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We investigate a resonantly modulated harmonic mode, dispersively coupled to a nonequilibrium few-level
quantum system. We focus on the regime where the relaxation rate of the system greatly exceeds that of the mode,
and develop a quantum adiabatic approach for analyzing the dynamics. Semiclassically, the dispersive coupling
leads to a mutual tuning of the mode and system into and out of resonance with their modulating fields, leading
to multistability. In the important case where the system has two energy levels and is excited near resonance,
the compound system can have up to three metastable states. Nonadiabatic quantum fluctuations associated with
spontaneous transitions in the few-level system lead to switching between the metastable states. We provide
parameter estimates for currently available systems.
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I. INTRODUCTION

Dispersive coupling of a quantum system to a mechanical
or electromagnetic cavity mode has been attracting much
attention recently. The coupling provides a means for quantum
nondemolition measurement of the occupation number of
the mode or of the populations of the energy levels of the
system [1–8]. The underlying readout mechanism is the shift
of the mode frequency or the system transition frequency,
which depends on the state populations of the system or the
mode, respectively. In the dispersive regime, a measurement
erases information about the quantum phase, but does not cause
transitions between energy levels. However, such transitions
can happen due to coupling to a thermal reservoir, and also
if the mode and/or the system are modulated by external
fields. It is well understood that, through dispersive coupling,
thermal interstate transitions cause decoherence [1,9,10].
Much less is known about the effects of periodic modulation
and the interplay of the modulation and dephasing due to the
coupling to a thermal reservoir.

In this paper, we address these problems. We consider a
mode M (a harmonic oscillator) coupled to a dynamical sys-
tem S. The mode and the system are also coupled to separate
thermal reservoirs and can be modulated by periodic fields. The
couplings and the modulation are assumed weak in the sense
that the coupling energy is small compared to the interlevel
energy spacing. In other words, the widths of the energy levels
and the Rabi energies are small compared to the level spacing.
The modulation is assumed to be nearly resonant and will be
described in the rotating wave approximation (RWA).

In distinction from the celebrated Jaynes-Cummings
model [11–13], here the level spacings of the mode and
the system are significantly different. For a dispersive M-S
coupling, the major effect is not energy exchange, but rather
it is the change of the level spacing depending on the state
population, which occurs already in the first order in the
coupling constant. Semiclassically, this situation can give
rise to multistability in the response to a modulating field
as follows.

For given modulating field parameters, the combined
system may self-consistently support either large-amplitude

forced vibrations of mode M, with the effective mode
frequency tuned into good resonance with the driving field via
the dispersive coupling, or small-amplitude vibrations with
an effective mode frequency far from resonance with the
driving field. In each case, the vibration amplitude of mode
M sets the transition frequencies of the system S. If system
S is modulated itself, this determines its quasi-steady-state
level occupations. Through the dispersive coupling, these
level occupations tune the oscillator frequency into or out of
resonance with the driving field, leading to the self-consistent
mean-field multistability (see Fig. 1). In the classical setting,
multistability and dynamical chaos have been studied in
Refs. [14,15] for nonlinear oscillators with the coupling that
was effectively dispersive.

The mean-field theory describes the semiclassical multista-
bility of theM + S system, but does not account for the role of
fluctuations. Classical and quantum fluctuations unavoidably
come along with relaxation as a consequence of coupling to
a bath. In multistable systems, fluctuations cause interstate
switching, even at zero temperature.

Interestingly, where the dispersive coupling is weak, there
is obviously no multistability; however, where it is strong there
is also no multistability because the switching rate becomes
comparable to the relaxation rate, and then the very notion of
multistability becomes meaningless. In what follows, we find
the appropriate range of the coupling strength. We provide a
general formulation of a mean-field theory and a theory of
the switching rates in the important case where the typical
relaxation time τ

S
of the system S is much smaller than the

relaxation time τ
M

of the mode.

A. Rotating wave approximation

Formally, the dispersive coupling Hamiltonian Hi (M̂,Ŝ) is a
function of a mode operator M̂ and a system operator Ŝ, which
commute with the isolated mode and system Hamiltonians,
respectively, in the absence of modulation. For example, M̂

can be the occupation number of the mode a†a, where a and a†

are the lowering and raising operators, while, if the dynamical
system is a spin in a static magnetic field Bz, Ŝ can be the

1098-0121/2014/89(15)/155439(11) 155439-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.155439


Z. MAIZELIS, M. RUDNER, AND M. I. DYKMAN PHYSICAL REVIEW B 89, 155439 (2014)

FIG. 1. (Color online) Tristability of a modulated mode dis-
persively coupled to a two-level system. The ordinate gives the
stationary occupation number μst of the mode (the squared mode
amplitude is 2�μst/m

M
ω

M
, where m

M
and ω

M
are the mode mass

and frequency, respectively). The abscissa shows the reduced squared
modulation amplitude F 2

M
/�2

M
. Both the mode and the system

are resonantly modulated. In the rotating wave approximation, the
model is described by Eqs. (3), (6), and (7). The ratio of the
relaxation rate of the two-level system �

S
≡ (2τ

S
)−1 to the relaxation

rate of the mode �
M

≡ τ−1
M

is 30; the reduced amplitude of the
field modulating the two-level system is F

S
/�

S
= 24. The reduced

detunings of the modulating fields from the transition frequencies
of the mode and the system are, respectively, (ωFM

− ω
M

)/�
M

= 1
and (ωFS

− ω
S
)/�

S
= −10. The reduced strength of the dispersive

coupling is V/�
M

= 15. The inset refers to (ωFM
− ω

M
)/�

M
= 0.3,

in which case the system does not show tristability. The stable and
unstable states are shown by solid and dashed lines, respectively. The
black vertical dashed line shows the modulation field used in Fig. 2.

spin operator sz. This form of coupling assures that Hi is
independent of time in the interaction representation.

For illustration, we consider a mode coupled to a two-level
system (TLS), each modulated by its own nearly resonant field
(with � = 1)

H
S

= ω
S
sz − sxFS

cos ωFS
t,

(1)
H

M
= ω

M
a†a − (a + a†)F

M
cos ωFM

t.

Here, sx,z = σx,z/2, where σx,z are Pauli operators which act
on the TLS. For nearly resonant modulations, the detunings
δω

M
= ωFM

− ω
M

and δω
S

= ωFS
− ω

S
of the modulation fre-

quencies from the transition frequencies ω
M

and ω
S

are small
compared to the transition frequencies themselves, and to their
difference: |δω

M
|,|δω

S
| � ω

M
,ω

S
,|ω

M
− ω

S
|. The condition

on |ω
M

− ω
S
| in particular justifies the approximation where

only dispersive coupling is taken into consideration.
The simplest form of the dispersive coupling of a

mode and a TLS is Hi = V a†asz, which we now con-
sider. We switch to the interaction representation using the
unitary transformation U (t) = exp(−iωFM

a†at − iωFS
szt).

Disregarding the fast-oscillating (counter-rotating) terms
proportional to the modulation amplitudes F

S
,F

M
, in the

spirit of the RWA, we write the transformed Hamiltonian
H̃ = [U †(t)(H

M
+ H

S
+ Hi)U (t) − iU †(t)U̇ (t)]RWA as

H̃ = H̃
M

+ H̃
S
+ H̃i, (2)

with

H̃
M

= −δω
M
a†a − 1

2F
M

(a + a†),

H̃
S

= −δω
S
sz − 1

4F
S
(s+ + s−), (3)

H̃i = V a†asz.

