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We study tunneling between period-2 states of a parametrically modulated oscillator. The tunneling matrix
element is shown to oscillate with the varying frequency of the modulating field. The effect is due to spatial
oscillations of the wave function and the related interference in the classically forbidden region. The oscilla-
tions emerge already in the ground state of the oscillator Hamiltonian in the rotating frame.
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Nonlinear micro- and mesoscopic vibrational systems
have attracted much interest in recent years. In such systems
damping is often weak, and even a comparatively small reso-
nant field can lead to bistability, i.e., to coexistence of forced
vibrations with different phases and/or amplitudes. Quantum
and classical fluctuations cause transitions between coexist-
ing vibrational states. The transitions are not described by the
conventional theory of metastable decay, because the states
are periodic in time and the systems lack detailed balance.
Experimentally, classical transition rates have been studied
for such diverse vibrational systems as modulated trapped
electrons �1�, Josephson junctions �2�, nano- and microme-
chanical oscillators �3–5�, and trapped atoms �6�, and the
results are in agreement with theory �7,8�.

Currently much experimental effort is being put into
reaching the quantum regime �9,10�. In this regime tunneling
between coexisting classically stable periodic states should
become important, for weak dissipation. It was first studied
for a resonantly driven oscillator, where a semiclassical
analysis �11� made it possible to find the tunneling exponent
in a broad parameter range �12�.

Tunneling is particularly interesting for a parametrically
modulated oscillator. Here, the coexisting classical periodic
states have period 2�F, where �F is the modulation period.
Such period-2 states are identical except that the vibrations
are shifted in phase by �. Therefore the corresponding quan-
tum states �Floquet states� are degenerate. Tunneling should
lift this degeneracy, as for a particle in a symmetric static
double-well potential. Earlier the tunneling matrix element
was found �13� for modulation at exactly twice the oscillator
eigenfrequency �0. Recently the tunneling exponent was ob-
tained in a general case where the modulation frequency
�F=2� /�F is close to 2�0 �14�.

In this paper we show that tunneling between period-2
states of a parametrically modulated oscillator displays un-
expected features. We find that the tunneling matrix element
oscillates with varying �F−2�0, periodically passing
through zero. These oscillations are accompanied by and are
due to spatial oscillations of the wave function in the classi-
cally forbidden region.

For resonant modulation, ��F−2�0���F, and for a small
amplitude of the modulating field F the oscillator dynamics
is well described by the rotating wave approximation �RWA�
�15�. The scaled RWA Hamiltonian ĝ as a function of the

oscillator coordinate Q and momentum P in the rotating
frame is independent of time. In a broad parameter range it
has a symmetric double-well form shown in Fig. 1. The
minima correspond to the classical period-2 states, in the
presence of weak dissipation. Respectively, of utmost inter-
est are tunneling transitions between the lowest single-well
quantum states of ĝ.

A simple model of a nonlinear oscillator that describes
many experimental systems, cf. Refs. �1–6�, is a Duffing
oscillator. The Hamiltonian of a parametrically modulated
Duffing oscillator has the form

H0 =
1

2
p2 +

1

2
��0

2 + F cos �Ft�q2 +
1

4
�q4. �1�

For �F close to 2�0 and for comparatively small F,

�� =
1

2
�F − �0, ���� � �0, F � �0

2, �2�

even where the oscillator becomes bistable its nonlinearity
remains relatively small, ���q2����0

2. For concreteness we
set �	0; the results for �
0 can be obtained by replacing
��→−�� in the final expressions.

Q

P

g

-2.0 -1.0 0.0
1.0

2.0
-0.5

0.0

0.5

-0.6

0.0

0.6

FIG. 1. �Color online� The scaled effective Hamiltonian of the
oscillator in the rotating frame g�Q , P�, Eq. �5�, for �=0.5. The
minima of g�Q , P� correspond to the period-2 vibrations. The ei-
genvalues of ĝ give scaled oscillator quasienergies.
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To describe a weakly nonlinear oscillator it is convenient
to make a canonical transformation from q and p to the
slowly varying coordinate Q and momentum P,

U†qU = Cpar�P cos��Ft/2� − Q sin��Ft/2�� ,

U†pU = − Cpar�F�P sin��Ft/2� + Q cos��Ft/2��/2, �3�

where Cpar= �2F /3��1/2 and

�P,Q� = − i�, � = 3�
/F�F. �4�

The dimensionless parameter � plays the role of 
 in the
quantum dynamics in the rotating frame �14�.

