates should be done some-
what differently in the case where the frequencies of the
additional field and the parametrically modulating field sat-
isfy the condition �d=�F /2. In this case �d=0 and the force
K�d� is independent of time. Therefore the function �Rn�	c� is
independent of 	c and minimizing it over 	c is irrelevant.
However, a perturbation theory in ad can still be developed.
The first-order correction to the activation energy �Rn
��Rn

res��d� can be obtained by evaluating the term �ad in
the Lagrangian L �9� along the unperturbed path qn opt

�0� �	�. It
has a simple explicit form

�Rn
res��d� = ad��̃nQ�0�cos �d − �̃nP�0�sin �d� , �14�

where the subscripts Q , P enumerate the components of �̃
�we have also used Eqs. �4� and �7� for K�d��. Both compo-
nents of �̃n�0� contribute to the change of the activation en-
ergy for subharmonic driving.

An important feature to emphasize is that the function
�Rn

res��d� is not the limit of min �Rn�	c� for �d→0. Physi-
cally this is because Eq. �11� gives the change of the loga-
rithm of the escape rate Wnm averaged over the period
� / �2�d−�F� �or 2� / ��d�, in dimensionless time 	�. Such av-
eraging is meaningful as long as the frequency detuning
�2�d−�F��Wnm. In the opposite limit, the occupation of the
state n changes significantly over the period � / �2�d−�F�;
this change is not characterized by the period-averaged Wnm.

An important property of the static LS �̃n�0� is that it has
opposite signs for the states 1 and 2. Indeed, these states are
inversely symmetric, q1

�0�=−q2
�0�, and since the vector K�0� is

also antisymmetric, K�0�→−K�0� for q→−q, it is clear that
q1 opt

�0� �	�=−q2 opt
�0� �	�, and therefore �̃1�0�=−�̃2�0�. Then from

Eqs. �9� and �14�, we have for the switching rates W12 and
W21
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W12

W�0� =
W�0�

W21
= exp	−

�R1
res��d�
D

� , �15�

where W�0�=W12
�0�=W21

�0� is the switching rate for ad=0, W�0�

�exp�−R�0� /D�. Equation �15� applies for arbitrary ad /D.
The corrections to the prefactor �ad �but not ad /D� have
been disregarded.

In the parameter range 
B
�1��
�
B

�2�, where the only
stable states of the system are the period-2 states �cf. Eq.
�8��, the ratio of the stationary populations of the states w1
and w2 is the inverse of the escape probabilities ratio. There-
fore, from Eq. �15�,

w1

w2
=

W21

W12
= exp	2�R1

res��d�
D

� .

It is seen from this expression that even a comparatively
weak symmetry-lifting field, where ��R1

res��R�0�, can lead to
a significant change of the state populations. This happens
when ��R1

res��D. The ratio of the state populations is deter-
mined by the phase of the field �d. As mentioned in the
Introduction, there is a similarity with magnetic-field-
induced symmetry breaking for an Ising spin, with �d play-
ing the role of the orientation of the magnetic field. We note
that both the absolute value and the sign of the coefficients
�̃n�0� depend on the oscillator parameters for ad=0. There-
fore, one can change the population ratio not only by varying
the phase and amplitude of the additional field, but also by
varying these parameters, for example the amplitude F of the
parametrically modulating field.

IV. LOW-FREQUENCY MODULATION OF STATE
POPULATIONS

The LS �̃n��� displays frequency dispersion for � of the
order of the inverse dimensionless relaxation time of the os-
cillator or higher. If the additional field is so closely tuned to
the subharmonic frequency that �2�d−�F��W�0�, the period
averaging of Wnm implied in Eq. �11� becomes inapplicable,
as explained above. One should rather think of the instanta-
neous values of the switching rates Wnm�	�, which are given
by Eq. �15� with �d→�d	+�d�0�. Slow time-dependent
modulation of the switching rates leads to modulation of the
state populations,