Model (3) describes, in particular, the dispersive coupling of a
cavity mode to a two-level atom in cavity QED or to an effec-
tively two-level Josephson junction in circuit QED, which has
been studied in many experiments (see, e.g., Refs. [3,16,17]
and references therein). More generally, Hi may take on a
more complicated form. In particular, the coupling does not
have to be linear in a†a. Similarly, when system S has more
than two levels, the coupling Hamiltonian may involve more
complicated combinations of system operators as well. We
will generally characterize the energy of dispersive coupling
by a parameter V , even where the coupling has a form different
from H̃i in Eq. (3); we assume |V | � ω

S
,ω

M
,|ω

S
− ω

M
|.

B. Master equation

In order to describe the dynamics in the presence of
dissipation, we consider the density matrix ρ of the coupled
mode and system. Assuming Markovian dynamics in slow
time, i.e., on times long compared to ω−1

M
,ω−1

S
,|ω

M
− ω

S
|−1,

we can write the equation of motion for ρ in the interaction
representation in the form

ρ̇ = L̂ρ ≡ L̂
M
ρ + L̂

S
ρ + i[ρ,H̃i]. (4)

Here, L̂
M

and L̂
S

are Liouville operators, or superoperators
(cf. Ref. [18]); they describe, respectively, the dynamics of the
mode and the system coupled to their thermal reservoirs but
isolated from each other.

Below, we will calculate the density matrix in the basis
where operators M̂ and Ŝ in Hi are diagonal. Importantly, ρ

must remain Hermitian through its evolution via Eq. (4). As
a consequence, for any operator of the mode and the system
ÔMS ,

(L̂ÔMS)† = L̂Ô
†
MS. (5)

This condition applies also to L̂
M

and L̂
S

taken separately.
In the frequently used model of dissipation where coupling

of the mode to a thermal reservoir is taken to be linear in
the operators a,a†, to the leading order in this coupling we
have [11]

L̂
M
ρ = −�

M
[(n̄ + 1)(a†aρ − 2aρa† + ρa†a)

+ n̄(aa†ρ − 2a†ρa + ρaa†)] + i[ρ,H̃
M

], (6)

where n̄ ≡ n̄(ω
M

),n̄(ω) = [exp(ω/kBT ) − 1]−1 is the mode
Planck number and �

M
is the decay rate. We note that Eq. (6) is

not limited to describing Ohmic dissipation; in the microscopic
derivation it is assumed that �

M
� ω

M
and |d�

M
/dω

M
| �

1, and that the time is slow (cf. Ref. [19]). We assume that
the renormalization of the parameters of the mode due to the
coupling to the thermal reservoir has been incorporated into
the parameter values.

A simple form of relaxation for the two-level system is
described via Bloch equations. In this case, operator L̂

S
ρ

in Eq. (4) has the same form as L̂
M
ρ, except that (i) the
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friction coefficient �
M

should be replaced by the parameter
�

S
that gives the reciprocal lifetime of the two-level system

τ−1
S

= 2�
S
(2n̄

S
+ 1), where n̄

S
= n̄(ω

S
) is the Planck number;

(ii) operators a and a† in the dissipation term should be
replaced by s− and s+, respectively, with s± = sx ± isy , and
(iii) Hamiltonian H̃

M
should be replaced with H̃

S
. Further,

we incorporate additional transverse relaxation through a term
−�⊥(ρ − 4szρsz)/2 in L̂sρ.

C. Multistability in a simple model of dispersive coupling

To build intuition before the more technical discussion,
we now provide a heuristic semiquantitative picture of the
adiabatic mean-field multistability for dispersive coupling
to a TLS; the justification and the applicability conditions
follow from the general analysis in Sec. III. Suppose that
the mode is in a state |m〉 with 〈m|H̃i |m〉 = V msz. For
the mode in this state, the detuning of the effective TLS
transition frequency from the driving field frequency is given
by δω

S
(m) = δω

S
− V m, as seen from Eqs. (2) and (3). In

the adiabatic approximation, we solve for the dynamics of
the two-level system assuming that this frequency detuning
is independent of time. Using the well-known result for this
problem (see, e.g., Ref. [20]), we obtain the mean value of sz

for a given value of m:

〈sz〉S
= −�

S

[
2�

S
(2n̄

S
+ 1) + 1

4

γF 2
S

γ 2 + δω
S
(m)2

]−1

,

(7)
γ = �

S
(2n̄

S
+ 1) + �⊥, δω

S
(m) = δω

S
− V m,

where γ is the decay rate of the spin components s±.
Through the interaction term H̃i in Eqs. (2) and (3), the

average TLS population difference 〈sz〉S
acts back on the

mode, changing its frequency by ν(m) ≡ V 〈sz〉S
. Importantly,

the mode frequency depends on its degree of excitation m.
Such dependence is characteristic for nonlinear modes. Here,
it comes from the resonant pumping of the TLS. In turn,
the typical values of m in the stable mode state determine
the detuning of the TLS from the forcing F

S
cos ωFS

t that
modulates it, δω

S
(m) ≡ ωFS

− ω
S
− V m, thus determining

〈sz〉S
.

The mutual tuning of the mode and the two-level system
to resonance leads to multistability of the compound system.
Indeed, the stationary-state mean occupation number of a
resonantly modulated harmonic oscillator is given by the
familiar expression mst = 1

4F 2
M
/[�2

M
+ (ωFM

− ω
M

)2]. Given
the dependence of the mode frequency on its degree of
excitation m, one might expect to find a self-consistency
relation for the stationary state of the form

mst = 1
4F 2

M
/
{
�2

M
+ [ωFM

− ω
M

− ν(mst)]
2
}
. (8)

The resulting system of nonlinear equations (7) and (8) can
have multiple solutions. An example is the dependence of the
squared mode vibration amplitude (equal to 2�mst/ωM

, for a
unit mode mass) on the modulation strength, which is shown
in Fig. 1. In fact, the quantity plotted is the mean-field value of
the “center-of-mass” variable μst of the quasistationary Wigner
distribution over the occupation numbers m of the mode; it is

FIG. 2. (Color online) Onset of multistability for dispersive cou-
pling. The solid lines show the change of the population difference
of the two-level system 〈sz〉S

[Eq. (7)] as a function of the occupation
number of the mode, considered as a continuous variable μ = m;
for convenience, instead of 〈sz〉S

we show on the abscissa the
reduced frequency shift −ν(μ) = −V 〈sz〉S

counted off from δω
M

≡
ωFM

− ω
M

and scaled by �M . The dependence of 〈sz〉S
on μ is

resonant, which corresponds to the tuning of the two-level system in
resonance with the modulating field by varying the mode occupation
number. The green (utmost left), blue (middle), and red (utmost right)
solid curves correspond to F

S
/�

S
= 4, 8, and 24 in Eq. (7). Other

parameters are the same as in Fig. 1. The dashed line shows the
resonant response μ = mst of a linear mode as a function of frequency
detuning ωFM

− ω
M

− ν(μ) [cf. Eq. (8)] for F 2
M
/�2

M
= 120; such F

M

corresponds to the dashed vertical line in Fig. 1. The points show the
solutions of Eqs. (7) and (8). For negative δω

M
− ν(μ) outside the

plot range, the dashed line intersects the blue and green solid lines,
providing the small-μ solutions.

given by Eq. (26), which for the considered model coincides
with Eq. (8) and justifies the above qualitative arguments.

