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Singular response of bistable systems driven by telegraph noise

Akihisa Ichiki,1 Yukihiro Tadokoro,1 and M. I. Dykman2

1Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

(Received 20 December 2011; published 6 March 2012)

We show that weak periodic driving can exponentially strongly change the rate of escape from a potential
well of a system driven by telegraph noise. The analysis refers to an overdamped system, where escape requires
that the noise amplitude θ exceed a critical value θc. For θ close to θc, the exponent of the escape rate displays
a nonanalytic dependence on the amplitude of an additional low-frequency modulation. This leads to giant
nonlinearity of the response of a bistable system to periodic modulation. Also studied is the linear response to
periodic modulation far from θc. We analyze the scaling of the logarithm of the escape rate with the distance to
the saddle-node and pitchfork bifurcation points. The analytical results are in excellent agreement with numerical
simulations.
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I. INTRODUCTION

Noise in physical systems contains important information
about the system dynamics, and much effort is put into
studying it, examples being the studies of the full counting
statistics in quantum optics and mesoscopic electron systems.
Besides direct but often complicated measurements of the
noise statistics, one can characterize noise by investigating
fluctuations in noise-driven dynamical systems. Following
the suggestions in Refs. [1,2], the non-Gaussian character
of current noise in Josephson junctions was seen in the
experiment [3,4]. The specific scaling of the rate of escape from
a metastable state near a bifurcation point predicted for Poisson
noise [5] has been seen in a micromechanical resonator [6].

Telegraph (dichotomous Markov) noise is one of the most
interesting types of noise, as it comes from such diverse sources
as defects in metals [7,8], two-level defects in Josephson
junctions [9,10], and two-state fluctuators in a broad range
of semiconductor devices [11], to mention but a few. It was
used also to describe environmental fluctuations in biological
systems [12]. It has been known since the late 1970s that such
noise leads to singular features in the dynamics of noise-driven
systems [13–15]. It was found [16,17] that systems driven
by multiplicative telegraph noise that multiplies a periodic
potential can display very strong nonlinearity of response to
an additional dc bias. A number of interesting effects result
also from the interplay between telegraph and white Gaussian
noise [18–20].

In this paper, we study the singular response of telegraph-
noise-driven systems to low-frequency modulation. We con-
sider overdamped systems, i.e., inertial effects play no role in
the dynamics. An important class of such systems are systems
close to bifurcation points, as the dynamics near a bifurcation
point is controlled by a soft mode [21]. We provide explicit
results for the rates of escape from a metastable state for two
types of bifurcations that have been attracting much interest
recently, namely the saddle-node and pitchfork bifurcations.
We also predict the singular response of telegraph-noise-driven
systems to a weak periodic modulation.

Telegraph noise can be thought of as coming from a
fluctuator with two states, |↑〉 and |↓〉, between which it
switches at random. The force it exerts on the dynamical

system depends on the state; we set it equal to θ and −θ in states
|↑〉 and |↓〉, respectively. The features of the noise-induced
fluctuations come from the fact that the noise cannot drive an
overdamped system away from its stable state beyond the point
where the restoring force exceeds the noise amplitude θ . This
can lead to a singular behavior of the probability distribution,
since the system can spend much time close to the point(s)
where the restoring force and the noise are balanced [14,15].
Another consequence is that, if the dynamical system has a
metastable state, escape from this state due to telegraph noise
may only occur for a sufficiently large noise amplitude, where
θ exceeds a critical value θc [22–25].

For small |θ − θc|, an already weak regular periodic force
can strongly change the escape rate. If the force amplitude
exceeds |θ − θc|, depending on the sign of θ − θc the force can
make escape possible or impossible for a part of the period.
As a result, in a bistable system a low-frequency force can
almost completely synchronize populations of the coexisting
stable states. This means that the system is very sensitive to
the force. As we show, the response of the system is strongly
nonlinear and displays strong frequency dispersion.