dw1

d	
= − W12�	�w1 + W21�	�w2, w1 + w2 = 1. �16�

Such modulation has attracted much attention in the context
of stochastic resonance �21,22�. In contrast to a particle in a
slowly modulated double-well static potential that has been
most frequently studied in stochastic resonance, here the
stable states are fast oscillating, and strong modulation of
their populations is induced by a high-frequency driving
field. In this sense, there is similarity with stochastic reso-
nance in a resonantly driven oscillator with coexisting
period-1 states �see Ref. �21�� that was recently observed in
experiment �23�. In contrast to a resonantly driven oscillator,
for a parametrically modulated oscillator the populations of
period-2 states are equal in the absence of extra field for any
parameter values.

Oscillations of the state populations at frequency
��d� ���d−�F /2� in the laboratory frame� have a compara-
tively large amplitude �ad /D, for small noise intensity. They
lead to vibrations of the oscillator in the laboratory frame at
frequencies �d and ��F−�d�, with the average coordinate
being

�q0�t�� � �2F

3�
�1/2

�w1�t� − w2�t��

�	P1
�0� cos
�Ft

2
� − Q1

�0� sin
�Ft

2
� .

The vibration amplitude is much larger than the amplitude of
noise-free vibrations about attractors. This indicates strong
fluctuation-induced effective three-wave mixing. Moreover,
because oscillations of w1,2�	� are nonsinusoidal for large
ad /D, there also occurs multiple-wave mixing. Further
analysis of this effect is beyond the scope of the present
paper.

V. PERIOD-AVERAGED SWITCHING RATE

For the difference frequency �2�d−�F��Wnm
�0�, the major

effect of the additional field is the change of the switching
rates averaged over the dimensionless period 2� / ��d�. It
is given by the change of the activation energies �Rn.
From Eq. �11�, it follows that �Rn is independent of time.
From the symmetry relations q1 opt

�0� �	�=−q2 opt
�0� �	� and

K�d��	�=−K�d��	+��d
−1�, it follows that the minimization

over 	c in Eq. �11� leads to �R1=�R2. It is straightforward to
show that

�R1 = �R2 = − ad�̃1c��d� ,

�̃1c��� = ���̃1����2 − i �̃1��� �̂ �̃1
*����1/2. �17�

From Eq. �17�, the change of the activation energy is fully
determined by the LS at the scaled frequency difference �d.
The function �̃1c is nonnegative. It displays a characteristic
dependence on the oscillator parameters. As we show, it may
have resonant peaks in the regime of small damping, ��1.

VI. SCALING BEHAVIOR NEAR THE BIFURCATION
POINT

A. Symmetry lifting

The dynamics of the oscillator is simplified near the bi-
furcation point 
B

�1� where the period-2 states merge together
�a supercritical pitchfork bifurcation �20��. Here, motion is
controlled by one slow variable �soft mode� Q�=Q cos �
+ P sin �, where �= 1

2 ��−arcsin �−1�. From Eq. �6�, to the
lowest order in the distance to the bifurcation point �=

−
B

�1� the Langevin equation for this variable has the form

Q̇� = − �Q�U + f��	�, U =
1

2

B

�1���Q�2 −
1

4

B

�1��3Q�4

+ Q�ad cos��d	 + �d + �� , �18�

where f��	� is white noise of intensity D.
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The potential U in the absence of additional field has a
familiar form of a quartic parabola �note that 
B

�1��0�. The
values of the slow variable at the period-2 states correspond
to the minima of U, Q1,2��0�= ±�1/2�−1, whereas the unstable
zero-amplitude state is at the local maximum of U at Q��0�

=0. The activation energy R�0�= �
B
�1� ��2 /4� is just the height

of the potential barrier �U �6�; the probability distribution
near the pitchfork bifurcation point was discussed in Refs.
�24,25�.