For the chosen parameters, the mode can have up to three
stable states at a time. In the mean-field picture where quantum
and classical fluctuations are neglected (see Sec. IV for the
role of fluctuations), this tristability is revealed by a hysteresis
pattern with multiple switching between stable branches with
the varying control parameter (here, the driving strength).

The onset of multistability can be understood from the
graphical solution of Eqs. (7) and (8), illustrated in Fig. 2.
The solid lines on this figure show the resonant dependence
of the reduced population difference of the TLS (see caption)
on the “center-of-mass” occupation number of the mode μ. It
is given by Eq. (7) with m replaced by μ. The resonance is
a consequence of the TLS frequency detuning δω

S
(μ) being

linear in μ. The dashed line shows the resonant dependence
of the scaled squared amplitude of the modulated mode μ on
the mode frequency. Note that there is always an odd number
of intersections; for the green curve it is equal to 1 and the
intersection occurs for small μ outside the range shown in
the figure. This regime corresponds to the single stable state
of the modulated compound system. The case of three inter-
sections (the blue curve) corresponds to bistability, whereas
five intersections (the red curve) correspond to tristability. The
understanding of this pattern comes from the analysis of the
bifurcation curves in Sec. III C.
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The possibility of bistability of the response of a mechanical
mode to resonant modulation in the situation where the mode
is coupled to another fluctuating system (a massive classical
particle diffusing along the mechanical resonator) was con-
sidered earlier [21]. Such coupling is similar to dispersive
coupling, as the diffusion changes the mode frequency and
is in turn affected by the vibrations. However, in contrast to
Ref. [21], the analysis below is fully quantum, it is general as it
is not limited to a specific coupling mechanism, the mean-field
predictions are different (for example, tristability), and most
importantly, the class of systems to which the results refer is
much broader.

The rest of the paper is organized as follows. In Sec. II,
we develop equations of motion for the mode density matrix,
and introduce the adiabatic approximation which allows a
dominant and tractable part of the coupled set of equations
to be isolated. Then, in Sec. III we consider the semiclassical
limit of large mode vibration amplitude, and derive mean-
field equations which govern the stationary-state vibration
amplitudes and phases of the mode. The mean-field equations
capture the multistability of the system and its critical slowing
down near bifurcation points in parameter space. In Sec. IV,
we study fluctuations and switching between the mean-field
metastable states, induced by random transitions of system S
through the M-S coupling. In Sec. V, we apply the results to
the important case where the vibrational mode is coupled to a
two-level system. Finally, in Sec. VI, we summarize our main
conclusions and discuss the relevance for various experimental
systems of current interest.

II. ADIABATIC APPROXIMATION

The central assumption of our analysis is that the relaxation
time τ

S
of system S is much smaller than the relaxation time

τ
M

of the mode [which is given by �−1
M

for the model (6)].
We exploit this separation of time scales to solve Eq. (4) in an
adiabatic approximation. First, we solve for the evolution of
system S for a fixed state of the mode. To this end, we develop
a formalism of left and right eigenoperators of the Liouvillian
operator of theS + M system for the modeM in a given Fock
state. This allows us to find quasistationary states of S and to
examine how they feed back into the mode dynamics through
the coupling H̃i . Later, we will see how quantum fluctuations
of S lead to switching between metastable states of the mode.
We will formally assume that the energy of the dispersive
coupling satisfies |V | � τ−1

S
, although the actual condition of

relevance is V 2τ
S

� τ−1
M

, as will be seen in the following.

A. Dynamics of system S
To begin, consider the case where the vibrational mode is

set to be in an eigenstate |m〉 (the mode Fock state) of the
operator M̂: for example, M̂|m〉 = m|m〉. The joint system-
mode density matrix is then given by the tensor product ρ =
ρ

S
⊗ |m〉〈m|. If we neglect the slow mode dynamics generated

by the Liouvillian L̂
M

in Eq. (4), the reduced density matrix
ρ

S
of S obeys

ρ̇
S

= 
̂mρ
S
; 
̂mÔ = L̂

S
Ô + i[Ô,Ĥi(m)], (9)

where Ô and Ĥi(m) are operators acting only onS. Because the
dispersive coupling H̃i commutes with M̂ , here it acts on the
spin variables through its projection onto the selected mode
state |m〉, Ĥi(m) = 〈m|H̃i |m〉. We will use the solutions of
Eq. (9) as a basis to build up the solution to the full problem (4).

We solve Eq. (9) in terms of the eigenoperators {χα
m} of the

superoperator 
̂m,


̂mχα
m = −λα

mχα
m. (10)

Note that, from Eq. (5), (
̂mχα
m)† = 
̂m(χα

m)†. Therefore, if
χα

m is an eigenoperator of 
̂m with eigenvalue −λα
m, then

(χα
m)† is also an eigenoperator with the eigenvalue (−λα

m)∗.
The eigenoperators χα

m with real eigenvalues can be chosen to
be Hermitian.

If system S has N
S

states (N
S

= 2 for a TLS), operators
χα

m are N
S
× N

S
matrices. Because the superoperator 
̂m

in Eq. (10) does not commute with its adjoint, there is
no guarantee that the set of eigenvectors (operators) {χα

m}
forms a complete basis for system S. Specifically, under
fine-tuned conditions, Eq. (10) may have less than N2

S
linearly

independent solutions and additional steps are needed to solve
the dynamical problem (9). Here, we will not treat such secular
cases, assuming that the operator 
̂m is diagonalizable. This
condition is generically satisfied for problems of physical
interest including the specific examples considered below.
Furthermore, we will not consider the other structurally
unstable case where some of the eigenvalues λα

m coincide,
as such degeneracy is lifted by an infinitesimally small change
of the parameters of 
̂m.

Since Eq. (9) describes relaxation of the system S, the
eigenvalues λα

m have non-negative real parts. One of these
eigenvalues (with α = 0, for concreteness) is equal to zero,
which corresponds to the stationary state of system S for
the mode in state |m〉. The minimal value of Re λα>0

m is the
relaxation rate of systemS for a given |m〉. The relaxation time
τ

S
is given by the maximal value of [Reλα>0

m ]−1 calculated for
the characteristic m.

We define the inner product of system-S operators Ô1,Ô2

as 〈Ô1,Ô2〉 = Tr
S
[Ô†

1Ô2], where Tr
S

is taken over the states of
system S. The expression 〈Ô1,
̂mÔ2〉 = Tr

S
[Ô†

1
̂mÔ2] then
defines how the superoperator 
̂m acts to the left (in this case,
on the operator Ô

†
1); it also defines the adjoint superoperator


̂
†
m through (Ô†
̂m)† = 
̂

†
mÔ.

“Left” eigenoperators {χ †
αm} of 
̂m, which we denote with

lowered indices, are defined through the equation

χ †
αm
̂m = −λαmχ †

αm. (11)

The left and right eigenvalues of 
̂m coincide: from Eqs. (10)
and (11), λα

m = λαm. However, the left and right eigenoperators
are not Hermitian conjugate. The nondegeneracy of the
spectrum implies the orthonormality relation〈

χαm,χβ
m

〉 = Tr
S

[
χ †

αmχβ
m

] = δαβ, (12)

where we have imposed an additional normalization condition
Tr

S
[χ †

αmχα
m] = 1. The orthogonality relation (12) holds only

for the eigenoperators corresponding to the same mode state
|m〉. This will be important below when we consider evolution
with general mode states which are not diagonal in m.
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Over its relaxation time, system S reaches a quasistationary
state for the given mode state |m〉. The reduced density matrix
of S in the stationary state is given by the right eigenoperator
χ0

m, corresponding to the zero eigenvalue λ0
m = 0. Note

that the trace-preserving property of evolution dictates that
Tr

S
[
̂mÔ] = 0, for any Ô. By inserting the identity operator

Î
S

to the left of 
̂m, we see that Î
S

is a left eigenvector of

̂m with eigenvalue 0. Hence, we set χ

†
0m = Î

S
, such that the

orthonormality condition (12) gives Tr
S
χ0

m = 1. This is a very
useful property, which we will employ later on.