II. SCALING OF THE RATE OF
TELEGRAPH-NOISE-INDUCED ESCAPE

A. Model

The dynamics of an overdamped system with coordinate q

driven by telegraph noise f (t) from a two-state fluctuator is
described by the equation

q̇ = −U ′(q) + f (t). (1)

The noise f (t) takes on values ±θ depending on the fluctuator
state |↑〉 or |↓〉. The rates of interstate switching |↑〉 → |↓〉
and |↓〉 → |↑〉 are ν↑↓ and ν↓↑, respectively. In the absence
of noise, the system has a stable state (stable states) at the
minimum (minima) of the potential U (q). The noise causes
fluctuations about the stable states and can cause escape from
a potential well.

031106-11539-3755/2012/85(3)/031106(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.031106


AKIHISA ICHIKI, YUKIHIRO TADOKORO, AND M. I. DYKMAN PHYSICAL REVIEW E 85, 031106 (2012)

In the general case of asymmetric noise, ν↑↓ �= ν↓↑, the
noise exerts a nonzero average force on the system 〈f 〉, which
can be incorporated into the potential, U (q) → Ũ (q),

Ũ (q) = U (q) + θqν−/ν,
(2)

ν− = ν↑↓ − ν↓↑, ν = ν↑↓ + ν↓↑.

Parameter ν is the overall rate of decay of noise correlations,
whereas ν−/ν characterizes noise asymmetry, i.e., the dif-
ference of the mean populations of the fluctuator states |↓〉
and |↑〉.

The average equilibrium position of the system q̃a is at the
minimum of potential Ũ (q),

Ũ ′(q̃a) = 0, Ũ ′′(q̃a) ≡ U ′′(q̃a) > 0. (3)

We will assume that fluctuations about q̃a are small on average.
This is the case if the noise amplitude θ is small. A small-
amplitude telegraph noise is of limited interest; in particular, it
cannot lead to escape of the system from a potential well as θ

should exceed the potential gradient that drives the system
toward the stable state. A more interesting case is one in
which θ is not small, but the noise correlation time ν−1 is
small compared to the characteristic relaxation time of the
system tr ,

νtr 
 1, tr = 1/U ′′(q̃a). (4)

In this case, on average the noise changes sign fast. The
system cannot follow such fast variations. The noise is then
largely averaged to its mean value 〈f (t)〉 and fluctuations
of the system become effectively weak. However, there also
occur rare fluctuations where f (t) remains constant for a time
comparable to tr . Such noise fluctuations lead to comparatively
large system fluctuations.

We assume that both noise-switching rates are large:
ν↑↓,ν↓↑ 
 t−1

r . Of central interest to us will be weakly to
moderately asymmetric noise, where ν↑↓ and ν↓↑ are close
to each other, and potentials U (q) and Ũ (q) have a similar
structure, e.g., both of them are either single- or double-well
potentials.

B. Intrawell probability distribution and the escape rate

We will describe the system and the fluctuator using the
probability densities ρ↑(q) and ρ↓(q) for the system to be at a
given q and the fluctuator to be in state |↑〉 and |↓〉, respectively.
They satisfy the equations [14]

∂tρ↑,↓ = −∂q{[−U ′(q) ± θ ]ρ↑,↓} ∓ [ν↑↓ρ↑ − ν↓↑ρ↓] (5)

(the upper and lower signs refer to equations for ρ↑ and
ρ↓, respectively). For νtr 
 1, function ρ↑ − ρ↓ relaxes over
time ∼ν−1, which is much shorter than the relaxation time
tr of the probability distribution of the system itself ρ(q) =
ρ↑(q) + ρ↓(q). On times large compared to ν−1, function
ρ↑(q) − ρ↓(q) follows ρ(q) adiabatically,

ρ↑ − ρ↓ ≈ −L̂(θ∂qρ + ν−ρ), L̂ = (ν − ∂qU
′)−1. (6)

We note that operator L̂ cannot be expanded in ν−1U ′∂q ,
because the distribution ρ can be steep.

