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We show that steady-state work fluctuations in periodically modulated systems display universal features,
which are not described by the standard fluctuation theorems. Modulated systems often have coexisting stable
periodic states. We find that work fluctuations sharply increase near a kinetic phase transition where the state
populations are close to each other. We also show that the work variance displays scaling with the distance to
a bifurcation point where a stable state disappears and find the critical exponent for a saddle-node bifurcation.
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Since their discovery in the early 1990s �1–3�, fluctuation
theorems have been attracting increasing interest. Their goal
is to establish general features of fluctuating systems away
from thermal equilibrium. A major “test bed” for fluctuation
theorems is provided by dynamical systems with a few de-
grees of freedom coupled to a thermal bath, a Brownian par-
ticle being an example. Much of the theoretical and experi-
mental work refers to �i� modulated linear systems, where
fluctuations have been studied both in transient and station-
ary regimes �4–8� and �ii� pulse-driven nonlinear systems,
initially at thermal equilibrium �9–13�.

Fluctuations in nonequilibrium dynamical systems have
been attracting much attention also in a different context.
They play an important role in mesoscopic vibrational sys-
tems of current interest, including Josephson junctions, nano-
and micromechanical resonators, and trapped electrons and
atoms. Because damping of the vibrations is typically weak,
even a moderately strong resonant force can excite them to
comparatively large amplitudes, where the nonlinearity be-
comes substantial. As a result, the system may have two or
more coexisting stable states of forced vibrations �14�. Fluc-
tuations can cause switching between these states �15� and
thus significantly affect the system even where they are small
on average. Many features of switching in mesoscopic sys-
tems and a broad range of switching related phenomena and
applications, from resonant frequency mixing to high-
frequency stochastic resonance and to quantum measure-
ments have been recently studied experimentally �16–24�
and theoretically �25–28�.

In this paper we provide a general analysis of work fluc-
tuations in periodically modulated nonlinear dynamical sys-
tems coupled to a bath. The results are applied to a model
that describes the systems �16–23�. We find the distribution
of fluctuations of work done on a nonlinear system by the
modulating force over a long time �.

In common with systems close to thermal equilibrium, the
work variance �2 is proportional to the average work �W�.
However, in contrast to equilibrium systems and to modu-
lated linear systems, in nonlinear systems the proportionality
coefficient is not universal. Nevertheless, it has universal fea-
tures. They emerge near critical points. In particular, the vari-
ance becomes exponentially large in bistable systems in the
range of a kinetic phase transition where stationary popula-
tions of the vibrational states are close to each other. This
parameter range has similarity with the region of a first-order

phase transition where molar fractions of the coexisting
phases are close to each other �15,29�.

The power absorbed from the force in different vibra-
tional states i=1,2 is different, generally. Therefore switch-
ing back and forth between the states leads to large power
fluctuations. Their correlation time is determined by the
switching rates. For a small characteristic intensity D of the
noise that comes from the bath, these rates are small com-
pared to the dynamical relaxation rate in the absence of noise
tr
−1 and the modulation frequency �F. Then of primary inter-

est are period-averaged switching rates �ij. They often dis-
play activation dependence on D, with �ij �exp�−Ri /D�,
where Ri is the characteristic activation energy of a transition
i→ j. Since work fluctuations accumulate power fluctuations,
and the typical accumulation time for interstate fluctuations
is ��ij

−1, the exponential smallness of �ij may lead to an
exponentially large factor in the work variance �2.

We consider a fairly general model, a nonlinear classical
dynamical system modulated by a periodic force F�t�
=�nF̃�n�exp�in�Ft�; the coupling energy is −F�t�q, where q
is the system coordinate. The system is additionally coupled
to a bath, which leads to relaxation and fluctuations. Work
done by the force over time � is

