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Abstract

The shadows of the Moon and Sun in TeV cosmic rays are unique probes of the

character of these particles and the magnetic fields they traverse. Milagro was a

water-Cerenkov cosmic-ray observatory at an elevation of 2630 m, near Los Alamos

New Mexico, which operated from 2000-2008. With continuous operation and a

large field of view, the Milagro detector was an ideal instrument for observations

of these shadows.

The Milagro data analyzed here are primarily a sample of 700 million events

within ±10◦ of the Moon and 650 million events within ±10◦ of the Sun, collected

in 2.5 years from 2005 to 2008.

We investigate the possibility of using the Milagro-measured Moon shadow to

perform the first energy scale calibration of an air shower array that is independent

of shower and detector simulations. A Moon shadow simulation is found to agree

well with data where magnetic field effects are small, but a better model of the

magnetic field will have to be implemented in order for a conclusive energy scale

determination to be made.

An antiproton component is expected in TeV cosmic rays as a result of spalla-

tion in the interstellar medium. This gives rise to a Moon shadow deflected in the

opposite direction to the particle shadow. A simulation-free fit is performed over

a probable range of parameters describing the antiproton Moon shadow. Using

the simulation-determined proton trigger fraction of 72% yields 95% upper limits

on p̄/p of 3.4 to 3.9%. This is currently the most stringent upper limit at TeV

energies.
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The Milagro-measured solar shadow probes the Sun’s magnetic field, as solar

activity and the sunspot number decreases over the second half of solar cycle 23, in

the first study of the coronal magnetic field using the cosmic-ray shadow. We find

a strong time dependence of the depth of Sun’s shadow, which is anti-correlated

with sunspot number. Simulating the Sun’s shadow, using a dipole model of the

coronal field, results in a good fit to data close to solar minimum.
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Chapter 1

Overview of Cosmic Rays

As the centenary of the discovery of cosmic rays draws near, many fundamental

questions about their nature remain unanswered. They consist primarily of protons

and heavy nuclei that are incident on Earth with a high degree of isotropy, due

to their scattered paths in galactic magnetic fields that obfuscate their origins.

Current observations of cosmic rays span 14 orders of magnitude in energy: the

highest energy cosmic rays ever observed had as much energy as a little-league

baseball, 3.2×1020 eV [1]. Since their discovery, we still do not have answers to

the following questions:

1. What are the sources of cosmic rays?

2. How are they accelerated to such high energies?

3. What is their composition?

We have potential solutions to these questions –we think sources of cosmic rays

are supernovae [2], and other objects from late stellar evolution for lower energy

1



galactic sources, whilst the highest energy sources must be extra-galactic due their

high rigidities, but the debate still rages about their origins between active galactic

nuclei [3] and the γ-ray burst sources. We think the mechanism for acceleration lies

in shock fronts expelled by supernovae; but modeling accelerations to reproduce

energies and spectra is difficult (see [4] and references therein). We also have

evidence that the sources of cosmic rays also produce γ-rays [5] and neutrinos [6].

Unlike charged particles, neutrinos and γ-rays, are neutral so are not deflected by

magnetic fields. If they are produced close to cosmic-ray sources they therefore

provide a window directly back to the source.

1.1 Very High Energy Cosmic Rays (VHE CR)

The lowest energy cosmic rays are a few MeV and at these energies the solar

wind will wash them away from Earth. At the equator, only cosmic rays above

approximately GeV energies may penetrate the Earth’s magnetic field [7]. A few

orders of magnitude higher in energy are the ∼TeV cosmic rays that concern us in

this thesis. These are known in the literature as Very High Energy (VHE) cosmic

rays and are defined to lie in the energy range 30 GeV-30 TeV. For a recent review

of VHE CR and γ-ray astronomy see [8].

The spectrum of cosmic rays incident on Earth can be described as a power

law of the form

dN

dE
= AE−α (1.1)

where α lies in the range 2.5-3. An image of the full cosmic-ray spectrum is shown

in fig. 1.1. The low-energy region of the spectrum has a spectral index α ∼2.7. The
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spectrum steepens around 1-10 PeV and beyond this point, known as the knee,

the spectral index is α ∼3. Finally, the ultra-high energy spectrum flattens again,

at around 1-10 EeV, which is known as the ankle. Physically, it is thought that

the ankle represents the transition of cosmic-ray origins from galactic to extra-

galactic [9]. Below the knee, all cosmic rays are thought to be galactic in origin

[2], having been confined in the galaxy for approximately 107 years in the ∼ µG

galactic magnetic field.

1.2 Detection of VHE CR

Since the flux of cosmic rays on Earth at VHE is low, (about 1 every 3 minutes per

m2 at 1 TeV) any detector must have a large detection area and so must be ground

based. However, the atmosphere is opaque to cosmic rays and γ-rays. When a

primary particle interacts with atmospheric molecules, typically at a few tens of

km above the surface of the Earth, a chain reaction occurs producing millions of

particles. This is known as an Extensive Air Shower (EAS).

1.2.1 Extensive Air Showers

An EAS begins when an incident cosmic-ray primary interacts strongly with an

atmospheric nucleus, such as nitrogen or oxygen. The amount of atmosphere tra-

versed before the initial interaction is dependent on the CR-air cross section, and

for TeV cosmic rays this grammage (density×distance traversed) is approximately

37 g/cm2. The atmosphere down to sea level corresponds to an atmospheric over-

burden of approximately 1000 g/cm2; therefore the cosmic ray has a vanishing
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Figure 1.1: The full cosmic-ray spectrum.
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probability of getting close to ground level without interacting.

The initial collision results in fragmentation of the atmospheric nucleus hit

by the primary. This first interaction produces baryon-antibaryon pairs, which

produce hadronic jets. However, the majority of particles produced are pions. The

π0s decay into photons and induce electromagnetic showers in which the photons

pair produce electron/positron pairs. These in turn emit high-energy photons via

bremsstrahlung, which themselves can pair produce. This cyclic process produces

an electromagnetic cascade.

The π± decay into muons and neutrinos. The muons are extremely penetrating

and if the decay length is longer than the interaction length the muons will get

to ground level. Otherwise, the muons may decay into electrons/positrons. The

reaction chain for all these processes is shown in fig. 1.2.

An EAS grows in number of particles nearly exponentially until the energy

losses of the e+/e− are dominated by ionization losses, rather than radiation pro-

cesses. This occurs when the energy of particles produced is ∼80 MeV and point

is known as shower maximum; beyond which the number of secondary particles

decreases towards the ground.

Non-Hadronic Primaries

Other than hadronic primaries, γ-ray primaries may occur, but on the order of 10−4

relative to cosmic rays at TeV. Electronic and positronic primaries also occur,

with electrons at a similar 10−4 level at TeV, and a much lower, positron flux.

Simulations of TeV proton and photon initiated showers are shown in fig. 1.3.
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Figure 1.2: The development of a CR-initiated EAS, taken from [10].
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Figure 1.3: EAS showers generated by CORSIKA. The image on the left is a from

a 1 TeV photon primary and the image on the right is a from 1 TeV proton. The

images are color coded, so the red tracks are electromagnetic, the green tracks are

muons and the blue are hadrons. Taken from [11].
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EAS Shape at Ground-Level

The EAS is highly beamed: through full shower development it extends tens of km

on-axis, but only few tens of meters laterally. The shower arrives at the surface

of the Earth at 100 m or so in radius and a few meters thick -a kind of parabolic

pancake.

The lateral development of the shower is due to the electrons/positrons un-

dergoing multiple Coulomb scattering from electric fields of nuclei and photons

Compton scattering from atomic electrons. The lower energy secondaries and ter-

tiaries will scatter farther and as a result will end up farther from the shower core,

which is defined as where the primary would arrive, at ground level, without inter-

actions. The particles farther from the core, being lower in energy, travel slower

than those close to the core giving the EAS a non-planar shape. The mixture of

particle energies and speeds gives a typical TeV shower a 1m thickness on-axis.

1.2.2 Air Shower Array Detectors

Air shower array detectors are designed to detect the EAS at ground level. Ex-

amples of arrays operating in the VHE part of the spectrum are Tibet AS-γ [12],

ARGO-B [13], Milagro, and its yet-to-completed successor HAWC. A picture of

the Tibet AS-γ detector is shown in fig. 1.4.

The principle behind air shower arrays is to use the atmosphere like layers of

a calorimeter, but at ground level we see only a sample of particles at the tail-

end of the shower. Arrays detect secondaries and tertiaries from the EAS, so the

altitude of detection governs the number of particles in the shower at detector
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level. This governs the energy threshold of the detector. Higher energy primaries

produce more particles in the EAS, and the probability of shower being detected

is a strong function of the number of particles reaching the detector level. At

higher altitudes low energy showers contain more particles, so are more likely to

be detected. Therefore the higher the altitude of the detector, the lower its energy

threshold.

The direction of the primary is, to a good approximation, perpendicular to the

layer of particles formed in the EAS. It can be reconstructed using an array of

detectors (often scintillator counters), each of which measures hit size and hit time

of from EAS particles. The hit times and hit sizes for each detector in the array

are then used to reconstruct the EAS shower front and hence the direction of the

primary.

In their favor, arrays have high duty cycles and large fields of view, which is

useful when observing extended emission [14], and other large scale features, such

as the cosmic ray anisotropy [15]. However, air shower arrays suffer from poor

angular resolution.

Milagro

Milagro uses the water-Cerenkov technique, which it pioneered, rather than scintil-

lator to detect the secondaries and tertiaries at ground level. At Milagro’s altitude

there are approximately five γs for every e+/e− pair in the EAS. When passing

though water the γs either pair produce, or transfer their energy to electrons via

Compton scattering. Then, any charged particles traveling faster than the speed

of light in the medium will produce Cerenkov light. In water, particles radiate
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Figure 1.4: The Tibet AS-γ array near Yangbajing, Tibet, located 4300m above

sea level [16].

visible blue Cerenkov light in a wide 42◦ cone. So, this technique uses water as

both a detection medium and to transfer the energy of the air-shower photons to

charged particles, so a much larger fraction of shower particles can be detected

than in other arrays. This leads to high sensitivity for showers with lower primary

energies than would otherwise be possible.

Cerenkov Radiation

The speed of light in a medium of refractive index n is c/n, where c is the speed

of light in a vacuum. Cerenkov radiation is produced when a charged particle

travels at super-luminal speeds (faster than the speed of light in that medium).

As charged particles pass through the medium it becomes locally polarized, as the

particle attracts like charges. This polarization is totally symmetrical. However, if

the particle speed is super-luminal the polarization charges cannot arrange them-

selves rapidly enough in the medium. The arrangement of poles is still symmetrical

10



azimuthal to the motion, but behind the particle a cone of dipoles develops, pro-

ducing a dipole field in the medium. This field collapses with Cerenkov radiation

being emitted as a light cone at a fixed angle θc with respect to the motion of the

particle:

cos θc =
c

nv
(1.2)

where v is the velocity of the particle, n is the refractive index of the medium and

c is the speed of light in a vacuum. The energy threshold, above which a particle

will emit Cerenkov light, as a function of rest mass m0 and index of refraction is

given by

Ethreshold =
m0c

√

1 − 1
n2

(1.3)

In an array of scintillators, particles must directly hit the scintillator material for

detection. In the water Cerenkov technique however, with the correct geometry

of light-sensors, any Cerenkov light in the water will be detected, which covers a

potentially much larger area than expensive scintillator material.

Using eq. 1.3, we find that the threshold for Cerenkov radiation production is

0.76 MeV for electrons, 0.16 GeV for muons and 1.4 GeV for protons. These are

the energy thresholds for detection with the light sensors in Milagro. The Milagro

detector is described in detail in the following chapter.
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Chapter 2

The Milagro Detector

Milagro was a ground-based water Cerenkov detector in the Jemez Mountains near

Los Alamos, New Mexico (35.88◦N, 106.68◦W), at 2630 m above sea level, which

corresponds to an atmospheric overburden of 750 g/cm2. It was designed as a

γ-ray instrument and was sensitive in the VHE (TeV) region of the spectrum. It

operated day and night from 2000 to 2008, leading to a duty cycle of >90% and

had a large (2 steradian) field of view.

This chapter outlines how Milagro detects cosmic rays and how the arrival di-

rection is reconstructed. In section. 2.1 we describe the physical instrument. Then,

in sec. 2.2 we describe the electronic system designed to extract hit-times and hit-

sizes, from the photomultiplier tubes (PMTs) that detect Cerenkov light initiated

by particles in the EAS. Once we have the hit-time and size from each PMT, the

electronics must determine if the signals are from an EAS event. To do this we

need an event trigger, which is described in sec. 2.3. If an event triggers the de-

tector, using the hit-times and hit-sizes for each PMT, the Milagro reconstruction
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Figure 2.1: Inside the Milagro pond, before any PMT installation. The pond is

about the size of a gridiron football field. The grid positions correspond to eventual

PMT positions.

algorithms are used to reconstruct the incident primary particle direction from the

EAS, which is described in sec. 2.4. Finally, sections 2.5 and 2.6 discuss detector

variability.

2.1 Detector

The detector consisted of a central pond and 175 outrigger detectors, all filled with

water and two nearby buildings to house the electronics. The site was chosen as the

pond already existed from a geothermal experiment at Los Alamos National Lab.

The exposed mountainous location left the equipment open to electrical storms so

it was covered in a giant Faraday cage to protect the electronics.
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2.1.1 Pond

The pond contained 24 million liters of water, covered with a light-tight 1 mm

layer of polypropylene. The cover had to transmit no light, so the detector would

be sensitive to single photons in the pond during the day. This cover was held in

place in inclement weather by a series of high tension nylon cables criss-crossing

the cover sheet. To perform repairs the cover was inflated and raised about 20 ft

above the surface of the pond. The inside of the pond is shown in fig. 2.1 and a

schematic of the pond is shown in fig. 2.2.

To detect Cerenkov light from charged particles the pond contained two layers

of PMTs. The top, or Air-Shower-layer (AS), had 450 PMTs under 1.5 m of water

on a 2.8 m×2.8 m grid. The bottom, or MUon-layer (MU), had 273 PMTs under

6 m of water arranged on a 2.8 m×2.8 m grid; offset from the AS-layer by half a

grid spacing, as shown in fig. 2.3.

At Milagro’s altitude, secondary particles in a TeV EAS are nearly all electro-

magnetic, with roughly five γs for every e+/e− pair. The AS-layer was in place

to detect the Cerenkov light from these electromagnetic particles, as described in

section 1.2.2, so was placed under 1.5 m or 4 radiation-lengths of γ in water. The

amount of water above the PMT was large enough so that nearly all photons could

convert into an e+/e− pair, but not so thick so the light produced at the top water

level is absorbed before it reaches the PMT and the exact value was determined

from simulations.

The muon layer was under 6 m, which corresponds to 16 radiation-lengths of

γ in water; hence only muons and hadrons reach the MU PMTs. The MU-layer
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(a) Dimensions of the pond from [17]

(b) Air Shower (AS) and Muon layers (MU) [18]

Figure 2.2: Schematics of the Milagro pond.
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Figure 2.3: The Milagro pond with two layers of PMTs. The top layer is the

AS-layer, used for direction reconstruction and timing. The bottom layer is the

MU-layer used for γ-hadron separation. The water is low as we were draining the

pond.
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was therefore used in gamma-hadron separation. Muons as low as 1.2 GeV could

reach the MU-layer.

Water Filtration

The detector relies on detecting Cerenkov light in water, so needs the water to be

very clear, i.e. have a high attenuation length. In order to keep the pond clear the

water was pumped to a building on-site and filtered. While the pump was online,

it recirculated the water at 200 gallons per minute. The water passed through a

series of filters: charcoal, 10 µm, 1 µm, carbon and finally a UV filter to kill any

organisms. The attenuation length of the water was regularly checked and a test

before the Milagro went offline found the attenuation length to be 17 m, for UV

of wavelength 325 nm.

In early Milagro epochs (see sec. 2.5), aluminum baffles were placed on the

PMTs in the pond. These corroded and significantly reduced the attenuation

length in the pond. The aluminum baffles were removed and replaced with plastic

baffles, then, after filtration, the pond attenuation length returned to previous

levels. The outrigger tanks were not filtered and were left largely untouched after

their installation. When the detector was dismantled in 2008, the water quality in

the outriggers was found to have a high attenuation length.

2.1.2 PMTs

To collect the Cerenkov light emitted in the water, Milagro used photomultiplier

tubes to detect and amplify the signal. The PMTs (fig. 2.4) were Hamamatsu
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Figure 2.4: A Milagro PMT.

#R15912 SEL, had an 8” diameter and were surrounded by a conical polypropylene

baffle with white interior and black exterior. The baffle simultaneously blocked

light from the problematic single muon events (low altitude muons traveling across

the length of the pond) and increased the light-collection area.

PMTs detect Cerenkov photons and output an amplified electrical signal. The

electrical signal is provided by a cascade of photo-electrons (PEs); the number of

which is a measure of the hit-size, or energy and number of Cerenkov photons,

detected by the PMT. The high voltage supplied to the PMT and the signal read

from the PMT both used the same RG-59 cable to reduce the wiring in the pond.

2.1.3 Outriggers

The outriggers extended the physical area of the detector from 5,000 m2 to 40,000

m2. The outrigger positions, with the pond, are shown in fig. 2.5. They were

installed in increments, from 2001 to 2003, primarily to improve the core-location

of EAS in data reconstruction. There were 175 outriggers, each containing a single

PMT. Each outrigger was a 5,680 liter tank of water, measuring 2.4 m in diameter,

18



Figure 2.5: The Milagro detector: the pond with the positions of outriggers.

1 m in height and lined with a Tyvek light reflector. The PMTs in the tank were

downward facing.

2.2 Extracting the Hit-Size and Hit-Time from

each PMT using Milagro Electronics

This section describes how hit-times and sizes from 898 PMTs were extracted for

each EAS and were selected to be digitized. The electronics used to extract these

quantities is shown in figure 2.6.

2.2.1 Time Over Threshold Mechanism

PMTs were powered in groups of 16. Each group had its own Front End Board

(FEB), to extract the hit-time and hit-size information, and to control the high
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Figure 2.6: Milagro Electronics used to get hit-time and size in the TOT method.
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voltage distribution to the 16 PMTs. To calculate the hit-size, that is the number of

PEs, the time over threshold (TOT) method was used. The basic idea behind TOT

is that the hit-size—the signal strength of the pulse from the PMT—is proportional

to the time that the signal spends over some preset threshold.

The first stage in this process is reading the PMT raw signal. This is done

with an RC circuit with a 100 ns time constant. The 100 ns was chosen to min-

imize late-light effects. If two pulses occur, from multiple Cerenkov photons, in

a shorter duration than the time constant for the RC circuit the pulses will be

indistinguishable and one large pulse will be seen. The voltage on the capacitor in

the RC circuit is given by

V (t) =
Q

C
e−t/RC (2.1)

so the time over some threshold (TOT) is proportional to the log of the charge of

all the PEs and is thus a measure of hit-size. The exact relations for each PMT

are known from calibrated measurements.

The signal is read from the PMT with the FEB and split into two signals. The

first signal, sent to a high-gain amplifier (×7), is required to pass a low discrim-

inator threshold of 1/4 PE. The second signal has low amplification (×1) and is

required to pass a high discriminator threshold of 5 PEs.

2.2.2 Time to Digital Converters

Each time an event crossed a threshold an edge of the form in fig. 2.7 was generated.

This was digitized using a LeCroy FASTBUS Time to Digital Converter (TDC),

which could record up to 16 edges per event, and was sent to the Data AcQuisition
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Figure 2.7: The time over threshold method (TOT): each time the PMT pulse

crosses one of the thresholds an edge is generated. If the pulse crosses both the

high and low thresholds four edges are generated, if only the low threshold is

crossed only two are. Taken from [19].

system (DAQ). Pulses that cross only the low threshold digitally generate square

wells, or 2-edged events, shown in fig. 2.7 and the events that cross both thresholds

are the double square wells, or 4-edged events. For each event that crossed the

discriminator threshold a fixed pulse of height 25 mV and duration 180 ns was sent

to the trigger logic, with the pulse duration chosen based on shower geometry.

2.3 Milagro Trigger

The maximum event rate of the DAQ was 2000 Hz. The Milagro trigger was

designed to keep the event rate below this ceiling.
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2.3.1 Multiplicity Trigger

The original trigger, known as a multiplicity trigger, was purely using the AS-layer.

A running total of the analog sum of PMT outputs was kept. If the output exceeded

the preset threshold, of 60 AS PMTs hit within 180 ns—the pulse time sent to the

trigger when PMT signals pass the discriminator—an event was triggered.

2.3.2 Single Muon Events

It is advantageous to reject low altitude (or high zenith angle) muons traveling

across the pond at trigger level. A muon arriving at an altitude close to the angle

of Cerenkov emission will produce horizontal light that may trigger many PMTs

–just like an EAS. However, this light travels through the pond at c/n but the

time profile of an EAS from near zenith has many particles and moves though the

pond at particle velocity c. Using this profile information in successive triggering

methods, the single muons have been rejected with 85% accuracy at the trigger

level since March 2002.

2.3.3 Multiple Trigger Conditions with the VME Card

A Versa Module Europa (VME) card was implemented in Nov 2002, close to the

beginning of epoch 7 (see sec. 2.5). This enabled the use of risetime in conjunction

with multiple trigger conditions. The risetime was defined as the time interval

between 10%-90% of the amplitude of an analog sum that triggered the detector.