Using Eq. (6), we obtain from Eq. (5) a Markovian equation
for adiabatic evolution of ρ,

∂tρ = ∂q[U ′ρ + θL̂(θ∂qρ + ν−ρ)]. (7)

For a system prepared close to the minimum of the potential
well, over time �1/U ′′(q̃a) the distribution inside the well
becomes stationary, ρ(q) → ρst(q). From Eq. (7),

ρst(q) = νU ′′(q̃a)
(
σ 2

a

/
2π

)1/2

θ2 − U ′ 2(q)
exp[−�(q,q̃a)], (8)

where

�(q1,q2) = ν

∫ q1

q2

dq ′Ũ ′(q ′)/[θ2 − U ′ 2(q ′)],

(9)
σ 2

a = 4ν↑↓ν↓↑θ2/[ν3U ′′(q̃a)].

Equation (8) coincides with the result of Ref. [14] obtained in
a different way. For νtr 
 1 distribution ρst has a maximum
at q̃a and is Gaussian near the maximum, ρst ∝ exp[−(q −
q̃a)2/2σ 2

a ]; parameter σ 2
a in Eq. (9) is the variance of the

distribution. We assumed in Eq. (8) that θ > |U ′(q)| in the
range |q − q̃a| � σa; in what follows, we assume that θ >

|U ′(q)| in a broad range |q − q̃a| 
 σa .
Of primary interest for this paper is the situation where

the potential U (q) in the absence of noise and the average
potential Ũ (q) have a metastable potential well, i.e., a well of
finite depth from which the system can escape due to the noise.
In this case, along with the minimum at q̃a , the potential Ũ (q)
has a local maximum at q̃S ,

Ũ ′(q̃S ) = 0, Ũ ′′(q̃S ) ≡ U ′′(q̃S ) < 0. (10)

For weak on average telegraph noise, escape is a rare event
and can be characterized by rate We � t−1

r . This rate was
studied in a number of papers [22–25]. In the Appendix, we
provide an alternative derivation which is based on solving
Eq. (7) using the Kramers method [26]. Such a derivation
does not involve the assumptions that underlie the mean first-
passage time approach used for this problem or the assumption
that particles are injected into a potential well at a constant rate.
The method works equally well for symmetric (ν− = 0) and
asymmetric telegraph noise and gives both the exponent and
the prefactor in the switching rate,

We = |U ′′(q̃a)U ′′(q̃S )|1/2

2π
exp(−�e), �e = �(q̃S ,q̃a).

(11)

Equation (11) applies when the noise amplitude is suffi-
ciently large, θ > maxq∈(q̃a ,q̃S )r |U ′(q)| [here, notation (x,y)r
is used to indicate the range between x and y, (x,y)r =
(min(x,y), max(x,y))]. The condition of the escape rate
being small, We � U ′′(q̃a), requires that �e 
 1. The latter
condition is closely related to the condition that the distance
between the extrema of Ũ (q) exceeds the width of the
distribution peak, |q̃S − q̃a| 
 σa , which is related, in turn,
to the condition νtr 
 1. Indeed, if we use for an estimate
θ � U ′′(q̃a)|q̃a − q̃S |, from Eq. (9) for ν↑↓ ∼ ν↓↑ ∼ ν we
obtain (q̃a − q̃S )2/σ 2

a � νtr ,�e. Therefore, condition νtr 
 1
is necessary for the escape rate to be small and for escape
events to obey Poisson statistics.
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C. Escape exponent near bifurcation points

The model of overdamped motion (1) is of particular inter-
est for systems close to bifurcation points. In such systems, one
of the motions is slow [21]; other degrees of freedom follow
it adiabatically. We will be interested in the saddle-node and
pitchfork bifurcations, in the vicinity of which fluctuations
were recently studied in a number of experiments on nano-
and micromechanical systems and Josephson-junction-based
systems [27–31]. For these bifurcation points, the potential
U (q) in Eq. (1) has the form of Usn(q) and Upf(q), respectively,
where

Usn(q) = ηq − 1
3q3, Upf(q) = − 1

2ηq2 + 1
4q4. (12)

Parameter η characterizes the distance to the bifurcation point
in the parameter space. For η > 0, the system near the saddle-
node bifurcation has a stable state qa = −η1/2 and a saddle
point qS = η1/2, whereas near the pitchfork bifurcation the
system has two stable states q(1,2)

a = ±η1/2 separated by the
saddle point qS = 0. For a symmetric potential of the form of
Upf(q), the switching rate was studied in Refs. [24,25,32].