B. Dynamics of mode M
We now use the solutions of the previous section to build

up the solution to the full problem of coupled dynamics. The
goal is to obtain closed-form equations for the density matrix
of the vibrational mode [see Eqs. (18)–(20)].

To begin, for each α we collect the set of eigenoperators
{χα

m}, together with the corresponding projectors onto the mode
states {|m〉〈m|}, to form a single operator

χα =
∑
m

χα
m ⊗ |m〉〈m|, (13)

which acts on the variables of both S and M. Similarly,
we define χ †

α = ∑
m χ

†
αm ⊗ |m〉〈m|. We write the full density

operator as

ρ = ρ1 + ρ
†
1, ρ̇1 = L̂ρ1, ρ1 =

∑
α

χαpα, (14)

where the operator

pα =
∑
m,m′

pmm′
α |m〉〈m′| (15)

acts only on the mode M. Note that χα in Eq. (13) and pα in
Eq. (15) do not commute. Therefore, the ordering of operators
in the definition of ρ1 in Eq. (14) is important. In explicit form,
we have

ρ1 =
∑
m,m′

∑
α

pmm′
α χα

m ⊗ |m〉〈m′|. (16)

The set of complex parameters {pmm′
α }, for α = 0, . . . ,N2

S
−

1 and m,m′ = 0,1,2, . . ., completely specifies the density
matrix of the compound system. The asymmetry, that χα

m

appears in Eq. (16) while χα
m′ does not, is accounted for

once ρ1 is added to its conjugate in forming the full density
matrix ρ.

For ρ1 of the form (16), the density matrix depends on
time through the coefficients {pmm′

α (t)}. This parametrization
proves to be convenient for the analysis of the slow dynamics
of the mode. Thus, below we recast the master equation (4) as
a coupled set of equations for the operators {pα(t)}.

The dynamical equation for pα is obtained by substituting
ρ1 into the equation ρ̇1 = L̂ρ1. We then project out the pα part
by multiplying from the left by χ †

α and taking the trace over
the variables of system S. Using the relation

〈m|L̂
S
(χαpα) + i[χαpα,H̃i]|m′〉

= (

̂mχα

m

)
pmm′

α + iχα
m〈m|[pα,H̃i]|m′〉, (17)

which results from Eq. (9), along with Eq. (10) for 
̂mχα
m, we

obtain

ṗα = −λαpα + L̂
M
pα + i

∑
β

ν̂αβpβ −
∑

β

k̂αβpβ, (18)

with

λα =
∑
m

λα
m|m〉〈m|,

ν̂αβpβ = Tr
S
(χ †

αχβ[pβ,H̃i]), (19)

k̂αβpβ = δαβL̂
M
pβ − Tr

S
[χ †

αL̂
M

(χβpβ)].

Here, ν̂αβ and k̂αβ are superoperators. Both of them result
from the dispersive M-S coupling. For ν̂αβ this is obvious,
as this term explicitly contains the coupling Hamiltonian H̃i

and goes to zero where the coupling energy V → 0. The term
∝ k̂αβ arises because the eigenoperators {χα

m} characterizing
the dynamics of system S depend on the mode state m, via
the coupling. As a consequence, the superoperator L̂

M
that

describes dissipation of mode M does not commute with
χα , i.e., L̂

M
(χβpβ) �= χβL̂

M
pβ . We note that, since χ

†
0 = Î

S
,

we have k̂0βpβ = 0. Also, since k̂αβ comes from the mode
dissipation, its typical size is of order τ−1

M
.

We are interested in the effective nonlinear dynamics of the
mode, described by the evolution of its reduced density matrix
ρ

M
= Tr

S
ρ. Since Tr

S
χα

m = 0 for all α �= 0, we have

ρ
M

(t) = p0(t) + p
†
0(t). (20)

However, as seen in Eq. (18), the evolution of p0 is coupled
to the behavior of all pα>0. Thus, to find ρ

M
we must examine

the full set of coupled dynamical equations.
If, as we assume, the relaxation rate τ−1

S
of system S is

large compared to the mode relaxation rate τ−1
M

and to the
coupling parameter in H̃i , the time evolution of p0, described
by Eq. (18), is qualitatively different from the evolution of
operators pα>0. The evolution of p0 is governed by the
mode Liouvillian L̂

M
and H̃i , and therefore relaxation of p0

is characterized by time τ
M

. In contrast, the relaxation rate
of pα for α �= 0 is determined by the values of Reλα

m �
τ−1

S
. Therefore, over time τ

S
, all operators pα>0 approach

quasistationary solutions of Eq. (18) for α > 0, calculated for
the instantaneous p0. Moreover, the matrix elements {pmm′

α>0}
become small compared to the matrix elements of p0. This is
because k̂αβ ∝ τ−1

M
and ν̂αβ ∝ V , and as we assume Re[λα>0

m ]
is large compared to τ−1

M
,|V |; as we will see in the following,

the actual constraint on |V | is significantly weaker.

III. MEAN-FIELD APPROXIMATION

We are interested in the regime where the typical vibration
amplitudes are large, so that the dynamics of the vibrational
mode is semiclassical. The state of the mode then can be
described by its amplitude and phase, which in turn can be
introduced using the Wigner representation of the density
matrix. We start the analysis by assuming that fluctuations are
small and can be disregarded. Here, we derive deterministic
equations of motion for the amplitude and phase and find
the stable states. We further study the onset of multistability
and find the bifurcation diagrams, which give the interrelation
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between the frequency and strength of the modulation where
the number of stable states changes. The dynamics of the
vibrational mode near bifurcation points is controlled by a
slow variable and has a simple universal form.

A. Semiclassical approximation for the mode

Of primary interest for the analysis of the mode dynamics
is operator p0, as it determines the density matrix of the mode
[see Eq. (20)]. From the arguments of the previous section, for
times t 
 τ

S
, to the leading order in τ

S
/τ

M
, its time evolution

is determined by equations


̂mχ0
m = 0, ṗ0 = L̂

M
p0 + iν̂00p0. (21)

The physical picture behind Eq. (21) is that system S reaches
quasiequilibrium, with distribution χ0

m, for a given state m of
the mode, and then the mode (and the system) slowly evolve to
the self-consistent stationary state given by equation L̂

M
p0 +

iν̂00p0 = 0.
The superoperator ν̂00, which describes the effect of the

coupling to S on the mode dynamics, has a simple form.
Indeed, χ

†
0m = Î

S
, whereas χ0

m gives the stationary density
matrix of system S for the mode being in state |m〉. In
particular, for two nearby mode states |m〉 and |m′〉, with
m,m′ 
 1 and |m − m′| � m, Eqs. (13) and (19) give to
leading order in (m − m′)

〈m|ν̂00p0|m′〉 ≈ (m′ − m)ν(m) pmm′
0 ,

(22)
ν(m) ≡ 〈∂mĤi(m)〉

S
,

where 〈Ô(m)〉
S

≡ Tr
S
[χ0

mÔ(m)] is the average over the
stationary state of system S performed for the mode
in a given state m and ∂mĤi(m) ≈ Ĥi(m + 1) − Ĥi(m) ≈
Ĥi(m) − Ĥi(m − 1). The quantity ν(m) characterizes the
change of level spacing of the mode due to its coupling to
system S. This change affects the distribution over mode states
|m〉 in a driving field by tuning the mode closer or further away
from resonance. In turn, this affects the distribution of the
system χ0

m, which itself determines ν(m). It is this mechanism
that leads to the multistability of the response in the mean-field
approximation.