Events that are unable to be fitted using the event reconstruction algorithm are

characterized by longer risetimes, so can be thrown out at trigger level. For large
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hits the risetime is longer, but the events are more likely to pass the reconstruction

algorithm. Based on this, the following trigger conditions were selected. These

lowered the energy threshold of recorded events, whilst keeping the event rate

below the DAQ limit of 2000 Hz, and also cutting out a large number of single

muon events. The trigger became:

• NAS >20 & risetime<50 ns

• NAS >53 & risetime<87.5 ns

• NAS >74

2.3.4 Post-VME Card Multiplicity Triggering

In April 2006 (epoch 8 –see sec. 2.5) the VME card failed and the trigger was

returned to a multiplicity trigger. However, the new multiplicity algorithm was

able to cut out far more of the single muon events than the previous one. This

was because for an EAS, the analog sum will rise faster than a low altitude single

muon event, so this was included in the new algorithm.

2.4 Online Event Reconstruction

In the event reconstruction, the hit-times and hit-sizes from each PMT, for trig-

gered events, are used to reconstruct the shower core position and subsequently the

incident direction of the primary in the EAS. The principle behind shower recon-

struction using PMT hit-times is shown is fig. 2.8. The accuracy of the positions of

each PMT needed to be within ±0.03 m horizontally and 0.01 m vertically, so the
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Figure 2.8: Conceptualization of primary direction reconstruction using an EAS

with the water-Cerenkov technique.

resulting angular uncertainty in reconstruction was significantly smaller than the

angular resolution and errors from other contributions. The event reconstruction

proceeds as follows:

• Correct the hit-times of the PMTs for slewing (sec. 2.4.3) and the time to

pass through the electronics.

• Find the location of the shower core (sec. 2.4.4).

• Correct for the curvature of the shower (sec. 2.4.5).

• Correct the measured arrival time due to sampling effects (sec. 2.4.6).

• Find the direction of the shower plane using the reconstruction algorithm
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(sec. 2.4.7).

2.4.1 Data Acquisition System

The DAQ consisted of a master PC and several workers, which were on site. The

DAQ was designed to convert a series of raw timing edges from the TDC—which

contained hit-time and hit-size information—to physical arrival times and hit-

sizes. From choices of raw timing edges the event time was the time at which

the low/high threshold is first crossed, registered from a GPS clock. The high

TOT threshold (HiTOT) and hit-time (HiStart) are preferred to that from the low

threshold (LoTOT and LoStart) as pre or post pulsing of the PMT will not cross

this threshold. This information was used to find the shower core and finally the

primary direction, as described in the following sections.

2.4.2 Data Storage

The data was stored in two copies, at Los Alamos and the University of Maryland

at a rate of approximately 5 GB a day. Data was split into Runs and SubRuns.

Each SubRun contained about 5 minutes of data. Raw data, including TOT,

the hit-times and the analog sum, were stored for the Moon and the Sun as well

as the Crab Nebula, Mrk 421 and Mrk 301. To ensure the system was working

correctly, or to troubleshoot, a member of the Milagro collaboration was always

on call monitoring the system.
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2.4.3 Timing Calibration Corrections

Once the raw hit-time was chosen from timing edges (LoStart or HiStart), there

were two corrections applied to the hit-times of each PMT.

Electronic Timing Correction

The first correction was the signal travel time through the electronics. This was

corrected by pulsed lasers with known arrival times in the pond. For a laser pulse

calibration, the light was sent through optical fibers that carried the light to 30

diffusing balls that stayed in the pond. An optical switch allowed the light to be

sent to any one of the diffusing balls which would then illuminate the pond and

be detected by the PMTs. Based on the known arrival times in the pond of the

laser light, new laser calibration constants, to correct for electronic timings, were

produced for each PMT periodically.

Electronic Slewing Correction

The second correction occurred because analog PMT pulses have a finite risetime.

This can be seen in the digitization of signals in fig. 2.7. Large pulses, that is pulses

generated from more than one Cerenkov photon, crossed both the high and low

thresholds before smaller pulses. Known as electronic slewing, this was corrected

by individual calibration constants for each PMT that measured start time as a

function of TOT for various pulse heights.
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2.4.4 Core Location

The core location, which is the location a primary particle would hit if there were

no interactions, was estimated using the center of photoelectron function:

x =

∑N
i=1 xi

√
PEi

∑N
i=1

√
PEi

y =

∑N
i=1 yi

√
PEi

∑N
i=1

√
PEi

(2.2)

The weighting of the number of photoelectrons was by square root rather than

a linear weight so that fluctuations causing big hits on individual PMTs did not

wholly dominate the fit. The hit-size of a PMT from individual charged particles

showed large variations in tests, due to differing penetration depths of the particle

in the water. The point on the surface of the PMT the particle hit was even more

important in determining the hit-size, as the number of PEs produced was a strong

function of the hit position.

Nothing further was needed if the core was on the pond for early epochs. How-

ever, this was unlikely as the showers have large areas and could easily trigger

the detector whilst landing far off the pond. Hence, before the addition of the

outriggers there were problems in core location; which in turn effected angular

reconstruction. Before the outriggers were installed, any event off the pond was

fixed to have a shower core 50 m from the center of the pond, in the direction of

the center of photoelectrons.

After the addition of the outriggers, the above equation was used with only

AS-layer PMTs if the core was determined to be on the pond; or only with OR

PMTs if the core was off the pond. The choice of the core being on or off the pond
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was made based on the ratio of AS-layer PMTs hit to outriggers hit.

A more sophisticated and accurate method was used in later Milagro epochs

to find the shower core. This fitted the shower to a 2-D gaussian with a χ2 mini-

mization using both AS and OR PMTs.

2.4.5 Curvature Correction

A shower core is not planar as it hits the detector –it is parabolic. Using a fitting

function on this well known shape is soluble, but requires too much computation

time. Instead, we added a timing correction based on distance from the fitted core,

which in effect flattened the shower.

Therefore, to successfully reconstruct the primary direction, the core of the

shower is found and the curvature correction of ∼0.07 ns/m is applied, before the

direction is reconstructed.

2.4.6 Sampling Correction

Each EAS, at detector level, was a pancake of high and low energy particles of

different types that could trigger the detector. However, a trigger is a probabilistic

event, so increases in likelihood where the density of particles is greater. The

PMTs have a quantum efficiency (the ratio of primary PEs to Cerenkov photons)

of 0.2-0.25. An event detected closer to the shower core (where the particle density

is greater) is likely to be recorded earlier than an event further from the shower

core. So, there was a correction applied to the hit-times for each PMT which was

a function of core distance and hit-size.
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2.4.7 Direction of Primary

We reconstruct the direction of the primary assuming that the shower is planar,

(which was a good approximation after the curvature correction) and assuming

that the direction of the primary is perpendicular to this plane. Then, the hit of

the ith PMT at coordinates (xi, yi) is given by

Ti = Axi +Byi + T0 (2.3)

where A and B are constants to be determined, that describe the primary direction

and T0 is an overall time constant for the event.

This planar function is then fitted by a weighted χ2 minimization, with 5 iter-

ations. The weight is the number of PEs, where bigger PMT hits produce more

PEs and hence a higher weight. The weights are assigned after study of the Ti

distribution, which is not gaussian. If it was assumed to be gaussian some outlier

events, usually from scattered light or noise, would distort the whole fit. Hence for

the first iteration only PMTs with a large number of PEs are used. For each iter-

ation the PE threshold is lowered until the 5th iteration, at which point an event

is recorded, with the number of PMTs used in the final stage of the fit (Nfit), or

the event is discarded as unphysical. From tests with simulated data, this angular

reconstruction method fitted ∼90% of events to within 1◦.

2.4.8 Gamma-Hadron Parameter

Milagro was designed primarily as a γ-ray detector. To distinguish between cosmic

rays and γs, the the bottom layer of the pond (the MU-layer) was used to detect
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muons. These are much more probable in cosmic rays than electromagnetic show-

ers, and tend to appear in clumps from individual electromagnetic cascades within

the whole EAS, as discussed in section 1.2.1. Primary γ-rays, on the other hand,

give an electromagnetic EAS that is more uniform at detector level. This thesis is

concerned only with cosmic rays but for further discussion of γ-hadron separation

with Milagro see [20].

2.5 Epochs in Milagro

Data in Milagro is divided into nine epochs, which are defined in table 2.1. Post

epoch 3, all the outriggers had been installed, which dramatically improved the

performance of the detector. The other principal epoch to epoch changes were in

the algorithms for the trigger, core fitting and direction reconstruction, which are

discussed in the previous sections.

From table 2.1, we can see the proportion of dead PMTs varies through the

course of Milagro’s lifetime. The vast majority of data in this thesis is taken

from the most stable and similar epochs of 7, 8 and 9. That is, epochs 7-9 had

nearly identical numbers of live PMTs, and the reconstruction, core and triggering

algorithms were similar. However, for instance, in epoch 6 there were a large

number of dead PMTs (10%) in the AS-layer. This alters, among other things,

triggering and angular reconstruction and any analysis must take these changes

into account.

Many parameters, such as Nfit, are not stable between epochs and analyses of

Milagro data between epochs need to bear this in mind.
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Epoch start date days % dead AS/MU/OR trigger fitter core finder

1 07/19/00 131 5/5/- multiplicity AS COM

2 12/10/00 382 5/5/- multiplicity AS off pond

3 01/11/02 430 5/5/- VME AS off pond

4 05/18/03 430 5/5/3 VME AS COM+OR

5 10/06/04 471 8/5/2 VME AS/MU/OR gauss

6 04/01/05 165 10/5/2 VME AS/OR gauss

7 09/20/05 174 2/4/4 VME AS/OR gauss

8 04/01/06 280 3/6/2 multiplicity AS/OR gauss

9 452 multiplicity AS/OR gauss

Table 2.1: Milagro epochs: note epoch 9 began with the advent of a new gamma hadron separator. COM

is using eq. 2.2 as the core-finder.
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2.6 Detector Variations

In addition to changes between epochs, the other major variations in Milagro were

seasonal and weather-related variations. These included:

• Daily and seasonal atmospheric changes, including day-night effects. This

changes the atmospheric overburden, effectively changing the atmospheric

part of the calorimeter.

• Water, ice and snow on the cover, or ice under the cover. These all have

various effects of changing the effective water level of the detector and can

alter the energy threshold. Particles will produce Cerenkov light above the

pond when there is water, snow and ice on the cover which will not be

detected. In the case of ice under the cover the refractive index changes will

alter the Cerenkov light’s path through the pond.

• Air under the cover. After performing repairs, for a few days afterwards, until

the weight of the cover again put it into contact with the pond there was

air under the cover. The cover-water optical boundary is less reflective than

the cover air boundary, so there was a significant increase of amount of light

in the pond, hence an increased trigger rate for this short period. However,

in Monte Carlo simulations of the detector (see sec. 3.6) the detector is best

modeled with no air under the cover.
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Chapter 3

Data Analysis Techniques

Once we have been able to reconstruct the primary directions of incident cosmic

rays with Milagro, as described in the previous chapter, we can use this data to

find signals from astrophysical sources. The coordinate systems that describe the

directions of these primaries in cosmic-ray astrophysics are described in sec. 3.1.

We wish to find the deficit of events from the signal region, which is a local sink

near the Moon or the Sun. The detection of cosmic rays is not uniform in space

and time so in order to see the deficit of events from the local direction of the

Moon or Sun we must perform an estimate of background and subtract this from

the signal. In section 3.2 we describe the method of estimating background and

map-making with Milagro data. Once we have established how to estimate the

background and subtracted it from the signal we must find the significance of any

signal. This is described in sec. 3.3. The parameters that are used for evaluating

and cutting Milagro data are described also, the quality cuts on data that are

stable between epochs in sec. 3.4 and frasor, the Milagro energy parameter, in
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sec. 3.5. Finally, in section 3.6 is a description of the Milagro simulated data sets

that were used in the calibration of the Milagro detector. In this thesis they are

used, in chapter 7, to desribe Milagro’s effective area and point spread function in

cosmic rays.

3.1 Celestial Coordinates

A celestial coordinate system is a projection on the imaginary celestial sphere that

is centered on the Earth. There are several systems that differ based on their

choice of poles (and hence equator) and may be stationary with respect to the

distant stars, the Earth or other celestial objects of interest.

3.1.1 Local Coordinates

Local Celestial Coordinates are defined with respect to a particular point of interest

on Earth; in this case the position of the Milagro detector. This coordinate system

co-rotates with the Earth and is described by the altitude (zenith angle) and

azimuth coordinates. An object directly overhead (at zenith), has an altitude of

0◦ and at this point all azimuthal angles are equivalent. The great sphere passing

over the zenith and the poles is defined as 0◦ azimuth. For non-zero altitude, lines

of constant altitude are concentric circles centered on zenith. The lines of constant

azimuth are great circles. Further, the system is divided into two hemispheres.

The visible hemisphere is above the horizon (the plane perpendicular to the zenith

direction) and the non-visible hemisphere is below the horizon. This coordinate

system is analogous to latitude and longitude on on maps of the globe, but with
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the North pole at the position of Milagro.

3.1.2 Equatorial Coordinates

Equatorial coordinates are fixed with respect to the distant stars. The poles are

the projections on the celestial sphere of the North and South poles of the Earth

(the axis of rotation). The celestial equator is the projection of the Earth’s equator

onto the celestial sphere. Due to the slow movements over time of celestial bodies,

particularly the precession of the Earth and the proper motion of nearby stars, an

epoch is defined in which coordinates are measured. The current epoch is J2000

which is the positions of celestial bodies with respect to Earth at noon on January

1st 2000. The J refers to time measured in Julian date in which a year is 365.25

days and each day is 24 hours or 86,400 seconds.

The coordinates used are right ascension (RA/α–analogous to longitude) mea-

sured with respect to the vernal equinox of 2000 and declination (dec/δ–analogous

to latitude) measured with respect to the north celestial pole, illustrated in fig.

3.1.

There is also a local coordinate system, a system that rotates with the Earth,

which is of use with astronomical coordinates. In this system declination is un-

changed, but RA is replaced by hour-angle (HA), which is related to RA by

HA = LST − α (3.1)

where LST is the local sidereal time, which measures the rotation of the Earth

relative to the distant stars. In this coordinate system an object passing overhead

will have a constant RA and dec, but its hour-angle varies.
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Figure 3.1: The celestial coordinate system with right ascension (RA/α) and dec-

lination (dec/δ), from [21].

3.2 Background Estimation with Milagro Direct

Integration (MDI)

We now have event times and directions, and a coordinate system to map them

in. In the search for astrophysical sources with a detector one cannot simply

look at a signal map to find them –typical sources have signals that are smaller

than fluctuations in the signal and the acceptance rate of ground-based detectors

such as Milagro is strongly dependent on zenith angle and is not uniform in time.

Therefore, a background estimate is needed for each point on the sky. Only then

one may search for a source by looking at signal minus background in each bin.

As Milagro is a stationary detector, the sky passes overhead. Therefore, points

on the sky with the same declination but earlier hour angle, will, at a later time,
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Figure 3.2: Path of a source moving across the sky, from [22].

be at the same local coordinates. A sketch of a source moving across the sky is

shown in fig. 3.2. If there is no signal present, points with the same declination

but similar HA will contain a similar number of events. This is the principle of

background estimation –that signal maps for earlier and later times with the same

declination are used as an estimate for the background at the present moment.

Over time there is variability in trigger rate, due changes in the atmosphere. If

the same band of declination is observed over a long period there will be large

variations in the number of events observed.

Correct estimation of the background is crucial. If the background is overesti-

mated a sink will be seen as too large and if the background is underestimated a

sink may remain undetected. Typically, we search for sources rather than sinks,

so this logic becomes reversed.

We build skymaps in 0.1◦×0.1◦ bins in equatorial coordinates. The number of
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background events in an (α, δ) bin from Milagro Direct Integration (MDI) is:

N(α, δ) =

∫∫

Eff(HA(t), δ) R(t) ǫ(HA(t), δ, t) dt dΩ (3.2)

where Eff is the efficiency in hour angle and declination. It is found by counting

all events appearing in each (HA, δ) bin for that integration period divided by the

total number of events in that integration period. It is the probability that an

event is in the solid angle bin dΩ. The event rate over a 24s period is R(t). This

period is just less than the time it takes for the Earth to rotate 0.1◦. The ǫ factor

is to pick the correct background bin, if an event falls into an (α, δ) bin in sidereal

time t then ǫ=1, otherwise ǫ=0.

After each integration period the efficiency map in local equatorial coordinates

is converted into a sky map in equatorial (α, δ) coordinates, by multiplication by

the event rate R(t). The integration period here is chosen to be two hours, which

maximizes the number of events used to estimate background, whilst keeping the

rate fluctuations small due to atmospheric and other time-related phenomena.

3.2.1 Region of Interest (ROI)

The Moon is a known event sink. Therefore, it needs to be excluded from the

background estimate. As the Moon is tracked across the sky, a region of interest

is set around the Moon and is reset to the new position of the Moon at the end of

every integration period. When added to the background map, the events are then

weighted by a factor of ROIall/ROIoff , where ROIall is all the events that appear

for that integration period, and ROIoff are events outside the region of interest

for that integration period.
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3.3 Significance of a Measurement

Typically, in cosmic ray and γ-ray astronomy we are searching for unknown sources.

In searching for a source we have some time collecting cosmic rays from the source

direction, and some time collecting cosmic rays from the background. If this is the

case we should include our signal in our estimate of the background, otherwise we

overestimate the significance of the signal. This is the approach taken by Li and

Ma [23]. The significance is given by:

S(Non, Noff ) =
√

2

[

Non log

[(

(1.+ α)

α

)(

Non

(Non +Noff/α)

)]

+Noff/α log

[

(1 + α)
Noff/α

(Non +Noff/α)

]]1/2 (3.3)

Where Non is the number of signal counts in a bin, Noff is the background estimate

for that bin and α is defined by the ratio of the time spent on-source to the time

spent off-source –that is the time spent to accumulate the background.

However, in this thesis we are concerned with the Moon and Sun which are

known sinks for cosmic rays. The ROI exclusion as part of the Milagro Direct

Integration technique accounts for this.

3.3.1 Maximizing Significance with Boxcar Smoothing

Milagro maps are made in 0.1◦×0.1◦ size bins, which is considerably smaller than

the angular resolution of Milagro. The significance of a measurement is maximized

by optimizing signal/
√

background, which corresponds to a larger circular bin of

width 1.58× the average point spread function width, or a 2.1◦ diameter. However,

it is computationally more straightforward to use a square bin of approximately
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equal area, with width 2.1◦. This is hereafter referred to as boxcar smoothing, and

significance maps are smoothed over an area of this size.

3.4 Stable Data Cuts between Epochs

Milagro has very distinct epochs of data collection, as described in sec. 2.5. When

making quality cuts on the data, the meaning of these cuts may change from

epoch to epoch. It is important to have parameters that can be applied across

epochs. It should be noted that raw data is kept for only a few regions of the

sky, so improvements such as the trigger mechanism and direction reconstruction

algorithm cannot be applied retroactively to old data.

One useful quality parameter in Milagro data is Nfit, which is the number of

PMTs used in the final stage of the direction reconstruction algorithm. Epochs

7-9, which concern us the most in this thesis, are relatively stable and there is little

variation between them. In epoch 6 there were a large number of dead PMTs in

the AS layer, which changed the effective Nfit cuts. Not until epoch 4 did Milagro

have the full array of outriggers online, which also greatly impacted the effective

Nfit.

To counter these stability effects for Nfit a 2-layer equivalent is defined, which

is Nfit where only the AS and MU layers were available. For this thesis, when Nfit

is referred to the parameter actually being described is the Nfit 2-layer equivalent.
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3.5 The Milagro Energy Parameter

In an air shower array such as Milagro, the detector-atmosphere system behaves

as a calorimeter, where a small fraction of the EAS reaches ground level. As a

result, energies of individual EAS are hard to estimate. More energetic showers

contain more particles, cover a larger area, and so will fire more PMTs. Tested

extensively from Monte Carlo simulations of the detector response with energy, we

have the frasor (or FRaction AS-layer OR-layer) parameter, which is correlated

with energy. frasor is given by the fraction of AS-layer PMTs hit, plus the

fraction of OR PMTs hit, so ranges from 0-2.

frasor =
# AS PMTs hit

# live AS PMTs
+

# OR layer PMTs hit

# live OR PMTs
(3.4)

The parameter uses the number of hit PMTs rather than hit-size, as the hit-size

is subject to large fluctuations as described in sec. 2.4.4, so is a better measure of

shower energy. frasor is typically put into ten bins. The lowest 0.0<frasor<0.2

bin is poorly modeled, as it is particularly sensitive to instability in the energy

threshold from weather variations, so is therefore ignored in most analyses. The

very highest bins are also often ignored as they suffer from low statistics, and

can also trigger the detector from far off the pond, which leads to poor angular

reconstruction.

3.6 Milago Simulated Data

Clearly there are no TeV sources that we can control to calibrate the Milagro

detector, or use to generate simulated data commonly referred to as Monte Carlo
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methods. To do so we can simulate the EAS, using CORSIKA software [24] and

the detector response, using GEANT4 [25]. This can describe many aspects of the

detector, including the angular resolution and effective area.