In contrast to systems driven by Gaussian noise or Poisson
noise [5,33], for telegraph noise the escape exponent does not
display simple scaling with η. From Eq. (11) in the interesting
case of symmetric noise, ν↑↓ = ν↓↑, we have for the escape
exponents �(sn)

e and �
(pf)
e for the saddle-node and pitchfork

bifurcations, respectively,

�(sn)
e = νη−1/2Rsn(θ/η),

(13)
�(pf)

e = νη−1Rpf(θ/η3/2).

The scaling functions Rsn(z) and Rpf(z) are shown in Fig. 1.
For z 
 1, we have Rsn(z) ≈ 4z−2/3 and Rpf(z) ≈ z−2/4.
Functions Rsn(z) and Rpf(z) diverge for z → 1 and z →
2/33/2, respectively. These values of z correspond to the

 0

 1
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 0  1  2  3z

3=ν
5=ν

theory

pfR

snR

theory
3=ν
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FIG. 1. The scaling functions Rsn(z) and Rpf(z) for the escape
exponent near the saddle-node and pitchfork bifurcation points,
Eq. (13). The vertical lines show the values of z where the
corresponding functions diverge. The squares and circles are the
results of simulations of the escape rate, with R obtained from
Eqs. (11) and (13) with η = 1. The agreement between theory and
simulations improves with increasing ν, which corresponds to the
increasing exponent of the escape rate �e, as seen from Eq. (13).

critical value of the noise amplitude necessary for escape θc =
maxq∈(qa,qS )r |U ′(q)|, which is determined by the condition
that the noise can overcome the force that drives the system
toward q̃a . The behavior of the switching rate near θc has been
studied [24,32] for the symmetric double-well potential of the
form Upf(q).

In the general case from Eqs. (9) and (11) for small δθ =
θ − θc > 0,

�e ≈ πν|Ũ ′(qmax)/θc|[2|U ′′′(qmax)|δθ ]−1/2, (14)

where qmax ∈ (q̃a,q̃S )r is the position of the local maximum
of |U ′(q)|. We note that, numerically, Eq. (14) sometimes
applies only for very small δθ ; for example, for the potential
Upf(q) with η = 1, the difference between the numerical and
asymptotic values of �e reaches ∼15% already for δθ = 0.01.

If the telegraph noise has nonzero mean, the analysis of
the vicinity of the bifurcation points has to be modified.
For the saddle-node bifurcation, the average value of the
bifurcation parameter η is shifted, whereas in the case of a
pitchfork bifurcation the noise lifts the q → −q symmetry of
the averaged system dynamics. The very concept of reducing
multidimensional motion to the dynamics of a soft mode
near a bifurcation point implies that, with nonzero 〈f (t)〉,
the system should still be close to the bifurcation point,
which means that θ |ν−|/ν should be of the same order or
less than η for the saddle-node bifurcation and than η3/2 for
the pitchfork bifurcation (which also becomes a saddle-node
bifurcation after the degeneracy is lifted). If these conditions
apply, the extension of the analysis of the escape exponent is
straightforward, but the results will no longer have the simple
form (13).

III. LINEAR RESPONSE TO A PERIODIC PERTURBATION

The analysis of the response of a telegraph-noise-driven
system to a periodic perturbation has attracted significant atten-
tion in the context of stochastic resonance (see Refs. [34–36]),
with an emphasis placed on systems in which the noise
multiplies the potential. In contrast, we are considering
systems with additive noise; in this section, we develop a
linear response theory for telegraph-noise-driven systems.