For an additional field at exact subharmonic frequency,
the change of the activation energy is simply the change of
the barrier height. With the chosen convention that Q1

�0��0,
we obtain from Eq. �18�

�R1
res = − �R2

res = − �1/2�−1ad cos��d + �� . �19�

This expression shows that the correction to the activation
energy decreases as the system approaches the bifurcation
point, i.e., �=
−
B

�1� decreases. However, the decrease of
�R1

res is much slower than the decrease of R�0�. Therefore, the
relative correction to the activation energy sharply increases
as 
→
B

�1�. It is important that the sign of �R1
res, which

shows which of the states 1 and 2 is predominantly occupied,
depends on �d+�, that is, not only on the relative phase of
the additional field, but also on the scaled relaxation param-
eter � that determines the value of �. Therefore, by varying
�, one can control which of the states is predominantly oc-
cupied.

B. High-frequency modulation

We now consider the case where the additional field is
detuned from the subharmonic frequency, �2�d−�F��W12

�0�.
Since the motion near the bifurcation point is controlled by
one variable Q�, there is no phase shift between the compo-
nents �1Q��d� and �1P��d�. The change of the activation en-
ergy is �R1=�R2=−ad �̃1c��d�=−ad ��̃1��d��. The problem as
a whole coincides with that for a periodically modulated
overdamped equilibrium particle. The LS for an overdamped
particle in a quartic potential is already known �8�. In the
present case, we have

�̃1c��� = �−1/2�−1�1/2 � ��
1 − i��

2
��
1 +

i��

2
�� ,

�20�

where ��=� / �
B
�1���� and ��z� is the Gamma function. The

function �̃1c��� is proportional to a smaller power of the
distance to the bifurcation point � than R�0�. This shows that
the correction to the period-averaged switching rate becomes
relatively larger as the system approaches the bifurcation
point. As seen from Eq. �20�, for small � the LS �̃1c��� has a
peak at the frequency detuning �=0 and monotonically de-
creases with increasing ���. The typical width of the peak of
�̃1c��� is ��
B

�1���. It decreases as 
 approaches 
B
�1�.

VII. WEAK DAMPING LIMIT

The LS can be analyzed also in the limit of weak damp-
ing, � �1. Here we consider damping that is weak in the

rotating frame. This means that not only is the oscillator
decay slow compared to frequency �0, but also compared to
the much smaller frequency F /�F. If there were no damping
and noise, the motion of the oscillator in the rotating frame
would be vibrations with given quasienergy g, which
are described by equation q̇= �̂�g. Damping causes the
quasienergy to decrease toward its value in one of the stable
states whereas noise leads to quasienergy diffusion away
from these states. On the MPEP qn opt�	�, the quasienergy
increases from its value gn in the stable state n to its value at
the saddle point gb �6� �the quasienergy G in Ref. �6� differs
from g�0��Q , P� in sign�. As a result, qn opt�t� is a spiral.

A. Symmetry lifting

We will start the analysis with the case of the additional
field at exact subharmonic frequency, �d=�F /2. In this case,
g�Q , P� is independent of time. The general expression for
the activation energy of switching in the limit of weak damp-
ing, which is not limited to small ad, has the form �6,9,17�

Rn
res = �−1�

gn

gb

dg
Mn�g�
Nn�g�

, Mn�g� =� �
An�g�

dQdP ,

Nn�g� =
1

2
� �

An�g�
�2g dQdP . �21�

Integration with respect to Q , P in functions Mn�g� ,Nn�g� for
given g is done over the area An�g� of phase plane �Q , P�,
which is limited by the phase trajectory g�Q , P�=g that lies
within the basin of attraction to the stable state qn.