CORSIKA (COsmic Ray SImulations for KAscade) takes a primary particle

species at a given energy and propagates it in a particular direction. The particle is

propagated through an atmosphere with the same composition as Earth’s, thrown

with a spectrum dE/dN=E−2. The high-energy hadronic interaction model is

QGSJet-II, whereas for low energies (<80 GeV) FLUKA v2005.6 was used.

GEANT4 (GEometry ANd Tracking 4) inputs the particles in a virtual Milagro

detector, designed to recreate the detector response. The output of CORSIKA—

the particles from showers that reach the ground—is the input of GEANT4.

GEANT4 simulates all particle interactions that produce Cerenkov light in wa-

ter. For each PMT GEANT4 outputs the number of Cerenkov photons, their

arrival time and their detection direction on the photocathode as shown in fig. 3.3,

which is needed as the QE of the PMT is a function of where the PMT is hit.

3.6.1 Calibration of Milagro Using Simulated Data

The simulated data are used in calibration tests, such as the choice of optimal pond

depth, the effect of ice and air under the cover and designing good reconstruction

algorithms. Also the simulated data are used to define the energy scale of the

detector, by describing the effective area as a function of energy and zenith angle,

which is described in detail in chapter 7.
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Figure 3.3: Simulation image of Cerenkov photons hitting PMTs with and without

a baffle, courtesy of Vlasios Vasileiou.

3.6.2 Data Files

From the CORSIKA and GEANT4 simulations, we produce many Milagro sim-

ulated events; for instance 600,000 proton events that triggered the detector for

epoch 9. In order to have a concentration of events close to the pond, CORSIKA

showers are actually thrown linearly with distance, as opposed to an R2 distribu-

tion, from the center of the Milagro pond, over an area of 1000 m. The events,

when analyzed, are then reweighted by the true (rather than reconstructed) dis-

tance of the event from the center of the pond [26]. A huge number of events

thrown do not trigger Milagro, approximately 50 for every triggered event. To

account for these, each event is randomly assigned a weight of zero or 50, which

can be used in calculating the effective area, where the total number of thrown

events are needed. To improve the statistics for high energy events, the showers are

thrown with unphysical spectra indicies of −2.0. Events can then be re-weighted

by energy to produce more realistic spectra [26].
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Chapter 4

Antiprotons and their Moon

Shadow in TeV Cosmic Rays

As cosmic rays propagate through the galactic magnetic field they collide with the

interstellar gas and dust, and as a result produce antiprotons. Therefore, there is

a natural component of antiprotons in the cosmic-ray flux incident on Earth. One

method of detecting this antiproton component is using the antiproton shadow of

the Moon. The cosmic-ray particle shadow of the Moon was proposed by Clark in

1957 [27] and first observed by the Cygnus experiment in 1991 [28]. Some cosmic

rays will hit the Moon on their path to Earth and so will be missing from the

signal. In other words, for VHE CR the Moon is a sink on the sky. At TeV

energies, cosmic rays will be deflected on the order of a degree by the geomagnetic

field, so the particle shadow of the Moon is deflected to the west of the nominal

Moon position. An antiproton shadow would be deflected to the east, as oppositely

charged particles are deflected in opposite directions by magnetic fields.
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Measurements of the antiproton flux are of great interest, as deviations from

the expected TeV flux due to collisions (spallation) would lead to new physics,

such antiproton production from dark matter annihilation in the galactic halo or

the existence of large-scale antimatter structures.

Section 4.1 of this chapter outlines the expected flux of antiprotons at Earth

as predicted by spallation (collisions), including a discussion of cosmic-ray propa-

gation models. The deviation from secondary flux is described in section 4.2. In

section 4.3 we describe the Moon shadow in cosmic rays and its applications. This

section also contains recent observations and p̄/p flux upper limits from searches

for the antiproton shadow. Finally, in section 4.4, we describe other antiproton

observations and expectations of the antiproton flux at TeV energies.

4.1 Secondary Antiprotons from Spallation

Whatever their origin, the propagation of cosmic rays through the galactic mag-

netic field and can be modeled by diffusion. The cosmic rays bounce off Alfvén

waves, which are magnetic irregularities in the field moving at galactic wind veloc-

ity V=100 km s−1. As the particles propagate, they experience diffusive reaccel-

eration from the Alfvén waves and lose energy via ionization as well as adiabatic

and coulomb losses. Cosmic-ray diffusion has been modeled by GALPROP [29]

and a second group [30]. The GALPROP propagation equation is:

∂ψ(~r, p, t)

∂t
= q(~r, p, t) + ~∇ · (Dxx

~∇ψ − ~V ψ)

=
∂

∂p
p2Dpp

∂

∂p

1

p
ψ − ∂

∂p

[

ṗψ − p

3
(~∇ · ~V )ψ

]

− 1

τfrag
ψ − 1

τrad
ψ (4.1)
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where ψ(~r, p, t) is the cosmic-ray density per unit of total particle momentum ~p at

position ~r. The spatial diffusion coefficient is given by D, the ∇·V term describes

convection, the Dpp term describes reacceleration and is related to the spatial

diffusion coefficient by DppD α p2. The momentum gain and loss is given by ṗ.

The source term is given by q which includes creation, decay and annihilation by

spallation. Finally, τfrag and τrad are the characteristic times of fragmentation and

radioactive decay, respectively.

The equation is solved at steady state by approximating the geometry of the

galaxy as a thin disc in which particle creation and annihilation takes place, and

a larger cylinder over which the particles can diffuse. The parameters of the

model are fixed by reproduction of the B/C ratio in cosmic rays and other sec-

ondary/primary ratios measured at Earth.

We can describe the diffusion coefficient D, in terms of the particle rigidity R

(momentum/charge):

D = D0(v/c)R
−δ (4.2)

where δ is some spectral index arising from scattering from the random magnetic

boundaries during particle propagation. This equation predicts that particles of a

higher rigidity are more likely to escape the galaxy.

Antiprotons occur naturally in these models. The overwhelming majority of

antiproton creation occurs when a primary cosmic-ray proton collides with a hydro-

gen atom in the ISM, with a smaller but significant contribution from cosmic-ray

protons colliding with ISM helium. As products of spallation antiprotons have an

energy spectrum which behaves like (secondary flux)/(primary flux)∼ E−δ. With
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a typical δ-value of 0.6, and assuming interaction cross-sections scale with energy,

a crude estimate of the p̄/p ratio at 1 TeV is 10−5 to 10−4 from purely secondary

p̄ production.

4.2 Other Sources of Antiprotons in Cosmic

Rays

Other than the secondary contributions from collisions in the flux of antiprotons

at Earth, there are several possible theories that add to the flux. These arise from

both astrophysical explanations and beyond the standard model physics. Ruling

out the contributions from evaporation of primordial black holes—which would

only give a significant contribution to the flux at GeV energies [31]—there are two

main potential primary antiproton sources at TeV from exotic contributions and

also a proposed primary astrophysical p̄ flux source.

4.2.1 Anti-Helium

Little contribution is expected from anti-elements heavier than antiprotons. From

what we know of the composition of the ISM and cosmic-ray propagation, for our

purposes we may assume that the entire cosmic-ray antiparticle flux on Earth is

composed of antiprotons. At GeV energies, where antiprotons have been detected,

AMS found an upper limit of the anti-helium/helium ratio of 10−6 [32], confirming

the lack of anti-helium in cosmic rays.
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4.2.2 Old Supernova Remnants

Motivated by PAMELA’s observed excess in positrons [33], models have been sug-

gested that positrons produced and accelerated in pulsar magnetospheres provide

an astrophysical explanation for this excess [34], which would leave the antiproton

flux unchanged. Blasi and Serpico, proposed a model [35] where positrons are pro-

duced before acceleration in old supernova remnants, and then accelerated with

the other cosmic rays. As the mechanism is now hadronic, this model also predicts

an increase in the p̄/p ratio at multi-GeV energies, and a p̄/p ratio of 4.5×10−4 at

1 TeV, which is a considerable enhancement above their background estimate at

this energy of about 3× 10 − 5.

4.2.3 Extra-Galactic Antimatter

The observed particle-antiparticle asymmetry in the universe has been a matter of

debate for decades. Anti-galaxies—galaxies composed entirely of antiparticles—

would add a significant component to the flux of p̄ at TeV energies. The proton

component of cosmic rays would remain galactic but the antiprotons would receive

a significant contribution from extra-galactic sources. Assuming a standard cosmic-

ray propagation model, the mean lifetime of a cosmic ray in the galaxy behaves as

E−δ. So the p̄/p ratio would increase with energy by Eδ, as the protons from mostly

galactic sources leave the galaxy –whereas the antiprotons are mostly from extra-

galactic sources that overcame the galactic wind to enter our galaxy. A model of

such primary sources of p̄ is described in [36], and see also the review [37] and the

references therein.
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4.2.4 WIMP Dark Matter Annihilation

The matter content of the universe has long been known to be composed mostly of

non-baryonic components, known as dark matter (DM). Determining the nature

of DM is one of the principal goals of physics at the beginning of the 21st century.

Weakly Interacting Massive Particles (WIMPs) are a premier candidate for DM.

Their annihilation in the Milky Way galactic halo would produce antiprotons,

adding a primary component to the TeV antiproton flux.

WIMPS from supersymmetry

The supersymmetric extension to the standard model provides an ideal WIMP

candidate in neutralinos –which are combinations of super-partners of the Higgs

and gauge bosons. These are proposed as the lightest supersymmetric particle and

in annihilations could produce antiprotons.

In [38] an improvement of the secondary calculation of [30] is presented along

with a scenario where the WIMPs annihilate to a W+W− pair, based on the 2009

PAMELA data [39]. Other models are provided in [40; 41], including a heavy 10

TeV WIMP which enhances the antiproton flux considerably at TeV –at 1 TeV

the p̄/p ratio from this WIMP annihilation is modeled to be 7×10−3.

WIMPS from Kaluza Klein particles

The lightest Kaluza Klein particles [42; 43; 44] are from models with compactified

universal extra dimensions and are also candidates for the lightest supersymmetric

particle. They are WIMP DM candidates and their annihilation would add to the
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p̄ flux. These models are examined in [41].

4.3 The Particle Moon Shadow

The cosmic-ray Moon shadow has been observed by AS arrays [28; 45; 46], neutrino

detectors [47] and muon detectors [48; 49; 50; 51; 52].

As the position of the cosmic-ray Moon shadow depends upon the paths of

the particles through the geomagnetic field, the position of the shadow is energy-

dependent. The Earth-Moon system can be considered as a spectrometer; particles

with a higher magnetic rigidity will be deflected less than particles of a lower

rigidity.

Cosmic rays of 10 TeV are barely deflected and any shadow observed generated

from particles at this energy would be centered on the Moon’s nominal position.

At very low energies particles may not be able to penetrate the geomagnetic field.

The exact cutoff depends on the zenith angle –so the relative position of the Moon

and Milagro. At the TeV energies that concern us in the thesis, the particles are

deflected on the order of a degree.

4.3.1 Geomagnetic Field Models

The deflection of a cosmic ray on its path to earth depends on its rigidity and the

magnetic field it traverses. The geomagnetic field is most simply approximated by

a dipole, with the South pole close to Earth’s geographic North pole. Choosing

a coordinate system so the z-axis is along the dipole axis, the B-field is given in
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cartesian coordinate by:

Bx =
3Mxz

r5

By =
3Myz

r5

Bz =
M (3z2 − r2)

r5
(4.3)

where M is the dipole strength, 8.1×1015 Tm3, and the North pole is modeled at

79.54◦ S, 108.43◦ E.

Earth’s true field, close to the surface, can be expanded in terms of harmonic

coefficients, given by the International Geomagnetic Reference Field (IGRF) [53].

These are calculated in the geocentric, geographic, coordinate system. As the field

changes slowly with time, the model coefficients are published every five years and

the coefficients can be calculated at any intermediate time by linear interpolation.

The magnetic field on Earth’s surface calculated with this model is shown in fig. 4.1.

This model is computationally intensive, therefore, in a Monte Carlo simulation

of the Moon shadow in chapter 7, we adopt the dipole model of the geomagnetic

field.

More sophisticated models are available for modeling the field accurately as far

out as the current sheet. At this point the Earth’s field, known as the magneto-

sphere, is buffeted by the solar wind which makes the model highly time-dependent.

One such model is the Tsyganenko model [54], shown in fig. 4.2. The real magne-

tosphere extends on average 12 R⊕ sunwards with the tail extending to 100-200 R⊕

in the opposite direction and 20-25 R⊕ perpendicular to the Earth-Sun direction.

However at distances of 10-20 R⊕ the field strength is approximately nT and the

gyroradius of a 1 TeV proton is ∼20 AU, whereas close to the Earth’s surface,
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Figure 4.1: The 2010 IGRF field magnitude at the surface of the Earth, taken from

[53].

where the field is ∼0.5 G, the gyroradius is approximately 10 R⊕. For reference,

the Moon sits at ∼60 R⊕. Therefore at TeV energies the structure of this part of

the field is not important.

It should be noted that the Moon is slightly magnetic and has its own field,

but is so weak it can be ignored here.

4.3.2 Absolute Pointing Direction

The accuracy of the Milagro pointing direction was established using the Crab

Nebula, a supernova with a pulsar wind nebula, which is used as a standard as-

trophysical source. Any Milagro pointing error would come from timing biases

in the PMTs from either slewing, the time the signal takes to pass through the

electronics or the locations of the PMTs themselves used in reconstruction. An

epoch by epoch analysis was performed using the position of the Crab nebula. No
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Figure 4.2: A slice of the magnetosphere, as buffeted by the solar wind; in a map

with distance units of the radius of the Earth RE. The solar wind flows from left

to right, buffeting the magnetosphere and dragging it out with a long tail. Taken

from [55].
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pointing error was found. Two other sources seen by Milagro, Mrk 421 and MGRO

J1908+06 were used as a check and no error in the pointing accuracy was found.

That is, the zenith alignment of Milagro is accurate to 0.1◦ or less.

This has two implications for the Moon shadow. The first is that we are looking

in the right place when referring to the nominal position of the Moon. The second is

that the Moon shadow could be used as a further check on the pointing direction

of Milagro. This could be accomplished using high energy Moon shadows, that

do not undergo a large deflection due to the geomagnetic field. To look at high

energy Moon shadows one would look at high frasor bins (the Milagro energy

parameter) and compare the position to the Moon Monte Carlo shadow position.

That analysis is not performed in this thesis. Instead we look at lower energy

particles to see how sensitive the shadow position is to the Milagro energy scale.

4.3.3 Point Spread Function

The Milagro point spread function (PSF), a measure of the angular resolution, has

been well studied for γ-rays. A full description of the Milagro PSF in cosmic rays

is given in sec. 7.5. Agreement between the shapes of the Moon shadow in data

and in Monte Carlo can be seen as a confirmation of the Milagro PSF in cosmic

rays. However, a detailed analysis of the cosmic-ray PSF using the Moon shadow

is not performed in this thesis, and is instead determined from simulations of the

detector response to hadron-initiated EAS. The PSF is instead used in the energy

calibration analysis of chapter 8.

55



4.3.4 Energy Calibration

The Earth-Moon system is a spectrometer for cosmic rays. The deflection of a

particles is dependent on its rigidity, so, for a given charge, particles of lower ener-

gies will be deflected more than those with higher energies. Therefore, the position

of the Moon shadow is energy-dependent and it may be possible to calibrate the

energy scale of the detector using the shadow. This is the basis of chapter 8.

4.3.5 The γ-ray Moon Shadow

The Moon also casts a shadow in γ-rays, which appears at the nominal Moon

position, smeared out by the Milagro point spread function. However γ-rays appear

as approximately 10−4 of Milagro triggers. Whilst it is possible to use Milagro γ-

hadron separation to cut out large amounts of cosmic rays the reverse is not true,

and attempting to cut out γ-rays would cut large amounts of cosmic rays from

data. If we were able to see the antiproton shadow at the 10−4-10−3 level then the

γ-ray Moon shadow would become important. Here, however, this is not the case,

so the γ-ray Moon shadow is not considered further.

4.3.6 Previous Observations

As mentioned in the introduction, the Moon shadow has been observed by many

previous experiments. A full list of these is shown in table. 4.1, along with observed

antiproton/proton ratio upper limits, the significance of the shadow observation

and the approximate energy.
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Table 4.1: A summary of notable experiments that have observed the Moon

Shadow; with particle type, shadow depth in σ and approximate energy, as well as

antiproton limit.

Experiment Type depth (σ) energy p̄/p limit

Tibet ASγ [45] array 43 3 TeV 0.07 90% CL

IceCube [47] neutrino 5 TeV

L3+C [48] muon 9.4 0.11 90% CL

MACRO [49] muon 6.5 TeV 0.52 68% CL

Soudan 2 [50] muon 5 TeV

Cygnus [28] proton 4.9 20 TeV

CASA [46] proton 4.7 100 TeV

Bust [51] muon 3

ARGO-YBJ[56] array 22 1.4 TeV 0.05 90% CL

5 TeV 0.06 90% CL

HEGRA[57] array 50 TeV

GRAPES-3[58] array 5

MINOS[52] muon
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4.4 Antiproton Observations

There has been a large amount of recent interest in antiproton flux measurements

in cosmic rays, since PAMELA found an excess in positrons, whilst finding no

excess in antiprotons, at GeV energies [33]. This result challenged propagation

models of cosmic rays at these energies and raises the possibility of new physics,

particularly in finding DM models which produce positrons but not large amounts

of antiprotons. Excesses in p̄ flux above those expected from secondary antiprotons

could be explained by dark matter in the galactic halo, or anti-galaxies, or some

other exotic idea yet to be discovered.

It is therefore of great interest to establish the flux of antiprotons in the TeV

region of the spectrum. The p̄/p parameter space is shown in fig. 4.3. As can

be seen from the figure there is a wealth of models and data in the GeV region,

with many detections of antiprotons in cosmic rays, and the highest detection from

PAMELA at 180 GeV [59]. In the next few years, assuming AMS-02 achieves its

expected sensitivity [60], these measurements will be extended to the TeV region.

Today, however, the TeV region is more barren, with a few scattered data points,

and the best constraints on the p̄/p ratio come from Moon shadow studies with

arrays.

4.4.1 Satellite Observations from PAMELA

PAMELA –a Payload for Antimatter Matter Exploration and Lightnuclei Astro-

physics, is a satellite experiment, which has been operational since July 2006. De-

signed for detection of all cosmic-ray species, it contains a magnetic spectrometer
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with silicon tracker planes, an electromagnetic imaging calorimeter, a shower tail

catcher scintillator. It also contains an anticoincidence system which is used to re-

ject particles which do not pass cleanly through the acceptance of the spectrometer.

The spectrometer with tracker plates behaves much like the Milagro-atmosphere

system, but with all energy of particles deposited in the calorimeter.

Of interest to this thesis is that PAMELA has been able to extend the detection

energy of antiprotons in cosmic rays up to 180 GeV, fueling a new generation of

models for VHE antiproton flux.

4.4.2 Balloon Experiments

Balloon experiments such as CAPRICE, BESS, HEAT and the SMS operate similar

detection techniques to PAMELA; some kind of scintillator (or other system to

produce Cerenkov light such as a pure gas) to track particles and a calorimeter

to measure energy. The experiments are sent to high enough altitudes where they

can detect primary particles.
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Figure 4.3: p̄/p ratios from various experiments and models. Wino DM annihila-

tion plus secondary p̄ from Donato et al, where the B and A curves are the upper

and lower limits of the model respectively [38], antiprotons from secondary plus

old SNR from Blasi and Serpico, [35], anti-galaxy contributions from Stephens and

Golden with δ=0.6 and 0.7, [37], WIMP DM from Cirelli et al.[40], and data from

PAMELA [59], Bess[61; 62],Caprice [63; 64], Heat [65], Tibet-ASγ[45], ARGO-

YBJ [66], MASS[67], IMAX [68], PBAR, [69], LEAP [70], Bogomolov et al. [71],

Golden [72; 73], Buffington et al. [74].
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Chapter 5

The Heliospheric Magnetic Field

This chapter discusses the heliospheric magnetic field and how it influences the

Sun’s shadow in cosmic rays, specifically during cycle 23 and paying particular

attention to solar minimum. Also in this chapter is a brief description of previous

observations of the Sun’s shadow in cosmic rays, in section 5.6. The Sun’s shadow

in cosmic rays, like the Moon’s, is deflected by the geomagnetic field. Unlike the

Moon, however, the Sun has a strong field of its own. In fact, the Sun’s magnetic

field (hereafter referred to as the HMF) is the dominant magnetic field in the solar

system and can deflect VHE CR by a significant amount.

5.1 The Sun’s Shadow in VHE CR

Cosmic rays that pass close to the Sun may, or may not, hit it. As the Sun

has its own magnetic field, whether a particle hits the Sun (the surface of the

photosphere), or not is dependent not only on the energy of the particle and its
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incident direction, but the stage of the Sun in its 11-year magnetic cycle. If a

particle is able to make it to the surface of the Sun it will give rise to a deficit of

particles observed at Earth, or a cosmic-ray Sun shadow.

The density in the corona is many orders of magnitude less than the photosphere

so we model the Sun as a solid sphere extending to the photosphere with some

magnetic field.

