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Tunneling Transverse to a Magnetic Field and Its Occurrence in Correlated 2D Electron Systems
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We investigate tunneling decay in a magnetic field. Because of broken time-reversal symmetry, the
standard WKB technique does not apply. The decay rate and the outcoming wave packet are found from
the analysis of the set of the particle Hamiltonian trajectories and its singularities in complex space. The
results are applied to tunneling from a strongly correlated 2D electron system in a magnetic field parallel
to the layer. We show in a simple model that electron correlations strongly affect the tunneling rate.

PACS numbers: 73.40.Gk, 03.65.Sq, 73.20.Dx, 73.50.–h
Tunneling plays a fundamental role in many physical
phenomena. In the past few decades, much progress has
been made in describing it beyond the one-dimensional
approximation and understanding how it occurs in many-
body systems [1–4]. For charged particles, the tunneling
rate can be conveniently controlled by a magnetic field ap-
plied transverse to the tunneling direction. Recently this
effect was used to probe two-dimensional electron sys-
tems (2DES) in semiconductor heterostructures [5–8] and
on helium surfaces [9]. However, despite its interest and
generality, even the problem of single-electron tunneling
decay in a magnetic field remains largely unsolved. Ex-
isting results, although often highly nontrivial, are limited
to the cases where the potential has either a special form
[2,10,11] (e.g., parabolic [10]), or a part of the potential or
the magnetic field are in some sense weak [12–16].

Of particular interest for the present paper is tunnel-
ing transverse to the field from strongly correlated 2DES
[9,17]. In such systems exchange is small, and the tunnel-
ing electron can be thought of as moving in the potential
created by other electrons. This motion can exponentially
strongly affect the tunneling rate. This can be qualitatively
understood, because an electron, which tunnels a distance
z transverse to the field B and is free to move in the B 3 ẑ
direction, has its velocity yH in this direction incremented
by vcz (vc � eB�m is the cyclotron frequency). If ini-
tially yH � 0, the energy of motion in the ẑ direction is re-
duced by mv2

cz2�2, i.e., there arises a parabolic magnetic
barrier for tunneling. On the other hand, if an electron
can give the momentum in the B 3 ẑ direction to in-plane
excitations in the electron system, yH can remain small,
effectively reducing this barrier. This makes it possible to
use tunneling in a magnetic field as a sensitive probe of
in-plane electron dynamics in correlated systems.

In this paper we will use an Einstein model in which
the in-plane electron motion is a harmonic vibration about
an equilibrium position, with one frequency (see Fig. 2
below) [18]. The problem is then effectively reduced to a
single-particle problem, which mimics the many-electron
one. As we show, the resulting tunneling exponent depends
on the dimensionless parameters vct0 and v0t0, where t0
0031-9007�00�84(10)�2227(4)$15.00
is the imaginary time of underbarrier motion for B � 0,
and v0 is a characteristic frequency of in-plane electron
vibrations.

For smooth potentials and magnetic fields, the tunneling
rate can be found in the WKB approximation, in which the
wave function is

c�r� � D�r� exp�iS�r�� �h̄ � 1� . (1)

Here, S�r� is the classical action. It is calculated using the
classical equations of motion

�S � p ? �r, �r � ≠H�≠p, �p � 2≠H�≠r , (2)

where H � �p 1 eA�2�2m 1 U�r� is the electron Ham-
iltonian, and A is the vector potential of the magnetic field.

In the standard approach to tunneling decay, which ap-
plies for B � 0 [1,4,19,20], the action S is purely imagi-
nary under the barrier. It is calculated by changing to
imaginary time and momentum in Eqs. (2), which then
take the form of equations of classical motion in an in-
verted potential 2U�r�, with energy 2E $ 2U�r�. In
the presence of a magnetic field, because of broken time-
reversal symmetry, the replacement t ! 2it, p ! ip,
r ! r, U�r� ! 2U�r� would lead to a complex Ham-
iltonian, which makes no sense and indicates that a more
general approach is required.