W 	 W��� = 

0

�

dtF�t�q̇�t� . �1�

We are interested primarily in steady-state fluctuations, i.e.,
we assume that the system had come to the steady state well
before the time t=0 when the work �1� started to be mea-
sured. This steady state is periodic in time with modulation
period �F=2� /�F. We further assume that the time � largely
exceeds the characteristic decay time of correlations in the
system tcorr. Often for bistable systems tcorr�1 /�ij. Because
we are interested in the large-� limit, the results also apply if

work is defined as W=−�0
�dtḞ�t�q�t�; they can be easily gen-

eralized to a coordinate-dependent force.
Work fluctuations can be expressed in terms of the corre-

lation function of velocity fluctuations Q�t , t��
= �	q̇�t�	q̇�t���, where �¯� means ensemble average and
	q̇�t�= q̇�t�− �q̇�t��. Because the system is in a steady peri-
odic state, we have Q�t , t��=Q�t+�F , t�+�F�, and therefore

Q�t,t�� = �
n

Q�n;t − t��exp�in�F�t + t��/2� . �2�
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We first consider the variance of the work distribution �2

	�2���= ��	W�2�, where 	W=W���− �W����. In the limit of
large �

�2 � 2���
n,m

F̃�n�F̃*�m�Q̃m − n;
n + m

2
�F� ,

Q̃�n;�� = �2��−1

−





dtei�tQ�n;t� . �3�

Here we have taken into account that the correlation func-
tions Q�n ; t− t�� decay on time tcorr much smaller than �.
Therefore the limits of integration over t− t� could be ex-
tended from −
 to 
.

Decay of correlations on a time scale small compared
to � allows one to simplify the expressions for higher-order
moments of 	W in a standard way. The third moment
��	W�3� is determined by the integral over t1 , t2 , t3 of
the appropriately weighted correlator �	q̇�t1�	q̇�t2�	q̇�t3��.
Because �t1− t2 � , �t1− t3 � � tcorr, we have ��	W�3��� for large
�, and therefore ��	W�3� / ��	W�2�3/2��−1/2, i.e., the third mo-
ment is small for large �. The fourth moment ��	W�4� is
determined by the integral of the correlator
�	q̇�t1�	q̇�t2�	q̇�t3�	q̇�t4��. The main contribution to this in-
tegral comes from decoupling the correlator into pairs
�	q̇�tn1

�	q̇�tn2
���	q̇�tn3

�	q̇�tn4
�� with

�tn1
− tn2

� , �tn3
− tn4

� � tcorr while �tn1
− tn3

� �� �ni=1, . . . ,4�.
This gives ��	W�4��3��	W�2�2��2. Higher-order correla-
tions in ��	W�4� give a comparatively small contribution ��.
The analysis can be immediately extended to higher mo-
ments of 	W. It shows that the overall distribution of work
fluctuations P�W� is Gaussian,

P�W� = �2��2�−1/2 exp�− �W − �W��2/2�2� . �4�

It follows from Eqs. �3� and �4� that P�W� / P�−W�
=exp�2W�W� /�2�, as in the stationary state fluctuation theo-
rem for systems close to thermal equilibrium and for modu-
lated linear systems, and the variance of the work distribu-
tion �2��� �W�. However, for strong periodic modulation
there is no known general expression that would relate the
average velocity �q̇�t�� to the modulating force in terms of

the correlation functions Q̃�n ;�� and thus give �2 / �W�.
Moreover, as we show, the ratio �2 / �W� may display sharp
narrow peaks as a function of system parameters.

We now consider a system with two stable periodic states
j=1,2. For weak noise, it mostly performs small fluctuations
about the stable states and only occasionally switches be-
tween them. Then, to leading order in the noise intensity D
the average work is a sum of partial works W1,2 in each of
the states weighted with the stationary populations of the
states w1,2

st �15�,

�W� = �
j=1,2

wj
stWj, Wj = �F��

n

inF̃*�n�q̃j�n� ,

w1
st = �21/��12 + �21�, w2

st = 1 − w1
st. �5�

Here, q̃j�n� is the Fourier component of the coordinate qj�t�
in a state j, qj�t�=�nq̃j�n�exp�in�Ft�.

In contrast to the average work, the variance �2 has con-
tributions of two different types. One comes from small-
amplitude fluctuations about the stable states. It is given by
the sum of partial variances �1,2

2 weighted with the state
populations. The variances �1,2

2 can be obtained by lineariz-
ing equations of motion about the corresponding stable state
and can be written as

� j
2 = CjDWj, j = 1,2. �6�

The constants C1,2 depend on the system dynamics. For a
system coupled to a thermal bath at temperature T, in the
weak-field limit we have � j

2=2kBTWj. However, for strong
field this relation does not hold in nonlinear systems, gener-
ally.