Particles that do not make it to the photosphere are deflected away from the Sun

by the HMF. Over the time scale for the particle to traverse the HMF on its way to

Earth the magnetic field lines are static. Particles for this field configuration may

be deflected away from Milagro –but these do not give rise to a shadow. Liouville’s

theorem of the conservation of phase-space volume means that for every particle

deflected out of the path of Milagro there will be another deflected into the path

of Milagro by the magnetic field. Hence, only particles that hit the Sun give rise

to a shadow.

5.2 Solar Cycles

There are two main cycles that describe the Sun’s behavior. The first is the solar

magnetic cycle, which governs the magnetic field of the Sun. The second is the

Carrington rotations which is the rotation of the Sun on its own axis.

5.2.1 The Solar Magnetic Cycle

The solar magnetic cycle is the (on-average) 11-year magnetic cycle, during which

the magnetic poles of the Sun reverse polarity. The cause of the pole reversal is not

62



completely understood. The Sun rotates more slowly on its own axis at the poles

than at the equator. This differential rotation rate causes magnetic field loops to

become twisted, which is thought to be a driving force in the field reversal.

The Hale cycle is known as the full 2×11 year cycle in which the magnetic field

flips twice, returning to its original polarity.

5.2.2 The Coronal Field through the Cycle

Close to solar minimum, the coronal field is thought to be mostly dipolar with

the magnetic poles closest to the rotational poles in a similar configuration to the

Earth.

Closer to maximum the field becomes increasingly multipolar, and the poles at

maximum become almost equatorial, before a dramatic pole flip occurs. Coronal

holes, which at minimum live at the poles, become larger and are more frequently

found towards the equator. Moreover, Coronal Mass Ejections (CMEs) become

more common. These fantastic events hugely distort the magnetic field as the

solar wind strips a large amount of particles from the corona into the heliosphere.

Also at maximum very powerful magnetic flux loops on the surface become more

common -in fact, these are the origins of sunspots. Sunspots come in pairs and are

the points of connection of these closed ∼kG magnetic loops on the photosphere.

Typically the magnetic field on the surface of the Sun is on the order of ∼gauss,

so solar activity can totally undermine any attempt at modeling the large-scale

magnetic field that does not include these frequent events. Diagrams of the coronal

field though the solar cycle are shown in fig. 5.1.
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Figure 5.1: The Coronal field through the solar cycle. Taken from [75].

5.2.3 Carrington Rotations

A Carrington rotation is defined as the time the Sun takes to revolve equatorially

on its own axis. It is defined synoptically –the rotation rate is that as viewed from

Earth and, as the solar rotation rate is dependent on heliographic latitude. A Car-

rington rotation is about 27 days, but may vary, therefore the Carrington rotation

has been standardized to 27.3 days, to allow comparisons between rotations.

5.2.4 Solar Cycle 23

Solar cycle 23 began in 1996 and ended in 2008 (for a detailed review of solar cycle

23 see [76]). At the beginning and end of the magnetic cycle, the Sun is always

in the quiet phase. Solar maximum, when the Sun switched magnetic polarities,

occurred in 2001 just as Milagro was beginning operation, and cycle 24 began

just after Milagro stopped taking data. As with all solar cycles, cycle 23 was not

symmetric, the solar maximum was closer to the previous minimum, rather than

in the middle of the cycle.
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From observations of previous cycles, cycle 23 was expected to be more active

than it was, but in most ways was considered a normal cycle. However, the end of

cycle 23 (after Milagro stopped taking data) has been an especially quiet period

[77].

5.2.5 Sunspots

There are two widely used tracers of solar activity. The sunspot number (SSN)

has been recorded since Galileo Galilei made the first observations of sunspots in

the seventeenth century. They have shown a clear correlation with the solar cycle,

and increase in number at solar maximum. Over many decades of observations,

they are observed in their fewest numbers at minimum phase. The so-called but-

terfly diagram is the other common tracer of solar activity and shows correlation

between the number of sunspots appearing at a heliographic latitude with time.

The sunspots appear in two bands, above and below the equator, at 30◦ helio-

graphic latitude at the beginning of each cycle. As the cycle progresses they drift

towards the equator but at solar minimum the cycles may overlap, with new bands

appearing before the previous cycle’s band has disappeared. These are both shown

in figure 5.2.

5.3 Space Coordinates

In space physics, which deals with satellites and field models (rather than the

various astronomical coordinate systems, which are 2-D projections on a sphere),

3-D coordinates are needed.
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Figure 5.2: Sunspot number and sunspot number by heliographic latitude, from

1880 to 2010. The NOAA sunspot number is compiled by the US National Oceanic

and Atmospheric Administration. The numbers are the monthly averages (SSN).

Taken from [78].
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5.3.1 HEEQ coordinates

Heliocentric Earth EQuatorial (HEEQ) coordinates have the x-axis oriented along

the intersection between the solar equator and the the solar central meridian (as

seen from Earth) and the z-axis is along the North pole of the Sun’s rotation axis.

This system is aligned with the Sun’s rotation axis so is a convenient coordi-

nate system in which to describe the Heliospheric Magnetic Field (HMF) –either

the Parker Spiral or the Fisk Field. Details of the transformation from HEEQ

coordinates to RA and dec are provided in [79].

5.3.2 Carrington Coordinates

Carrington Coordinates are the same as the HEEQ coordinates, except they co-

rotate with the Sun as per the Carrington rotation. Therefore they are ideal

coordinates for Solar observations. The data from the Wilson Solar Observatory

is given in these coordinates.

The relation between Carrington and HEEQ coordinates is best described in

a spherical polar coordinate system where the zenith angle azimuthal angle and

radius have the usual relations with cartesian coordinates, choosing θ to be zero

along the z-axis, and φ to be zero along the x-axis.

The relation between φCarr and φHEEQ is:

φCarr = φHEEQ + L0; (5.1)

Where L0 is some azimuthal angle that rotates with the Sun and can be considered

as the helio equivalent of hour angle.
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5.4 Heliospheric Magnetic Field

In December 1994, at 94 AU from the Sun, NASA’s Voyager 1 crossed the termina-

tion shock, the first boundary between the Heliosphere and the Local Interstellar

medium. Inside this region, known as the Heliosphere, many of the properties—

including the magnetic field—are determined by the Sun.

To explain the structure of the HMF in 1958 Eugene Parker proposed the

controversial idea of the solar wind, a supersonic stream of plasma originating in

the corona that shoots outwards all the way to the termination shock and beyond.

5.4.1 The Parker Spiral

The solar wind begins in the upper corona—the outer atmosphere of the Sun—and

carries with it a hot plasma of particles into the heliosphere. The open magnetic

field lines are frozen into the plasma and are dragged into the heliosphere by the

solar wind. The solar wind has velocities of tens of km/s, so with the rotation

of the Sun the field lines are dragged out from the surface of the Sun in a spiral

arrangement. This is known as the Parker Spiral, and is shown out to 1 AU in fig.

5.3. The magnetic field is given by:

BR = B0

(r0
r

)2

Bθ = 0

Bφ =

(

B0r
2
0

rVR

)

[(ω − Ω) sin θ]

where r0 is the solar radius, VR is the velocity of the solar wind, typically ∼400

km/s, ω is the rotation rate of the Sun, and Ω is the differential rotation rate of
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Figure 5.3: The Parker spiral out to 1 AU, note the field is nearly at 45◦ at the

Earth distance. Taken from [80].

the Sun, as measured between the poles and the equator.

5.4.2 The Fisk field

Prior to Ulysses, launched in 1990, the solar magnetic field and the solar wind

had never been measured far out of the planetary plane, so the behavior of both

were largely unknown at high heliographic latitudes [76]. Ulysses found a faster

solar wind at high latitudes and the Parker spiral was found to be inconsistent

with these speeds. A new model was proposed by Fisk, that included the high-

latitude fast-winds [81]. It reduces to the Parker Spiral when the angle between
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the dipole-axis and the rotation axis β=0.

BR = B0

(r0
r

)2

Bθ =

(

B0r
2
0

rVR

)

ω sin β sin

(

φ+
Ωr

VR
− φ0

)

Bφ =

(

B0r
2
0

rVR

)[

ω

(

cosβ sin θ + sin β cos θ

(

φ+
Ωr

VR
− φ0

))

− Ω sin θ

]

(5.2)

5.5 Coronal Magnetic field

Despite some recent measurements [82], direct measurement of the coronal mag-

netic field is difficult, due to the low particle density ( 10−9 cm−3) in the corona. To

build models of the coronal field two main approaches are taken. In the first, a full

magneto-hydrodynamic simulation of the plasma field in this region is performed.

However, this is computationally intensive, and is not performed here. The ap-

proach we follow is to extrapolate photospheric observations into the corona. With

this method it is possible to resolve fine structure, but the time dependence in the

model comes from a series of static configurations in which the input parameters

are varied with time.

5.5.1 Wilcox Solar Observatory Magnetograms

Daily magnetograms of the photosphere are taken by several experiments. They

use stokes vectors from Zeeman splitting of atoms in observations of the photo-

sphere. The Wilcox Solar Observatory (WSO) [83] takes daily magnetograms in

terms of a multipolar expansion, in Carrington coordinates [84]. The data is di-

rectly published to be used in the Potential Field Source Surface Model, or PFSS.
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The observations are made as line-of-sight measurements but from observational

evidence the magnetic field is radial at the photosphere, and a correction for this is

described in [85]. The WSO provides the magnetogram results with this correction.

5.5.2 The Potential Field Source Surface Model

Surface models were initially developed by [86; 87], and later refined by [88] and

[89].

The PFSS model is a multipolar expansion of the coronal magnetic field that is

valid between the photosphere and some imaginary surface, known as the source

surface, at which point the magnetic field is entirely radial and beyond which there

are no open magnetic field loops. The currents in the corona are neglected, to allow

unique solutions of the potential in closed form.

The parameters of the model are the Laplace multipolar expansion coefficients

and the position of the source surface Rs, which is normally fixed at 2.5 R⊙ but in

some models permitted to vary between 2.5-3.25 R⊙.

The concept of the PFSS model is shown in fig. 5.4. Inside the source surface

is multipolar field, where closed field loops protrude from the photosphere. All

field lines that extend past the source surface are open, and at the surface all field

lines are entirely radial. Beyond the source surface, the HMF is then described

by either the Parker spiral or a Fisk field. For a full review of the HMF and the

coronal field see [76].
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Figure 5.4: The PFSS model. Taken from [87].

5.5.3 The Heliospheric Current Sheet

The Sun’s magnetic polarities are separated beyond the source surface by the

heliospheric current sheet (HCS). Above and below the current sheet, the magnetic

field lines are in opposite directions, if above the HCS they are inwards, then below

the HCS they are outwards. For the cosmic rays that navigate these magnetic

fields on their way to Earth from the direction of Sun, their deflection direction is

governed by which side of the current sheet they are. As the solar rotation axis is

not aligned with the magnetic axis, the HCS is not flat in the plane of the solar

system. Rather, the HCS takes the form of a “ballerina skirt” as shown in figure

5.5.

The Earth passes though both polarities as the “ballerina skirt” fluctuations

rise above and below the Earth’s orbital plane. It is therefore possible to look at

the solar shadow in VHE CR when the Earth is above and below the HCS, and

observe the opposite directions of the shadow deflection caused by the HMF. This

was recently performed by the ARBO-B collaboration in [90], but such an analysis
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Figure 5.5: The heliospheric current sheet. Taken from [76].

is not performed in this thesis.

5.6 Observations of the Sun’s Shadow in Cosmic

Rays

Many of the same experiments that have observed the Moon shadow (table 4.1),

have observed the solar shadow. A list of these experiments, the significance of the

solar shadow observed, and the approximate energy of the observation are given

in table 5.1.
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Table 5.1: A summary of notable experiments that have observed the Sun Shadow;

with particle type and shadow depth in σ as well as approximate energy.

Experiment Type depth (σ) energy

Tibet ASγ [91] array 5.8 10 TeV

Tibet ASγ[92] array 12 10 TeV

MACRO [49] muon 4.6 20 TeV

CASA [46] proton 4.8 100 TeV

ARGO-B[90] array 43.6 5 TeV

MINOS[52] muon
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Chapter 6

Moon and Sun Maps in Data

The Moon and Sun are sinks in VHE CR. The goal of this chapter is to see this

deficit of events from the Moon and Sun direction with Milagro. The detection

of cosmic rays is not uniform in space and time, so in order to see the deficit of

events from the direction of the Moon or Sun, we must perform an estimate of

background and subtract this from the signal. In chapter 3, we saw how to take

the raw primary direction and event times, as measured by Milagro, and use that

to estimate the background, as well as the astronomical coordinate systems in

which to do so. In this chapter we use these tools to make maps of the cosmic-ray

flux from the directions of the Moon and Sun by making signal minus background

skymaps in coordinate systems centered on these bodies. The Milagro data maps

for the Moon and Sun in this chapter are made covering epochs 7-9, a period of

approximately 2.5 years, from Fall 2005 to the end of Milagro’s operation in Spring

2008. In this period 126 million events passed cuts within 5◦ of the Moon with an

average 12600 events/0.1 square degree bin.
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6.1 Moon-maps

The Moon-maps are made for all of epochs 7, 8 and 9 covering a period of 907

days from 20th September 2005 to 15th March 2008. The background is estimated

using direct integration (MDI) as described in sec. 3.2, with two hours of data

before and after source transit used to estimate the background. The maps are

recentered on the Moon every 5 minutes. In this time the Moon moves ∼ 0.05◦ in

RA and less in dec, so with map bins of extent 0.1◦×0.1◦ the center of the Moon

will remain in the same bin for these 5 minute periods.

6.1.1 Quality Data Cuts and Map Making Parameters

Quality cuts on the data were Nfit>40 and zenith angle θ<60◦, and all maps were

made with ROI=3◦ with 2.1◦ boxcar smoothing.

Nfit Cut

Cuts on Nfit are correlated with energy, so low Nfit cuts include more lower energy

particles. However, Nfit also has significant impact on angular resolution, with

lower Nfit cuts leading to poorer angular resolution. The trade-off between good

angular resolution, and keeping as many events as possible leads to the choice of

Nfit>40.

Zenith Angle Cut

Typically, a cut of θ<45◦ is used when analyzing Milagro data. A relaxed zenith

angle cut of θ<60◦ was chosen here as to get as much data from near the Moon as
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possible as well as stopping an effect that caused the maps to be cut off approxi-

mately 8◦ below the Moon with tighter zenith cuts.

Region of Interest Background Choice

The Moon is excluded from the background estimation, using the region of interest

exclusion (ROI), described in section 3.2. As the Moon is a sink on the sky, if the

region of interest does not contain all the shadowed events the background will

be slightly overestimated –that is the Moon being a sink for cosmic rays, the

background number of events per 0.1 square degree bin is underestimated. The

Moon moves ∼ 0.5◦ in one hour and the shadow extends to approximately 3◦ (see

sec. 4.3), so in a two hour integration period a 3◦ region of interest is the smallest

area that can be excluded so the Moon does not effect background estimation.

Despite there being a small leakage of the shadow into the background estimation

region this has no effect, due to the large integration time of two hours. Choosing

a larger or slightly smaller ROI has a negligible effect and is not visible.

Significance Map Smoothing

The significance maps shown in this thesis are boxcar smoothed over an area of

2.1 square degrees, as described in sec. 3.3.1.

6.1.2 Moon Transit

The Moon orbits the Earth in approximately 27.3 days, completing nearly 33

transits for epochs 7-9. For the early Milagro/Milagrito data, the Moon orbit was
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between ±18.5◦ but for epoch 7 and beyond the limits are approximately ±28◦ as

shown in figure 6.1.

6.1.3 Coordinate System

There are many ways of projecting a sphere onto a plane. The astronomical equato-

rial system described in section 3.1 is an equal area projection with each (α cos δ,

δ) bin containing an equal area. However, the Moon is a transient source that

moves across the sky in RA and dec, so the maps are made in particle minus Moon

coordinates with the nominal Moon position at the origin.

In this case, the best choice of coordinates is not obvious. An equal-area type

coordinate system of the form ((αp−αm) cos δm, δp−δm), where p denotes particles

and m denotes the Moon, does not actually preserve area as the jacobian is cos δm.

Coordinates of the form (αp cos δp − αm cos δm, δp − δm) do preserve area, but do

not preserve the relative positions of events with time.

It would seem that the (αp cos δp − αm cos δm, δp − δm) coordinates are the

best choice. However, there are additional complications that arise from the MDI

background estimate. This coordinate system shifts the data along the negative

RA-axis for positive δp − δm and along the positive RA-axis for negative δp − δm.

This leads to a distorted background using Milagro Direct Integration. There is

also an edge effect associated with the ROI source exclusion. For that reason we

adopt (αp − αm, δp − δm) coordinates.

In this coordinate system the background estimate is excellent over the whole

sky, as the effect of variable bin-size in the signal map is mimicked exactly in the
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the Moon orbits at dec ±28◦ in this period

Figure 6.1: The Moon in RA and dec over time. The dates are given in Milagro

Modified Julian Date, which is julian date−2450000.5. The Moon does not orbit

between constant declinations unlike the Sun. For Milagrito (the precursor of

Milagro) analysis the Moon was ∼ ±18.5◦, but for the epoch 7-9 analysis the

Moon orbits at ∼ ±28◦
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background map. With this choice of coordinate system we opt for excellent back-

ground estimation over equal-area preservation and relative direction preservation.

Rejected Alternative Approaches

An alternative approach would be to use an azimuthal equal-area projection which

preserves both area and the relative positions with time as the Moon moves. This

would be implemented by periodic alignment of the coordinate system along the

direction of deflection of the cosmic rays. Cosmic rays at low energies deflect in

many directions, but above a threshold energy—which is dependent on the relative

positions of the Moon and Milagro—the deflection of the cosmic rays is along a

single direction, assuming the Earth’s magnetic field is a dipole.

In this approach, the background could be estimated using two methods. In

the first, a series of fake Moons are simulated at an identical RA to the real Moon.

The signals at the fake Moon positions are then used to estimate the background

at the real Moon position.

In the second, known as time sloshing, for each position in the signal map

many positions at the same local coordinates but at a different time are used

to estimate the background. This is the same principle as the MDI background,

as the signal passes overhead a point with the same local coordinates, but at

a different time is equivalent to a different RA. Both these methods, especially

using the geomagnetically aligned coordinates, were tested and found to be poor

at estimating background for the Moon.

80



6.1.4 Significance Maps

The unsmoothed signal minus background map, or excess-map, with cuts on

Nfit> 40, zenith angle<60◦, with a ROI=3◦ exclusion is shown in fig. 6.2. Remark-

ably, the sink is so deep that one can observe the Moon shadow clearly without

smoothing.

The smoothed map of significances, as defined in section 3.3, calculated with

2.1◦ boxcar smoothing is shown in figure 6.3. A very deep and clear shadow is seen

to a depth of greater than 60σ –the most significant object on the sky yet seen

with an EAS array.

6.1.5 The Number of Shadowed Particles

Cosmic rays are incident on the Moon isotropically to a high degree. When an

incident particle hits the Moon it becomes shadowed, and will not be observed by

the detector. The combination of the Milagro point spread function (PSF) and

the geomagnetic field spreads out the remaining unshadowed events. The Moon

takes up an angular size of about 0.21 of a square degree, so we would expect the

total number of events shadowed to be the total number of background events in

the shadowed Moon position in a region of this size.

The actual effective geometrical area taken up by the Moon is found from a

Monte Carlo integration over the same period as the data, as described in sec. 7.7.2.

If there were no PSF or geomagnetic field the Moon-map would be a sharp circle,

with some distortion from the coordinate system, at the nominal Moon position.

The map would be missing exactly the number of events explained above.
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Figure 6.2: Displayed are the signal events from the region of the Moon (top left),

the background calculated using Milagro direct integration (top right) and the

excess-map of signal minus background (lower portion). The data is from Sep

05-Mar 08 cut on Nfit>40 and θ<60◦ with no smoothing.
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6.1.6 Integrated Fractional Deficit

Integrating outwards from the nominal (or fitted) Moon position, one would expect

to recover the total number of shadowed events that have been smeared out by the

PSF and geomagnetic field.

In figure 6.4 we show the fraction of shadowed events as a function of radial

distance from the fitted (see sec. 6.4) Moon position. The plot is made from signal

minus background integrated outwards to include all events within the radius in

steps of 0.1◦ and is shown in figure 6.4. The error bars are determined by the total

number of events in signal and background in the area included so they increase

with radius from the center of the shadow.

6.1.7 Differential Fractional Deficit

In the integrated deficit plots consecutive bins are correlated. To gain uncorrelated

plots, other than a small correlation from the calculation of the number of shadowed

events, one can look at the differential fractional deficit –in which the signal minus

background is plotted within annuli of increasing radius from either the nominal

or fitted source position. Alternatively, one can use the fractional deficit density,

which has no correlation and is sign-flipped as the Moon is a sink. This is the

summed excess for the annulus but divided by the area of each annulus. Looking

at the differential deficit plots, the shadow does not seem to extend beyond 3◦. The

number of sigma from zero distribution is consistent with this, showing a clear non-

random behavior from the full set of events, but consistent with no excess farther

than 3◦ (see figures 6.5 and 6.6). The plot is consistent with all shadowed events
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recovered.

85



recovered at 3◦ validating the choice of ROI=3◦

As with the integrated maps, the annuli are found relative to the fitted shadow

position, as described in sec. 6.4.