The transformed oscillator Hamiltonian has the form
�F2 /6��ĝ, where ĝ�g�Q , P�,

g�Q,P� =
1

4
�P2 + Q2�2 +

1

2
�1 − ��P2 −

1

2
�1 + ��Q2 �5�

�we use here a more conventional notation g�Q , P� instead of
g�P ,Q� used in Ref. �14��. The terms �exp�±in�Ft� with n
�1 in ĝ have been disregarded.

The time-independent operator ĝ is the scaled oscillator
Hamiltonian in the rotating frame. Its eigenvalues multiplied
by F2 /6� give oscillator quasienergies, or Floquet eigenval-
ues. Formally, ĝ is a Hamiltonian of an auxiliary stationary
system with variables Q , P, and the eigenvalues of ĝ give the
energies of this system. The operator ĝ depends on one pa-
rameter

� = 2�F��/F . �6�

For �	−1, g�Q , P� has two minima located at P=0, Q
= ± ��+1�1/2. For ��1 the minima are separated by a saddle
at P=Q=0, as shown in Fig. 1. When friction is taken into
account, the minima become stable states of period-2 vibra-
tions. The function g�Q , P� is symmetric as a consequence of
the time translation symmetry: the change �P ,Q�→ �−P ,
−Q� corresponds to shifting time in Eq. �3� by the modula-
tion period �F.

We assume the effective Planck constant � to be the small
parameter of the theory, ��1. Then the low-lying eigen-
values of ĝ form doublets. Splitting of the doublets is due
to tunneling between the wells of g�Q , P�. Since g�Q , P�
=g�−Q ,−P� is symmetric, the problem of level splitting
seems to be similar to the standard problem of level splitting
in a double-well potential �16�. As in this latter case, we will
analyze it in the WKB approximation.

The major distinction of the present problem comes from
the difference between the structure of g�Q , P� and the
Hamiltonian considered in Ref. �16�. The momentum
P�Q ;g� as given by equation g�Q , P�=g has four branches,
with both real and imaginary parts in the classically forbid-
den region of Q. This leads to new features of tunneling and
requires a modification of the method �16�.

We will consider splitting �g of the two lowest eigenval-
ues of ĝ. Because of the symmetry, the corresponding wave
functions �±�Q� are

�±�Q� =
1
	2

��l�Q� ± �l�− Q�� , �7�

where �l�Q� is the “single-well” wave function of the left
well of g�Q , P� in Fig. 1. It is maximal at the bottom of the
well Ql0=−�1+��1/2 and decays away from the well. To the
leading order in �, the corresponding lowest eigenvalue of ĝ
is gmin+gq, where gmin=−�1+��2 /4 is the minimum of
g�Q , P� and gq=���+1�1/2 is the zero-point energy.

The wave function �l�Q� is particularly simple for �
0.
In the classically forbidden region between the wells, �Q�

 �Ql0�, it has the form

�l = C�− i�Pg�−1/2 exp�iS0�Q�/�� , �8�

where S0�Q� is given by the equation g�Q ,�QS0�=gmin+gq,

S0�Q� = 

Ql0+Lq

Q

P−�Q��dQ�,

P±�Q� = i�1 + Q2 − � ± 2�Q2 − �̃�1/2�1/2,

�̃ = � − gq, Lq = �/gq
1/2 � �1/2�� + 1�−1/4. �9�

We keep   in  S0   only   the   contribution from  the  branch
P−�Q�, because P−�Q� is zero on the boundary of the classi-
cally forbidden range Ql0+Lq. For −��� and �Ql0+Lq�
	 �Q� the action S0�Q� is purely imaginary. The wave func-
tion �l�Q� monotonically decays with increasing Q.