We will assume that modulation of the mode is sufficiently
strong that the mode is excited to states with m 
 1. As we will
check a posteriori, the characteristic width of the distribution
over m is then small compared to the characteristic m. It is
convenient to write pmm′

0 and ρmm′
M

= 〈m|p0 + p
†
0|m′〉 in the

Wigner representation

p0(μ,φ) =
∑
m,m′

pmm′
0 δμ,(m+m′)/2e

i(m−m′)φ,

(23)
ρ

M
(μ,φ) =

∑
m,m′

ρmm′
M

δμ,(m+m′)/2e
i(m−m′)φ.

In the considered case, the center-of-mass parameter μ =
(m + m′)/2 is large, μ 
 1, and the major contribution to
p0(μ,φ) comes from terms with |m − m′| � μ. In Eq. (21)
for the matrix elements pmm′

0 one can change to p0(μ,φ), with
account taken of Eq. (23), and use the semiclassical approxi-
mation in which μ is quasicontinuous. A similar analysis can

be done for the operator p
†
0. This allows calculating the mode

density matrix ρ
M

(μ,φ).
From the normalization condition, in the semiclassical limit

the equation for ρ
M

should have a form of the continuity
equation ∂tρM

(μ,φ) = −∂μjμ − ∂φjφ . Here, j ≡ (jμ,jφ) is
the probability current in variables (μ,φ). In the approxima-
tion (22) it is determined by the operator L̂

M
and ν(μ), with

μ ≈ m. Generally, j has a drift part, which is proportional
to ρ

M
(μ,φ) but does not contain derivatives of ρ

M
, a diffusion

part that contains first derivatives, and higher-order derivatives.
The expansion in the order of the derivatives is an expansion in
1/μ, and moreover, in μ−1τ

S
/τ

M
, as will be also seen from the

example below. We note that this is not the classical limit.
The diffusion coefficient has a contribution from quantum
fluctuations, which will be dominating in the example below.
Clearly, the dynamics of system S is purely quantum.

To the leading order in 1/μ, one should keep in j only terms
∝ρ

M
, i.e., j(μ,φ) ≈ K(μ,φ)ρ

M
(μ,φ). Vector K = (Kμ,Kφ)

has the meaning of the force that drives the mode, in the
rotating frame. With account taken of the structure of L̂

M
and

ν̂00, from Eqs. (21)–(23)

Kμ ≈ −fdiss(μ) − F
M
μ1/2 sin φ,

(24)
Kφ ≈ −(F

M
/2)μ−1/2 cos φ − δω

M
+ ν(μ).

Function fdiss(μ) ∝ τ−1
M

describes the effect of dissipation of
the mode. For dissipation given by the standard linear friction
operator (6), fdiss(μ) = 2�

M
μ. In a more general case, the

dependence on μ can be more complicated. It is important,
however, that, since in our model the dissipation operator is
independent of the modulation, the thermal reservoir on its
own does not have a preferred vibration phase, and thus fdiss

is independent of φ. The reservoir coupling leads to diffusion
over phase, however, in this section we do not consider the
diffusion (it will be discussed later) and the corresponding
terms are absent in Eq. (24).

B. Stationary states

The approximation j = Kρ
M

corresponds to the mean-
field approximation. The mean-field equations of motion for
variables μ and φ are

μ̇ = Kμ, φ̇ = Kφ. (25)

They can have stationary solutions K = 0 which describe
the stationary states of forced vibrations of the mode. In
principle, equations of motion of the type (25) could also
have periodic solutions that correspond to periodic vibrations
in the rotating frame. However, such solutions require that
∇ · K > 0 at least somewhere in phase space. From Eq. (24),
∇ · K = −dfdiss/dμ has the same form as in the absence of
modulation, where the only stationary state is μ = 0, and
therefore ∇ · K < 0. The positions of the stationary states μst

in the presence of modulation are given by

G(μst) = F 2
M
,

(26)
G(μ) = μ−1f 2

diss(μ) + 4μ[ν(μ) − δω
M

]2.

From Eq. (25), the stationary state (26) is stable provided
dG/dμ > 0. In the absence of modulation, the state μ = 0
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(i.e., the zero-amplitude state) is stable on physical grounds
and thus the condition dG/dμ > 0 is always satisfied for
small μ; quite generally fdiss ∝ μ for μ → 0. If function G(μ)
is monotonic, Eq. (26) has one solution and the mode has
only one stable state of forced vibrations for all modulation
amplitudes F

M
.

C. Multistability of forced vibrations

For nonmonotonic G(μ), the mode can have several stable
vibrational states for a given F

M
, i.e., it can display bistability

or multistability. An example where ν(μ) is determined by
coupling to a two-level system is shown in Fig. 1. Generally,
for large μ, the function G(μ) is increasing with μ, except for
the nongeneric case where |δω

M
− ν(μ)| decreases at least as

fast as μ−1/2 and f 2
diss/μ also does not increase with μ. Then,

since dG/dμ > 0 both for small and large μ, it can have only
an even number of zeros. These zeros give the positions of the
saddle-node bifurcation points μB ,

dG/dμ = 0, μ = μB. (27)

As seen from Eqs. (26) and (27), if the modulation amplitude
F

M
is tuned to the bifurcational value F (B)

M
= G(μB)1/2, for

μ = μB (and for the corresponding φB given by equation
K = 0) stable and unstable stationary states μ̇ = φ̇ = 0 merge.
Thus, the number of coexisting stable states changes by one
once F

M
goes through F (B)

M
.

The values of μst in the stable states depend on the mode
driving strength F

M
. We consider the branches of stable states

as functions of F
M

. These branches merge with the branches
of unstable states at the bifurcation points (27). The case
where there are two stable-state branches and one branch of
unstable states corresponds to vibration bistability and to the
familiar S-shape dependence of the vibration amplitude of the
mode on the modulation amplitude (cf. [22]). For the model
of a dispersively coupled mode and TLS discussed in Sec. I C,
this dependence is shown in the inset of Fig. 1. In the region
of bistability, G(μ) has two extrema. If G(μ) has four extrema
for a given set of modulation field parameters, the mode has
three stable states, as seen in the main panel of Fig. 1.

The bifurcational values F (B)
M

themselves depend on other
parameters of the system, and in particular on the detuning of
the modulation frequency δω

M
. The corresponding bifurcation

curves are shown in Fig. 3. Each time any of these curves is
crossed by varying parameters (F

M
or δω

M
), the number of the

stable and unstable states changes by one.
The bifurcation curves form pairs, which emanate from

cusp point where the curves meet [23]. Such cusp points are
analogous to the critical points on lines of first-order phase
transitions. If we are close to a cusp point and go around it in
the (F

M
,δω

M
) plane, without crossing the bifurcation curves,

the number of stationary states does not change. If on the
other hand, we move between the same initial and final values
of (F

M
,δω

M
) but cross the bifurcation curves that merge at the

cusp point, we go through a region where there is an extra
stable and an extra unstable state. On the bifurcation curves,
this unstable state must merge with two different stable states.
At the cusp point, all three states merge together.