Fluctuations about qj become large near a saddle-node
bifurcation point where the state j disappears. Here, one of
the motions of the system is slow �30�, there emerges a “soft
mode.” Let qj

�c��t� denote the bifurcational �critical� position
of the state j. Close to it one can quite generally write
q�t�−qj

�c��t�=qsm�t�� j�t�, where � j�t�=� j�t+�F� is a periodic
function, whereas qsm�t� is a slowly varying amplitude that
depends on initial conditions. Upon rescaling, the equation
of motion for qsm�t� can be written as

q̇sm = qsm
2 −  + f�t�, �f�t�f�t��� = 2D�	�t − t�� . �7�

Here,  is the distance to the bifurcation point, for example,
the scaled difference between the amplitude of the field and
its value at the bifurcation point. The noise f�t� can be quite
generally assumed to be white because of the slowness of
qsm�t�; its intensity is D��D.

For �0 in the absence of noise the system �7� has a
stable state where qsm=−1/2. Small fluctuations about this
state have variance D�−1/2 /2 and decay over time
tr=−1/2 /2. Therefore, from Eq. �3�, near the bifurcation
point where a state j disappears

� j
2/Wj = C̃jD/ . �8�

Factor C̃j is independent of D and , and Wj does not diverge
for →0.

Equation �8� shows that the partial work variance scales
as � with the distance to the bifurcation point. The critical
exponent is �=−1.

The other contribution to �2 comes from fluctuation-
induced interstate transitions. The transitions lead to fluctua-
tions of the state populations wj�t�. These fluctuations are
slow

�	w1�t�	w1�t��� = w1
stw2

st exp�− ��t − t��� ,

� = �12 + �21, �9�

where 	w1�t�=w1�t�−w1
st=−	w2�t�. In turn, they lead to slow

fluctuations of the velocity q̇�t��� jq̇j�t�wj�t� with decay

time given by the reciprocal total switching rate �
−1� tr ,�F.

From Eqs. �2�, �3�, �5�, �9�, the contribution to the work
variance from interstate switching is
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�sw
2 � M����−1�W1 − W2�2, M = 2w1

stw2
st, �10�

and the total variance is

�2 = �
j

wj
st� j

2 + �sw
2 . �11�

Equation �10� is one of the central results of the paper. It
shows that the switching-induced contribution to the work
variance is proportional to the squared difference of the par-
tial works in the stable states and is inversely proportional to
the switching rate �. The rate ��exp�−miniRi /D� is expo-
nentially small for small noise intensity. Respectively, the
variance �10� can be exponentially large compared to the
variance due to small fluctuations about attractors �6�.

Factor M in Eq. �10� sharply depends on the parameters
of the system and the field F�t�. It is small,

M � exp�− �R1 − R2�/D� , �12�

except for a narrow range of the kinetic phase transition
where the switching activation energies are close to each
other, �R1−R2 � �D. At its maximum M=1 /2. Equations
�10� and �12� show that the ratio �2 / �W��M�

−1
displays an

exponentially sharp peak at the kinetic phase transition. We
note that factor M determines also the intensity of very nar-
row peaks �of width �� tr

−1� in the power spectra of modu-
lated bistable systems and the spectra of absorption/
amplification of an additional field �15,31�. Its exponential
dependence on the distance to the kinetic phase transition
was seen in simulations �32� and experiment �22�.

The above formulation can be easily generalized to mul-
tidimensional systems with the energy of coupling to the
force of the form −q ·F�t�. Both Eq. �10� for �sw

2 and Eq. �8�
for scaling of � j

2 near a saddle-node bifurcation point hold in
this case as well.