The prefactor in the wave function �8� is determined by
the complex classical speed of the oscillator

�Pg = 2P−�Q��Q2 − �̃�1/2. �10�

The normalization constant C in Eq. �8�,

C = ��� + 1�/��1/4 exp�− 1/4� , �11�

is obtained by matching, in the range Lq�Q−Ql0� �Ql0�, Eq.
�8� to the tail of the Gaussian peak of �l�Q�, which is cen-
tered at Ql0.

We are most interested in the parameter range ���
where tunneling displays unusual behavior. For such � the
momentum P−�Q� becomes complex in the range �Q�
�̃.
This means that the decay of the wave function is accompa-
nied by oscillations. To correctly describe them we had to
keep corrections �gq in Eq. �9�.

We first rewrite Eq. �9� in the form

P−�Q� � i�1 − �Q2 − �̃�1/2 −
gq/2

1 − �Q2 − �̃�1/2
 . �12�

Equation �12� applies for Q−Ql0�Lq. It is seen that P−�Q�
has two branching points inside the classically forbidden re-
gion. The closest to Ql0 is the point Qbr=−�̃1/2. The WKB
approximation breaks down for small Q+ �̃1/2. The wave
function in this region can be shown to be proportional to
Airy function Ai(−�Q+ �̃1/2��2�̃1/2 /�2�1/3). Therefore �l os-
cillates with Q for positive Q+ �̃1/2.

In contrast to the standard WKB theory of the turning
point, the prefactor in �l contains two factors that experience
branching at −�̃1/2, see Eqs. �8� and �10�. The full solution in
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the oscillation region can be obtained by going around −�̃1/2

in the complex plane following the prescription �16�. For
�2/3�Q+ �̃1/2 this gives

�l � 2C��Pg�−1/2 exp�− Im S0�Q�/��cos ��Q� ,

��Q� = �1�Q� + �2�Q� . �13�

The term Im S0�Q� in the amplitude of the wave function
�13� is determined by Eq. �9�. The phase ��Q� has two
terms. The term �1�Q� comes from the exponential factor in
the WKB wave function �8�,

�1�Q� = �−1

−�̃1/2

Q

Re P−�Q�dQ , �14�

where Re P−�Q� is given by Eq. �12� in which we set �Q2

− �̃�1/2→ i��̃−Q2�1/2; therefore Re P−�Q�	0. It is simple to
write �1 and Im S0�Q� in explicit form.

The term �2�Q� in Eq. �13� comes from the prefactor in
�l�Q�, Eq. �8�,

�2�Q� �
1

2
arcsin� � − Q2

1 + � − Q2�1/2

−
�

4
. �15�

Decay and oscillations of the wave function described by
Eq. �13� are compared in Fig. 2 with the results of a numeri-
cal solution of the Schrödinger equation ĝ�=g�. The left-
well wave function was obtained numerically as a sum of the
two lowest-eigenvalues solutions, cf. Eq. �7�. In this calcula-
tion the basis of 120 oscillator Fock states was used. A good
agreement between analytical and numerical results is seen
already for not too small �=0.09.

The above solution allows us to find the tunnel splitting
�g=g−−g+ of the symmetric and antisymmetric states �7�.
Following the standard approach for a symmetric double-
well potential �16� we multiply the Schrödinger equations for
the involved states ĝ�l=gl�l and ĝ�±=g±�± by �±

* and �l
*,

respectively, integrate over Q from −� to 0, and subtract the
results. This gives

�g = − �2�2�1 − ���l�0��l��0� − �2��l�0��l��0�

+ �l��0��l��0���

or, with account taken of Eq. �13�,

�g =
16�1/2�� + 1�5/4

����1/2 e−A/� cos�2�1�0�� ,

A = �� + 1�1/2 + � ln��−1/2�1 + �� + 1�1/2�� ,

2�1�0� = ����−1 − 1�/2 �� � �� . �16�

Clearly, �g may be positive or negative, that is, the symmet-
ric state may have a lower or higher quasienergy than the
antisymmetric state.