We will find the action S by solving the Hamiltonian
Eqs. (2) in complex time and phase space. In contrast to
the B � 0 case, in the presence of a magnetic field the
action is complex for real r; i.e., the decay of the wave
function (1) under the barrier is accompanied by spatial
oscillations. The tunneling rate is determined by Im S at
the point where the particle emerges from the barrier as
a semiclassical wave packet, with real coordinate and real
momentum. However, again in contrast to the standard
(B � 0) analysis, at this point the particle velocity is finite,
Re �r fi 0.

The trajectories (2) of interest for tunneling decay start
for t � 0 from the vicinity of the localized metastable
state. The initial conditions can be obtained from the
known form of the wave function c�r� close to the po-
tential well, both in the case where U�r� is parabolic near
the minimum and c is Gaussian [1,2,4], and where U�r�
© 2000 The American Physical Society 2227
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is nonanalytic in one variable (z), which is of interest for
2DES. In both cases the trajectories (2) are parametrized
by two complex parameters x1,2�0�, which can be the initial
values of the in-plane coordinates x�0� � x1�0�, y�0� �
x2�0� for given z�0�, and which in turn determine p�0� and
S�0� [cf. Eq. (7)].

To find the tunneling exponent we note that, once the
particle has escaped, it is described by a wave beam which
propagates in real time along a real classical trajectory
rcl�t�. This trajectory can be obtained by analyzing the fan
of complex trajectories r�t�, p�t� (2) for different x1,2�0�
and finding such x1,2�0� that, for some t, both r�t� and
p�t� become real,

Im r�t� � Im p�t� � 0 . (3)

This is a set of equations for complex x1,2�0� and Im t. The
number of equations is equal to the number of variables,
with account taken of H being real. The Re t remains
undetermined: a change in Re t in (3) results just in a
shift of the particle along the classical trajectory rcl�t� (see
Fig. 1). Such a shift does not change Im S. We note that, in
contrast to what happens for B � 0, the classical trajectory
does not have to touch the boundary of the classically
forbidden region.

The tunneling exponent R is given by the value of Im S
at any point on the trajectory rcl,

R � 2 Im S�rcl� . (4)

For a physically meaningful solution, Im S has a parabolic
minimum at rcl as a function of the coordinates transverse
to the trajectory, and the outgoing beam is Gaussian near
the maximum.

From (3), the tunneling exponent can be obtained by
solving the equations of motion (2) in imaginary time, with
complex r. However, such a solution does not give the
wave function for real r between the well and the classical
trajectory rcl. Neither does it tell us where the particle
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FIG. 1. (a) Complex t plane for integrating the Hamiltonian
Eq. (2) in the escape problem. The line Im t � const cor-
responds to the classical trajectory of the outgoing electron.
(b) The classical trajectory rcl on the �x, z� plane. The bold
solid lines in (a) and (b) show the “visible” part of the trajec-
tory where the amplitude of the outgoing wave packet exceeds
the amplitude of the tail of the underbarrier wave function. The
thin solid line in (b) shows where the amplitudes of the two wave
functions coincide. It starts from the caustic (3). The data refer
to the potential (8), with v0t0 � 1.2 and vct0 � 1.2; time in
(a) is in units of t0.
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shows up on the classical trajectory. To obtain a complete
solution of the tunneling problem, one should take into
account the fact that S is a multivalued function of r, even
though it is a single-valued function of t and x1,2�0�; i.e.,
several trajectories (2) with different t and x1,2�0� can go
through one and the same point r. The wave function is
determined generally by one of the branches of S�r�.

Branching and multivaluedness of the action are fa-
miliar from the 1D tunneling problem, where S 2 St ~

�z 2 zt�3�2 near the turning point zt [19]. In multidi-
mensional systems, branching generally occurs on caustics
[21]. In our problem, in contrast to the usually considered
case, the trajectories r�t� will be complex, as will also be
the caustics. Caustics of most general type are envelopes
of the trajectories r�t� (2). They are given by the equation

J�r� � 0, J�r� �
≠�x, y, z�

≠�x1�0�, x2�0�, t�
. (5)

The prefactor in the WKB wave function (1) is D �
const 3 J21�2. Therefore the WKB approximation does
not apply close to the caustic (cf. [21]).