Of utmost interest for the analysis of response is the
case of weak noise, where the typical displacement from the
equilibrium position � = 〈(q − q̃a)2〉1/2 is small, so that Ũ (q)
remains parabolic for |q − q̃a| � �. This is the case for small
noise amplitude θ or, if θ is not small, for high noise switching
rate νtr 
 1; in the latter case, � = σa . Linearizing Eq. (1)
about q̃a , we obtain

� = (4ν↑↓ν↓↑θ2/{ν2U ′′(q̃a)[U ′′(q̃a) + ν]})1/2. (15)

For a metastable potential well, the condition of weak noise
means, in particular, that � � |q̃S − q̃a|.

A weak additive periodic force A cos ωt leads to small-
amplitude vibrations,

〈δq(t)〉 = 1
2A Re[χ (ω) exp(−iωt)], (16)

linearly superimposed on random motion. Here, χ (ω) is the
susceptibility. For weak noise and a single-well potential,
χ (ω) = [U ′′(q̃a) − iω]−1 is independent of the noise. Note
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that a telegraph-noise-driven system is away from thermal
equilibrium, and therefore there is no simple general relation
between the susceptibility and the power spectrum of the
system.

If the system is bistable, an important contribution to the
susceptibility can come from interstate transitions. We will
consider the case in which the potential Ũ (q) [and U (q)] has
two wells, 1 and 2, located at q̃(1)

a and q̃(2)
a , respectively; the

local maximum of the potential between the wells is at q̃S .
The dynamics in the presence of noise becomes trivial if the
noise amplitude θ > max |U ′(q)| for q ∈ (q̃(1)

a ,q̃S )r but θ <

max |U ′(q)| for q ∈ (q̃S ,q̃(2)
a )r . In this case, the noise leads

to transitions from well 1, but not from well 2. Then in the
stationary regime, well 1 will be empty and the system will
be monostable. For the opposite inequalities, well 2 will be
empty.

We will consider a more interesting case in which θ >

|U ′(q)| in the whole region between the potential minima,
q ∈ (q̃(1)

a ,q̃(2)
a )r , and ν 
 U ′′(q̃(1,2)

a ). In this case, the rate
Wnm of n → m interwell transitions (n,m = 1,2) is given by
Eq. (11) with q̃a replaced with q̃(n)

a , i.e., Wnm ∝ exp(−�(n)
e )

with �(n)
e ≡ �(q̃S ,q̃(n)

a ). As a result of interwell transitions,
there is formed a stationary distribution over the wells. The
well populations w1 and w2 = 1 − w1 can be found from the
balance equation ẇ1 = −[W12 + W21]w1 + W21.

Periodic modulation changes the well populations. For
weak modulation, this change can be comparatively large
if the modulation frequency is small, ω � U ′′(q̃(1,2)

a ). For
such ω, one can think of the modulation as causing a slow
change of the potential, U (q) → U (q) − Aq cos ωt , which
the system follows adiabatically. The change of U (q) leads
to a change of the instantaneous transition rates, and first of
all their exponents,

�(n)
e → �(n)

e + Aψn cos(ωt),
(17)

ψn = −
∫ q̃S

q̃
(n)
a

dq
δ�

(
q̃S ,q̃(n)

a

)
δU ′(q)

,

where δ�/δU ′(q) is the functional derivative of the �

functional, Eq. (9), with respect to U ′(q). For large �(q̃S ,q̃(n)
a ),

parameter ψn is also large; it becomes particularly large when
the difference between θ and the maximal value of |U ′(q)| in
the interval (q̃S ,q̃(n)

a ) is small.
From Eq. (17), the transition rates become time-dependent

due to the modulation. To first order in the modulation am-
plitude, Wnm → Wnm(t) ≈ Wnm(1 − Aψn cos ωt). The corre-
sponding change of the populations w1,2 can be found as
a periodic solution of the balance equation. The resulting
contribution to the susceptibility χtr(ω) has a form reminiscent
of the corresponding term in the theory of stochastic resonance
for Gaussian-noise-driven systems (see Ref. [38] for a review),

χtr(ω) = w1w2(ψ1 − ψ2)
(
q̃(1)

a − q̃(2)
a

) W

W − iω
,

(18)
W = W12 + W21, w1 = 1 − w2 = W21/W.

