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Abstract

A Search for TeV Gamma-ray Burst Emission with the Milagro Observatory

by

Miguel F. Morales

The Milagro telescope monitors the northern sky for 100 GeV – 100 TeV tran-

sient emission through continuous very high energy wide-field observations. The

large effective area and low energy threshold of Milagro allow it to detect very

high energy gamma-ray burst emission with much higher sensitivity than previous

instruments, and a fluence sensitivity at TeV energies comparable to dedicated

gamma-ray burst satellites at keV-MeV energies. Observation of gamma-ray burst

emission at TeV energies could place important constraints on gamma-ray burst

progenitor and emission models. This study details the development of a weighted

analysis technique; the implementation of this technique to perform a real time

search for TeV transients of 40 seconds to 3 hours duration in the Milagro data;

and the results from more than one year of observation. Between May 2nd, 2001,

and May 22nd, 2002, no TeV transients of 40 seconds to 3 hours duration were

observed. Upper limits on both observed and emitted high energy gamma-ray

burst emission are presented.
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Chapter 1

Gamma-Ray Bursts

1.1 Introduction

Since their discovery in 1967, gamma-ray bursts have remained one of the

most enigmatic astrophysical phenomena. For thirty years after their discovery

even basic questions such as whether they were local or cosmological in origin

were open to debate. Over the past five years the knowledge of gamma-ray bursts

(GRBs) has been revolutionized with the discovery of transient x-ray, optical

and radio counterparts and the advent of the “afterglow era” of GRB science.

Afterglow observations have settled the old debate on the distance scale of GRBs,

helped determine GRB energetics, and allowed tentative early studies of the host

galaxies and environments. However, we are still in the early stages of GRB

science, with key questions about the progenitors and emission mechanisms still

to be determined, and almost no observational constraints for a second class of

GRBs. The field of GRB science is evolving so rapidly any review is destined to

be immediately out of date. This chapter attempts to give a broad overview of

the current understanding of GRBs and put the science motivations for this thesis

into context.
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1.2 BATSE Observations and the Beginning of

the Afterglow Era

No review of gamma-ray bursts is complete without discussing the pioneering

results from the burst and transient search experiment (BATSE) on the Compton

gamma-ray observatory (CGRO). CGRO was launched in April 1991 and BATSE

observed nearly four thousand GRBs over the next nine years. BATSE combined

extraordinarily high gamma-ray sensitivity and full sky coverage with good energy

resolution and localization abilities. BATSE’s sensitivity to GRBs will only be

surpassed with the launch of SWIFT and the next generation of GRB satellite

experiments.

The first major result from BATSE was the isotropic distribution of gamma-

ray bursts as shown in Figure 1.1. Most early GRB models were based on emission

from the neutron star population within our galaxy. However, the distribution of

GRBs appears isotropic with no discernable bias towards the galactic plane. The

isotropic distribution suggested a cosmological origin for GRBs, but the issue was

still actively debated until the observation of GRB host redshifts.

The second major result from BATSE was the bimodal distribution of GRB

durations as shown in Figure 1.2. This distribution strongly suggested that there

are two distinct kinds of gamma-ray bursts — descriptively named “short” and

“long” GRBs. However, it is only recently that conclusive evidence has arisen

that there are two distinct classes of GRBs (Norris et al., 2001).

Towards the end of BATSE’s mission GRB science was in a tantalizing hold-

ing pattern. The BATSE data suggested two classes of GRBs at cosmological

distances, however there was not enough information to conclusively demonstrate

either point. While BATSE’s resolution of ∼4 degrees was good for a wide field-

of-view gamma ray observatory, it is terrible by optical standards. The location

error boxes provided by BATSE were simply too large to search with standard

optical telescopes. BATSE continued to collect locations and spectra about once

per day, but the data were largely useless without the key to help interpret it.

The breakthrough came in the winter of 1997 with the first conclusive evidence

of an x-ray afterglow by the BeppoSax satellite (Costa et al., 1997). Because x-ray

telescopes have a much better angular resolution, they can pinpoint the location

2
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Figure 1.1: The locations of 2704 BATSE GRBs in galactic coordinates. The
isotropic distribution of events is clearly evident with no strengthening towards
the galactic plane. In addition, there is no evidence for repeated emission. Figure
is from BATSE data web page (2001).
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Figure 1.2: The distribution of GRB durations listed in the BATSE 4B catalog.
The duration is determined by the time interval in which the central 90% of the
event counts occur (T90). The bimodal distribution of event times can be clearly
seen, with the two types of GRBs descriptively labeled as “short” and “long.”
Figure from BATSE data web page (2001).
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of the GRB and allow follow-up observations by optical telescopes. By the spring

of 1997 the first redshift observation was reported with a z ≥0.835 (Metzger et al.,

1997), settling once and for all the local vs. cosmological distance question.

The discovery of transient GRB afterglows at longer wavelengths opened up

new avenues of research, and finally put the BATSE data into context. With

redshift measurements the intrinsic gamma-ray luminosity of GRBs could be de-

termined and correlated with the detailed gamma-ray observations of BATSE. In

addition, the multi-wavelength afterglows contained important information about

the characteristics of the explosion and the environment surrounding the GRB

progenitor.

The remainder of this chapter will concentrate on the observational advances

in the past five years which have been enabled by afterglow observations. One

important caveat to remember in this discussion is that all of the 56 counterparts

which have been observed are associated with long GRBs. At this time very little

is known about short GRBs, except that there are no bright afterglows.1

1.3 The Redshift Distribution of GRBs

To date, 22 of the 56 observed afterglows have yielded reliable redshift mea-

surements, with the distribution spanning much of the observable universe (see

Figure 1.3). One host galaxy has been identified at a redshift of 4.5, while one

weak GRB has been associated with a supernova at a redshift of only 0.0085.

Not only do the redshift measurements conclusively show that long GRBs are

cosmological in origin, but they provide the Rosetta Stone for interpreting the

gamma-ray spectra measured by BATSE and other experiments.

The first use of the redshift measurements was to convert the fluence measured

by BATSE into the gamma-ray luminosity of the source, assuming isotropic emis-

sion. The resulting luminosities are enormous, implying a total energy release of

1As if to underline how quickly this field is moving, since this was written in mid June 2002
word has come down grapevine that the first redshift for a short GRB has been determined to
be z ≈ 1. There are no papers available yet, and it hasn’t even made the online lists. However,
as with many significant steps in GRB science, the speed of gossip is infinite. This is obviously
a very important result, but much more data and analysis needs to be done before we can begin
to understand short GRBs and how they differ from long GRBs.