6.2 Consistency of Background Estimation

As a check of the background determination, found from the MDI technique, we

introduce a fake Moon that co-moves with the real Moon –but is displaced in

RA by 90◦. The plots are shown in figures 6.7 and 6.8. The integrated deficit

plot and differential deficit plots are both consistent with statistical fluctuations

in the absence of a sink. The distribution of significances for the whole sky is also

included and is consistent with a gaussian, width one, centered on zero as expected.

Though we use a fake Moon, as the map is co-moving the real Moon will appear at

−90◦ so the region around the real Moon is excluded from the all-sky distribution

of significance.

6.3 Energy Parameter binned Moon-maps

The Moon-maps in 10 frasor bins—the Milagro energy parameter (see sec. 3.5)—

are shown in figures 6.9, 6.10 and 6.11. As we increase frasor the angular extent

of the shadow appears to decrease in RA and dec. Also the shadow in RA for

0.0<frasor<0.2, 0.2<frasor<0.4 and 0.4<frasor<0.6 is to the left of zero,

corresponding to a Moon shadow shifted to the west. For higher frasor bins the

shadow appears to be consistent with the nominal position of the Moon. In decli-
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Figure 6.5: Differential deficits for the Moon in data, with cuts Nfit>40 and θ<60◦.
87



-5 0 5 10 150

2

4

6

8

10

sigma_dist_ROI3_2 Underflow       0
Overflow        9
#chi^{2} / ndf  22.77 / 22
Constant  8.393 #pm 1.498
Mean      0.4225 #pm 0.1629
Sigma     1.171 #pm 0.183

sigma_dist_ROI3_2

(a) Distribution number of sigmas from zero

from the differential density, 0-10◦.

-6 -4 -2 0 2 4 60

2

4

6

8

10

12

sigma_dist_ang3_ROI3_2 #chi^{2} / ndf  8.921 / 10
Constant  9.948 #pm 1.706
Mean      0.163 #pm 0.131
Sigma     0.9706 #pm 0.1163

sigma_dist_ang3_ROI3_2

(b) Excluding the shadow region: distribution

of number of sigmas from zero of the differential

density 3-10◦

Figure 6.6: Distributions of sigmas of the differential density of the Moon, from

fig. 6.5.

88



-10 -8 -6 -4 -2 0 2 4 6 8 10

1

10

210

310

410

#chi^{2} / ndf   1157 / 902
Constant  1.16e+04 #pm 8
Mean      0.00184 #pm 0.00059
Sigma     1.008 #pm 0.000

-10 -8 -6 -4 -2 0 2 4 6 8 10

1

10

210

310

410

sigma dist minus moon

sigma dist 

Distribution of Excesses on co-moving moonmap

Figure 6.7: Distribution of significances for the fake Moon on the full sky, with

cuts Nfit>40 and θ<60◦. The fit is in black. Subtracting a region around the real

Moon of 3◦ centered on the Moon leaves a fit that is consistent with a gaussian,

width one, centered on zero.

89



Dist. from Nom. Source Position (RA Dec degr)
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Data differential vs. Nominal Source Distance ROI3Data differential vs. Nominal Source Distance ROI3

(a) Differential fractional deficit in 0.1◦ annuli

for the fake Moon

-6 -4 -2 0 2 4 60

2

4

6

8

10

12

14

16

sigma_dist_ang3_ROI3_2 #chi^{2} / ndf  11.91 / 9
Constant  8.306 #pm 1.354
Mean      0.2817 #pm 0.1859
Sigma     1.206 #pm 0.151

sigma_dist_ang3_ROI3_2

(b) Distribution of number of sigmas from zero

from the differential fractional deficit, 0-10◦, for

the fake Moon

Figure 6.8: Distribution of significances for the fake Moon. Cuts are Nfit>40 and

θ<60◦.

90



nation, the shadow appears to be largely centered on zero. We would expect the

geomagnetic deflection to decrease with increasing energy. As energy is correlated

with frasor, the shadow positions in higher frasor bins should be closer to the

nominal Moon position, which is what is observed.

We would expect to see a similar effect on the width of the shadow. However,

this has two contributions. The first effect is that the low frasor bins have poor

angular resolution, which widens the shadows. The second effect is the broadening

of the shadow due to geomagnetic deflection. This effect is governed by the effective

area response of the detector with energy, which is described in sec. 7.4.

6.4 A 2-D Gaussian is a good fit to the Moon

Shadow

In the unsmoothed excess-maps, the particle shadow is modeled, as a function of

RA α and dec δ, by a 2-D gaussian of the form:

f(α, δ;A, α0, δ0, σα, σδ) =
A

2π (σ2
α + σ2

δ )
exp

[

−1

2

(

(α− α0)
2

σ2
α

+
(δ − δ0)

2

σ2
δ

)]

(6.1)

where A is the particle shadow depth, α0, δ0 and σα, σδ are the locations and widths

along the RA and dec axes respectively in particle minus moon coordinates. This

function is a good fit to the observed Moon shadow. The excess-map with Nfit>40

and zenith angle<60◦ for the period of epochs 7-9, with the fit is shown in fig. 6.12.

The 2-D gaussian fitting function appears to match the data both in position and

depth. The residual map (of the data minus the fit), the significance map of
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Figure 6.9: Moon-maps for data in the lowest 3 frasor bins. Top

0.0<frasor<0.2, middle 0.2<frasor<0.4 and bottom 0.4<frasor<0.6, with

cuts Nfit>40 and θ<60◦. The significance maps are boxcar smoothed over 2.1◦.

92



)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Moonmap nFit>40 0.6<fsr<0.8

-25

-20

-15

-10

-5

0

Significance Moonmap nFit>40 0.6<fsr<0.8

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fractional Integral Deficit vs. Fitted Source Distance 0.6<fsr<0.8Fractional Integral Deficit vs. Fitted Source Distance 0.6<fsr<0.8

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.1

-0.05

0

0.05

0.1

Fractional Differential Deficit vs. Fitted Source Distance 0.6<fsr<0.8Fractional Differential Deficit vs. Fitted Source Distance 0.6<fsr<0.8

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Moonmap nFit>40 0.8<fsr<1.0

-20

-15

-10

-5

0

Significance Moonmap nFit>40 0.8<fsr<1.0

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

0

0.2

0.4

0.6

0.8

1

1.2

Fractional Integral Deficit vs. Fitted Source Distance 0.8<fsr<1.0Fractional Integral Deficit vs. Fitted Source Distance 0.8<fsr<1.0

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Fractional Differential Deficit vs. Fitted Source Distance 0.8<fsr<1.0Fractional Differential Deficit vs. Fitted Source Distance 0.8<fsr<1.0

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Moonmap nFit>40 1.0<fsr<1.2

-20

-15

-10

-5

0

Significance Moonmap nFit>40 1.0<fsr<1.2

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Fractional Integral Deficit vs. Fitted Source Distance 1.0<fsr<1.2Fractional Integral Deficit vs. Fitted Source Distance 1.0<fsr<1.2

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Fractional Differential Deficit vs. Fitted Source Distance 1.0<fsr<1.2Fractional Differential Deficit vs. Fitted Source Distance 1.0<fsr<1.2

Figure 6.10: Moon-maps for data in the middle 3 frasor bins. Top

0.6<frasor<0.8, middle 0.8<frasor<1.0 and bottom 1.0<frasor<1.2, with

cuts Nfit>40 and θ<60◦. The significance maps are boxcar smoothed over 2.1◦.
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Figure 6.11: Moon-maps for data in the highest 4 frasor bins. Top

1.2<frasor<1.4, second 1.4<frasor<1.6, third 1.6<frasor<1.8 and bottom

1.8<frasor<2.0, with cuts Nfit>40 and θ<60◦. The significance maps are boxcar

smoothed over 2.1◦.
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residuals, and the distribution of significances of residuals fit to a 1-D gaussian

function are also shown. Except for a slight non-zero residual average these are

consistent with random fluctuations around the correct model. The Moon shadow

does indeed seem to be well modeled by a 2-D gaussian. The fit parameters of eq.

6.1, in frasor are shown in fig. 6.13.

6.4.1 Asymmetry of the Moon Shadow

The 2-D gaussian fit function is symmetrical along RA, but the deflection of par-

ticles is not symmetric –it is biased along the direction of RA by the geomagnetic

field. To assess the level of asymmetry in the shadow, compared to the symmetric

fitting function, we project the Moon shadow excess-map along the RA direction.

As a check, we also project the excess-map along the dec direction. These are shown

in figure 6.14. We see a slight asymmetry in the data along RA, as expected, but

this asymmetry is small and shows only a small deviation from the 2-D gaussian

fit. Along dec the the data is symmetric, and the 2-D gaussian matches the data

well.

6.5 Sun-maps

The Sun transits the celestial sphere along the ecliptic, which is inclined at 23◦ to

the celestial equator, and completes ∼2.5 transits in epochs 7-9. In this period 104

million events passed cuts within 5◦ of the Sun and there were an average of 10400

events/0.1 square degree.

As discussed in chapter 5, unlike the Moon, the Sun has its own magnetic field
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Figure 6.12: The excess-map of the Moon in 0.1◦×0.1◦ bins with Nfit>40 and

zenith angle<60◦, then fit to eq. 6.1, with the residuals. The final plot is distri-
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Figure 6.13: The parameters of a 2-D gaussian fit to the Moon shadow, in increas-

ing frasor bins. The negative bin is the full set of events with no frasor cut.
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that varies over its 2×11 year solar cycle. During the solar cycle the Sun increases

in activity and its local magnetic field is expected to become highly non-dipolar.

From this point, known as solar maximum, the activity of the Sun decreases and

the local field of the Sun returns to a dipole-like state (opposite in polarity to

11 years before) of low activity. Solar cycle 23 ended in Spring 2008, coinciding

with the end of the Milagro data set. In fact Milagro and Milagrito (the Milagro

precursor) cover nearly the entire 11-year cycle. The first (Milagrito) analysis was

done close to solar minimum and a clear solar shadow was observed. Epochs 7, 8

and 9 are closer to solar minimum and again a clear solar shadow is observed. In

figures 6.15 and 6.16 we show the Sun-map significance and excess-maps for epochs

7-9 with cuts on Nfit>40 and zenith angle<60◦ with ROI=3◦, boxcar smoothed

to 2.1◦. In these maps the solar shadow is clearly seen before smoothing and after

smoothing is observed to a depth of about 35σ.

6.5.1 Integrated and Differential Fractional Deficit Plots

for the Sun

Figure 6.17 shows the integrated and differential fractional deficits and figure 6.18

shows the distribution of sigmas from zero for the differential plot. The distribution

of sigmas from zero for the differential plot greater than 2◦from the fitted Sun

position, in fig. 6.18, is consistent with noise, which indicates that the shadow

does not extend much farther than 2◦. Note that the integral fractional deficit

for the Sun at 3◦ plateaus to about 0.7 rather than to 1. This is expected, as in

contrast to the Moon, the Sun has a magnetic field. If (for instance) the Sun’s
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field is dipolar then particles below a certain energy will not be able to hit the

Sun at the equator. Particles with energies such that a trajectory towards the

Sun but are deflected away will not contribute to the shadow. From Liouville’s

theorem of conservation of phase space volume for every particle deflected away

from the Sun another will be deflected towards Milagro in its place, if cosmic rays

are incident on the Sun isotropically. Some other particle of the same energy will

now be deflected into the Sun direction and make up for the particle that was

deflected away. To reiterate there are some lower energy particles that would be

shadowed by the Moon, but not the Sun as a consequence of its magnetic field.

6.5.2 Consistency of Background Estimation for the Sun

As for the Moon, we test a fake co-moving Sun displaced in RA as shown in figures

6.19 and 6.20. As discussed above for the Moon, the fake Sun is consistent with

noise and the distribution of all-sky significances is consistent with a gaussian of

mean zero and width one.

6.5.3 Sun-maps in Energy Parameter bins

The Sun-maps are also presented in frasor bins in figures 6.21, 6.22 and 6.23.

The fit parameters of eq. 6.1, in frasor are shown in fig. 6.24.

The Sun shows much of the same behavior as the Moon. As we increase fra-

sor the width of the shadow appears to decrease in RA and dec. Again the shadow

in RA for 0.0<frasor<0.2, 0.2<frasor<0.4 and 0.4<frasor<0.6 is to the left

of zero, corresponding to a Sun shadow shifted to the west. This is probably again
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due to the effect of the geomagnetic field, as opposed to the HMF or the coronal

field. Also, the shadow in the dec-direction appears to be largely centered on zero.

For higher frasor bins, the shadow appears to be consistent with the nominal

position of the Sun. We would expect the geomagnetic deflection to decrease with

increasing energy. As energy is correlated with frasor, the shadow positions in

higher frasor bins should be closer to the nominal Sun position, which is what

is observed.

Like the Moon, we would expect to see a similar effect on the width of the

Sun shadow, with broadening at low frasor bins and due to the geomagnetic

deflection, which is what is seen.

Looking at the integrated fractional deficit plots we see an increase in the

total fraction shadowed as we increase frasor. With no cut on frasor we find

about 0.7 of particles that would be shadowed by the geometrical area of the

Sun are recovered at 10◦. However for low frasor bins this fraction is much

less, with nearly no particles shadowed for the lowest frasor bin and 0.2 of the

geometrical area of the Sun shadowed for 0.2<frasor<0.4. For high frasor bins

nearly all events are recovered. These results are consistent with how we expect

particles to be shadowed. Low energy particles, which are more likely to be in

lower frasor bins, are deflected away from the Sun by its magnetic field so do

not reach the photosphere, and hence are not shadowed. High energy particles, so

particles more likely to be in higher frasor bins, are less likely to be deflected

away from the Sun by its magnetic field so are more likely to be shadowed. This

demonstrates that we have a clear sensitivity to the HMF and particularly the

Sun’s coronal field.
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Figure 6.15: Milagro Direct Integration Sun-map significances from Sep 05-Mar 08

cut on Nfit>40 and theta<60◦ with boxcar smoothing over 2.1◦.

101



)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)° (
m

oo
n

δ-
pa

rt
ic

le
δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Unsmoothed Excess Sunmap nFit>40 0.0<fsr<2.0

-500

-400

-300

-200

-100

0

100

200

300

400

Unsmoothed Excess Sunmap nFit>40 0.0<fsr<2.0

Figure 6.16: Milagro Direct Integration Sun-map excesses from Sep 05-Mar 08 cut

on Nfit>40 and theta<60◦ unsmoothed.
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(b) differential fractional deficit

Figure 6.17: Differential and integrated deficits for Sun-maps for epochs 7-9, cuts

are Nfit>40 and theta<60◦.

103



-5 0 5 10 150

2

4

6

8

10

12

sigma_dist_ROI3_2 Underflow       0
Overflow        0
#chi^{2} / ndf  28.23 / 30
Constant  10.05 #pm 1.66
Mean      0.0313 #pm 0.1343
Sigma     1.084 #pm 0.138

sigma_dist_ROI3_2

(a) distribution of number of sigmas from zero

–all angles

-6 -4 -2 0 2 4 60

2

4

6

8

10

sigma_dist_ang3_ROI3_2 #chi^{2} / ndf  2.575 / 10
Constant  10.88 #pm 1.80
Mean      -0.00328 #pm 0.13860
Sigma     1.029 #pm 0.137

sigma_dist_ang3_ROI3_2

(b) distribution of number of sigmas from zero

–angles> 2◦

Figure 6.18: Distribution of significances for Sun-maps for epochs 7-9 from fig.

6.17. Cuts are Nfit>40 and theta<60◦.

104



-10 -8 -6 -4 -2 0 2 4 6 8 10

1

10

210

310

410
#chi^{2} / ndf   1682 / 897
Constant  1.138e+04 #pm 8
Mean      -0.001888 #pm 0.000601
Sigma     1.027 #pm 0.000

-10 -8 -6 -4 -2 0 2 4 6 8 10

1

10

210

310

410

sigma dist minus sun

sigma dist 

Distribution of Excesses on co-moving sunmap

(a) Significance distribution for the fake Sun. The fit is

in black. Subtracting a region around the real Sun of 3◦

centered on the Sun leaves a fit that is consistent with a

gaussian, width 1 centered on zero.

Dist. from Nom. Source Position (RA Dec degr)
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Data Integrated Deficit vs. Nominal Source Distance ROI3Data Integrated Deficit vs. Nominal Source Distance ROI3

(b) integrated fractional deficit in 0.1◦ for fake Sun

Figure 6.19: Fake Sun plots for co-moving fake Sun displaced by 90◦ RA and

integral deficit. Cuts are Nfit>40 and theta<60◦.
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Figure 6.21: Sun-maps for data in the lowest 3 frasor bins. Top

0.0<frasor<0.2, middle 0.2<frasor<0.4 and bottom 0.4<frasor<0.6, with

cuts Nfit>40 and θ<60◦. The significance maps are boxcar smoothed over 2.1◦.
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Figure 6.22: Sun-maps for data in the middle 3 frasor bins. Top

0.6<frasor<0.8, middle 0.8<frasor<1.0 and bottom 1.0<frasor<1.2, with

cuts Nfit>40 and θ<60◦. The significance maps are boxcar smoothed over 2.1◦.

108



)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Sunmap nFit>40 1.2<fsr<1.4

-12

-10

-8

-6

-4

-2

0

2

Significance Sunmap nFit>40 1.2<fsr<1.4

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fractional Integral Deficit vs. Fitted Source Distance 1.2<fsr<1.4Fractional Integral Deficit vs. Fitted Source Distance 1.2<fsr<1.4

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Fractional Differential Deficit vs. Fitted Source Distance 1.2<fsr<1.4Fractional Differential Deficit vs. Fitted Source Distance 1.2<fsr<1.4

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Sunmap nFit>40 1.4<fsr<1.6

-10

-8

-6

-4

-2

0

2

Significance Sunmap nFit>40 1.4<fsr<1.6

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fractional Integral Deficit vs. Fitted Source Distance 1.4<fsr<1.6Fractional Integral Deficit vs. Fitted Source Distance 1.4<fsr<1.6

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fractional Differential Deficit vs. Fitted Source Distance 1.4<fsr<1.6Fractional Differential Deficit vs. Fitted Source Distance 1.4<fsr<1.6

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Sunmap nFit>40 1.6<fsr<1.8

-8

-6

-4

-2

0

2

Significance Sunmap nFit>40 1.6<fsr<1.8

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

0

0.5

1

1.5

2

2.5

3

Fractional Integral Deficit vs. Fitted Source Distance 1.6<fsr<1.8Fractional Integral Deficit vs. Fitted Source Distance 1.6<fsr<1.8

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Fractional Differential Deficit vs. Fitted Source Distance 1.6<fsr<1.8Fractional Differential Deficit vs. Fitted Source Distance 1.6<fsr<1.8

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Sunmap nFit>40 1.8<fsr<2.0

-6

-4

-2

0

2

Significance Sunmap nFit>40 1.8<fsr<2.0

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.5

0

0.5

1

1.5

2

2.5

Fractional Integral Deficit vs. Fitted Source Distance 1.8<fsr<2.0Fractional Integral Deficit vs. Fitted Source Distance 1.8<fsr<2.0

)°Dist. from Fit. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

-0.4

-0.2

0

0.2

0.4

0.6

Fractional Differential Deficit vs. Fitted Source Distance 1.8<fsr<2.0Fractional Differential Deficit vs. Fitted Source Distance 1.8<fsr<2.0

Figure 6.23: Sun-maps for data in the highest 4 frasor bins. Top

1.2<frasor<1.4, second 1.4<frasor<1.6, third 1.6<frasor<1.8 and bottom

1.8<frasor<2.0, with cuts Nfit>40 and θ<60◦. The significance maps are boxcar

smoothed over 2.1◦.
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Figure 6.24: The parameters of a 2-D gaussian fit to the Sun shadow, in increasing

frasor bins. The negative bin is the full set of events with no frasor cut.
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Chapter 7

Moon and Sun Monte Carlo

This chapter describes the Monte Carlo simulation used for modeling the cosmic-

ray Moon or Sun shadow that is observed by Milagro.

This Monte Carlo, in principle, can be used to perform an energy calibration

of Milagro, it can aid in placing an upper limit on the p̄/p flux ratio and can be

adapted to probe the coronal field of the Sun.

The Moon Monte Carlo (MC) has three sets of inputs. The first is the spectral

index and flux of each species being simulated and is used to choose particle type

and energy (see sec. 7.1). Both the second and third inputs are found from Milagro

simulated data files of the the Milagro response to cosmic rays. From these we find

the detector effective area (see sec. 7.4) and the angular resolution (see sec. 7.5)

for each simulated particle.

Given the energy, time (and hence the Moon/Sun position), species and mag-

netic field model (see sec. 4.3.1), we can track a particle through the geomagnetic

field and see if a particle is shadowed by the Moon or Sun (see sec. 7.2). The true
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direction of the particle is smeared with the Milagro angular resolution to deter-

mine the detected direction. The shadowed and unshadowed particles are then put

into two skymaps with effective area weighting. The map of shadowed particles is

an excess skymap centered on the Moon and equivalent to the excess-maps in the

data. In total 1.3×1010 particles are tracked, over the 907 days of the period of

epochs 7-9 –which is the same period as the Moon shadow data maps.

7.1 Primary Spectra

The primary spectrum for each species is used to determine the fraction of each

simulated species and the energy spectrum of the particles in that species.

Cosmic rays detected by Milagro are primarily composed of protons and helium.