The total transition rate W in Eq. (18) is exponentially small
for weak noise. Therefore, the susceptibility χtr can be large
only for low frequency ω. For a given ω, the transition-induced
part |χtr(ω)| of the amplitude of the signal 〈δq(t)〉, Eq. (16),

sharply depends on the noise amplitude θ and the noise
switching rate ν. If, for the initially chosen noise parameters,
ω 
 W , then |χtr(ω)| increases exponentially with increasing
θ and decreasing ν in a certain range of θ,ν, reminiscent of the
Gaussian-noise-induced stochastic resonance. The signal-to-
noise ratio also displays stochastic-resonance-type behavior.
Another feature in common with the conventional stochastic
resonance is that |χtr| can be large only in the range where the
stationary well populations w1 and w2 are close to each other.

An important distinction from stochastic resonance in
Gaussian-noise-driven systems is that the transition rates Wnm

display an extremely sharp dependence on the noise amplitude
θ close to its critical value θc. This dependence is described
by Eqs. (11) and (14). In this range of θ , the response
becomes strongly nonlinear already for relatively small force
amplitude A.

IV. CRITICAL RESPONSE

We now consider the nonlinear response of a telegraph-
noise-driven system near the critical noise amplitude θ . We will
analyze the most interesting case of a system with a symmetric
double-well potential U (q) = U (−q) and symmetric noise,
ν↑↓ = ν↓↑. Here, the critical values of θ are the same in both
potential wells. In the absence of an extra force, for θ > θc

the system is equally distributed over the potential wells in the
stationary regime. For θ < θc, the system stays in the well in
which it was initially prepared.

A weak periodic force A cos ωt can strongly change the
distribution once the amplitude A becomes comparable with
δθ = θ − θc. In the adiabatic limit of slowly varying force,
from Eq. (14) the instantaneous exponent of the n → m

transition rate is

�(n)
e ≈ κ

[
δθ + A cos(ωt)sgn

(
U ′(q(n)

max

))]−1/2
,

(19)
κ = πν

∣∣2U ′′′(q(n)
max

)∣∣−1/2
(n = 1,2).

Here, q(n)
max is the position of the maximum of |U ′(q)| between

q(n)
a ≡ q̃(n)

a and qS ≡ q̃S . We have taken into account that, for a
symmetric potential, |U ′′′(q(n)

max)| is the same for both potential
wells and therefore κ is independent of the well number n.
Equation (19) is written assuming κ 
 (δθ + A)1/2, so that
�(n)

e 
 1. We also assumed δθ + A > 0, so that the system
can make interstate transitions in the presence of the force at
least for a part of the modulation period.

Equation (19) determines the transition rate for δθ +
A cos(ωt)sgn(U ′(q(n)

max)) > 0, whereas for δθ +
A cos(ωt)sgn(U ′(q(n)

max)) < 0 there are no transitions from well
n. A critical modulation amplitude for switching between
attractors is known also for chaotic systems near crises [37].

From Eq. (19), the dependence of the transition rates Wnm ∝
exp[−�(n)

e ] on the modulation amplitude A becomes strongly
nonanalytic for A � |δθ |. The rates strongly depend on time.
With overwhelming probability the system makes a transition
from well n during a small portion of the modulation period
where Wnm(t) is maximal. In this time range,

�(n)
e ≈ κ(δθ + A)−1/2

[
1 + Aω2(t − tnk)2

4(δθ + A)

]
, (20)
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where tnk = 2πk/ω for U ′(q(n)
max) > 0 and tnk = π (2k + 1)/ω

for U ′(q(n)
max) < 0, with k = 0,±1,±2, . . . .

From Eq. (20), Wnm ∝ exp(−�(n)
e ) as a function of time

has a Gaussian peak at tnk with typical width

te = ω−1(4π/Aκ)1/2(δθ + A)3/4 (ωte � 1). (21)

It is important that this width is small, ω2t2
e � (δθ + A)/A, so

that expansion (20) applies for |t − tnk| � te even for negative
δθ provided κ 
 (δθ + A)1/2.