The understanding of this topology makes the plot in Fig. 3
convenient. In particular, if we move up along the right dashed

FIG. 3. (Color online) The bifurcation diagram that shows the
dependence of the bifurcation value of the modulating field F (B)

M
on

the frequency detuning of this field δω
M

= ωF − ω
M

as given by
Eqs. (26) and (27). The data refer to a mode dispersively coupled
to a two-level system, with Hamiltonian (3) and with dissipation
described by linear friction [see Eq. (6)]. The right dashed line shows
the value of δω

M
where the system displays tristability with varying

F
M

; this δω
M

corresponds to the main part of Fig. 1. The left dashed
line shows δω

M
used in the inset of Fig. 1. The other parameters are

the same as in Fig. 1.

line, we start from one stable state for small F
M

. Then a stable
and an unstable state are added once the lowest bifurcation
curve F (B)

M
(δω

M
) is crossed. When the next bifurcation curve

is crossed, since it emanates from another cusp point, there is
added another stable and unstable state. There are now three
stable and two unstable states. As we cross the still higher
curve F (B)

M
(δω

M
), the first unstable state merges with one of

the stable states and disappears, so that the system now has
two stable and one unstable state. When the highest curve
F (B)

M
(δω

M
) is crossed, there remains only one stable state. This

behavior precisely corresponds to Fig. 1.
The “beaks” formed by the bifurcation curves in Fig. 3 open

toward opposite sides. As follows from the above analysis, the
tristability exists only in the range where the beaks overlap.
In fact, the beaks do not go to infinity, they close up, but this
occurs too far out to show on the figure.

D. Slow dynamics near a bifurcation point

We now consider the vicinity of a bifurcation point, i.e., we
assume that F

M
is close to F (B)

M
, and expand the right-hand sides

of the equations of motion (24) and (25) about μB,φB . Again,
the value of φB is given by the relation Kμ = Kφ = 0, in which
μ = μB and F

M
= F (B)

M
. If we limit the expansion of Kμ,Kφ to

linear terms in �μ = μ − μB,�φ = φ − φB , we find that one
of the eigenvalues of equations (25) for �μ̇,�φ̇ is equal to zero
at the bifurcation point. Correspondingly, for the parameters
close to the bifurcation point, a combination of the dynamical
variables μ,φ becomes “slow,” i.e., there is a soft mode [23].
The other eigenvalue of Eqs. (25) remains of order τ−1

M
at the

bifurcation point (note that we previously defined τ
M

as the
relaxation time of mode M far from the bifurcation point).

Over a time of order τ
M

, the linear combination of �μ,�φ

corresponding to the large (negative) eigenvalue of Eq. (25)
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decays. After this decay, a relation between �μ and �φ

is established, which to leading order can be obtained by
linearizing equations (25) in �μ,�φ and setting �μ̇ =
�φ̇ = 0, with F

M
= F (B)

M
. This gives �φ = ξμB

�μ, where
ξμB

= −∂μ(fdiss/
√

μ)/{2√
μ[ν(μ) − δω

M
]} with μ = μB .

The slow dynamics near the bifurcation point is controlled
by the quantity Y = (2μ)1/2 sin φ, the soft mode, which hap-
pens to be the quadrature (out-of-phase) component of forced
vibrations. At the bifurcation point, the deviation �Y = Y −
YB of Y from its bifurcational value YB = (2μB)1/2 sin φB is
static, to linear order in �μ,�φ: �Ẏ = ∂μY�μ̇ + ∂φY�φ̇ =
0 + O(�μ2,�φ2). Close to the bifurcation point, the soft-
mode dynamics is governed by the nonlinear equation

�Ẏ = −∂U

∂Y
,

U (Y ) = −1

3
b�Y 3 + (

F
M

− F (B)
M

)
�Y/

√
2, (28)

b = (
F (B)

M
/8

√
2
)
(∂μfdiss)

−2∂2
μG,

where the derivatives in the expression for b are calculated
for μ = μB . As seen from Eq. (28), if b(F

M
− F (B)

M
) > 0, the

mode has a stable and an unstable stationary state. These states
merge for F

M
= F (B)

M
and disappear for F

M
on the opposite side

of F (B)
M

.

IV. NONADIABATIC FLUCTUATIONS AND SWITCHING
BETWEEN STABLE STATES

One of the best-known nonadiabatic effects in quantum
systems is nonadiabatic transitions between stable states [24].
In the case we study here, nonadiabatic corrections to the
mean-field theory also lead to transitions between the sta-
ble mode states. In the conventional picture, nonadiabatic
transitions usually involve tunneling, for low temperature.
In contrast, in our case nonadiabatic transitions are induced
by fluctuations that come along with the relaxation [25].
Specifically, these are fluctuations due to the randomness of
emission and absorption of excitations of the thermal reservoir
by system S. These fluctuations lead to fluctuations of the
level spacing of the mode through the mode-system coupling.
Classically, they correspond therefore to noise of the mode
frequency. Even though the noise is of quantum origin, it
causes activated-like interstate transitions over an effective
barrier in phase space [see Eq. (35) below].

The nonadiabaticity parameter is the ratio of the relaxation
times τ

S
/τ

M
. Our analysis will be based on a perturbation

theory. We will express functions pα>0 in the equation for the
mode density matrix (18) in terms of p0 and then substitute
them into Eq. (21) for p0.

The major nonadiabatic corrections come from the term
ν̂αβpβ in Eq. (18); the terms k̂αβpβ are proportional to τ−1

M

and thus lead to small corrections to the parameters of
the operator L̂

M
. To the leading order in τ

S
/τ

M
, for time

t 
 τ
S

one can set ṗα = 0 for α > 0, which gives a slowly
varying in time solution pα>0 ≈ i(λα)−1ν̂α0p0. In turn, this
gives an extra term in Eq. (21) for p0, which now reads

ṗ0 = L̂
M
p0 + iν̂00p0 + D̂p0 with

D̂p0 = −
∑
α>0

ν̂0α[(λα)−1ν̂α0p0] (29)

(here the superoperator ν̂0α acts on the operator inside the
bracket).

We will be interested in the matrix elements 〈m|D̂p0|m′〉
between the mode states |m〉 and |m′〉. The calculation is
simplified by the fact that operators H̃i , χ †

α , and χβ which
appear in ν̂αβ are all diagonal in m. We will consider the
semiclassical region of large m,m′ 
 1 and |m − m′| � μ =
(m + m′)/2. As used above, in this region one can assume that
μ, m are quasicontinuous variables and expand the coupling
Hamiltonian Ĥi(m) − Ĥi(m′) ≈ (m − m′)∂μĤi(μ). Then, to
the leading order in m − m′ we have

〈m|D̂p0|m′〉 ≈ −(m − m′)2pmm′
0

∑
α>0

Tr
S

(
χα

μ∂μĤi

)
× Tr

S

(
χ †

αμχ0
μ∂μĤi

)
/λα

μ. (30)

In addition to the leading-order term displayed in Eq. (22),
the function 〈m|ν̂00p0|m′〉 in the equation for the matrix
elements of ṗ0 also has a term ∝(m − m′)2, i.e.,

i〈m|ν̂00p0|m′〉 ≈ i(m′ − m)ν(μ) pmm′
0

− i

2
(m′ − m)2Tr

S

[(
∂μχ0

μ

)
(∂μĤi)

]
pmm′

0 .