5
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Figure 1.3: This histogram plots the redshift distribution for the 22 GRBs with
reliable redshift determinations. For context, the era of reionization – and thus
the edge of the visible universe at optical wavelengths – is believed to be at a
redshift near six (Becker et al., 2002).
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1051 – 1053 ergs in gamma rays. This is the equivalent of converting up to 1/10 of

a solar mass into gamma rays in approximately 10 seconds. Even if the gamma-

ray emission is highly beamed, GRBs represent the most powerful astrophysical

explosions known, and there are very few theoretical scenarios which can satisfy

the energetic requirements.

The redshift measurements have also been used to illuminate the spectral and

temporal properties measured by BATSE. Because CGRO was deorbited only

three years after the first afterglow observation, there are only eight GRBs with

both redshifts and precision gamma-ray measurements by BATSE. However, nu-

merous groups have used this small subset of GRBs to look for correlations be-

tween the gamma-ray data and the isotropic luminosity of GRBs. The goal is to

use this very small sample of bursts to help understand the gamma-ray properties

of GRBs, then use the knowledge gained to extract science results from the nearly

four thousand GRBs detected by BATSE.

Of particular interest are two different features of the gamma-ray emission

which appear to correlate well with the isotropic intrinsic luminosity. The first

measure was the lag-luminosity relationship developed by Norris et al. (2000). In

long GRBs there are many bright pulses of gamma-rays, with the pulses covering

the entire BATSE energy range. However ,the high energy photons of a pulse

arrive slightly earlier than lower energy photons, creating a lag in the arrival

time between different energy channels. This time lag is anti-correlated with

the isotropic luminosity of the GRB (see Figure 1.4). Additionally, Reichart et

al. (2001) have found a similar relationship between the variability of the GRB

signal and the isotropic luminosity.

Both of these relationships have been studied in depth by many researchers,

and despite initial misgivings due to the very small number of bursts used to

indentify the correlations, there are increasing indications that both relationships

are valid. A number of researchers have used these relationships to determine

approximate redshifts for a large number of GRBs in the BATSE catalog and

explore the cosmological implications (Lloyd-Ronning et al., 2002; Norris, 2002).

Unfortunately, the current GRB detectors do not have the sensitivity of BATSE,

and we must wait for the data from SWIFT and INTEGRAL to increase the

sample of bursts and refine the observed correlations.

7



Figure 1.4: The Lag-Luminosity correlation from Norris et al. (2000). The vertical
axis plots the isotropic gamma-ray luminosity while the horizontal axis plots the
time lag between BATSE channels 1 (20 – 50 keV) and 3 (100 – 300 keV). For
each GRB the lag is plotted for when the count rate is ≥0.1 (diamonds), ≥0.3
(triangles) and ≥0.5 (squares) the peak intensity. The power law fit shown is for
count rates ≥0.1 the peak intensity. The burst 980425 which was associated with
nearby supernova 1998bw is four orders of magnitude dimmer than any of the
other bursts and was not used. It generally follows the same trend, but does not
fall along the power law shown.
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One of the side effects of trying to correlate the gamma-ray signal with the

isotropic luminosity has been the development of sophisticated measures of the

gamma-ray time evolution. These measures have been used by Norris et al. (2001)

to conclusively show that the time dependent spectral characteristics of short

GRBs are distinct from long GRBs, and that there are two classes of GRBs. In

retrospect this separation could have been found without the afterglow informa-

tion, but the existence of the redshift measurements facilitated this work.

1.4 GRB Host Galaxies

In addition to redshift measurements, optical and infra-red observations have

been used to study the properties of GRB host galaxies. Long exposures of the

afterglow positions have identified host galaxies in almost all cases, with the GRB

position typically within the galactic disks. Advanced surveys of the GRB host

galaxies are starting to appear, and suggest that the GRB host galaxies are ac-

tively forming stars — though it is unclear how high the star formation rate is

(Djorgovski et al., 2001; Holland, 2001; Chary et al., 2002). There are also indi-

cations that GRBs occur in areas of the galaxies which are actively forming stars,

based on their distance from the nucleus (Bloom et al., 2002) and in a few cases

by observation of the nearby stellar populations (Holland, 2001).

It has also become clear that approximately half of the GRBs with x-ray and/or

radio afterglows have no optical counterpart. The missing optical counterparts

were initially thought to be due to the limited sensitivity of the telescopes used.

However, with increasing use of the W. M. Keck Observatory and other large

telescopes it has become clear that these bursts must be intrinsically very dim

(Reichart & Price, 2001). One possible explanation of the so called “dark” bursts

is the absorption of UV and optical radiation by interstellar dust. This has been

seen as another indication that GRBs may occur in star forming regions where

the concentration of dust is very high.

The evidence of GRBs being associated with active star formation fits nicely

with the collapsar progenitor model which predicts that GRBs will be associated

with the core collapse of very massive stars (see Section 1.7). Even if the collapsar

model does not work, the weight of evidence seems to suggest that long GRBs

9



are associated with star formation.2 There is also evidence that the gamma-ray

luminosity of at least some GRBs is so high that modern GRB satellites can

observe all of the events which occur in the observable universe. This raises

tantalizing possibilities of using GRBs to perform cosmological studies extending

to the era of reionization and beyond.3 If GRBs are associated with star formation

and the gamma ray vs. redshift correlations can be refined, GRBs could be used

as a tracer of star formation and provide key insights into the early development

of the universe.

1.5 Gamma-Ray Emission Processes

Both the prompt and afterglow emission from GRBs can be understood in

the fireball shock framework, which has been remarkably successful in explaining

both the prompt gamma-ray and the multi-wavelength afterglow observations.4

Interestingly, the fireball shock scenario does not posit a GRB progenitor. It

simply assumes certain characteristics for the explosive outflow and leaves the

generation of the explosion for others to determine (see Section 1.7).

The gamma-ray spectra observed by BATSE exhibit a smoothly broken power-

law shape, or “Band function” (Band et al., 1993), with a characteristic power

law of -1 at low energies and between -2 and -3 above a break energy of 0.1 –

1 MeV. Because of the small size of the emission region (implied by the short

duration of GRB emission) and the extremely high luminosity above 0.511 MeV,

the first theoretical difficulty is explaining how to avoid the γγ → e+e− process

which would normally absorb the high energy gamma-ray photons. A natural

explanation is that the emission region is moving relativistically with a Lorentz

factor of 100 – 1000, and the observed gamma-ray emission has been blueshifted

from longer wavelengths.