The caustic of interest is the one where the analytically
continued wave functions of the outgoing semiclassical
wave and the WKB tail of the intrawell state are connected.
The amplitude of the semiclassical wave incident on the
barrier from z ! ` should be set equal to zero. Local
analysis near the caustic is similar to that in the 1D case.
It is convenient to change to the variables x0, y0, and z0

which are locally parallel and perpendicular to the caustic
surface, respectively. We set z0 � 0 on the caustic. For
small jz0j,

S�x0, y0, z0� � S�x0, y0, 0� 1 a1z0 1 a2z03�2 (6)

[the coefficients a1,2 � a1,2�x0, y0� can be expressed in
terms of the derivatives of S, r over x1,2�0�, t on the caus-
tic]. As in the 1D problem, the prefactor in (1) depends on
the distance to the caustic as D ~ �z0�21�4. However, in
the present case S contains a linear term a1z0, and there-
fore the momentum perpendicular to the caustic is finite.
We note that Eq. (5) and the condition Im r � 0 define a
line in real space, which can be called a caustic line.

For real r, there is a switching surface which separates
the ranges where Im S�r� is smaller for one or the other
of the solutions connected on the caustic [22]. Only the
solution with the smaller Im S should be held in the WKB
approximation. It is this condition that determines where
the outgoing wave shows up from beneath the tail of the
intrawell state. The switching surface starts from the caus-
tic line, where the branches of S merge together. The cross
sections of the switching surface and the caustic line by the
plane �x, z� are shown in Fig. 1.

We now apply these general results to a simple model
which is relevant to electrons on helium. The correspond-
ing geometry is shown in Fig. 2a. For typical densities
n � 108 cm22 and temperatures T & 1 K, these electrons
form a Wigner crystal [23] or a nondegenerate liquid [24].
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FIG. 2. Two branches of the action on the symmetry axis x �
0 as a function of the tunneling coordinate z before the branching
point, for the same parameters as in Fig. 1. The vicinity of the
cusp at zc is zoomed in inset (b). Inset (a): The geometry of
tunneling from a correlated 2DES transverse to a magnetic field;
v0 is the Einstein vibration frequency in the Wigner solid.

In both these cases, the characteristic frequency of vi-
brations about a (quasi)equilibrium in-plane position is
v0 � �2pe2n3�2�m�1�2.

The initial conditions for the equations of underbarrier
motion (2) can be chosen at an arbitrary plane z � const
close to the electron layer and yet deep enough under the
barrier so that the electron wave function is semiclassi-
cal. We set z � z�0� � 0 on this plane. In the Ein-
stein model, the potential for in-plane motion for z � 0
is �mv

2
0�2� �x2 1 y2�, and c�x, y, z � 0� is Gaussian in

x, y. Then for t � 0 in (2),

z�0� � 0, pz�0� � ig,

S�0� �
imv0

2
�x2�0� 1 y2�0�� ,

(7)

where g � �2mU�r � 0��1�2 is the reciprocal localiza-
tion length in the z direction, g ¿ �mv0�1�2 (the energy
of the localized state is set equal to zero). The initial
values of the in-plane momentum components pj�0� �
≠S�0��≠xj�0� � imv0xj�0� (where j � 1, 2 enumerates
the in-plane coordinates).

For electrons on helium, tunneling occurs if there is
applied an electric field E� which pulls electrons away
from the helium surface [25]. The tunneling barrier is
formed by the image potential and the potential of this
field. It is nearly triangular at distances from the surface
which are much greater than the effective Bohr radius g21.
The barrier width L � g2�2meE� for B � 0. Typically
L ø n21�2, and therefore the effective electron potential
energy is well represented by

U�r� �
mv

2
0

2
�x2 1 y2� 1

g2

2m

µ
1 2

z
L

∂
�z . 0� .