For comparatively small ad, the integrals in Eq. �21� can
be calculated by perturbation theory. To first order in ad, we
obtain the following expression for the correction �Rn

res

��Rn
res��d� to the activation energy R�0� for 
B

�1��
�
B
�2�,

�R1
res��d� = − �R2

res��d� = X1�−1ad sin �d, �22�

where

X1 = �
gmin

�0�

0

dg
1

N�0�	�M1 −
M�0�

N�0� �N1� +
�
 + 1�1/2

2 + 

,

�M1 = 2�
Q1 min

Q1 max

dQ
Q

��Pg�0��
,

�N1 = �
Q1 min

Q1 max

dQ
Q�2g�0�

��Pg�0��
. �23�

Here M�0� and N�0� are the values of M1,2�g� and N1,2�g� for
ad=0, whereas �M1 and �N1 are the field-induced correc-
tions to M1 and N1 divided by ad sin �d; gmin

�0� =−�
+1�2 /4.
The limits Q1 min�g� ,Q1 max�g� of the integrals over Q are
given by equation g�0��Q ,0�=g, with 0�Q1 min�Q1 max. The
arguments of the integrals over Q in the expressions for
�M1 ,�N1 are calculated for P given by equation g�0��Q , P�
=g with P�0.
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It follows from Eq. �22� that, for small damping, the de-
pendence of the correction to the activation energy on the
phase of the additional field has a simple form �R1

res

�sin �d. Both �R1
res and R�0� are ��−1, they decrease with the

decreasing scaled friction coefficient �−1. The function X1
depends on one parameter, the relative frequency detuning of
the strong field 
. This dependence is shown in Fig. 1.

It is seen from Fig. 1 that the change of the activation
energy is nonmonotonic as a function of 
. For 
 close to
the bifurcation value 
B

�1�=−1, we have X1��
+1�1/2. This
shows that the weak-damping expression for �R1

res, Eqs. �22�
and �23�, smoothly goes over into expression �19� obtained
near the bifurcation point in the opposite limit of over-
damped motion; note that in Eq. �19� ��� /2 for �−1�1.

The analytical results are compared in Fig. 1 with the
numerical results obtained by directly solving the Hamil-
tonian equations of motion for the MPEP and calculating the
LS from Eqs. �11� and �12�. Since in the limit of small damp-
ing �R1

res � sin �d, one expects from Eq. �14� that �̃1Q�0�
should be small and X1�−��̃1P�0�. Close to the bifurcation
point 
B

�1� the numerical results agree with the asymptotic
theory already for moderately small damping, �−1=0.2.

We found numerically that the component �̃1Q�0� in-
creases with 
. Close to the second bifurcation point 
B

�2�, it
becomes of the same order of magnitude as �̃1P�0�, for the
chosen �. We note that the MPEP is a fast oscillating function
of time, for weak damping. When �̃1�0� is calculated, the
oscillations largely compensate each other. The numerical
value of �̃1�0� is therefore very sensitive to numerical errors
in the MPEP. With increasing 
, the frequency of oscillations
of the MPEP increases and so does the sensitivity. Therefore,
we present numerical results only for a limited range of 
.

B. Resonant peaks of the logarithmic susceptibility

Oscillations of the MPEP may be expected to lead to
peaks of the LS as function of frequency for the dimension-
less frequency detuning �����−1. Since the period-averaged
corrections to the activation energy for the states 1 and 2,

�R1 and �R2, are equal, we will consider the MPEP for the
state 1 and will drop the subscript 1. The analysis of the LS
peaks can be done by extending to the MPEP of a parametri-
cally modulated oscillator the approach developed in Ref.
�17�.

As a first step, it is convenient to change variables from
Q , P to quasienergy-angle variables g ,�. This is accom-
plished by seeking the optimal path of the unperturbed sys-
tem, ad=0, in the form

q1 opt
�0� �	� = �x�gopt,�opt�,y�gopt,�opt�� .

Here, x and yare the coordinate and momentum of vibrations
with given unperturbed quasienergy, g�0��x ,y�=g; � is the
vibration phase: x and y are 2�-periodic in �. We denote the
vibration frequency by ��g�. The equations for x ,y are of the
form

��g���x = �yg
�0�, ��g���y = − �xg

�0�. �24�

Functions x�g ,�� and y�g ,�� can be expressed in terms of
the Jacobi elliptic functions �6�.