For a symmetric potential U (q), the potential gradients in
different wells have opposite signs, U ′(q(1)

max) = −U ′(q(2)
max).

Therefore, as seen from Eq. (19), for A � |δθ | the rates
of transitions 1 → 2 and 2 → 1 are exponentially different
except for a part of the modulation period where ωt is close to
(2k + 1)π/2 with integer k; moreover, if δθ < 0, each of the
rates vanishes for a part of the period and only one of them
can be nonzero at a time.

The evolution of the nth well population wn during
the time where Wnm 
 Wmn is described by the equation
ẇn(t) = −Wnmwn(t). In this time range, wn changes from
its maximal value w> to the minimal value w<. At the
same time, w3−n changes from w< to w>, where we use
the fact that, for a symmetric potential, the maximal and
minimal populations are the same for both wells. Therefore,
w< ≈ 1 − w> ≈ w> exp(− ∫

Wnmdt), where the integral is
taken over a time interval centered at tnk and largely exceeding
te, but still small compared to the modulation period. From
Eqs. (11), (20), and (21),

w> ≈ (1 + e−Wmaxte )−1, w< = w>e−Wmaxte , (22)

where Wmax is the maximal over time value of the transition
rate,

Wmax = |U ′′(q̃a)U ′′(q̃S )|1/2

2π
exp[−κ(δθ + A)−1/2]. (23)

It follows from Eqs. (21)–(23) that, for low modulation
frequency, an already weak modulation can lead to an expo-
nentially strong change of the populations. This happens where
Wmaxte 
 1. Practically, the two populations periodically
change in this case between 0 and 1, in counterphase. The
change occurs over a small portion of the period ∼te, and
therefore the populations as functions of time look almost like
square waves. The signal in the system 〈q(t)〉 is almost a square
wave too, varying between q(1)

a and q(2)
a .

The onset of a square-wave signal in response to sinusoidal
modulation is seen in Fig. 2. The simulations show appreciable
fluctuations about the stable states; however, for the chosen
parameters the interstate transitions look almost instantaneous.
As expected from Eq. (22), the signal amplitude decreases with
increasing ω.

A square wave signal occurs also in the conventional
stochastic resonance in the presence of Gaussian noise pro-
vided the driving force amplitude exceeds the noise intensity
in appropriate units; see Ref. [38]. In contrast to that situation,
here the strong nonlinearity of the response comes from the
singular dependence of the escape rate on the noise parameter.
The dependence of the switching rate (23) on the modulation
amplitude is nonanalytic for δθ → 0.
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FIG. 2. Strong square-wave-like signal induced by a compar-
atively weak sinusoidal force A cos ωt . The results refer to the
potential U (q) = −q2/2 + q4/4 and a symmetric telegraph noise,
ν↑↓ = ν↓↑ = ν/2. The noise amplitude θ = 0.384 is close to the
maximal slope of U (q) between the minima, θc = |U ′(q (1,2)

max )| ≈
0.385. The noise switching rate is ν = 2 and the signal amplitude
is A = 0.1. The panels refer to ω = 10−3 and 10−2. They show how
the shape of the response changes and the amplitude decreases with
increasing frequency.

V. CONCLUSIONS

We have studied the scaling of the rate of escape from
a metastable state and the response to periodic perturbation
of systems driven by telegraph noise. As a part of the
analysis, we extended to such systems the Kramers theory
of activated escape [26]. A major distinction of telegraph
noise from Gaussian noise is that it takes on only two
values, whereas Gaussian noise can take any value, albeit
with different probabilities. As a result, for telegraph noise
the logarithm of the escape rate does not scale as a simple
power of the distance to a bifurcation point, but instead
displays a more complicated behavior. It is described for the
saddle-node and pitchfork bifurcations, which are of interest
for the experiment, in particular for experiments on Josephson
junctions and nanoelectromechanical systems [6,27–31]. The
obtained scaling functions are compared with simulations.