(8)

With (8), the equations of motion (2) become linear
and can be readily solved. The symmetry of the potential
U�x, y, z� � U�6x, 6y, z� gives rise to a specific symme-
try of the set of the trajectories (2), and one can show that
the caustic of interest intersects the real space for x � 0
and some z � zc (zc � L for B � 0).

For B along the y axis (see Fig. 2a), the motion in
the y direction is decoupled and the problem becomes
two dimensional. For z # zc, the function Im S has two
branches, each of which is symmetrical in x. The branch 1
describes the tail of the intrawell wave function before
branching. It has a minimum at x � 0 for given z, and
monotonically increases with jxj and z. As expected, the
slope ≠ Im S�≠z is finite at the branching point zc. The
branch 2 corresponds to the wave “reflected” from the
caustic. This branch is nonmonotonic in z for x � 0, with
a minimum at zm , zc. For zm , z # zc, it has two sym-
metrical minima for x fi 0. They lie on the classical tra-
jectory shown in Fig. 1b, and merge together for z � zm.

As discussed above, Im S is constant on the classical
trajectory in Fig. 1b. This trajectory goes through the point
x � 0, z � zm and is symmetrical in x. Although the
potential U�r� is even in x and is minimal for x � 0, the
escaped particle “shows up” on the classical trajectory for
finite x. This happens where Im S1�rcl� � Im S2�rcl� �
R�2 (the subscript enumerates the branches in Fig. 2).
The particle has finite velocity and moves away from the
barrier.

Since the point x � 0, z � zm lies on the classical tra-
jectory of interest (although on the section “hidden” by the
tail of the intrawell state), the tunneling exponent is given
by R � 2 Im S2�x � y � 0, zm� and can be calculated in
imaginary time, with imaginary x�0�:

R̃ � 2n2
0t3 2 3n0�1 2 t�2 1 3�1 1 n0� �1 2 t�

1 3n2t, R � 2gLR̃�3n2, (9)

where n0 � v0t0, nc � vct0 are the dimensionless
in-plane and cyclotron frequencies (t0 � 2mL�g is the
“duration” of underbarrier motion in imaginary time for
B � 0), n2 � n

2
0 1 n2

c , and t � it�t0 is given by the
equation

�n2n0�1 2 t� 2 n2
c� tanhnt � n�n2

0t 2 n2� . (10)

The tunneling exponent as a function of v0, vc is shown
in Fig. 3. For v0 � 0 (no electron-electron interaction),
the magnetic barrier makes tunneling impossible for
vct0 $ 1 [9] (see curve 1; t ! ` for n0 � 0, nc ! 1).
Even comparatively weak in-plane confinement eliminates
this effect. The reduction of the tunneling suppression is
significant already for small v0t0, and increases fast with
increasing v0t0.

The above results provide an explanation of the mag-
netic field dependence of the tunneling exponent for
electrons on helium, which was observed to be much
weaker [9] than would be expected from the single-
electron theory. Detailed comparison with the data [9]
will be discussed elsewhere [18], where the model will
2229
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FIG. 3. The dependence of the tunneling rate on magnetic
field, W̄ � W�B��W �0�. The curves 1 to 4 refer to v0t0 �
0, 0.2, 0.4, 0.6. Magnetic field eliminates single-electron tunnel-
ing for vct0 $ 1 (cf. curve 1). Inset: tunneling exponent vs
in-plane frequency v0 for v2

ct
2
0 � 1.0, 2.0, 3.0 (curves a, b, c).

also be extended in order to include the realistic vibra-
tional spectrum of the Wigner solid. At zero temperature
this extension does not change the results significantly,
because electron tunneling is accompanied by excitation of
mostly short-wavelength vibrations, which are reasonably
well described by the Einstein model used above.

In conclusion, we have shown that, under suitable con-
ditions (vct0 * 1, v0t0 * 1), correlations in a 2DES can
very strongly affect the rate of tunneling escape transverse
to a magnetic field. We have also shown that the prob-
lem of single particle tunneling in a magnetic field can be
solved in the semiclassical limit by analyzing the Hamilto-
nian trajectories of the particle in complex space and time.
The connection of decaying and propagating waves occurs
on caustics of the set of these trajectories. This approach
does not require us to consider any piece of the electron
potential or the magnetic field as a perturbation. It gives
us an escape rate which is generally exponentially smaller
than the probability for a particle to reach the boundary
of the classically accessible range U�r� � E. Finally, we
have obtained explicit results for a simple model of an
electron tunneling from a helium surface transverse to a
magnetic field.