On the optimal path, the quasienergy g�gopt�	� is a func-

tion of time, with ġopt , ��̇opt−��gopt����−1. Using the explicit
form of equations of motion for the Lagrangian �9�, one can
show that, to first order in �−1, on the optimal path


dx

d	
�

opt
� Kx

�0��x,y� + �−1F�g���y ,


dy

d	
�

opt
� Ky

�0��x,y� − �−1F�g���x . �25�

Here, the force K�0�, with components Kx
�0� ,Ky

�0�, is defined
by Eq. �7� in which Q and P are replaced by x and y, respec-
tively.

The function F�g� in Eq. �25� remains arbitrary, to first
order in �−1. It can be found from the analysis of the terms
��−2 in the Lagrange equation for the optimal path �17�,
which is cumbersome. The calculation can be simplified by
noting that F�g� determines the change of the quasienergy ḡ
averaged over vibration period 2� /��g�. From Eq. �25�, tak-
ing into account the explicit form of K�0� and expression
�21�, we have


dḡ

d	
�

opt
= − �−1�x�xg

�0� + y�yg
�0�

+ F�ḡ��−1�ḡ����xg
�0��2 + ��yg

�0��2��

= − ����−1���ḡ�M�0��ḡ� + F�ḡ�N�0��ḡ�� , �26�

where overline denotes period averaging.
Alternatively the evolution of quasienergy on the optimal

path can be found using the Langevin equation for dḡ /d	,
which can be obtained by averaging Eq. �6� over the period
2� /��ḡ�. The resulting equation describes drift and diffusion
of ḡ. The optimal path for ḡ can be obtained using the varia-
tional formulation similar to Eq. �9�. Since the corresponding
variational problem is one-dimensional, it is easy to find the

FIG. 1. �Color online� Symmetry lifting in the weak-damping
limit, �−1�1. Solid line: the scaling factor X1, Eq. �23�, in the
correction to the activation energy �R1

res=X1�−1ad sin �d. The dots
show the scaled LS −��̃1P�0�. It determines the correction �sin �d

to �R1
res, see Eq. �14�, and is obtained by calculating the MPEPs for

�=5.
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optimal path. As is often the case for one-dimensional sys-
tems driven by white noise, the optimal path is the time-
reversed path in the absence of noise,


dḡ

d	
�

opt
= ����−1��ḡ�M�0��ḡ� .

Comparing this expression with Eq. �26�, we find

F�g� = −
2��g�M�0��g�

N�0��g�
. �27�

To lowest order in �−1, we can replace ḡ with g on the opti-
mal path.

Equations �11�, �12�, �25�, and �27� describe the LS in a
simple form of the Fourier transform of the functions
F�g���x, F�g���y on the optimal path. The general expres-
sion is further simplified near the peaks of �̃1���. They occur
where � is close to the frequency ��g� or its overtones for
certain values of g. It is convenient to write x and y as Fou-
rier series,

x�g,�� = �
m

x�m;g�exp�im��

and similarly for y. Then calculating the LS is reduced to
taking the Fourier transform of the oscillating factors
exp�im�opt�	�� weighted with functions of gopt�	� that
smoothly depend on time.

On the MPEP the leading term in the phase �opt�	� is
�opt�	���	d	��(gopt�	��). The function ��g� monotonically
decreases with increasing g. Since gopt�	� is monotonic as
function of time, m��gopt� on the optimal path can be in
resonance with � only at a certain time. This allows us to
single out resonant contributions �̃1�m ;�� to �̃1��� from the
corresponding mth overtones of x�g ,�� ,y�g ,��. Near reso-
nance integration over 	 in Eq. �12� can be done by the
steepest descent method, for slowly varying g�	�. It gives

�̃1�m;�� = Cm��−1/2	 2�M�0�

�d�/dg�N�0�2�
g�m

1/2

��y�− m;g�m�,− x�− m;g�m��

Here, Cm is a phase factor, �Cm�=1. The subscript g�m indi-
cates that the expression in the brackets should be calculated
for g=g�m, with g�m given by the condition m��g�m�=�.