The fluxes and spectral indices of protons and helium in this Monte Carlo are

taken from JACEE measurements [93]. However, there are heavier elements, such

as carbon, oxygen, neon, magnesium, silicon and iron. The fluxes of these at TeV

have measured by the ATIC-2 experiment [94]. Other elements that have not

been measured are approximated by the effects of increasing the flux of measured

elements of similar weight.

A single power law fit is imposed on the ATIC-2 data of each species to find

the fluxes at 1 TeV and the differential spectral indices, as shown in fig. 7.1. The

results of the fit are displayed in table 7.1. For species i, the fit takes the form

F0,iE
−αi E2.75 where F0 is the flux at 1 TeV.

Other experiments have measured the cosmic-ray primary spectra for protons

and helium [95; 96; 97] and heavy elements [98]. The spectra used in this MC are
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species flux spectral fraction flux factor additional

(m2s.sr.TeV)−1 index species

protons 0.111 2.80 0.452

helium 0.081 2.68 0.267

carbon 0.013 2.59 0.037 1.2 B

oxygen 0.024 2.60 0.071 1.4 N,F

neon 0.006 2.59 0.017 1.33 Na

magnesium 0.009 2.65 0.030 1.25 Al

silicon 0.010 2.65 0.032 1.37 P,S

iron 0.031 2.62 0.093 1.5 Cl,Mn

Table 7.1: Fractions with spectra from various species. Protons and helium are

from JACEE, the heavy species are from ATIC-2 fits from fig. 7.1.
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Figure 7.1: ATIC-2 fluxes with power law fit for heavy species. The data is taken

from the ATIC collaboration in [94]. The flux is found at GeV and then rescaled

to the TeV scale by an additional factor of 0.001α−1.
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consistent with these measurements.

7.2 Tracking the Particles

At each time step in the MC the position of the Moon or Sun is calculated. For the

907 days of Epochs 7-9 particles are thrown in 10 s intervals. At each interval 41×41

particle tracks are simulated leading to a total of 1.3×1010 simulated particles. In

order to ensure the particles hit Milagro, we reverse the charge of the particle and

track them backwards towards the Moon or Sun.

7.2.1 Initializing the Particles

Using the fluxes and spectral indices, at each time step in the simulation species i

is randomly chosen with probability:

fi =
Fi

αi − 1

(

e0
E0

)1−αi

(7.1)

where αi and Fi are the differential spectral index and flux of species i respec-

tively, e0 is taken to be 0.1 TeV and is the minimum energy of particles thrown as

used in eq. 7.2 and E0 the energy scale of the flux, here chosen to be 1 TeV. The

probabilities are normalized by Σ fi=1.

To find the species and energy two random numbers x1, x2 ∈[0,1], taken from

the gsl version 1.12 library, are chosen, where x1 is used to choose the species as

described in the previous section and x2 its energy. The energy is

E =
e0

x
1/(1−αi)
2

(7.2)
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where e0 is again the minimum energy of the primaries, chosen to be 0.1 TeV. The

choice of e0 is based on the effective area of Milagro with the the cut Nfit> 40.

Using primary spectra from e0=0.05 TeV were found to give the same results within

statistics, but at the cost of much more computing time.

Once the species and energy are chosen, particles are arrayed on a 41×41 grid

of total size 20◦× 20◦ and then fired towards the Moon in a geomagnetic coordinate

system (see sec. 4.3.1). It should be noted that a second approach could be taken

here; one that would track the same number of particles. Every 0.006 s, a new

particle, with a new energy and of a new species could be generated and fired

towards the Moon. However, this created large fluctuations from effective area

variations, so the approach of firing a grid of particles of identical energy and

species every 10 s was adopted.

Each of the 1681 particles on the grid is of the same species and energy, but

the direction is varied slightly from the nominal Moon direction to eliminate edge

effects. The particle at the (ith, jth) position points in the θi, φj direction in

geomagnetic coordinates:

θi = θ + (i+ x)0.5◦ − 10◦

φj = φ+ ((j + x)0.5◦ − 10◦)/ cos(θ) (7.3)

where θ and φ are the geomagnetic coordinates of the Moon and x is a gsl random

number x ∈[-0.5,0.5].
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7.2.2 Choosing the step length

A particle is tracked numerically solving the differential equation of motion

d~v

dt
=

q

γm
~v × ~B (7.4)

The accuracy of the the solution is determined by the numerical algorithm used

and the step size. In propagating the particle, the trajectory would be perfectly

described with an infinite number of steps. However, we wish to accurately describe

the trajectory with a finite computing time. The error introduced by a finite step

size is a function of the product of force and step size, and since all other parameters

are fixed this is a product of B and step size.

We therefore solved for step time ∆t by restricting:

| ~Binitial + ~Bfinal|| ~∆r| (7.5)

to lie between limits of 0.5 Tm<~B · ~r<0.6 Tm. The maximum time step was

also set to 0.001 s. These limits were found from tests with the MC to optimize

computational time whilst retaining accuracy.

7.2.3 Modified Stoermer method

At each time step the displacement, velocity and acceleration are used to find the

particle position. A standard method for this kind of numerical integration in

dynamics is the Stoermer method, modified by Henrici [99], which averages the

velocity and acceleration between two displacements. However, in this case we

have magnetic fields so velocity is not independent of acceleration. A modified

method was therefore used in this simulation.
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The total time step ∆t between one step and the next is divided into 20 sub-

steps of size h=∆t/20. The initial displacement ~∆0 in terms of the initial position

and velocity vectors, ~y0 and ~v0 is ~∆0 ≡ h [~v0 + 1/2h~a (~y0, ~v0)]. We then take the

20 time sub-steps:

~yk = ~yk−1 + ~∆k−1 (7.6)

~vk = ~∆k−1/h+ 1/2h~a
(

~yk−1, ~vk−1
)

(7.7)

~∆k = ~∆k−1 + h2~a
(

~yk, ~vk
)

(7.8)

The final velocity, after time ∆t, is then ~v20 =
(

~∆19 + ~∆20
)

/2h.

7.2.4 Outcomes of tracking

There are three possible outcomes of tracking the particle:

• The particle may reverse direction and hit the Earth. These particles coming

from the Moon direction would be deflected away by the geomagnetic field

and would not reach Milagro.

• It may get trapped in the field and time out after a total propagation time of

4 s. Light reaches the Moon in ∼1.3 s, so particles that have been traveling

for more than 4s are assumed to have been trapped in the field.

• The particle may reach the Moon distance from the Earth.

If the particle reaches the Moon distance it is kept, all other outcomes are

discarded; these particles would not reach Milagro. The initial trajectory direction

is the true arrival direction –not the direction measured by Milagro. The Milagro
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Point Spread Function (PSF) is then used to simulate the arrival direction that

would be measured by Milagro (see sec. 7.5).

A particle that reaches the Moon distance may or may not have hit the Moon.

Only particles that do not hit the Moon will be detected by Milagro. The remaining

particles are shadowed. Both sets of particles are weighted by the effective area (see

sec. 7.4) and recorded in two separate Moon-maps. In fact, to save computational

time, particles with zero effective area are discarded before tracking.

7.2.5 Comparison with an Independently Developed

Monte Carlo

This Monte Carlo originally developed by Allen Mincer was compared to an inde-

pendent version developed Bob Ellsworth in [100]. After agreeing on the positions

of the Moon and Milagro in their coordinate systems, protons were fired at the

Moon. The differences in RA and dec were found upon arrival at the Moon dis-

tance. At 100 GeV the difference was 0.009◦±0.007◦ in RA and 0.009◦±0.01◦ in

dec and at 1 TeV the difference was 0.01◦±0.06◦ in RA and 0.03◦±0.04◦ in dec. As

the two Monte Carlos were independently developed we consider this a reasonable

check of the methods.

7.3 Milagro Simulated Data

Both the effective area and point spread function were found using Milagro sim-

ulated data sets. For this Monte Carlo the simulated data used was with no air
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under the cover, during epoch 9. Simulated data files for epochs 7 and 8 were tested

and no significant difference was found. The Milagro simulated data is described

in sec. 3.6.

7.4 Effective Area

The effective area models Milagro’s response to each species of cosmic rays, and

is a strong function of both energy and zenith angle. Since this determines the

likelihood of a particle shower to be detected by Milagro it is used to weight the

skymaps centered on the Moon after the particles have been tracked.

The effective area is determined from simulations by

Aeff (E, θ) =
Ntrig (E, θ)

Nthrow (E, θ)
Athrow (7.9)

where Ntrig(E, θ) and Nthrow(E, θ) are the number of events triggering, and initially

thrown, respectively, in a given energy and reconstructed zenith angle bin.

The energy was binned logarithmically, with 5 bins for each decade in energy.

The reconstructed zenith angle was in bins of 3◦. The bin sizes were chosen to

include the finest binning possible, whilst keeping enough statistics to model the

strong dependence of effective area on both zenith angle and energy. The proton

effective area for six 10◦ zenith angle bins is shown in fig. 7.2 and the same binning

for the remaining heavy species in fig. 7.3.
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7.4.1 Binning in frasor

Each event has a probability of falling into any given bin of frasor, reconstructed

zenith angle and energy. However this probability fsrwt is simply

fsrwt(fsr, E, θ) =
Ntrig(fsr, E, θ)

Ntotal(E, θ)
(7.10)

where Ntotal is the total number of events passing the overall zenith and Nfit cut

Ntotal =

∫∫∫

Ntrig (fsr, E, θ) d(fsr) (7.11)

When the Moon MC Moon-maps are being made, each particle then comes with

this additional weight, which is cumulatively multiplicative with the effective area

weight.

7.5 Milagro Point Spread Function

The particles that are tracked to the Moon distance, when they leave on their

path to the Moon, point in their true arrival direction. This is not the direction

measured by Milagro. To find the reconstructed particle direction we need to model

the Milagro point spread function (PSF), which differs based on the species, energy

and zenith angle of the particle.

The Milagro PSF is modeled by ∆ang; the difference between reconstructed and

true direction using the Milagro simulated data.

∆ang = |Ωtrue − Ωrecon| (7.12)

The distribution of ∆ang is well described by a double radial gaussian of the form

F (∆ang) = A ∆ang

(

e(−∆2
ang/2σ2

1) +R e(−∆2
ang/2σ2

2)
)

(7.13)
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Figure 7.2: Milagro effective area with standard cuts for protons with Nfit>40 for

different zenith angle cuts.

After cuts in energy, reconstructed zenith angle, and reweighting in the Milagro

simulated data, the ∆ang distribution is fit to F (∆ang). The four fit parameters

A, R, σ1 and σ2 fully describe the PSF for those cuts. The data is binned in

3 log(energy) bins per decade of energy and 15◦ true zenith angle bins. If the

uncertainty on A, σ1 or σ2 is more than 10% or on R is more than 50% the data is

added to the next bin and the fit is done again until the fit parameters are good.

This iterative process is done first in energy bins, then true zenith angle bins. The

F(∆ang) fit with standard data cuts for all species shown in fig. 7.4.

To simulate the Milagro reconstructed direction for a given particle in the Moon

MC we need the energy, true zenith angle, frasor and three gsl random numbers
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Figure 7.3: Milagro effective area with standard cuts Nfit>40 for different zenith

angle cuts and species.
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Figure 7.4: The ∆ang distribution, fit to radial double gaussian for all species with

Nfit>40 and zenith angle<60◦ cuts. The fit parameters displayed are amplitude,

variance and the ratio of the amplitudes of the two radial gaussians.
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x1, x2, x3 ∈[0,1]. From the energy, true zenith angle and frasor we get the fit

parameters from F (∆ang) for that bin. The function F (∆ang) is comprised of two

radial gaussians, a narrower dominant gaussian and a second minor gaussian with

a longer tail. The integral is equal to
∫

∞

0

F (∆ang) d∆ang = Aσ2
1 +Rσ2

2 (7.14)

so the first random number can choose between the two gaussians. If x1 <

σ2
1/ (σ2

1 +Rσ2
2) then we choose the first gaussian, otherwise we choose the sec-

ond. The integral of ∆ange
(−∆2/2σ2

1) may be evaluated directly so with a second

random number one can find

∆ang,0 = σ
√

(−2 log (1 − x2)) (7.15)

Where ∆ang,0 is the size of the displacement in the 2-D plane. The final random

number then assigns ∆ang,0 along the geomagnetic axes

∆ang,α = ∆ang,0 cos (2π x3)

∆ang,δ = ∆ang,0 sin (2π x3) (7.16)

Then the reconstructed angles are given by

αrecon = αtrue + ∆ang,α/ cos(δtrue)

δrecon = δtrue + ∆ang,δ (7.17)

7.6 Uncertainties

There are systematic uncertainties associated with spectra and flux—which are

correlated—and also with the effective area and angular resolution. Additionally,
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there is a systematic uncertainty from the frasor-weight for each particle in a

frasor bin, which is correlated with the effective area uncertainty.

The Moon-maps are actually made in a way that differs slightly from the

method described above. After tracking particles, events that reached the Moon

distance are recorded in a data file. What is kept is the species, energy, whether

the particle hit the Moon, true particle direction in geomagnetic coordinates, time

and random number iteration. Particles are also kept for lower energy scales for

an use in calibration. This collection of data allows variation of parameters to

generate new Moon-maps whilst saving on computing time. Therefore, in the data

files the random number iteration is included, which keeps track of all the infor-

mation about a particle. In total, for each 10 s time step there are 2+41×41×4

gsl random numbers. The first two are for the energy and species, then for each of

the 41×41 particles on the grid there is a random number to vary the direction,

and three for angular resolution. Even when events are discarded before tracking,

the full set of random number iterations are calculated to allow keeping identical

events for systematic studies.

7.6.1 Uncertainties from Spectra and Flux

To find the uncertainties from spectra and flux, the uncertainties in the fits σ (α)

and σ (F0) in fig. 7.1 are varied with gaussian statistics

α′ = α +Nσ (α)

F ′
0 = F0 +Nσ (F0) (7.18)

where N∈[-∞,∞] is found from gaussian distribution.
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Using ten distinct sets of α′ and F ′
0 we produce ten new Moon-maps. Both the

energy of the particle and species are functions of the flux and spectra. There-

fore each species is re-weighted in the Moon-maps by a new fraction, spectrawt,

simultaneously as the energy is re-weighted by energywt using the spectral indices:

spectrawt = fi/fi,0

energywt = Eαi,0−αi (7.19)

where fi is the fraction of species i from eq. 7.1 with the new and original spectra

and fluxes respectively, αi,0 is the original spectral index of species i, αi is the new

spectral index of species i and E is the energy. These weights are cumulatively

multiplicative with the effective area when filling Moon-maps.

7.6.2 Uncertainties from effective area and frasor-weight

For the effective area and frasor-weight uncertainties, if effective area is given

by eq. 7.9, then the binomial error is of the form np(1-p), so the uncertainty is

σ (Aeff (E, θ)) =
Aeff (E, θ)

Athrow

(

1 − Aeff (E, θ)

Athrow

)

Aeff (E, θ) (7.20)

The uncertainty in the frasor weighting takes the same np(1-p) form

σ (fsrwt (fsr, E, θ)) =
Ntrig (fsr, E, θ)

Ntotal

(

1 − Ntrig (fsr, E, θ)

Ntotal

)

Ntrig (fsr, E, θ) (7.21)

These 1-σ uncertainties are gaussian varied using a random number for each bin

to produce a new effective area and frasor-weight.

A′
eff = Aeff +Nσ (Aeff)

fsr′wt = fsrwt +Nσ (fsrwt) (7.22)
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where N is a number from a gaussian distribution. The same Moon-maps are then

reproduced ten times with ten pairs of new effective area and frasor-weight.

7.6.3 Statistical Uncertainty

The gsl random number package will produce the same string of random numbers

for a given seed. The statistical error Moon-maps can then be found using a

different random number seed. Due to the large computing time necessary, three

maps in total are generated to test the spread due to using a different random

number. The number of particles in these maps were chosen to ensure that the

statistical uncertainties were small compared to other errors. Note that the number

of events in the statistical runs, i.e. every 10 s, does not have to be the same

as the event totals for the other uncertainties. As long as the random number

iteration is tracked, the statistical uncertainties are decoupled from the systematic

uncertainties, which would remain the same order if the number of events was

increased by a factor of ten.

7.7 Moon centered Skymaps with the Moon

Monte Carlo

The Moon Monte Carlo map, which is the equivalent of an excess-map in data is

shown in figure 7.5. The map is unsmoothed, with no frasor cut and Nfit>40.

It shares similar features to the data excess-map, but it should be noted that the

Moon Monte Carlo is designed to reproduce the shape and position of the Moon
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shadow, but not the event rate of Milagro, so the total number of missing events,

the absolute event depth of the shadow and the excess events do not match the

data.
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Figure 7.5: Moon Monte Carlo excess-map with no frasor cut, Nfit>40 zenith

angle>60◦ cuts.
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7.7.1 Integrated and Differential Fractional Deficits

The integrated and differential fractional deficit plots, in RA, dec, particle minus

Moon coordinates, are shown in fig. 7.6. The plots are centered on the fitted Moon

shadow position, where the Moon shadow is fitted to a 2-D gaussian, as described

in sec. 6.4. In both plots a value of one on the y-axis represents recovering all

shadowed particles. The integrated plot is not required to have an asymptote

of one as points on both the differential and integrated plots are weighted by a

multiplicative geometric factor described in the next section.

The integrated plot error bars are correlated from point to point and the dif-

ferential error bars are not. For the Moon MC the integrated plot is found from

the summing effective area weighted map of shadow particles. All particles within

circular area with radius indicated on the x-axis are counted, in steps of 0.1◦ begin-

ning at 0.05◦ where 0.1◦ is the resolution of the Moon-maps in data. This is then

divided by the total number of shadowed particles and multiplied by the factor

shown above. The differential plots are found from the annuli rather than area.

7.7.2 Moon Geometrical Factor

This geometrical factor, 0.234 is calculated in the Moon MC and represents the

effective geometrical area of the Moon in RA-dec coordinates, integrated over the

same period of time as the Moon MC and data. It can be considered as the fraction

of 1◦ square the Moon takes up on average over the period of the Moon MC, with

a slight distortion from the coordinate system used.
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Figure 7.6: Integrated and differential fractional deficit plots of the Moon for

Nfit>40 zenith angle>60◦ cuts.
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The factor is:

factor =
total # shadowed particles

# shadowed + unshadowed particles in central 1◦ square
(7.23)

The factor is calculated with the magnetic field turned off, but retaining the

PSF. The Moon shadow is deflected by the magnetic field, and the effective area is

a strong function of zenith angle, so the geometrical area of the true shadow differs

from the geometrical factor. Even after angular smearing from the PSF the Moon

shadow is deflected to a higher dec on average. This corresponds, on average to

higher zenith angles. Therefore, we expect the integrated fractional deficit plots

to plateau slightly above 1.

7.7.3 The frasor binned Moon MC

In figures 7.7, 7.8 and 7.9 are the frasor binned plots for the Moon MC, of the

unsmoothed excess-maps alongside the integral and differential fractional deficits.

The plots show the same general trend as the data shadows, and it should be noted

that frasor> 1.4 bins have extremely low statistics, so have difficulty in fitting

a 2-D gaussian.

7.7.4 2-D Gaussian fit Parameters in frasor bins

The fit parameters of eq. 6.1 for ten frasor bins are shown in fig. 7.10. We expect

the magnetic deflection of cosmic rays to be primarily along RA, which is indeed

the case. We also have larger deflections for lower frasor bins as expected. Along

dec the position of the shadow is not consistent with zero, but is smaller than the
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Figure 7.7: Moon-maps for MC in the lowest 3 frasor bins. Top

0.0<frasor<0.2, middle 0.2<frasor<0.4 and bottom 0.4<frasor<0.6, with

cuts Nfit>40 and θ<60◦. Note the lowest frasor bin differential deficit doesn’t

quite average at zero at 10◦. This is because some of the low energy particles have,

after smearing the arrival direction with the PSF, been deflected beyond 10◦.
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Figure 7.8: Moon-maps for MC in the middle 3 frasor bins. Top

0.6<frasor<0.8, middle 0.8<frasor<1.0 and bottom 1.0<frasor<1.2, with

cuts Nfit>40 and θ<60◦.
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Figure 7.9: Moon-maps for MC in the highest 4 frasor bins. Top

1.2<frasor<1.4, second 1.4<frasor<1.6, third 1.6<frasor<1.8 and bottom

1.8<frasor<2.0, with cuts Nfit>40 and θ<60◦.
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deflection along RA for low frasor bins. The widths also decrease in both RA

and dec with increasing frasor bin, as expected.

frasor
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0
α 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0αfrasor vs. 

frasor
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0
α 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

frasor
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0δ 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 0δfrasor vs. 

frasor
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0δ 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

frasor
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ασ 

-0.5

0

0.5

1

1.5

2

ασfrasor vs. 

frasor
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ασ 

-0.5

0

0.5

1

1.5

2

frasor
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

δσ 

-0.5

0

0.5

1

1.5

2
δσfrasor vs. 

frasor
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

δσ 

-0.5

0

0.5

1

1.5

2

Figure 7.10: Fit parameters from 2-D gaussian in frasor bins for the Moon MC.

The plots are shadow position along RA and dec respectively. The negative bin is

the full set of events with no frasor cut.

As expected from the excess-maps in figures 7.7, 7.8 and 7.9, the highest three

frasor bins do not have sufficient statistics for a good 2-D gaussian fit to the

shadow.