We are grateful to V. N. Smelyanskiy who partici-
pated in this work at the early stage, and to D. Farber
for help with numerical calculations. This research
was supported in part by the NSF through Grant
No. PHY-9722057.
2230
[1] J. S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967); S. Coleman,
Phys. Rev. D 15, 2929 (1977).

[2] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149,
374 (1983).

[3] Quantum Tunnelling in Condensed Matter, edited by Yu.
Kagan and A. J. Leggett (Elsevier, New York, 1992).

[4] A. Auerbach and S. Kivelson, Nucl. Phys. B257, 799
(1985).

[5] J. Smoliner et al., Phys. Rev. Lett. 63, 2116 (1989); G.
Rainer et al., Phys. Rev. B 51, 17 642 (1995).

[6] J. P. Eisenstein et al., Phys. Rev. B 44, 6511 (1991); S. Q.
Murphy et al., Phys. Rev. B 52, 14 825 (1995).

[7] L. Zheng and A. H. MacDonald, Phys. Rev. B 47, 10 619
(1993).

[8] T. Ihn et al., Phys. Rev. B 54, R2315 (1996); M. J. Yang
et al., Phys. Rev. Lett. 78, 4613 (1997); M. Lakrimi et al.,
Phys. Rev. Lett. 79, 3034 (1997).

[9] L. Menna, S. Yücel, and E. Y. Andrei, Phys. Rev. Lett. 70,
2154 (1993).

[10] H. A. Fertig and B. I. Halperin, Phys. Rev. B 36, 7969
(1987).

[11] P. Ao, Phys. Rev. Lett. 72, 1898 (1994); Phys. Scr. T69, 7
(1997).

[12] B. I. Shklovskii, JETP Lett. 36, 51 (1982); B. I. Shklovskii
and A. L. Efros, Sov. Phys. JETP 57, 470 (1983).

[13] Qin Li and D. J. Thouless, Phys. Rev. B 40, 9738 (1989).
[14] T. Martin and S. Feng, Phys. Rev. B 44, 9084 (1991).
[15] J. Haidu, M. E. Raikh, and T. V. Shahbazyan, Phys. Rev. B

50, 17 625 (1994).
[16] B. Hellfer and J. Sjöstrand, Ann. Scuola Norm. Sup. Pisa

Cl. Sci. 14, 625 (1988).
[17] Jongsoo Yoon et al., Phys. Rev. Lett. 82, 1744 (1999);

A. P. Mills, Jr. et al., Phys. Rev. Lett. 83, 2805 (1999), and
references therein.

[18] T. Sharpee et al. (to be published).
[19] L. D. Landau and E. M. Lifshitz, Quantum Mechanics:

Non-relativistic Theory (Pergamon, New York, 1977);
M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315
(1972).

[20] U. Eckern and A. Schmid, in Ref. [3], p. 145.
[21] M. V. Berry, Adv. Phys. 25, 1 (1976); L. S. Schulman,

Techniques and Applications of Path Integration (Wiley,
New York, 1981).

[22] For classical systems, the occurrence of switching lines on
the tails of distribution was discussed by M. I. Dykman,
M. M. Millonas, and V. N. Smelyanskiy, Phys. Lett. A 195,
53 (1994).

[23] C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795
(1979); D. S. Fisher, B. I. Halperin, and P. M. Platzman,
Phys. Rev. Lett. 42, 798 (1979).

[24] M. I. Dykman et al., Phys. Rev. Lett. 70, 3975 (1993);
M. J. Lea and M. I. Dykman, Physica (Amsterdam) 251B,
628 (1998).

[25] M. Ya. Azbel and P. M. Platzman, Phys. Rev. Lett. 65, 1376
(1990).