The change of the activation energy �R1 is determined by
the LS �̃1c��� defined in Eq. �17�. From the explicit form of
the matrix elements x�m ;g� ,y�m ;g� found in Ref. �9� it fol-
lows that arg�y�−m ;g�x*�−m ;g��=−� /2 for m�0, in the
considered range of g and 
. Then from the expression for
�̃1�m ;��, we obtain that the spectral peak of �̃1c near an mth
overtone, �̃1c�m ;��, is given by the expression

�̃1c�m;�� = ��−1/2	 2�M�0�

�d�/dg�N�0�2�
g�m

1/2

���x�− m;g�m�� + �y�− m;g�m��� �m � 0� .

�28�

The Fourier components �x�m ;g�� , �y�m ;g�� rapidly decrease

with increasing �m� �exponentially, for large �m� �9��. There-
fore, the major peak of �̃1c��� is the peak of �̃1c�1;��. From
Eq. �28�, near the maximum it has the form

�̃1c�1;�� � �1 − az���z�, z = ��gmin� − � , �29�

where a
1 is a numerical factor and ��x� is the step func-
tion ���gmin�=2�
+1�1/2�. In obtaining this expression, we
used that, for small g−gmin, vibrations with given g are
nearly sinusoidal, with x�1;g� ,y�1;g�� �g−gmin�1/2 and
M�0� ,N�0��g−gmin. The sharp asymmetry of the peak of
�̃1c�1;�� is due to the fact that the eigenfrequencies ��g�
have a cutoff at ��gmin�.

A similar calculation shows that the peak from the second
overtone is smoother, with �̃1c�2;��� �2��gmin�−��1/2 for
small 2��gmin�−�. The maximum of �̃1c�2;�� is shifted from
2��gmin� to lower frequencies and has a smaller height than
�̃1c�1;��. Higher-order peaks have still smaller heights.

The multi-peak structure of the LS for small damping is
clearly seen in Fig. 2. The lines in this figure show
asymptotic expressions �28� for the overtones �̃1c�m ;��. The
squares are obtained by numerically finding the optimal path
qopt

�0��t� and then calculating �̃1c��� from Eqs. �11�, �12�, and
�17�. As expected from Eq. �29�, the major peak of the nu-
merically calculated LS is at frequency ��gmin�. Other peaks
are located near overtones of ��gmin�, on the low-frequency
side. All peaks have characteristic strongly asymmetric
shapes.

Equation �28� for the major peak, m=1, is in a good
agreement with the numerical calculations. The agreement
for the overtones is worse because the peaks are much
broader and the contributions to the LS from different over-
tones overlap. The full LS is not given just by a sum over m
of �̃1c�m ;��. It is necessary to take into account interference
of the contributions from vibrations with different quasiener-
gies g�m but close m��g�m� and, of course, the effect of re-
laxation. We note that for ��2�d−�F�0 the peaks of the
LS have much smaller amplitudes. In contrast to equilibrium
systems, �̃1c�−��� �̃1c���.

The above results demonstrate that, for an underdamped
oscillator, the rate of switching between period two states
can be resonantly increased by applying an extra field with

FIG. 2. �Color online� The multiple-peak LS �̃1c��� for an un-
derdamped system. Solid lines show the overtones �̃1c�m ;��,
Eq. �28�, with m=1,2 ,3. Squares show the LS calculated by nu-
merically finding the MPEP. The data refer to �=5, 
−
B

�1�=1.5.
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frequency �d��F /2. The amplitude of the LS peaks is
��−1/2, it is parametrically larger than the LS at zero fre-
quency, which determines the symmetry lifting and is ��−1.

We note that, for extremely weak damping, a change of
the switching rate with the field amplitude Ad may be due to
the field-induced mixing of the attraction basins, as in equi-
librium systems �26�. We do not discuss this mechanism
here.