2It is sometimes hard to judge how good the correlation between GRBs and star forming
regions really is because of the popularity of the collapsar model. In many papers the conclusions
seem to overstate the evidence, partly because the authors expect GRBs to be associated with
star formation.

3Because gamma rays are not absorbed by neutral hydrogen, in principal GRBs may be
visible to very high z.

4For an in-depth review of GRB theory see the excellent paper by Meszaros (2002) which
much of this discussion is based on.
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The requisite Lorentz factors can be obtained by depositing a large amount of

energy into a small mass and creating a fireball. The fireball converts the internal

energy into an accelerating expansion, forming a relativistically expanding e±,γ

plasma with some entrained baryons.

Once the fireball has expanded far enough to become optically thin to gamma

rays, the question becomes how to convert the kinetic energy of the fireball into the

observed gamma-ray radiation. The answer comes from realizing that shocks are

likely to occur either as the fireball collides with the ambient medium (external

shock model), or within the fireball itself if the initial power source is variable

and creates shells with different Lorentz values (internal shock model). Charged

particles near a shock can be accelerated by scattering off the magnetic fields

in the plasma and repeatedly crossing the shock boundary. Shock acceleration

naturally leads to a power-law distribution of high energy particles in a region of

high magnetic field, and efficiently converts the kinetic energy of the fireball into

synchrotron and inverse Compton radiation. The Band spectrum observed by

BATSE is well explained by synchrotron radiation from a power-law distribution

of electrons which is then blueshifted by the relativistic motion to gamma-ray

energies.

There is still active debate as to whether internal or external shocks dominate,

but for most GRBs the prompt gamma-ray emission is best explained by the

internal shock model, with the afterglow emission explained by an external shock

propagating into the ambient medium.

1.6 Afterglows and Collimated Emission

The broad-band afterglow emission is remarkably well described by a cooling

external shock propagating into an ambient medium. In general the afterglow

spectrum is a broad bump consisting of four power-law segments with three breaks,

with the power-law indicies and break positions depending on the distribution of

electron energies. As the fireball expands and cools the luminosity decreases and

the peak of the emission spectrum slides to lower energies. The resulting time

evolution of the luminosity follows a broken power-law in each energy band, with

“chromatic” breaks as the spectral peak moves through the observation band.
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There are also “achromatic” breaks in the luminosity decay rate which occur

simultaneously at all frequencies. These achromatic breaks are a natural feature

of a collimated jet and are the clearest evidence that the GRB emission is not

isotropic but instead beamed. At early times the radiation from a fireball is

highly forward beamed due to the relativistic boost, and only a small portion of

the fireball surface can be seen by an observer. As the fireball sweeps up more

ambient material and slows, more and more of the surface becomes visible —

artificially enhancing the luminosity. However, this enhancement stops when the

entire face of the jet becomes visible, and results in an achromatic break in the

luminosity decay rate.

By fitting the data to intensive multi-wavelength observation campaigns, the

physical parameters of ∼20 bursts have been determined, including the opening

angle of the relativistic jets. Surprisingly, when the gamma-ray luminosity is

recalculated to account for the opening angle, the energy release for all the bursts

clusters near 5 × 1050 ergs (Frail et al., 2001; Panaitescu & Kumar, 2002). This

result could be extremely important, as it implies that all long GRBs may be

produced by the same underlying phenomenon with a well defined energy release

similar to the most energetic supernovae. The fitting of model parameters may

also determine the environment near the burst (how dense, how much dust),

particularly with the large statistics and very early afterglow observations that

SWIFT will provide.

One intriguing side effect of beamed GRB gamma-ray emission is that there

should be a large population of “orphan afterglows.” Since the optical through ra-

dio emission peaks after the jet has slowed, the emission should be nearly isotropic.

This means that afterglows at these frequencies should be observable even if we

view the GRB off-axis and detect no gamma-ray emission. A number of researchers

are starting to make wide field-of-view transient observations at optical and longer

wavelengths, and should be able to set direct limits on the beaming of GRBs and

the true GRB rate.
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1.7 Progenitor Models

Despite the success of the fireball shock scenario, models of the GRB progen-

itor and the creation of the relativistic jet are very speculative. Because of the

enormous energy requirements, most of the models include the formation of a

black hole which is rapidly accreting material.5 The gravitational binding energy

of either the black hole or the disk may then be tapped to power the relativis-

tic jet. What is not clear is what astrophysical object forms the black hole and

accretion disk, or how the gravitational binding energy is transferred to the jet.

The current theory du jour is the collapsar model by Woosley (2000). In this

scenario the iron core of a very massive spinning helium star collapses to a black

hole. The matter along the polar axis falls into the black hole while the equatorial

regions forms a centrifugally supported disk outside the last stable orbit. Matter

continues to accrete through the disk at 0.01 – 0.1 M� s−1, a significant fraction

of which is ejected as a powerful wind of Ni56. In this scenario the jet is either

powered by neutrinos which are produced in the accretion disk and annihilate

in the polar regions, or by magneto-hydrodynamic (MHD) processes powered by

magnetic fields in the accretion disk. In either case, the jet would be naturally

collimated by the funnel shaped cavity that forms along the poles of the star.

This theory has had several nice features, including a natural initial population,

collimation, association with star forming regions, and a predicted supernova-like

light curve at long times from the Ni56. This theory has been supported by the

association of GRB 980425 with supernova 1998bw and several recent GRBs which

have shown signs of supernova light curves superimposed on the fading afterglows

(Garnavich et al., 2002).

However, there are many other theories and the collapsar model develops too

slowly to easily explain the short GRBs. Other progenitor models include black

hole - helium star mergers (similar to collapsars in behavior), neutron star merg-

ers (for short GRBs), Kerr black holes braked by the Blandford-Znajek process

(electromagnetic vacuum breakdown), and ∼300 other models (Fryer et al., 1999;

Blandford & Znajek, 1977; Meszaros, 2002). More data are needed, and extending

5The recent data on collimation of GRB jets has significantly reduced the energy requirements
of the central engine; however, black hole models are still preferred.
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the gamma-ray observations to TeV energies could provide important constraints

on GRB progenitors.

1.8 TeV GRB Emission?

Whether GRBs should emit large amounts of TeV radiation is very model de-

pendent. If the observed keV-MeV spetrum is due to synchrotron emission, one

would expect some of the synchrotron photons to be upscattered by the ener-

getic e± distribution to create a second gamma-ray peak at TeV energies. This

synchrotron-self-Compton (SSC) mechanism can be very efficient at producing

high energy photons and may be responsible for the strong TeV emission of some

active galactic nuclei such as Markarian 421 and Markarian 501.