We now illustrate the results using as an example a reso-
nantly driven underdamped Duffing oscillator, a model that
applies to a number of recent experiments on Josephson
junctions and nanomechanical and micromechanical resona-
tors. In the absence of noise the oscillator dynamics is de-
scribed by the equation

q̈ + �0
2q + �q3 + 2�q̇ = A cos �Ft . �13�

We assume that the detuning of the field frequency from the
oscillator eigenfrequency 	�=�F−�0 and the friction coef-
ficient � are small: �	� � ,���0. Then the oscillator can
display bistability of forced vibrations already for a com-
paratively small driving amplitude A, where the vibrations
remain almost sinusoidal, qj�t��aj cos��Ft+� j� �j=1,2�.
Explicit expressions for the amplitudes a1,2 and phases �1,2
are known �14� and the interstate switching rates are well
understood �15,17,19,20,32�.

The partial work in a stable vibrational state j is
Wj =���F

2aj
2. The partial variances � j

2 due to thermal noise
can be calculated using the approach �15,32�

� j
2

Wj
= 2kBTZj

−2��Zj − 2�2 + 4�2�Y j − 1�2� ,

� = 	�/�, Zj = 1 + �2�Y j − 1��3Y j − 1� , �14�

where Y j =3�aj
2 /8�F	�. Equation �14� refers to the case

where fluctuations and friction come from coupling to the
same thermal reservoir; in fact, it is not limited to the model
�13� and applies in a general case where the density of states
of the reservoir weighted with the interaction is smooth near
�F.

It follows from Eq. �14� that in the linear-response re-
gime, where Y j �A2, Y j�1, the ratio � j

2 /Wj→2kBT is given
by the standard stationary state work fluctuation theorem.
This is in agreement with the recent theoretical and experi-
mental results on a periodically modulated linear system �7�.

However, for stronger driving the ratio �14� is no longer
given by 2kBT. When the field amplitude A or frequency �F
approach their bifurcational value, we have

� j
2/Wj � 2kBTGj���−1,  = � − �B

�j���� . �15�

Here, �=3�A2 /32�F
3�	��3 is the reduced field amplitude,

�B
�1,2� are the bifurcational values of � �14�, and

Gj =�−2�B
�j� /Y jB�3Y jB−2� �Y jB is the bifurcational value of

Y j�. In agreement with Eq. �8�, � j
2 /Wj scales as −1 with the

distance  to the bifurcation point. The full dependence of
� j

2 /Wj on � is shown in Fig. 1.
It should be possible to see the scaling �15� in modulated

mesoscopic oscillators for the same conditions in which the
scaling of the switching activation energies was seen �19,20�.
Similarly, the exponential peak of the work variance should
be seen in experiments analogous to those where there were
observed other kinetic phase transition phenomena such as
super narrow peaks in the power spectra, high-frequency sto-
chastic resonance, and fluctuation-enhanced frequency mix-
ing �22,24�.

Experiments on scaling and on the kinetic phase transition
should be conducted in a different way. Scaling can be ob-
served in the quasistationary regime. The system should be
prepared in the metastable state near a bifurcation point, and
the duration of the experiment should be shorter than the
lifetime of the state. In contrast, the exponential peak of the

β
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1
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1 2

FIG. 1. �Color online� Scaled ratios of the partial work variance
to mean partial work Sj =� j

2 /2kBTWj, j=1,2, as functions of the
reduced squared modulation amplitude � for a Duffing oscillator;
�−1=� /	�=0.3. The curves 1 and 2 refer to the branches of large-
and small-amplitude vibrations, respectively. Functions S1,2 diverge
at the bifurcation points where the corresponding branches disap-
pear, �B

�1��0.088 and �B
�2��0.18.
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work variance can be seen provided the duration of the mea-
surement exceeds the reciprocal switching rate �−1.

In conclusion, we have considered work fluctuations for
nonlinear systems modulated by a strong periodic field. We
demonstrate that the standard steady-state work fluctuation
theorem does not apply to nonlinear systems, generally. Nev-
ertheless, work fluctuations may display system-independent
features. If a system has coexisting stable vibrational states,
the ratio of the work variance to the average work is propor-
tional to the reciprocal rate of interstate switching. It has a
sharp exponentially high peak as a function of the distance to
the kinetic phase transition. Near a saddle-node bifurcation

point where one of the vibrational states disappears, in the
quasistationary regime the work variance displays scaling
dependence on the distance to the bifurcation point. The re-
sults apply to a broad range of vibrational systems of current
interest, from trapped electrons to Josephson junctions and to
nanomechanical and micromechanical resonators.
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