We have analyzed the linear response of a telegraph-noise-
driven system to a periodic force. For bistable systems, the
susceptibility displays a characteristic structure at frequencies
of the order of the rate of interstate switching. This structure
is pronounced in the range where the populations of the states
are close to each other.
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FIG. 3. (Color online) A sketch of a metastable potential well.
The average potential Ũ (q) = U (q) + θqν−/ν is shown by the solid
line. The long- and short-dashed lines show the potentials U (q) + θq

and U (q) − θq; they correspond to the instantaneous values of the
noise ∓θ . The potential is switching between these two values. Escape
from the potential well occurs once the system goes sufficiently
far beyond the local maximum of Ũ (q) (point q̃S ), from where the
probability of returning to the interior of the well is very small. The
plots refer to U (q) = q − q3/3,θ = 1.5,ν−/ν = 0.2.

We found that bistable systems can also display an
extremely strong nonlinearity of the response to an already
weak low-frequency periodic force. It occurs in the range
where the amplitude of the telegraph noise is close to the
critical value below which the noise cannot cause transitions
between the stable states of the system. The exponent of the
transition rate depends nonanalytically on the force amplitude,
whereas the populations of the stable states vary in time almost
as a square wave in response to sinusoidal force.
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APPENDIX: KRAMERS THEORY OF ESCAPE RATE FOR
TELEGRAPH-NOISE-DRIVEN SYSTEMS

The rate of escape from a potential well due to telegraph
noise can be calculated by relating it, following Kramers [26],
to current j away from the well. We will consider the geometry

shown in Fig. 3, where the potential wells of both U (q) and
Ũ (q) are located in the region q < q̃S . The escape rate is

We = j = −∂t

∫ q

−∞
dq1ρ(q1,t). (A1)

Here, point q is chosen on the tail of the distribution, q − q̃a 

σa . In this range, the current is independent of q since the major
contribution to the integral over q1 in Eq. (A1) comes from the
region |q1 − q̃a| � σa where ρ is large.

The quasistationary solution of Eq. (7) on the tail, for a
given current j , is

ρ(q; j ) ≈ −j

∫ q

qf

dq1
ν − U ′′(q1)

θ2 − U ′ 2(q)
e−�(q,q1), (A2)

where the function � is given by Eq. (9). We set the lower
limit of the integral qf outside the potential well far from
q̃S , qf − q̃S 
 σS . Here, parameter σS = 1/|∂2

q�(q,qf )|1/2
q̃S

determines the curvature of the distribution at point q̃S ; it
is given explicitly by Eq. (A3) below. The probability of a
fluctuation that would bring the system from qf back into
the potential well is negligibly small; one can think that at
qf there is placed an absorbing boundary. The escape rate is
independent of qf ; see below.

For a single-well potential where |U ′(q)| increases behind
q̃S , cf. Fig. 3, and reaches the value θ , it is convenient to
choose qf in such a way that qf < qθ , where qθ is given by the
equation −U ′(qθ ) = θ . Since U ′′(qθ ) < 0 and Ũ ′(qθ ) < 0, the
distribution ρ(q; j ) → 0 for q → qf . If Ũ (q) → −∞ behind
q̃S but |U ′(q)| < θ , one can set qf → ∞. In the case of a
double-well potential Ũ (q), point qf should be between q̃S
and the second minimum of Ũ (q); Eq. (A2) does not apply
close to this minimum.

For q inside the well and q̃S − q 
 σS , the exponent
−�(q,q1) in Eq. (A2) is maximal as a function of q1 for
q1 = q̃S , where Ũ (q) has a local maximum. We can then
calculate ρ(q; j ) by the steepest-descent method. Taking into
account that ν 
 |U ′′(q̃S )|, we obtain

ρ(q; j ) ≈ νj
(
2πσ 2

S
)1/2

θ2 − U ′ 2(q)
exp[−�(q,q̃S )],

(A3)

σ 2
S = 4ν↑↓ν↓↑θ2

ν3|U ′′(q̃S )| .

The condition that the probability distributions (A3) and (8)
match in a broad range of q gives the value of j and Eq. (11)
for the escape rate We = j .
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