Models based on both internal and external shocks have predicted TeV emis-

sion comparable to, or in certain situations stronger than, the keV-MeV radiation

(Dermer & Chiang, 2000; Pilla & Loeb, 1998). However, TeV emission is sensitive

to a number of model parameters. Because of γγ → e+e− absorption, TeV radi-

ation is particularly sensitive to the Lorentz factor and the photon density (and

thus the distance of the shock from the source) when the radiation is emitted.

The duration of the TeV radiation is also model dependent, with everything from

shorter than the keV-MeV emission to extended TeV afterglows. While these

features make the emission of TeV radiation uncertain, they also lend power to

the observations. Because TeV radiation is so model dependent, observations can

provide key insights to the emission process and potentially the GRB progenitor.

An observational complication is introduced by the interaction of TeV photons

with extragalactic background light (EBL) (Primack, 2002; Stecker & de Jager,

1997; Jelley, 1966). Over cosmological distances space becomes increasingly opaque

to TeV photons due to the γγ → e+e− reaction with background starlight (see Fig-

ure 1.5). EBL absorption depends on the amount of extragalactic light and thus

the details of galaxy formation, particularly the star formation history and the

effects of dust on the emitted spectrum. Because the absorption of TeV gamma

rays has not been accurately measured, this adds some model dependence to TeV

observation of distant GRBs.

Several attempts have been made to detect TeV emission from GRBs. There
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Figure 1.5: The optical depth τ as a function of observed energy and redshift. The
attenuation factor is equal to e−τ , and the redshift of each optical depth curve
is indicated by the same color number. This set of optical depths was obtained
by James Bullock using semi-analytic modeling with a flat ΛCDM universe with
ΩM = 0.3, ΩΛ = 0.7, h = 0.65 with a Kennicutt initial mass function. The
black vertical lines show the energy range of the optical depth calculation. Data
courtesy Bullock (2002).
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have been no clear detections, but several groups have reported hints of TeV emis-

sion. The Tibet air-shower array looked for ∼10 TeV emission coincident with

BATSE observations from June 1990 – September 1992. While no significant ex-

cesses were found, adding all burst-like events near the 57 BATSE positions on

time scales from 1 s – 100 s produced a 6σ deviation from background (Amenomori

et al., 1996). Air-Cherenkov telescopes have also been used to search for extended

TeV emission by slewing the telescope to the GRB position within a few min-

utes of the trigger, but no emission has been observed (Boyle et al., 1997). The

most interesting TeV result is from Milagrito, the prototype for Milagro, which

searched for emission coincident with 54 BATSE detections. An excess was ob-

served coincident with one of the BATSE triggers, with a chance probability of

1.5× 10−3 after all trials factors (Atkins et al., 2000b). While not strong enough

for a discovery, this event provided a tantalizing suggestion of TeV emission. Mc-

Cullough also used the Milagrito telescope to search for bursts of 1 s – 40 min.

duration, and observed no significant excesses (McCullough, 2001). The thesis by

McCullough was unique in searching the entire visible sky for ∼ 1 TeV radiation

without requiring a satellite-based trigger.

The initial incarnation of this thesis envisioned using BATSE and other satel-

lites to identify GRBs, then searching the Milagro data for coincident emission.

Soon after being awarded NASA6 support to perform a “Multi-wavelength study

of GRBs using BATSE, HETE II and Milagro,” the Compton Gamma-Ray Ob-

servatory was deorbited and the launch of HETE II was delayed. It became

clear that the number of coincident observations between Milagro and the GRB

satellites would be too small to be statistically significant, particularly in light

of the increasing evidence that most GRBs were very distant and the associated

attenuation of TeV signals.

However, Milagro is a very sensitive wide field-of-view detector in its own

right. Not only is the full Milagro telescope more sensitive than Milagrito, it has a

significantly lower energy threshold. The lower threshold is particularly important

because of the reduced attenuation at ∼100 GeV, which dramatically increases the

volume of space observed (see Figure 1.5). Milagro has a fluence sensitivity at TeV

6I have received NASA Graduate Student Researcher Project Fellowship support for the past
two years.
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energies which is comparable to dedicated satellite GRB detectors at keV-MeV

energies (Smith, 2001).

This thesis was then re-envisioned to use Milagro as the trigger to identify

TeV transient emission of 40 s to 3 hours duration. Smith (2001) was beginning

to analyze the Milagro data for TeV transients of 250 µs to 40 s duration, and

this thesis was designed to complement that effort. In addition, as a part of

this thesis a new search technique based on Gaussian weighting was developed to

improve the sensitivity of Milagro when performing a real-time all-sky transient

search (see Chapter 3). Notification of any transients observed by Milagro would

be rapidly released to the optical and radio communities through the gamma-ray

burst coordinate network (GCN), and follow up target-of-opportunity observations

performed using the rapid x-ray timing explorer7 (RXTE).

One always hopes for detections, but partly because of the model dependence of

TeV emission, either a detection or an upper limit can place important constraints

on GRB progenitors and emission mechanisms. This thesis was designed to fit

into the broader monitoring goals of the Milagro experiment, and provides the

most sensitive search yet performed of 40 s – 3 hour duration TeV emission from

gamma-ray bursts.

7RXTE proposal #70135, cycle 7.
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Chapter 2

The Milagro Gamma-Ray

Observatory

2.1 Introduction

The Milagro Gamma-Ray Observatory is located at a decommissioned hydro-

thermal plant high in the Jemez mountains of New Mexico. Very high energy

gamma rays incident on the earth pair produce in the upper atmosphere and pro-

duce extensive air showers (EAS) which propagate to lower altitudes. Milagro uses

the water Cherenkov technique to detect the EASs and reconstruct the directions

of the initiating gamma rays. Because Milagro is observing the EASs when they

reach the ground instead of in the atmosphere, it can operate continuously and

has an extremely wide field-of-view. The continuous coverage and wide field-of-

view make Milagro ideally suited for observing gamma-ray bursts and other very

high energy gamma-ray transients.