The widths in both RA and dec directions are nearly equal, even for low fra-

sor bins. One would expect that the width of the shadow along the dec axis would

be almost a pure convolution of the Milagro PSF with the Moon as a disc-shaped

sink for cosmic rays. In contrast one would expect that along the RA axis the

width would contain information about the geomagnetic field which would extend
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the width of the shadow in that direction. As a result we would expect an elliptical

shadow, particularly for low frasor bins, with the major axis along RA. From

looking at the fitted shadow position along the RA axis we are clearly very sensi-

tive to the geomagnetic field deflection so it is perhaps surprising not to see this

effect in the shadow width.
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Chapter 8

A Study of the Possibility of an

Energy Calibration of Milagro

using the Cosmic-Ray Moon

Shadow

Air shower arrays have been operating for 50 years and to date have all relied

solely on EAS and detector simulations to calibrate their energies. In this chapter,

we describe an attempt at the first such calibration using the cosmic-ray Moon

shadow. To do this we need both the shadow in data from chapter 6 and from

Monte Carlo in chapter 7.

We proceed as follows: in section 8.1 we discuss the definition of energy scale

and how to vary the energy scale of the Moon MC in practice. In section 8.2 we

compare the shadow generated from the Moon MC to the shadow from data using
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the 2-D gaussian to model the shadow. Then in section 8.3, we compare the data

with Moon MC shadows in frasor bins generated with different energy scales,

again using the 2-D model. In section 8.4 rather than compare the gaussians of

data and Monte Carlo, we compare the projections of the Moon shadow along the

RA and dec directions. Finally, in section 8.5 we discuss uncertainties in the Moon

Monte Carlo that were not quantified in chapter 7.

8.1 Monte Carlo Energy Scale

A particle energy E is rescaled to E′ where

E′ = xE (8.1)

Rescaling the energy, for instance when x=0.5, means that each particle is being

scaled to a lower effective area. The particle was deflected in the magnetic field as

a particle of energy E, but is detected by Milagro as a particle E′=0.5 E. That is,

the effective area of the particle is lowered.

Suppose we found that particles of energy E′=1.2 E generated the Moon MC

shadow that was the best match to the data shadow. These particles were deflected

by the magnetic field with their true energies, and hence rigidities. Then these

particles are detected by Milagro, but Milagro is under-estimating their effective

area. Milagro would be said to be incorrect in energy scale by 20%, and would be

under-estimating cosmic-ray energies by 20%.

How could this be possible? Milagro has been very carefully been calibrated by

the collaboration, using simulated data, as discussed in sec. 3.6. But this is exactly
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where the uncertainty arises from. The combination of the models of the EAS using

CORSIKA, and the detector simulation using GEANT4 could be causing Milagro

to over (or under) estimate its effective area function.

There are two possible methods to vary the energy scale in the Monte Carlo. In

the first, using the dipole model described in sec. 4.3.1, we can vary the strength of

the dipole and re-propagate the particles to the Moon. Alternatively, we can scale

the energy of each particle by the inverse of the same factor. We take the second

approach, as re-tracking the particles requires significantly more computational

time. Rescaling the energy has the following effects:

• A particle energy E′ will fall into a new effective area bin.

• The particle will fall into a different PSF bin.

• The energy must be re-weighted due to the spectrum, by a factor E′−α/E−α.

This is x−α, so with a higher energy scale (x>1) the energy weighting is

smaller than one, and the energy weighting is greater than one for a lower

energy scale (x<1).

• If we are frasor binning the data the particle will now have a different

probability of falling into a frasor bin.
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8.2 Comparison of Data and Monte Carlo for the

Moon’s Shadow

The data and Monte Carlo maps generated are both over the period of epochs 7-9,

with cuts Nfit>40 and zenith angle<60◦, as seen in chapters 6 and 7. In figure

8.1 are the integrated and differential fractional deficit plots for the Moon shadow

for data and Moon MC with and uncorrected energy scale (x=1.0). We see that

the integrated plots from data and Moon MC both take the same shape, and they

both plateau to one within error (which is correlated from point to point). The

differential plot has uncorrelated errors and again the data and Monte Carlo agree

fairly well, though not completely. From this perspective the uncorrected x=1.0

energy scale appears to be a good fit to the data.
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Figure 8.1: Integrated and differential fractional deficit plots for data and Monte

Carlo of the Moon. Cuts are Nfit>40, zenith angle<60◦.

In table 8.1 are the parameters from the 2-D gaussian fit from eq. 6.1 to the

Moon shadow, for data and 8 energy scales between x=2.0 and x=0.5. In the dec
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x α0(
◦) δ0 (◦) σα (◦) σδ (◦)

data -0.265+/-0.019 0.106+/-0.016 0.919+/-0.021 0.779+/-0.018

2.0 -0.488+/-0.033 0.113+/-0.010 0.819+/-0.010 0.787+/-0.016

1.5 -0.442+/-0.032 0.114+/-0.010 0.798+/-0.009 0.772+/-0.015

1.3 -0.423+/-0.032 0.106+/-0.010 0.780+/-0.009 0.778+/-0.015

1.1 -0.387+/-0.032 0.111+/-0.010 0.765+/-0.008 0.775+/-0.014

1.0 -0.408+/-0.034 0.114+/-0.012 0.773+/-0.010 0.764+/-0.015

0.9 -0.367+/-0.032 0.083+/-0.011 0.752+/-0.007 0.776+/-0.014

0.8 -0.348+/-0.032 0.077+/-0.011 0.729+/-0.008 0.758+/-0.015

0.5 -0.247+/-0.031 0.054+/-0.011 0.703+/-0.006 0.730+/-0.014

Table 8.1: Fit parameters for a 2-D gaussian (eq. 6.1) fit to the Moon shadow from

data and Monte Carlo from various energy scales.

direction we are modeling the shadow very well. For δ0, energy scales 1.0< x <2.0

match the data within error bars, as do energy scales 0.8< x <2.0 for σδ. In the

RA direction the picture is more complicated, with only the energy scale x=0.5

agreeing with data shadow position. For the width of the shadow along RA the

situation is worse as no energy scale matches the data.

8.2.1 The Convolution of the Energy Scale Parameter with

Effective Area and PSF

The effective area of Milagro in protons (fig. 7.2), is steepest for lower energies, and

plateaus for high energies. Doubling the energy scale for instance, has a smaller
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effect on the effective area at higher energies than at lower energies. If the energy

scale is doubled, low energy particles, having low rigidities, are deflected more than

higher energy particles, which have high rigidities. When effective area weighted,

increasing the energy scale of the lower energy particles has a greater effect than on

the high energy particles, as the effective area is flatter at higher energies. Hence

the Moon shadow appears to be deflected more along RA when the energy scale is

increased.

The PSF of lower energy particles is broader, so as the particles are effective

area weighted, the same argument applies and the PSF should increase. The σδ

parameter then, should increase with a higher energy scale, x. The σα parameter

is increased by the effective area, and increased by the PSF. Combining the these

two effects, σα becomes broader with increasing energy scale, and compared to σδ,

the RA width should be broader for the same energy scale.

8.3 Moon Monte Carlo and Data Comparison in

frasor bins at different energy scales

We now compare the data and Moon MC at different energy scales in frasor bins.

In figures 8.2, 8.3 and 8.4, 8.5 are the integrated fractional deficits and differential

deficits in all frasor bins of the data and Moon MC.

The integrated and differential plots show the same features. The match is

excellent for the middle frasor bins. However the match is bad for very high

frasor bins. This isn’t surprising as the high frasor bins have very low statis-
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Figure 8.2: Integrated fractional deficit plots for data and Monte Carlo of the

Moon for the lowest five frasor bins. Cuts are Nfit>40, zenith angle<60◦.
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Figure 8.3: Integrated fractional deficit plots for data and Monte Carlo of the

Moon for the highest five frasor bins. Cuts are Nfit>40, zenith angle<60◦.
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Figure 8.4: Differential fractional deficit plots for data and Monte Carlo of the

Moon for the lowest five frasor bins. Cuts are Nfit>40, zenith angle<60◦.
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Figure 8.5: Differential fractional deficit plots for data and Monte Carlo of the

Moon for the highest five frasor bins. Cuts are Nfit>40, zenith angle<60◦.
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tics, as can be seen in figure 7.9, so the fits do not capture the behavior well. The

lowest 0<frasor<0.2 bin, though a good match here, is difficult to simulate cor-

rectly. The sensitivity of the energy threshold to effects from the weather results

in variation in the energy of the events that fall into this bin. We therefore use

0.2<frasor<1.4 only in the rest of this analysis.

To find useful parameters for an energy calibration, we look at fit parameters

of the 2-D gaussian from eq. 6.1. The fits for data and MC in all frasor bins are

shown in figs. 8.6 and 8.7. For all frasor bins we are modeling α0 and σα poorly.

The Moon MC is under-estimating the width along RA and over-estimating the

deflection along RA. However, the δ0 and σδ parameters are being modeled very

well. At this stage it seems possible that some other energy scale for the Moon

MC shadow could be a better model for the data shadow.

We first look at the Moon MC at x=0.5 and x=2.0, corresponding respectively

to Milagro over-estimating or under-estimating the energy scale by a factor of 2, to

see if changing the Moon MC energy scale is behaving qualitatively in the manner

we expect. The energy scales of x=0.5 and x=2.0 are compared to both data and

x=1.0 in figures 8.8 and 8.9.

For x=0.5, particles are scaled to a lower energy, reducing their effective area.

The positions of α0 confirm this –for all frasor bins x=0.5 are deflected less

than x=1.0. For δ0 in higher frasor bins the position appears to drift along the

negative dec axis. This is unpredicted, and is probably related to the dependence

of effective area on particle arrival and energy, coupled with the path of the Moon

through the sky. For the shadow width in both the RA and dec directions, the

shadow is narrower than the x=1.0 shadow until the higher frasor bins.
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Figure 8.6: Comparison between data and MC in frasor bins for the Moon for

position parameters from eq. 6.1.
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Figure 8.7: Comparison between data and MC in frasor bins for the Moon for

width from eq. 6.1.
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For x=2.0, low energy particles with large magnetic deflections are scaled to

a higher energy, increasing their effective area. The shadow position is shifted

farther than x=1.0 along the RA axis, as expected, for all frasor bins.

For nearly all bins, the x=1.0 parameters lie between the x=0.5 and x=2.0

parameters. Whilst x=1.0 is the best fit by eye in both α0 and σα it is overall a

bad match to the data. The energy scale x=0.5 is a better match for α0 in some

frasor bins, and the x=2.0 is a good match for some bins in σα. However, x=2.0

is a very poor match in α0 to data as x=0.5 is a bad match in σα, providing strong

evidence that the Milagro energy scale 0.5<x<2.0. But this also means that it is

unlikely a single energy scale will model all the parameters well.

Smaller shifts in energy scale are shown in figures 8.10 and 8.11 (x=0.8 and

x=1.3) and figures 8.12 and 8.13 (a 10% shift of x=0.9 and x=1.1). As expected,

the spread is smaller for smaller energy scale changes. In all cases, the Moon MC

is again a poor match to α0 and σα. It seems apparent at this point that no single

energy scale in the Moon MC will model all the parameters well.

8.4 Comparison of Data and Monte Carlo Pro-

jections

Up to this point, comparisons between the data and Monte Carlo shadows of the

Moon have relied on the 2-D gaussian fits to both. Rather than compare a model of

a model to another model of data a clear direct comparison is available in the form

of projections along the α and δ axes. For energy scales 0.5<x<2.0 projections of
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Figure 8.8: Comparison between data and MC for the Moon for position parame-

ters from eq. 6.1, with data, x=1.0, x=2.0 and x=0.5.
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Figure 8.9: Comparison between data and MC for the Moon for width from eq.

6.1, with data, x=1.0, x=2.0 and x=0.5.
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Figure 8.10: Comparison between data and MC for the Moon for position param-

eters from eq. 6.1, with data, x=1.0, x=1.3 and x=0.8.
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Figure 8.11: Comparison between data and MC for the Moon for width from eq.

6.1, with data, x=1.0, x=1.3 and x=0.8.
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Figure 8.12: Comparison between data and MC for the Moon for position param-

eters from eq. 6.1, with data, x=1.0, x=1.1 and x=0.9.
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Figure 8.13: Comparison between data and MC for the Moon for width from eq.

6.1, with data, x=1.0, x=1.1 and x=0.9.
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excess-maps of ±1◦ around the nominal Moon position are shown in figures 8.14

and 8.15.

For all energy scales the dec projections appear to be a good fit, as we saw

using the 2-D gauss model. Looking at all energy scales in RA, the shadow is too

narrow in the region opposite to the deflection direction. However, in the deflection

direction, along negative RA, we see the width of the shadow increase as the energy

scale increases. For low energy scales the shadow appears to be too narrow and

for energy scales above x=1.0 the tail appears to model the data well. However,

for x>1 the position of the peak drifts along the negative RA axis, and becomes

a poor fit to the data. Despite not being able to model the shadow perfectly, the

Moon MC shadow shows a clear sensitivity to the energy scale.

8.5 Why is no Single Energy Scale able to Model

the Moon Shadow?

The Moon MC attempts to model an incredibly complex process. As discussed in

section 8.2 the effective area and PSF are being modeled well. The other input into

the Moon MC is the magnetic field, but there is also an additional complication

from the EAS.

8.5.1 Uncertainty from the Magnetic Field Model

We already know that the Earth’s magnetic field is not dipolar, especially close

to the Earth’s surface, where the majority of magnetic deflection occurs. Local
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Figure 8.14: Comparison between data and MC for the Moon from projections

of 2◦ slices centered on the nominal Moon position for RA and dec. Top: x=0.5,

second: x=0.8 third: x=0.9, bottom: x=1.0. The amplitudes of the data and MC

have both been normalized to 1 using the minimum excess bin from their respective

excess-maps, as the Monte Carlo is designed to simulated the shadow shape and

position, not the Milagro event rate.
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Figure 8.15: Comparison between data and MC for the Moon from projections

of 2◦ slices centered on the nominal Moon position for RA and dec. Top: x=1.1,

middle: x=1.3, bottom: x=2.0. The amplitudes of the data and MC have both

been normalized to 1 using the minimum excess bin from their respective excess-

maps, as the Monte Carlo is designed to simulated the shadow shape and position,

not the Milagro event rate.
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variations in the field could alter the deflections of the particles, either more or

less, and could account for problems in modeling the Moon shadow. At Milagro

the magnitude of the magnetic field from the simple dipole model is B0=48.9

µT and from the IGRF B0=49.4 µT which is approximately a 1% difference. The

differences between the simple dipole and the IGRF field from Milagro to the Moon

are complex. The total deflection of a 1 TeV proton is approximately 1.3◦ for the

simple dipole. The differences between the IGRF and the simple dipole model

for the path of the Moon across the sky are much larger than the 1% difference

in magnitudes at Milagro, and requires a full study. Indeed, a simulation of the

Moon shadow designed for the ARGO-B experiment, observed discrepancies on

the order of 15% for deflections of sub-TeV particles between a dipole model and

the Tsyganenko-IGRF model [101]. This certainly could account for differences

between the Moon MC shadow and the data shadow.

8.5.2 Uncertainty from the EAS

We tracked the particles in section 7.2 from Milagro back towards the Moon. But

the primary particle reacts in the upper atmosphere approximately 15 km above

the surface of the Earth. After the first collision the EAS forms and is composed

of both positive and negative particles in nearly equal numbers (as well as neutral

particles). To a first approximation the effect of the magnetic field on this swarm

of positive and negative particles would be to spread it out –not to deflect it.

This means we are over-estimating the deflection of particles in the Moon MC

as we are propagating them through approximately 15 km of atmosphere through
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which the shower overall would no longer be deflected. Qualitatively this could

account for the increased deflection along the RA axis of the Moon MC. It is

unclear what effect this would have on the width of the shadow in RA—the σα

parameter—as this parameter is a convolution of effective area, the PSF and the

magnetic field model.

The gyroradius rg of a particle in a uniform magnetic field is given by

rg =
γmv

qB
(8.2)

so for a 1 TeV proton passing through 15 km of a uniform field of magnitude B=50

µT the angular deflection is 0.01◦, which is unable to account for the differences

between the data and the Moon MC.

8.6 Status of the Energy Scale Calibration

The success of the Moon MC is clear. The agreement of width and position along

dec is excellent and the agreement along RA is within 0.1◦ for both width and

position along RA. We note that the δ0 and σδ parameters, which are much less

dependent on the magnetic field, match the data at an energy scale of 1.0 to within

errors of less than two hundredths of a degree, and are inconsistent (at the 3-σ

level) with a scale of x=0.5 or less. Looking at the projections appears to bear this

out, and shows a clear sensitivity to energy scale. With the additions described

above an energy calibration of Milagro is still possible and the work is ongoing.

In the next chapter, we now use the Moon MC as a tool when placing an upper

limit on the antiproton/proton ratio.
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Chapter 9

An Antiproton/Proton Ratio

Upper Limit using the Moon

Shadow

In this chapter, we find a 95% upper limit on the antiproton/proton ratio from

Milagro data. The antiproton/particle ratio limit is Monte Carlo independent and

we only invoke the Moon Monte Carlo to estimate the particle/proton ratio of the

Moon shadow to arrive at a p̄/p ratio.

In Milagro data, the Moon particle shadow is a sink deflected to the west, along

the negative right-ascension axis, in particle minus Moon coordinates. A second

shadow, caused by the presence of antiprotons, would be deflected to the east along

the positive RA axis.

The particle shadow is well modeled by a 2-D gaussian –which can be used in

an antiproton shadow search, if we assume that the antiproton shadow also takes
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this shape. We first search the data for an antiproton shadow at the reflected

position and at the same width of the particle shadow. No antiproton shadow is

found.

Since no antiproton shadow has been found, a 95% upper limit to the antiproton

shadow amplitude is set using the measurement and uncertainties of the amplitude

in the fit.

We test the sensitivity of the data search using 1000 simulated maps to search

for an antiproton shadow. The limit of the measured result is interpreted in terms

of the simulated sensitivity.

To reduce the model dependence of the search we then search over the entire

4 dimensional parameter space of the probable position of the antiproton shadow.

The final result is presented as the 95% upper limit over a grid in antiproton

shadow center location.

9.1 Fit to the Data with Particle and Antiproton

Shadows

In section 6.4, a 2-D gaussian was shown to be a good fit to the particle shadow.

Now, using the unsmoothed excess-map, (fig. 6.12) the data is searched for the

antiproton shadow, using two gaussians. The first models the particle shadow and

the second models the antiproton shadow. The two gaussians used are better de-

scribed as a twin 2-D gaussian—a six parameter 2-D gaussian—where the positions

of the two gaussians are mirrored in the RA and dec axes with identical widths.
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It is of the form:

g(α, δ;A, Ā, α0, δ0, σα, σδ) =
A

2π (σ2
α + σ2

δ )
exp

[

−1

2

(

(α− α0)
2

σ2
α

+
(δ − δ0)

2

σ2
δ

)]

+
Ā

2π (σ2
α + σ2

δ )
exp

[

−1

2

(

(α + α0)
2

σ2
α

+
(δ + δ0)

2

σ2
δ

)]

(9.1)

where Ā is the antiproton shadow amplitude. The parameters A, α0, δ0, σα and

σδ are all fixed from the fit results of the particle shadow using eq. 6.1 and only

the antiproton shadow amplitude may vary.

As stated above the position and width of the antiparticle shadow in the search

are fixed. If the antiproton shadow width is free to vary, it assumes the largest

width possible and the shadow becomes wide and flat. If, alternatively, the position

of the antiproton shadow is free it moves to the boundary, typically at the particle

shadow side.

The fit is done in root, using the TMinuit package [102], with χ2 minimiza-

tion. The convergence on the χ2 minimum is parabolic, as shown in fig. 9.1. No

antiproton shadow is found. The parameters for the fit are displayed in table 9.1.

One may be tempted to cut the Milagro data, in frasor or Nfit, to produce

excess-maps where the Moon shadow is farther from the origin in order to improve

the fit. However, these cuts decrease the shadow amplitude which in turn gives

a lower p̄/particle upper limit. One may also be tempted to split the data into

frasor bins, and then do an optimized search between maps. However, the p̄/p

ratio would not be constant between each map, as it is energy dependent.
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parameter fit error

2-D gauss fit

A -2319 52

α0 -0.27 0.02

δ0 0.11 0.02

σα 0.92 0.02

σδ 0.78 0.02

2-D twin-gaussian fit

Ā 1.0 33

Table 9.1: Results of the 2-D gaussian fit using eq. 6.1 to the data excess-map

followed by fitting eq. 9.1 with the 5 parameters from eq. 6.1 fixed.
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A distribution of 2χ

Figure 9.1: χ2 parabolic convergence of Ā. Each collection of points is from a dif-

ferent initial condition. After several iterations they all converge on the minimum.

The parabola is not continued further along the positive axis as positive values are

unphysical.