The dimensional splitting �F2 /6����g� gives twice the
matrix element of tunneling between period-2 states of
the oscillator. This matrix element has an exponential factor
exp�−A /�� �14�. In addition, it contains a factor oscillating
as a function of the scaled frequency detuning � /�
=6�F

2��F−2�0� /3�
. The oscillation period is ��� /��=4.
These oscillations are shown in Fig. 3.

The oscillations of �g result from the wave function os-
cillations in the classically forbidden region. This can be
seen from the analysis of �l�Q� near the positive-Q boundary
of the oscillation region, Q= �̃1/2. The wave function for Q
− �̃1/2�� is a combination of the WKB waves with imagi-
nary momenta P±�Q�� i�1± �Q2− �̃�1/2�. The coefficients in
this combination can be found in a standard way �16�. They
are determined by the phase ���̃1/2�. Only the wave with
P−�Q� contributes to the tunneling amplitude, since P+ re-
mains imaginary in the right well of g�Q , P�. For ���̃1/2�
= �4n−3�� /4 this wave has zero amplitude, leading to �g
=0. By noting that ���̃1/2�=2�1�0�−� /4, we immediately
obtain from Eq. �16� that �g=0 for �=2n� with integer n, in
agreement with Fig. 3.

The occurrence of spatial oscillations of the ground state
wave function of the scaled Hamiltonian ĝ does not contra-

FIG. 2. �Color online� The wave function of the ground state in
the left well �l�Q� in the oscillation region for �=0.09 and �
=0.5. The solid line shows explicit expressions �13�–�15�, the
dashed line shows numerical results. Inset: �l�Q� near its second
zero with higher resolution.

FIG. 3. �Color online� Scaled matrix element of tunneling be-
tween period-2 states as a function of the scaled detuning of the
modulation frequency from twice the oscillator eigenfrequency. The
solid lines show explicit expression �16�, the dashed lines show the
result of numerical calculations. Inset: a higher-resolution plot of
��g� /2 vs � near the zero of �g at �=6�. The data refer to �
=0.09.
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dict the oscillation theorem, because ĝ is not a sum of the
kinetic and potential energies and is quartic in P. The motion
described by the Hamiltonian g�Q , P� is classically inte-
grable. Respectively, the quantum problem is different from
dynamical tunneling in classically chaotic systems �17–19�;
the effect we discuss has not been considered for such sys-
tems, to the best of our knowledge.

The effect is also qualitatively different from photon-
assisted or suppressed tunneling in systems with stationary
double-well potentials: our oscillator has a single-well poten-
tial, the bistability is a consequence of resonant modulation,
and the Hamiltonian ĝ is independent of time. On the other
hand, there is a remote similarity between the oscillations of
the tunneling matrix element for period-2 states and for elec-
tron states in a double-well potential in a quantizing mag-
netic field �20�. However, not only is the physics different,
but our approach is also different from that in Ref. �20�; in
particular, it makes it possible to find �g analytically. The
approach can be extended also to a resonantly driven Duffing
oscillator, where the RWA Hamiltonian has a structure simi-
lar to Eq. �5� �7,12�.

Tunnel splitting can be observed by preparing the system
in one of the period-2 states and by studying interstate oscil-
lations, cf. Refs. �18,19�. This requires that the tunneling rate

��� /2�����g� exceed �F /4Q, where Q is the oscillator
quality factor. The splitting sharply increases with increasing
�. It will be shown separately that for comparatively large �
�but still for ��g��gq� the RWA applies and relaxation re-
mains small provided �g2�C� /Q with C��1. Our RWA
numerical results indicate that �g still oscillates with � for
�=0.25−0.3 and is well described by Eq. �16� for ��2�.
The local peak of ��g� for �=0.3 and the characteristic ex-
tremum of d2�g /d�2 for �=0.25 occur where ��g��0.01.
Such �g may be large enough for detecting the effect in
modulated Josephson junctions where Q=2360 has been
reached in the range of bistability �10�.

In conclusion, we used the WKB approximation to study
the wave functions of the period-2 states of a parametrically
modulated oscillator. We showed that these wave functions
can display spatial oscillations in the classically forbidden
region, in the rotating frame. These oscillations lead to oscil-
lations of the matrix element of tunneling between the
period-2 states with the varying frequency of the modulating
field.
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