This chapter outlines the hardware and software design of the Milagro tele-

scope, and how the detection of individual EASs are turned into astronomical

observations. More detailed discussions of specific parts of the Milagro detec-

tor can be found in Sullivan (2001) and the detailed description of the Milagro

prototype by Atkins et al. (2000a).
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2.2 Overview of Extensive Air Showers and the

Milagro Detector

Before describing the Milagro observatory, a brief review of extensive air show-

ers is in order. In a typical EAS the initiating gamma ray interacts with an

atomic nucleus in the atmosphere at an altitude of 10-20 km and pair produces

to create a very energetic electron-positron pair. The electron and positron then

bremsstrahlung and deposit ∼1/2 their energy into secondary gamma rays which

subsequently pair produce to continue the cycle. This process of repeated pair

production followed by bremsstrahlung forms an electromagnetic cascade, quickly

diluting the energy of the primary gamma ray into a large number of relativistic

electrons, positrons, and secondary gamma rays (see Figure 2.1). Eventually the

mean energy of the particles becomes low enough that ionization and excitation

effects start to absorb electrons and positrons from the shower. Shower maxi-

mum is when the number of shower particles reaches its highest value just before

absorption effects start to dominate.

The shape of the EAS can be qualitatively described as a very thin pancake of

particles normal to the direction of the initiating gamma ray, with a narrow core of

relatively energetic particles and an extended skirt of lower energy particles. The

actual size of the EAS depends strongly on the energy of the initiating particle

and how many radiation lengths the shower has developed through, but values

of a few meters diameter for the core and hundreds of meters for the skirt are

typical for Milagro. I have created a number of Monte Carlo based animations

of EAS development, and they can be viewed on the web (Morales, 1999). These

movies of EAS are useful for developing a conceptual understanding of the shape

and dynamics of extensive air showers.

The Milagro observatory uses the water Cherenkov technique to identify EASs

and reconstruct the direction of the initiating particle. The central Milagro detec-

tor consists of a large reservoir of water instrumented with two layers of photomul-

tiplier tubes, and covered by a light-tight cover. When the pancake of relativistic

particles from an EAS enters the water, the charged particles exceed the local

speed of light and produce Cherenkov radiation in the blue and near ultra-violet.

In essence, as the water absorbs the relativistic particles, the front of particles
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Figure 2.1: A cartoon of the development of an extensive air shower, showing the
particle generations and the iteration of bremsstrahlung and pair-production.
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from the EAS is converted into a front of visible Cherenkov photons as shown

in Figure 2.2, and it is this front of Cherenkov photons which is detected by the

photomultiplier tubes. The conversion of an EAS particle front into a Cherenkov

light front is quite subtle and displays rich structure. I explored this topic in some

depth in Morales (2000) and the accompanying animations which are available on

the web (Morales, 1999).

One of the great advantages of the water Cherenkov technique is the ability

to detect both the neutral and charged components of the EAS. Because Milagro

is well past shower maximum for almost all showers, most of the particles in the

EAS front are secondary gamma rays. Traditional air shower arrays have relied

on detection techniques which are only sensitive the charged component of an

EAS.1 In Milagro the water acts as both a converter and the detection medium;

charged particles entering the water immediately radiate Cherenkov light, whereas

the secondary gamma-rays produce an electron and a positron which both radiate

Cherenkov light. This allows Milagro to detect nearly all the particles incident on

the detector, and significantly reduces the energy threshold of the experiment.

One of the major issues facing all air shower arrays is differentiating the

gamma-ray events from the overwhelming background of cosmic-ray events. EASs

initiated by cosmic ray nuclei do have characteristics which can distinguish them

from gamma-ray initiated EASs. In particular, hadron initiated EASs contain a

significant number of muons at ground level and have a clumpier shape due to the

high transverse momentum of pions and other mesons produced in the hadronic

cascade. These characteristics can be used to partially remove the hadronic back-

ground.

2.3 Detector Layout

The heart of the Milagro observatory is affectionately known as “the pond”

and consists of a 60 m by 80 m reservoir with sloping sides which is 8 m deep in the

central region. The reservoir is located at 2600 m altitude in the Jemez mountains

1Lead or other conversion material is often used above the detectors in traditional air shower
arrays to convert some of the gamma-rays to charged particles, but the conversion material also
absorbs the charged component and so must be used sparingly.
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Figure 2.2: In this figure a toy model of an EAS consisting of 20 MeV gamma rays
arranged on a plane is incident on the Milagro pond. The white line indicates the
water surface. Green is used to indicate a gamma-ray, red an electron or positron,
and blue a Cherenkov photon, while the red line indicates the original plane of
the EAS as it propagates into the detector. Note that there is a conversion of
the EAS particle front into a front of Cherenkov photons just below the detector
surface, with the front of Cherenkov light showing significant broadening and
refraction. This image is from full motion animations that can be viewed at
http://scipp.ucsc.edu/milagro/Animations/AnimationIntro.html
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of New Mexico and contains 23 million liters of water. The floor of the reservoir

is covered by a 2.8 m square grid of sand-filled PVC pipe which serves as the

structural anchor for all of the equipment in the detector volume, and a flexible

light-tight cover floats on the surface of the water to block atmospheric light and

environmentally isolate the pond. This light-tight cover can be inflated to allow

access to the pond for routine maintenance using boats and SCUBA divers.

The detector volume is instrumented with 723 photomultiplier tubes (PMTs)

arranged in two layers. The upper level of tubes is called the air shower layer

and consists of 450 tubes 1.5 m below the surface of the water arranged on a

square 2.8 m grid. Signals from the air shower tubes are principally used for their

excellent time resolution to reconstruct the orientation of an EAS and thus the

direction of the initiating particle. The lower layer of tubes is called the hadron

layer, and consists of 273 tubes on an offset 2.8 m grid near the bottom of the

reservoir. Even though both layers share the same grid spacing, the lower layer is

significantly smaller due to the sloping sides of the reservoir. Most of the tubes

in the hadron layer are at a depth of 6 m, except the outer ring of tubes which

are slightly higher again due to the sloping sides of the pond. The hadron layer

is used primarily to identify the position of the shower core, identify penetrating

muons, and perform calorimetry.

The photomultipliers are 20 cm diameter hemispherical tubes made by Hama-

matsu (model #R5912SEL), and have excellent timing and charge resolution. The

base of each tube is encased in a water-tight PVC housing which is attached the

electronics building by a single RG-59 coaxial cable which carries both the high

voltage DC power and the AC PMT signal. In addition there is a baffle around

each tube made of anodized aluminum and black polypropylene which encircles

the top of the photomultiplier tube much like a veterinary dog collar. The baffle

forms an inverted and truncated cone which encircles the tube. The reflective

aluminum and black polypropylene are arranged in two layers so that the interior

of the baffle is reflective to help funnel light into the tube while the outside is

black to absorb stray light and keep the tube from seeing horizontal or upwards

moving photons.2 The tube-base-baffle assembly is buoyant and kept in place by

2The baffles are a major difference in the design of Milagro from the prototype detector
Milagrito. During the operation of Milagrito, it was discovered that there are a large number
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Figure 2.3: This photograph was taken with the light tight cover inflated for
maintenance. The sloped sides and flat bottom of the reservoir can be seen as well
as the PVC anchor system, the two layers of PMTs and their baffles. Photograph
courtesy Rick Dingus.

a Kevlar string which anchors it to the PVC grid.