9.1.1 A 95% Upper Limit to the Antiproton Shadow Am-

plitude

Using this fit, we can set a 95% upper limit on the antiproton shadow amplitude

and hence the particle/antiproton ratio. We have a measured value for the antipro-

ton shadow amplitude Āmeas = 1±33. The true, unknown value of the amplitude

is Ātrue. The 95% upper limit on Ātrue is determined as Ā95, that value of Ā which

would have a 5% probability of giving Āmeas. That is, Ā95 is the solution to

p(Ā = Āmeas|Ā95) = 0.05 (9.2)

Since the fit to Āmeas is parabolic in χ2, we can use the gaussian property of

χ2 to determine the 95% value by integrating the gaussian with σ = 33. We

167



find Ā95 = −54 from a gaussian cumulative distribution function. Therefore, the

antiproton/particle ratio 95% upper limit is 54/2300 = 2.3%.

9.2 Sensitivity Search with Simulated Maps

We can check the sensitivity of the data 95% upper limit on the antiproton shadow

amplitude with simulations. We simulate 1000 excess-maps, each with a 2-D gaus-

sian, to simulate the Moon shadow, added to noise. Each map is then fitted to a

twin gaussian in the same manner as the data search.

The noise is found using Li-Ma statistics [23], as described in sec. 3.3, to find the

uncertainty from the Milagro MDI generated background. The noise is generated

bin by bin, so the total bin content h at RA-dec αi, δj is:

h (αi, δj) = f (αi, δj) +N σ (αi, δj) (9.3)

where f is the 2-D gaussian from eq. 6.1, σ is the noise and N is a random number

chosen from a gaussian distribution µ = 0, σ2 = 1. The fluctuations of the Moon

particle shadow gaussian are negligible relative to the noise fluctuations so are

ignored. The excess-map with and without noise is shown in fig. 9.2.

The 1000 simulated maps are searched, using the twin-gaussian of eq. 9.1 in the

same manner as the data search. We then have 1000 values of Āmeas. Each value

of Āmeas has the same uncertainty –which is the same as that from the data search.

Moreover, as the uncertainty is dominated by the background the Ā95 distribution

can be assumed to have the same width.

The 1000 values of Āmeas follow a gaussian distribution and we find 〈Āmeas〉 =
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Figure 9.2: a map of noise as given by eq. 9.3, then maps using a 2-D gaussian

with parameters from tab. 9.1, then added to make a simulated Moon-map.
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1.8±33/
√

1000. As expected, the width of the distribution of Āmeas is the same as

the uncertainty in each individual Āmeas from any map. Given 〈Āmeas〉, then 〈Ā95〉

= −53, so the measured Ā upper limit is consistent with the expected sensitivity.

9.3 Reducing the Model-Dependence of the

Search

So far, we have assumed that the antiproton shadow resides at the mirrored position

of the particle shadow. Here we relax this condition.

9.3.1 What do we know of the true antiproton shadow?

There are two effects that lead us to expect that the antiproton shadow would not

be where we are modeling it, or be of the width at which we are modeling it.

First, the particle shadow is composed primarily of protons and helium, with

a small contribution from heavier elements. The heavier elements have a lower

magnetic rigidity for a given energy than protons, so are deflected more by the

geomagnetic field. They also have different spectra and different detector response

(effective area and point spread function).

Second, an antiproton signal—barring the event of a dominant exotic signal—

is the result of spallation of primary cosmic rays producing secondary p̄ in the

interstellar medium (ISM). Using the boron/carbon ratio as a tracer of the p̄/p

ratio, we would expect a softer spectrum of p̄ than p. Even if we assume an identical

detector response for protons and antiprotons (of the same energy and arrival
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direction) and could model the proton shadow perfectly, we could not presume the

position and width of the antiproton shadow due to the differing spectra.

9.3.2 Search at the Moon MC Antiproton Shadow Loca-

tion

We can also search using the Moon Monte Carlo to simulate the antiproton shadow

position, modeling the antiproton with an identical spectral index to that of the

proton. For the same cuts as the data the particle shadow is at α0 = -0.36±0.03.

With an identical spectrum, the antiproton shadow appears at α0=0.40, δ0=-0.07,

σα=0.73 and σδ=0.74. At this position, searching the data we find Ā=-0.5±23.

Then Ā95 = -48, corresponding to a flux ratio p̄/particle=2.1%.

9.3.3 Ranged Fit Search

In place of a single point, we now search for the antiproton shadow over the

4-dimensional parameter space of the 2-D gaussian that models the antiproton

shadow, leaving the antiproton shadow amplitude free to vary.

Choosing the Range of Fit parameters

The particle shadow fit parameters are displayed in table 9.1 and in the previous

section we used the MC to find the antiproton shadow.

A secondary p̄ production model would soften the spectrum considerably.

Naively, we would expect the antiproton shadow to be deflected further east, but

the convolution of a softer spectrum with effective area leaves the outcome un-
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clear. Even so, we expect deflection along the positive RA axis on the order of a

degree is a reasonable upper limit. Deflection along dec is less than along RA so a

reasonable limit for the search is −0.5◦ to 0.4◦.

The width is limited by the Milagro PSF, the lowest width for any particle

shadow was for high frasor bins, and just less than 0.5◦, so here we set a lower

limit of 0.4◦. As the antiproton shadow is single species, it should not be wider

than the particle shadow, so we set a conservative upper limit of 1◦.

Ranged Fit Search Results

Varying 0◦< α0 <1◦, -0.5◦< δ0 <0.4◦, 0.4◦< σα <1◦ and 0.4◦< σδ <1◦, we search

over the whole parameter space fixing each of the parameters in 0.1◦ intervals,

leading to a total of 3240 searches, or 36 for each position in α, δ.

The resulting antiproton shadow amplitude of each of the fits can be converted

to Ā95, the 95% upper limit on the amplitude of the antiproton shadow, as de-

scribed in sec. 9.1.1. The fit results for α0=0.1◦ and δ0=-0.5◦ are shown in fig. 9.3

The fit results for a slice in σα=0.6◦ and σδ=0.6◦ are shown in fig. 9.4. These

plots show typical slices. The variation in Ā95 is small, mostly between −65<

Ā95 < −40. We show the final results using the worst (deepest) amplitude, when

varying σα and σδ, for each α, δ slice. So for each position we find the largest

magnitude amplitude and display those results with each shadow position in fig.

9.5.
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Figure 9.5: A map of Ā95 with each the value at each position taken as the deepest

shadow for that α, δ slice, which will correspond to the least stringent limit on the

antiproton/proton ratio.

Coarseness of the Grid

As a final check, we examine the effect of the coarseness of the grid on the results.

The α and δ coarseness is the same as that of the data; finer binning is possible

but not necessary. We again build simulated maps, as in section 9.2. Now, in

addition to the particle shadow, we add an antiproton shadow of amplitude Ā =

−54. The other parameters of this simulated antiproton shadow are taken from

table 9.1, with α0 and δ0 taken as negative as the shadow is modeled as mirrored

in the RA and dec axes of the particle shadow.

We fit 1000 simulated maps using eq. 9.1, where the input parameters, other

than the antiproton shadow amplitude, are fixed. This fit returns an average fitted

amplitude of Ā= 54 ±33/
√

1000, which is consistent with the antiproton shadow

amplitude that we added to the simulated maps.

174



To check the coarseness of the binning, we then search the same simulated maps

with a shadow smaller in both σα and σδ by 0.05◦ –half the grid spacing. This

fit gives Ā= 53 ±31/
√

1000, which is within 1-σ of the input amplitude, which is

consistent with our choice of binning in σα and σδ.

Finally we search the same simulated maps with α0 and δ0 offset by 0.05◦ and

we find Ā= 54.5 ±33/
√

1000, which is within 1-σ of the input amplitude. This is

again consistent with our binning choice.

Antiproton/Proton ratio

Up to this point we have remained Monte Carlo independent, but to convert the

antiproton/particle ratio into a more informative antiproton/proton ratio we use

the Moon Monte Carlo. Rather than compare trigger rates of the detector of

protons vs all particles we should compare trigger rates close to the Moon position,

so the acceptance rate follows the path of the Moon.

In fact, the best measure of the particle/proton ratio comes from the number

of shadowed particles. For the same period as data, tracking the particles and

weighting with effective area as described in chapter 7 we find the total number of

shadowed particles is 6.26×107 and 4.44×107 for protons, giving a particle/proton

ratio of 1.41. We display the final results as the p̄/p ratio 95% upper limit % by

position of the antiproton shadow in fig. 9.6.

Using the Monte Carlo to model the antiproton with an identical spectral index

to the proton we found in sec. 9.3.2 that p̄/particle=2.1%, which corresponds

p̄/p=3%.

175



)° (moonα-particleα
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)° (
m

oo
n

δ-
pa

rt
ic

le
δ

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-3.9

-3.8

-3.7

-3.6

-3.5

-3.4

/p %p

Figure 9.6: 95% p̄/p upper limits in % by fitted antiproton central position.

Median Energy of the Antiproton/Proton ratio

We do not know the energy spectrum of the antiprotons, but we do know the

median energy of the protons. As when determining the particle/proton ratio, we

use the Moon MC to find the median energy of protons that are shadowed by the

Moon which is 1.7 TeV.
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Chapter 10

Correlation of the Sun Shadow

Depth with the Solar Magnetic

Cycle

At the beginning of Milagro operation in 2000, the Sun was at a maximum in

its solar cycle and at the end of Milagro operation in 2008 was at minimum, as

described in chapter 5. As the Sun becomes more active, events such as coronal

mass ejections and sunspots become more frequent. This should mean that parti-

cles of a given energy will be less likely to be shadowed as the activity of the Sun

increases. To evaluate this time dependence of the Sun shadow we use all available

Milagro data from 2000-2008. There are large variations between Milagro epochs,

which makes epoch to epoch comparisons difficult. However, we can use the Moon

shadow as a check of Milagro systematics to observe the true behavior of the Sun’s

shadow as the Sun progresses through its magnetic cycle.
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10.1 The Yearly Sun Shadow

To look at the solar data over time, we make yearly plots of the Sun shadow and

compare these to yearly plots of the Moon shadow in figures 10.1, 10.2 and 10.3.

The Moon shadow is always deeper (more significant) than that of the Sun, but

the Sun shadow gets deeper over time. The Moon shadow stays more or less at

the same depth, with only slight variability, other than for 2000 and 2008, which

are only partial years.

To examine this relationship further, we look at the integrated fractional deficit

plots over the same periods, in figures 10.4 and 10.5. From early to late years, the

Moon plateaus at one, so the Moon is shadowing a number of particles correspond-

ing to its geometric area. The fraction at which the Sun plateaus rises over time.

The Sun is shadowing nearly no particles in 2000, but is shadowing a number

nearly equal to its geometric area in 2008. This is a result of decreasing solar

activity as the Sun moves from maximum to minimum phase.

10.1.1 The Moon Geometrical Area from Year to Year

It should be noted that the geometrical area of the Moon calculated from the

Monte Carlo in section 7.7.2 is based on the Moon in all of Epochs 7-9. Therefore

only 2008, 2007 and 2006 are correctly normalized. The 2005 Moon has some

epoch 6 events, so before and including that year the integrated fractional deficit

plots of the Moon are incorrectly normalized. To gain correctly normalized factors

the Moon Monte Carlo would have to be extended to simulate the Moon shadow

pre-epoch 7, which is not performed in this thesis. However, the 2000-2005 Moon
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Figure 10.1: The Moon and Sun shadows from 2000-2002. Year 2000 data is not

a complete year. Cuts on Nfit>40, zenith angle<60◦.
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Figure 10.2: The Moon and Sun shadows from 2003-2005. Cuts are Nfit>40, zenith

angle<60◦.

180



)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Moonmap nFit>40 2006

-35

-30

-25

-20

-15

-10

-5

0

Significance Moonmap nFit>40 2006

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Sunmap nFit>40 2006

-20

-15

-10

-5

0

Significance Sunmap nFit>40 2006

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Moonmap nFit>40 2007

-35

-30

-25

-20

-15

-10

-5

0

Significance Moonmap nFit>40 2007

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Sunmap nFit>40 2007

-25

-20

-15

-10

-5

0

Significance Sunmap nFit>40 2007

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Moonmap nFit>40 2008

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Significance Moonmap nFit>40 2008

)° (moonα-particleα
-10 -8 -6 -4 -2 0 2 4 6 8 10

)°
 (

m
oo

n
δ-

pa
rt

ic
le

δ

-10

-8

-6

-4

-2

0

2

4

6

8

10

Significance Sunmap nFit>40 2008

-6

-5

-4

-3

-2

-1

0

1

2

3

Significance Sunmap nFit>40 2008

Figure 10.3: The Moon and Sun shadow from 2006-2008. Year 2008 data is not a

complete year. Cuts are Nfit>40, zenith angle<60◦.
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remains an effective check of the systematics from epoch to epoch for the Sun’s

shadow.

10.2 Correlation of the Sun Shadow Depth with

Sunspot Numbers with the Moon Shadow

as a Systematic Check

To directly compare the time variation of the shadow with the solar magnetic

cycle we plot the Moon and Sun integrated deficit at 4◦ with the relative sunspot

number in figure 10.7. We chose to plot the integrated deficit at 4◦ so the shadow

has begun to plateau, but the uncertainties are not too high.

There is a clear anti-correlation with the solar shadow at the integrated frac-

tional deficit at 4◦ and the sunspot number. Milagro is clearly sensitive to the

solar cycle, so the challenge is to then interpret these results in terms of the HMF.

10.3 A Simple Model of the Coronal Magnetic

Field

We use the shadow Monte Carlo to model the coronal magnetic field with the

simplest possible model at solar minimum, a dipole with strength 1.7×1022 Tm3,

and the magnetic poles aligned parallel to the Earth’s. This toy model can be

extremely informative. Whilst it does not include the Parker spiral or the Fisk

field, we would expect the influence of these fields to average out over large periods
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Figure 10.4: The Moon and Sun shadow integrated fractional deficits from 2000-

2004. Year 2000 data is not a complete year. Cuts are Nfit>40, zenith angle<60◦.

183



)°Dist. from Nom. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

0

0.2

0.4

0.6

0.8

1

Moon 2005 Variation Integral Deficit vs. Nominal So urce Distance

Moon

Sun

Moon 2005 Variation Integral Deficit vs. Nominal So urce Distance

)°Dist. from Nom. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

0

0.2

0.4

0.6

0.8

1

1.2

Moon 2006 Variation Integral Deficit vs. Nominal So urce Distance

Moon

Sun

Moon 2006 Variation Integral Deficit vs. Nominal So urce Distance

)°Dist. from Nom. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

0

0.2

0.4

0.6

0.8

1

1.2

Moon 2007 Variation Integral Deficit vs. Nominal So urce Distance

Moon

Sun

Moon 2007 Variation Integral Deficit vs. Nominal So urce Distance

)°Dist. from Nom. Source Position (RA Dec 
0 2 4 6 8 10E

qu
iv

al
en

t F
ra

ct
io

n 
of

 S
ol

id
 A

ng
le

 S
ha

do
w

ed

0

0.5

1

1.5

2

Moon 2008 Variation Integral Deficit vs. Nominal So urce Distance

Moon

Sun

Moon 2008 Variation Integral Deficit vs. Nominal So urce Distance

Figure 10.5: The Moon and Sun shadow integrated fractional deficit from 2005-

2008. Year 2008 data is not a complete year. Cuts are Nfit>40, zenith angle<60◦.
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Figure 10.6: Relative sunspot number (sunspot number normalized to one) for solar

cycle 23. The NOAA sunspot number is compiled by the US National Oceanic and

Atmospheric Administration. The numbers are the monthly averages (SSN). This

is displayed with the integrated fractional deficit of the Moon and Sun’s shadow at

4◦ yearly, from 2000-2008. The Moon from 2000-2005 is not correctly normalized,

as described in section 10.1.1.
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of time as the Earth passes below and above the current sheet and will spend nearly

equal times in both sectors. The choice of orientation of the dipole in this model

means that the position and width of the Sun shadow should not be taken too

seriously. However, the integrated and fractional deficit plots are symmetric views

of the character of the Sun shadow so allow comparisons between the model and

the data. The principal benefit of this toy model is not the shape of the shadow,

is the total fraction of particles the Sun shadows.

As can be recalled from previous sections, the Moon has no magnetic field, so

we expect the number of shadowed particles to be equal to that blocked out by the

geometrical area of the Moon in the chosen coordinate system. The Sun, in contrast

has its own magnetic field so will deflect particles away from its surface by virtue

of the coronal field. As phase space volume is conserved, for each particle deflected

away from the Sun and away from the path of Milagro, another will be deflected

into the path of Milagro. Hence, these particles will not contribute to a solar

shadow as a consequence of its coronal field, and the Sun shadow observed is less

deep than would be expected based on the geometric area of the Sun. Moreover,

the fraction shadowed is a consequence of the magnetic field model used, and does

not depend on the orientation of the dipole in the simple model.

In figure we see the Moon MC excess-map of the dipole model of the Sun, for

the period of 907 days over epochs 7-9, with usual quality cuts. The shadow shows

a similar width and deflection to the data, despite the crudeness of the model. In

figure 10.8 are the differential and integral plots from this excess-map. They both

appear to show good matches between MC and the data. But remarkably, both

the data and MC in the integrated plots plateau to very similar values. A dipole
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Figure 10.7: Excess map for the Sun MC dipole model, with the sign of shadowed

events reversed so they are seen as an excess. Cuts are Nfit>40, zenith angle<60◦

and the simulation is over the period of epochs 7-9.

model is a very good approximation of the coronal field for the solar minimum of

cycle 23. However, in the crudeness of the model we have neglected an important

effect. We chose the axis of the solar dipole to be parallel to that of the Earth, and

nearly perpendicular to the plane of the ecliptic. A dipole axis lower in ecliptic

heliographic latitude points in the direction of the Earth for periods of the Earth’s

orbit. At these times lower energy events are more likely to be shadowed, which

increases the fraction of shadowed particles. Early studies found an order 10%

difference in the fraction of shadowed particles due to this effect, and studies are

ongoing.
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Figure 10.8: Top: Differential fractional deficit. Bottom: Integrated fractional

deficit. Data and the dipole model of the coronal field from the Sun MC. Cuts are

Nfit>40, zenith angle<60◦.
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Conclusions

Using Milagro data, from 20th September 2005 to 15th March 2008, we observed

the Moon to a depth of 60σ, the most significant object yet seen by an air-shower

array, and the Sun to a depth of 35σ.

We developed a Monte Carlo designed to simulate the Milagro Moon shadow

over this period. The simulated Moon shadow agrees with the Moon shadow in

data to within 0.1◦, –a remarkable agreement given the complexity of the Milagro

detector and the physics involved in the formation of a Moon shadow in TeV cosmic

rays.

The Monte Carlo Moon shadow was used in the first attempt, in the 50 years

since their first operation, to calibrate the energy scale of an air shower array by

comparison to the Moon shadow in data. The measurements and simulation agree

to within the uncertainties of 0.02◦ for properties of the Moon shadow that are less

sensitive to the geomagnetic field (position and width of the shadow in declination).

However, they disagree by about 0.15◦ for parameters sensitive to the magnetic

field (the shadow position and width in right-ascension), making it difficult to draw

conclusions about the energy scale, whose effects are about this size. In order to

calibrate the energy scale of Milagro a better model of the magnetic field is needed.
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A Monte Carlo independent search of the data was performed to search for the

antiproton Moon shadow. No shadow was found, and the fit and its uncertainty

were used to place a 95% confidence level upper limit on the p̄/particle ratio. A

model-free fit was performed over a probable range of parameter space where the

antiproton Moon shadow was likely to occur. Invoking the Moon Monte Carlo only

to find the ratio of particle/proton triggers, this search yielded 95% upper limits

on p̄/p of 3.4 to 3.9% in this range. Using Monte Carlo to find the antiproton

shadow location, a p̄/p limit of 3% was found for the case where antiprotons have

the same spectrum as protons. The median energy of Milagro triggers for such a

spectrum would be 1.7 TeV.

The stability of the Sun’s shadow in cosmic rays was observed over the entire

operation of Milagro from 2000 to 2008. In yearly data sets, a clear anti-correlation

was shown between the fraction of particles shadowed by the Sun—given the Sun’s

geometrical area—and the sunspot number, which is a measure of solar activity.

As the solar magnetic cycle progressed from maximum phase in 2000 to minimum

phase in 2008 the fraction of particles shadowed by the Sun increased. The TeV

cosmic-ray Sun shadow is here seen to be sensitive to the Sun’s magnetic field as

it progresses though its magnetic cycle. At solar minimum a simulation of the

Sun’s shadow was performed, modeling the coronal magnetic field as a dipole. It

was found to be consistent with the data for this period, whilst the effects of the

orientation of the dipole are the subject of further studies.

Given the quality of the Monte Carlo reproduction of Milagro Moon shadow in

data, the next step would be to model the Moon’s shadow using a more realistic

geomagnetic field. Slight improvements in the performance of the Moon Monte
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Carlo could lead to an improved modeling of the data shadow and a unique energy

calibration scale may be found.

The limit on the p̄/p flux ratio depends on the specific antiproton spectra

models. The measured upper limit to the shadow fraction and the supplied Milagro

cosmic-ray effective area curves can be used to test alternative models of the p̄

spectrum.

Given its success in modeling the Moon, the Monte Carlo can also be used in

complex models of the Sun’s shadow, beyond a simple dipole, –such as the PFSS

model. The goal would be to reproduce the shadow seen by Milagro in 2006 and

2007, which are full years of data in the period the Moon Monte Carlo was designed

to work. Success in this area could lead to attempts to extend the Monte Carlo to

pre-epoch 7 data, and model the Sun’s shadow closer to maximum.
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