VIII. CONCLUSIONS

In this paper, we considered an oscillator parametrically
modulated by a comparatively strong field at nearly twice its
eigenfrequency and additionally driven by a comparatively
weak nearly resonant field. Because of the parametric modu-
lation, the oscillator displays period doubling. It has two vi-
brational states that differ only by phase in the absence of the
additional field. Even a comparatively weak additional field
can strongly affect the oscillator by changing the rates of
switching between the period-2 states. We have shown that
the rate change depends exponentially on the ratio of the
amplitude of this field Ad to the characteristic fluctuation
intensity D. For small D, this change becomes large even
where the field only weakly perturbs the dynamics of the
system.

If the frequency of the additional field �d coincides with
the frequency of the period-2 states �F /2, the switching rates
W12 and W21 between the states become different from each
other. As a result, the stationary populations of the states also
become different. This is the effect of symmetry lifting. It
depends exponentially strongly on the field amplitude.

For small frequency difference, ��d−�F /2��Wnm, the ad-
ditional field leads to oscillations of the state populations,
which, in turn, lead to fluctuation-induced three- and
multiple-wave mixing. For a larger detuning, ��d−�F /2�
�Wnm, the major effect of the additional field is the increase
of the switching rates Wnm averaged over the beat period
4� / ��F−2�d�.

For both small and comparatively large ��F−2�d�, the
change of the switching rates is characterized by the LS �̃n.
The latter gives the proportionality coefficient between the
field-induced change of the activation energy of switching
from an nth state �Rn and the field amplitude Ad. We have
obtained an explicit general expression for the LS in terms of
the path that the system is most likely to follow in switching,
the MPEP. For �d=�F /2, the two components of the vector
�̃n give the coefficients in �Rn at cos �d and sin �d, where �d
is the phase of the additional field relative to the phase of the
strong field. For ��d−�F /2��Wnm, the quantity of interest is
�̃1c defined by Eq. �17�.

The major qualitative features of the LS are �i� scaling
behavior near the bifurcation point where the period-2 states
merge and �ii� the occurrence of resonant peaks as a function
of frequency for weak damping. We have found that �̃n
scales with the distance � to the bifurcation point as �̃n
��1/2. Thus, the field-induced correction to the activation
energy of switching decreases as the system approaches the
bifurcation point. However, this decrease is significantly
slower than that of the major term in the activation energy,
which is ��2.

Resonant peaks of the LS become pronounced where, in
the rotating frame, oscillator vibrations about the period-2
states are underdamped. The vibration frequencies are much
less than �d, and the condition that these vibrations are un-
derdamped is more restrictive than the requirement that the
oscillator be underdamped in the laboratory frame. The LS
displays several peaks. The major peak is shifted from �F /2
by the frequency of small-amplitude vibrations about the
period-2 states. Other peaks are shifted approximately by the
overtones of this frequency and have smaller amplitudes. All
LS peaks have characteristic strongly asymmetric shapes.

The effects discussed in this paper are not limited to a
parametric oscillator, they can be observed in other systems
with period-2 states. The results on modulation of switching
rates by an additional field can be extended also to other
systems with coexisting vibrational states, including reso-
nantly driven nonlinear nano- and micromechanical oscilla-
tors and Josephson junctions. Fluctuational interstate transi-
tions in these systems were recently studied experimentally
�27–29�. Although the theory of the LS for modulated oscil-
lators was not developed until this paper, a resonant increase
of the switching rate by an additional field was expected
from qualitative arguments based on the analogy with static
systems �30�. The preliminary experimental data indicate that
the effect occurs in Josephson junctions when the frequen-
cies of the both strong and weak fields are close to the
plasma frequency �31�.

In conclusion, we have studied the effect of an additional
field on a fluctuating parametrically modulated oscillator. We
predict strong change of the populations of the period-2
states by a comparatively weak field. We also predict that the
logarithm of the rate of interstate switching is linear in the
field amplitude, and the proportionality coefficient may dis-
play resonant peaks as a function of the field frequency.
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