It is helpful to further process the (m′ − m)2 term in this
expression, by evaluating the quantity ∂μχ0

μ which appears
inside the trace. This can be done by formally differentiating
the equation 
̂mχ0

m = 0 over m, using Eq. (9), and by
expanding ∂mχ0

m in χα
m. The result is similar to the right-hand

side of Eq. (30), except for the extra factor −1/2 and the fact
that in the second trace one should replace the product of the
operators χ0

μ and ∂μĤi with their commutator.
We note that an operator Â(m) with respect to the variables

of system S can be written as Â(m) = ∑
α χ

†
αm Tr

S
[χα

mÂ(m)].
Further, it is convenient to consider system-S operators in the
Heisenberg representation in the rotating frame. From Eqs. (9)
and (10), in this representation χα

m(t) = exp(−λα
mt)χα

m(0) for
t � 0; similarly, χ

†
αm(t) = exp(−λα

mt)χ †
αm(0). One can then

define

Â(m; t) =
∑

α

χ †
αm exp

(−λα
mt

)
Tr

S

[
χα

mÂ(m)
]
.

Using this definition, one obtains

〈m|iν̂00p0 + D̂p0|m′〉
≈ [i(m′ − m)ν(μ) − (m′ − m)2Dμ]pmm′

0

with

Dμ = Re
∫ ∞

0
dt〈[∂μĤi(μ; 0) − 〈∂μĤi(μ)〉

S
]

× [∂μĤi(μ; t) − 〈∂μĤi(μ)〉
S
]〉

S
. (31)

Here, we used that, for real eigenvalues λα
m, operators χα

m,χ
†
αm

are Hermitian, whereas for the pairs of complex conjugate
λα

m there are corresponding pairs of the Hermitian conjugate
operators χα

m,χ
†
αm. By its construction as the average of a
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correlator of the same operator over the states of system
S, the coefficient Dμ > 0. Clearly, Dμ is quadratic in the
dispersive coupling constant V contained in H̃i , and Dμ ∝ τ

S
,

i.e., Dμ ∼ V 2τ
S
. Note that Dμ, which we will see below plays

the role of a diffusion constant, is small when the relaxation
time of system S is very short. This dependence captures
the motional narrowing that occurs when system S rapidly
switches between its states.

A. Diffusion equation for the density matrix of the mode

With account taken of the terms ∝(m − m′)2 in the equation
for pmm′

0 , the equation for the density matrix ρ
M

= p0 + p
†
0 in

(μ,φ) variables takes the form of the Fokker-Planck equation

ρ̇
M

= −∇ · (Kρ
M

) + Dμ∂2
φρ

M
, ρ

M
≡ ρ

M
(μ,φ), (32)

where the vector ∇ has components ∂μ,∂φ and the drift vector
K is given by Eq. (24). Function ρ

M
satisfies the semiclassical

normalization condition (2π )−1
∫

dφ dμρ
M

(μ,φ) = 1.
We do not consider the diffusion term that comes from

the direct coupling of the mode to the thermal reservoir, as
described by the operator L̂

M
. This term adds a contribution

to the phase diffusion coefficient Dμ proportional to τ−1
M

;
in addition, and importantly, this contribution is ∝1/μ � 1.
Operator L̂

M
also introduces diffusion along the μ variable,

with a diffusion coefficient that scales as τ−1
M

/μ. Taking this
diffusion into account will not change the analysis below,
and in particular will just renormalize the coefficient DμB

in Eqs. (34) and (35).
We assume that the diffusion is weak. This means that the

distribution ρ
M

in the stationary state has narrow peaks at
the stable states of forced vibrations, which are given by the
condition K = 0. From Eq. (32), for Dμτ

M
� 1, the peaks are

Gaussian near the maximum. Their typical width is (Dμτ
M

)1/2,
and the peaks at different stable states are well separated from
each other.

Further away from the stable states the stationary solution
of Eq. (32) can be sought in the eikonal form

ρ
M

= exp[−R(μ,φ)/Dμ]. (33)

To the leading order in Dμ, function R is independent of Dμ

and can be found from a nonlinear equation of the form of the
Hamilton-Jacobi equation [19,26,27].

One can see from the full nonadiabatic equation for the
mode operators pα [Eq. (18)] that the condition that the
ratio |pα>0/p0| be small requires smallness of the parameter
|V |τ

S
�m, where �m is the typical width of the distribution

over m or, equivalently, (Dμτ
S
)1/2|∂φ ln p0| � 1. This estimate

of |pα>0/p0| takes into account only the leading terms, which
are described by the operator ν̂αβpβ , and applies in the time
range t 
 τ

S
where all pα>0 have reached stationary values

for a given p0. From Eq. (33), |∂φ ln p0| ∝ |∂φR|/Dμ. Near
peaks of ρ

M
, where |∂φR|/Dμ � (Dμτ

M
)−1/2, the condition

|pα>0/p0| � 1 reduces to (τ
S
/τ

M
)1/2 � 1, which has been

our major assumption all along.
On the far tail of the distribution we have |∂φR|/Dμ ∼

(Dμτ
M

)−1 
 1, and therefore the ratio |pα>0/p0| ∝
(Dμτ

M
)−1/2(τ

S
/τ

M
)1/2 is not necessarily small. If this is the

case, the adiabatic perturbation theory breaks down and the far
tail of the distribution is not described by Eq. (32). However,

as we will see, in the most interesting regime for studying the
switching between metastable states, where the system is close
to a bifurcation point, |∂φR| � τ−1

M
.

B. Switching rate near a bifurcation point

Equation (32) allows one to find, in a simple explicit
form, the rate of switching from a metastable state near the
saddle-node bifurcation point where this state disappears. Near
this point, the dynamics is controlled by the slow variable
Y (μ,φ) [see Eq. (28)]. The distribution ρ

M
is a Gaussian

peak with width ∼(Dμτ
M

)1/2 in the direction transverse to
the slow variable Y , whereas in the Y direction it is much
broader [25]. The distribution over the Y variable ρ

M
(Y ) =

(2π )−1
∫

dμ dφ ρ
M

(μ,φ)δ[Y (μ,φ) − Y
]

can be found follow-
ing the arguments of Ref. [25]. To the leading order in Dμτ

M
,

from Eqs. (28) and (32) one obtains

ρ̇
M

(Y ) = ∂Y [ρ
M

(Y )∂Y U (Y )] + DμB∂2
Y ρ

M
(Y ), (34)

where DμB = Dμ(∂φY )2
B is the coefficient of diffusion along

the Y axis, and (∂φY )B = (2μB)1/2 cos φB is the derivative of
Y (μ,φ) calculated at the bifurcation point.

Equation (34) allows one to find the rate of escape W from a
metastable state near a bifurcation point. This rate is described
by the Kramers’ theory [28]

W = Ce−RA/DμB , RA = 25/4

3

[(
F

M
− F (B)

M

)3

b

]1/2

(35)

with C = (2π )−1[(F
M

− F (B)
M

)b/
√

2]1/2.
As seen from Eq. (35), the activation energy of switching

near a saddle-node bifurcation point scales as the distance to
the bifurcation point F

M
− F (B)

M
to the power 3

2 . This is typical
in the case where fluctuations are induced by Gaussian noise.
In the present case, this noise comes from quantum fluctuations
of system S which modulate the frequency of the mode M.