Many of the physical features detailed in the previous paragraphs can be seen

in Figure 2.3 which shows the detector with the cover inflated for maintenance

work. One of the features not visible in the photograph is the lightning protection

system. The Milagro observatory is located in one of the most active lighting

regions in the nation, with the mean waiting time for a lighting strike within the

50,000 m2 site being about 1 month (Atkins et al., 2000a).3 In response, a large

Faraday cage was erected around the central pond and support buildings using

telephone poles and large diameter copper cable. Despite several observations

of nearby strikes and discharges from the lighting rods no damage has occurred

of muons which traverse the pond nearly horizontally. These muons create upward or nearly
horizontal light that can illuminate a large number of tubes in the pond and created a major
background for our simple multiplicity trigger. The baffles have solved these problems, though
there have been some issues with long term corrosion.

3The idea of a ∼4,800 m2 pool of water grounded by 723 high voltage cables directly to our
custom front end electronics and the computer racks gave us some pause.
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within the Faraday cage.

2.4 Electronic Layout

The neighboring tubes within the pond are grouped into “patches” of sixteen

photomultipliers. The sixteen tubes are gain matched to require the same bias

voltage and are driven by one high voltage supply channel. The first stage in the

event processing chain is a pair of custom 16 channel boards which are mated back-

to-back and process the signals from one patch.4 After separating the AC signal

from the power supply, these boards divide the signals and send them through

two separate gain and discriminator chains which implement Milagro’s dual time-

over-threshold (TOT) system. The number of photoelectrons (PEs) produced on

the surface of the PMT can be estimated by measuring the total charge in one

signal pulse. This is done by storing the charge on a capacitor and measuring

the voltage as the charge bleeds off through a resistor. In high speed applications

like Milagro equipping each channel with a separate analog to digital converter to

integrate the voltage measurements and determine the total charge is expensive.

One common technique is to use a discriminator to measure the time over a set

threshold — the more charge in a pulse the longer the signal remains over thresh-

old. To improve the dynamic range and help differentiate between overlapping

pulses Milagro uses a dual time over threshold system, with one discriminator set

at ∼1/4 of a photoelectron and the other at ∼5 photoelectrons.

Both high and low threshold discriminators output a signal which is binary

in voltage but analog in time, with one voltage for below threshold and another

for above. These signals are then multiplexed together to form a single digital

voltage signal which is sent to the time to digital converter (TDC) boards. The

LeCroy 1887 FASTBUS TDCs create a digital time stamp for each edge crossing

and can store up to sixteen edge crossings per each channel. (See Figure 2.4 for a

graphical description of the dual TOT system.)

In addition to forming the multiplexed discriminator signal, the front end

boards create a separate 200 ns digital voltage signal for each new PMT signal

4The boards can be configured so that there are two patches of eight tubes, each with a
different high voltage, and this is done in a couple of instances.
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Figure 2.4: This diagram shows how the time and pulse height information are
digitized in the dual threshold system. For the diagram voltage is the vertical
axis and time is the horizontal axis. The pulse from a single PMT is shown at
top with the dual voltage thresholds indicated. The middle of the diagram then
shows the digital voltage signals of the two discriminators which indicate when the
signal pulse was above each threshold. The high threshold discriminator signal is
then inverted and added to the low threshold to form the multiplexed signal. The
TDC board then measures the time of each edge crossing and creates a digital
time stamp. Note that the separation of the TDC times indicates the size of the
pulse while the offset of all the times indicates the arrival time of the pulse.
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which crosses the low threshold. These signals are added on the front end board

and then summed across the boards with a fan in to create a single signal which is

proportional to the number of tubes in the air shower layer which have triggered

within a 200 ns window. A single discriminator is then used to form a simple

multiplicity trigger. For the year of data used in this thesis the discriminator

was set at ∼55 tubes. This spring the trigger system was substantially upgraded

to individually read in the tube hits and allow for more sophisticated software

triggers (Blaufuss et al., 2002). Because of the late change, the new very low

threshold triggers introduced by the new trigger system were not used in this

analysis.

When the trigger condition is met, a common stop is created and the edge time

stamps are read out of the TDC boards by the FASTBUS Smart Crate Controller

and transfered into a VME dual ported memory module via an Access Dynam-

ics DM115/DC2 smart VME controller. The data is then transferred through a

BIT-3 VME interface from the dual ported VME memory module into the data

acquisition (DAQ) computer. For the data used in this GRB search the DAQ

computer was a 10 processor SGI Challenge mainframe which performed real-

time reconstruction of triggered events. Though state of the art when purchased,

the Challenge has been eclipsed by the computational power of Linux based work-

station clusters. After the end of data taking for this thesis the Challenge was

replaced by a clustered system whose computational power can scale to handle

more sophisticated reconstruction algorithms.

2.5 Reconstruction System

The reconstruction system is a complicated custom software program that is

responsible for reading the data from the VME dual ported memory, and per-

forming calibration corrections and event fitting to determine the direction and

species of the particle which initiated the EAS. Because of the enormous data

rate — ∼1800 triggers per second, or ∼5 MBytes per second of raw data — we

cannot afford to save all of the raw data. The real time reconstruction is often

the only opportunity to analyze the raw data and comprises a major piece of the

data acquisition system.
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The first task of the reconstruction program is to identify and characterize the

PMT signals from the TOT stamps recorded by the TDC. In particular, over-

lapping signals must be identified and handled correctly. Once the PMT signals

have been identified, the detector calibration is used to estimate the number of

photoelectrons in the signal pulse and correct the arrival time for PE dependent

risetime effects (Fleysher, 1999). This produces the calibrated data — the tube

by tube PE and arrival times fully corrected for all detector effects.

The next stage in the reconstruction system is locating the core of the shower.

The EAS particle front is slightly conical in shape and locating the center of

the shower is crucial for accurately reconstructing the direction of the initiating

particle. The current core fitting routine uses the average location of the triggered

PMTs weighted by the square root of their PE level to locate the shower core on

the surface of the pond. If the core is off the pond — as is the case for ∼70%

of the showers — then the core fitter uses the average location to determine the

direction of the core from the pond, and places the distance of the core at 50 m

from the center of the pond. The 50 m distance is used as a default lacking other

information. Core finding is one of the pieces of the event reconstruction that

will be most affected by the addition of the outriggers (see Section 2.7 for more

details).

Before determining the direction of the initiating particle, the core location is

used to make two additional corrections to the data. Because of our TOT system,

the arrival time of a signal pulse is really the arrival of the first Cherenkov photon

to reach the tube. Near the core there are many more photons than in the extended

skirt, and this leads to arrival times near the core being systematically early. This

bias is removed by a sampling correction, which is determined from the data and

is a fifth order polynomial of the log10(PE). Additionally, while the shower front

is very nearly flat, it does have a slightly conical shape. A curvature correction

adjusts for this geometric effect by subtracting 0.07 ns per meter from the core

so that the arrival times form a plane. (See McCullough & Gordo (2000) for

complete details on the sampling and curvature corrections.)

The angle fitter uses the corrected times to iteratively fit a plane and recon-

struct the direction of the particle which initiated the EAS. A chi-squared fit is
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used with each arrival time given a weight determined by the number of PEs.5

The first iteration uses all hits greater than 2.25 PE to determine an approximate

orientation of the shower. Tubes with time residuals greater than 8.25σ are then

assumed to be noise hits and are removed before refitting the plane with a loosened

PE cut of 1.75. On subsequent iterations the time risidual cut is tighted to (5.25σ,

3σ, 1.5σ)6 and the PE cut is loosened to (1.25, 0.75, 0.5). The final fit determines

the reconstructed direction of the initiating particle, and is the end product of the

reconstruction system. The performance of the Milagro reconstruction system is

analyzed in detail in Chapter 4.

2.6 Online Analysis

The real-time reconstructed data produced by the DAQ computer is used for

numerous analyses, which can be broadly grouped into “online” and “offline”

analysis types. The offline analyses are usually performed on computer clusters at

one of the collaborating institutions, and typically involve steady source searches

(such as the Crab pulsar, active galactic nuclei, and diffuse galactic emission)

or archival analysis of old data. In contrast, the online analyses are looking for

transient signals in real time, with the goal of promptly alerting the astrophysical

community to any observed sources. Because these analyses are time critical, a

small cluster of Linux computers has been installed at the Milagro site for the

express purpose of performing online analyses.

The DAQ computer writes the most recent block of reconstructed events, called

a subrun, to disk every ∼4 minutes. These subruns are then copied to the online

computational cluster, and a link to each subrun file is placed into the incoming

data folders of each online analysis. It is the responsibility of an online analysis to

process the links as they appear in the incoming data folders and erase the links

5The weights are from the average PE dependent time residuals to a plane fit.
6While developing the weighted analysis technique, I discovered that the weights used in

the chi-squared fit were all high by a factor of ∼3. This does not affect the fitting algorithm,
but leads to the reduced chi-squared being low by a factor of ∼10, and the value of the actual
significance cuts in the fitting routines being different from the numbers listed in the code by a
factor of ∼3. Here I have used the actual significance of the cuts, not the values listed in the
code.
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once the data has been processed.7

Currently there are three separate online analyses operating at Milagro. Smith

(2001) has developed an analysis which looks for TeV transients from 250 µs to

40 s duration; this thesis describes the search for transients of 40 s to 3 hours

duration; and Elizabeth Hayes has a search which extends from 2 hours to steady

state emission. There are several reasons for the three separate analyses, with

background rejection being the most important. At the shortest timescales Mila-

gro is data limited, and no background rejection should be performed, while at the

long timescales Milagro is background dominated and the sensitivity is maximized

with very aggressive background rejection.

Because a priori we do not know the duration of a TeV transient, all three

online analyses search multiple timescales. Biller (1994) has shown that logarith-

mically spaced search durations closer than a factor of 3 approach the sensitivity

of using a search window with the actual duration of the transient, and allow the

detection of transient signals of unknown length. By searching on many different

logarithmically spaced timescales, the three online analyses combine to form a

sensitive search of the northern sky for any TeV signal of duration longer than

250 µs.

2.7 Future Directions

The full Milagro observatory is currently being completed with the construc-

tion of ∼170 small satellite detectors called “outriggers.” The outriggers consist

of cylindrical water cisterns 2.4 m in diameter and 1 m deep, which are lined with

highly reflective TyvekTM and instrumented with a single PMT (see Figure 2.5).

The PMT and front end electronics chain are identical to the system used in the

Milagro pond.

The outriggers are scattered over a 40,000 m2 area surrounding the Milagro

pond, and are used to more fully sample the EAS particle front. Because the

7One of the reasons behind this file moving scheme is the very limited network bandwidth
from the SGI Challenge computer. Now that the SGI mainframe has been replaced with a
modern Linux cluster we plan to move towards a network port system to eliminate the latency
due to waiting for subruns to be completed. The analysis used in this thesis has been written
to easily incorporate reading data off a network port.
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Figure 2.5: A row of three outriggers can be seen in the photograph deployed on
the shoulder of the central reservoir. When complete the outrigger deployment
will continue into the woods visible in the background.
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effective area of the Milagro detector is significantly larger than the central pond

for most of the energy range, the majority of the EAS cores do not strike the

central detector. Without good knowledge of the core location it is impossible to

determine the energy of the EAS or properly correct for geometric effects across the

face of the EAS particle front. The outrigger system will allow Milagro to sample

more of the EAS, improving the angular resolution and allowing event-by-event

energy determination and the use of advanced background rejection techniques.
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Chapter 3

Weighted Analysis Technique

3.1 Introduction

This chapter describes the theoretical basis for the weighted analysis tech-

nique, which was inspired by the unique requirements of performing a real time

transient search in a high data rate gamma-ray observatory like Milagro. The ba-

sic requirements for a transient search analysis are to maximize signal sensitivity

while keeping the computational cost low enough to enable a real time analysis

on many time scales. Any analysis technique involves compromises between sen-

sitivity, model independence, and speed, and I developed the weighted analysis

technique as an alternative to the compromises made by the standard binned or

maximum likelihood analyses (Alexandreas et al., 1993).