V. SWITCHING FOR COUPLING TO A MODULATED
TWO-LEVEL SYSTEM

The analysis of Secs. II–IV can be applied to the problem of
a vibrational mode coupled to a two-level system. A qualitative
description of the mean-field dynamics of this model was given
in Sec. I C. The consistent mean-field analysis outlined above
leads to Eqs. (7) and (8), with mst replaced by the stationary
value of the Wigner distribution center-of-mass variable μst of
Eq. (26). With this replacement, Eqs. (8) and (26) coincide.
This justifies the results on the multistability of a mode coupled
to a TLS presented in Sec. I.

The mean-field picture disregarded the effect of quantum
fluctuations of the TLS. When relaxation of the mode is slow,
the diffusion caused by these fluctuations is described by
Eq. (32). Using the Bloch equations for the TLS dynamics, one
can show that the effective diffusion coefficient of the mode’s
vibrational phase, which is defined by Eq. (31), has the form

Dμ = −V 2(〈sz〉S
/4�

S
)

×
[

1 − 4〈sz〉2
S

(
1 − 1

4
F 2

S

γ 2 − δω2
S
(μ)[

γ 2 + δω2
S
(μ)

]2

)]
, (36)
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FIG. 4. (Color online) The phase diffusion coefficient Dμ for a
mode coupled to a TLS, scaled by the mode decay rate �

M
. The

data refer to the mean-field characteristic in Fig. 1, which displays
tristability. The value of Dμ on the stable and unstable branches is
shown by solid and dashed lines, respectively. Diffusion is caused by
quantum fluctuations of the TLS, where we set the Planck number
n̄(ω

S
) = 0. The point where the uppermost dashed line joins the

lowermost solid line (F 2
M
/�2

M
≈ 54) accidentally lies very close to

the solid line that starts from F
M

= 0 and corresponds to the lowest
branch μst(FM

) in Fig. 1.

where 〈sz〉S
is given by Eq. (7) with m replaced by μ. One can

show from Eq. (7) that Dμ > 0. It is clear that Dμ ∝ V 2�−1
S

[see also discussion below Eq. (31)]. The condition of the
applicability of the approach is Dμτ

M
∼ V 2/�

M
�

S
� 1. In

Fig. 4, we show the scaled values of Dμ along the mean-field
response curve of Fig. 1 that displays tristability. As seen from
this figure, Dμ/�

M
remains small for the considered example.

We emphasize that for the TLS Planck number n̄
S

→ 0,
the noise described by the parameter Dμ is purely quantum.
The noise is due to the randomness of spontaneous transitions
between the states of the TLS, with corresponding emission of
excitations of the thermal bath. On average, the transitions lead
to relaxation of the TLS, but because they happen at random,
they also cause fluctuations.

VI. CONCLUSIONS

We have developed a theory of a linear vibrational mode
(which may be of mechanical or electromagnetic origin)
dispersively coupled to a quantum system, where both the
mode and the system are driven far from thermal equilibrium.
The results reveal new aspects of dispersive coupling. One of
them is that the coupling leads to multistability of the nonlinear
response, where the compound system can have multiple
stable states in the mean-field approximation. This situation
is very different from the familiar bistability due to intrinsic
nonlinearity of a mode. In addition, the combination of the
dispersive coupling and modulation leads to new quantum
fluctuation effects.

The multistability happens because, as a result of the
interaction, the resonance frequency of the mode depends on
the state of the system, while the state of the system depends
on the degree of excitation of the mode. Effectively, the mode
becomes nonlinear, with the transition frequency depending
on the distribution over the states of the mode. In the simple

but highly relevant case of the coupling to a two-level system,
we found a regime where the compound system can have up
to three stable states.

Our analysis refers to the case where the relaxation rate
of the system is large compared to the mode relaxation rate.
This case is of utmost interest for the broad range of currently
studied compound systems. Here, we discuss a few examples
from the literature, which may naturally satisfy the conditions
under which our description applies.

(i) Example 1. Double quantum dot charge qubit coupled
to superconducting cavity mode. Such a system was studied in
Ref. [8], with mode frequency ω

M
/(2π ) = 6.2 GHz, mode life-

time τ
M

= 1 × 10−7 s, qubit transition frequency ω
S
/(2π ) =

(2–7) GHz, qubit lifetime τ
S

= 1.5 × 10−8 s, and Jaynes-
Cummings coupling strength gc/(2π ) = 30 MHz. Here, the
cavity-mode quality factor was only Q = 2000, already giving
τ

M
/τ

S
� 1. With expected device improvements, the condition

τ
M
/τ

S

 1 will be reached. The dispersive coupling V in our

theory can be tuned via the qubit-cavity detuning ω
M

− ω
S
,

giving, e.g., V ∼ g/100, which easily satisfies the weak noise
condition V 2τ

M
τ

S
� 1.

(ii) Example 2. Superconducting “transmon” qubit coupled
to a superconducting stripline cavity mode. In the recent
experiment described in Ref. [29], the parameter values are
ω

M
/(2π ) = 8.8 GHz, τ

M
= 600 ns, ω

S
/(2π ) ≈ 14 GHz, τ

S
=

120 ns, and Jaynes-Cummings coupling g/(2π ) ≈ 180 MHz.
The condition τ

S
/τ

M
< 1 is weakly satisfied. The value of the

dispersive coupling V in our model is approximately equal
to the “qubit-qubit coupling” g12 ∼ g2/(ω

S
− ω

M
) � (2π ) ×

10 MHz. This gives V 2τ
M
τ

S
∼ 102, although the lifetimes

and V can be presumably decreased. Interestingly, this setup
features two qubits coupled to the same cavity mode, allowing
the possibility for studying the case where the system S has
more than just two levels.

(iii) Example 3. Cooper-pair box qubit coupled to a
nanomechanical resonator. A device of this type was used
in Ref. [6] to perform a nanomechanical measurement
of the qubit state, with parameters ω

M
/(2π ) = 58 MHz,

τ
M

∼ 100 μs, ω
S
/(2π ) ∼ 10 GHz, V/(2π ) ∼ 1 kHz. The

qubit relaxation time T1 ≡ τ
S

was not measured, but from
similar devices it can be expected to be of order τ

S
∼

10 ns. Thus, both the adiabaticity condition τ
S
/τ

M
≈ 10−4 �

1 and the weak noise limit V 2τ
M
τ

S
∼ 10−5 are easily

satisfied.
We have shown how quantum fluctuations in the system,

which is dispersively coupled to the vibrational mode, cause
switching between coexisting stable states of the compound
M + S system. The switching rates are explicitly calculated
in the most interesting region, i.e., near bifurcation points
where metastable states disappear. We find that the effective
switching activation energy displays power-law scaling with
the distance to the bifurcation point, with exponent 3

2 . This
analysis holds in the regime of weak quantum noise, quantified
by the parameter combination V 2τ

M
τ

S
� 1.

Going beyond the limit described above, we also expect that
the system displays interesting behavior where the condition
that the quantum noise is weak is violated. In this case,
quantum noise leads to unusually large fluctuations between
the areas centered near the mean-field stable states. Such
behavior may be manifested in some of the systems described
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above. In other words, the system becomes an amplifier of
the nonequilibrium quantum noise. A detailed analysis of this
effect is beyond the scope of this paper, but is a worthwhile
direction for future study.
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