As is common in wide-field gamma-ray observatories, Milagro has a highly

variable point spread function (PSF), with an order-of-magnitude difference in

width from the best events to the worst. (Please see Chapter 4 where Milagro’s

PSF is characterized.) In an optimal binned analysis the sky is divided into equal

area bins and the number of events observed in each bin is counted, with the size

of the bins chosen to maximize the signal-to-noise ratio for the detector’s aver-

age PSF. In essence the binned analysis discards the information on the quality

of an individual event, and instead treats every event as if it was drawn from

the average PSF distribution. Maximum likelihood techniques, of which there

are several approaches, can use the event-by-event PSF information and are the
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most sensitive methods for analyzing wide-field gamma-ray observations. How-

ever, most implementations are computationally slow because they require fitting

model parameters, and this fit usually requires an iterative fitting algorithm such

as MINUIT (James, 1998).

A third analysis method is the Gaussian weighting technique, and has been

used by the Fly’s Eye and JANZOS experiments as a compromise between the

optimal bin and maximum likelihood analyses. In Woodham’s thesis he describes a

technique which uses the Gaussian PSFs of individual events to identify excesses,

and assumes large statistics so that the central limit theorem can be used to

determine the significances of the excesses (Woodhams, 1989). A similar method

was used by the Fly’s Eye group to analyze data from Cygnus X-3, but they only

outlined the technique used and never published the full analysis method. From

the sketch of the analysis provided in Cassiday et al. (1989) it is not obvious

whether the PSF was Gaussian or arbitrary in shape, and they used an extensive

Monte Carlo simulation to determine the significance of the excess.1

The weighted analysis technique presented in this chapter is an extension of

the Gaussian weighting technique as developed by Woodhams (1989) to PSFs

of arbitrary shape and Poisson statistics. To introduce the weighted analysis

technique, I return to first principles and build a somewhat idealized sky map,

then describe how this sky map can be used as the basis for an analysis.

3.2 Building a Sky Map

Let’s return to the basics, and imagine making a sky map. An idealized sky

map would represent our complete knowledge of the sky — using all of the available

information and adding no spurious or biased information. The question of making

a sky map becomes what do we know, and how do we represent that knowledge?

Surprisingly, the question “What do we know?” can be quite subtle. Do we

use just the information we measure directly (event positions and characteristics),

or do we go to the next step and include sources such as the Crab pulsar or

1There is a nice review of point search techniques in Alexandreas et al. (1993), where the
authors claim that Gaussian weighting is as sensitive as maximum likelihood in the limit of large
statistics and provides a substantial gain in computation time. Unfortunately, while plausible
these claims are not supported by their citations.
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characteristics such as an expected source spectrum in the definition of what we

know? Including knowledge of sources leads to maximum likelihood analyses,

with differences in how much information we include about the sources (spectra,

angular extent, etc.) leading to different types of maximum likelihood analysis.

Alternately, we could limit the definition of what we know to directly measured

quantities — event positions and characteristics. This approach delays questions

of source identification until after the sky map is created. Both approaches are

valid, but from different points of view. The weighted analysis technique uses the

later viewpoint and includes only directly measured quantities.

The second question is how to represent our knowledge of the event positions

and characteristics in a sky map? The PSF is defined as the normalized probability

density distribution for the true event position given the measured event position:

PSF (~kt − ~km) = ∂P (~kt|~km)/∂Ω, (3.1)

where ~k is a vector on the unit sphere and ~km is the measured location and ~kt is the

true location.2 For gamma-ray telescopes, the width and shape of the PSF depends

on the characteristics ψi of the individual event, and may vary considerably from

one event to the next. The PSF can also be multiplied by the probability Pγ that

the event was a photon at all (as opposed to background) to create a value that is

the photon probability density for the ith event’s true position being at a position
~k on the sky and being a photon:

pi(~k) = p(~k|~ki, ψi) = PSF (~k − ~ki, ψi)Pγ(ψi). (3.2)

A sky map can be created by adding together the photon probability distribu-

tions of many events to form an overall map of the photon probability distribution

(see Figure 3.1 for a graphical description). The total photon probability density

distribution w is given by the sum of the individual photon probability densities:

w(~k) =
all showers∑

i

pi(~k) =
all showers∑

i

PSF (~k − ~ki, ψi)Pγ(ψi). (3.3)

2Since in astronomy we are only concerned with the direction of the initial photon, it is
useful to represent this direction as a vector on the unit sphere. The PSF can also be defined
by ∂P (~km|~kt)/∂Ω, which is identical to the form in Equation 3.1 by Bayes formula if P (~kt) is
uniform on the scale of the PSF. For studying analyses, the definition in Equation 3.1 is more
convenient because ~km is the observed quantity.
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There is some information loss in forming this sky map because the characteristics

of the incoming showers cannot be uniquely determined from the sky map. In

essence the sky map represents total photon probability density, but we have lost

the individual pi(~k) values that make up the sum.3 The sky map of the photon

probability distribution uses all of the event-by-event knowledge, and represents

our knowledge of the spatial distribution of events.

A continuous sky map created by adding the PSFs of individual photons repre-

sents a somewhat idealized map which is difficult to manipulate with a computer.

The spatial scale for fluctuations across the sky map is set by the width of the

narrowest PSF. The sky map can be digitized by sampling the total photon proba-

bility density w(~k) at individual points on the map surface. If the spacing of these

samples is small compared to the narrowest PSF the information loss can be made

arbitrarily small (Figure 3.2). There are several nice features of this digitized sky

map. Because the value at a location on the sky map represents the photon prob-

ability density at that point and is not an integral over nearby locations (as is

common in binned analyses), the spacing between the points need not be uniform

and tiling problems associated with binning a spherical sky are avoided. Addi-

tionally, two sky maps which share a sampling pattern can be summed. An 80

second sky map can be formed by adding two sky maps of 40 seconds duration —

a significant computational advantage when hunting over multiple time scales.

In this discussion spectral information has been ignored, but can be added in

a completely analogous manner. The key is determining the normalized energy

probability density function ∂P (Et|Em, ψi)/∂E — the one dimensional energy

analog to the PSF — for each event. This energy distribution can then be multi-

plied by Pγ(ψi) to form the photon energy probability density pi(E) and added as

a third independent axis of the sky map. The resulting three dimensional sky map

is harder to visualize, but again represents the total photon probability distribu-

tion. Similarly, the probability density of any other parameter of interest (such as

3The pi(~k) information can be retained if there is a small set of PSFs and Pγs instead of
continuous distributions. In this case a separate sky map for each combination of PSF and Pγ

can be created and this individual information retained. Sky maps of this type were used in a
maximum likelihood analysis by the EGRET collaboration (Mattox et al., 1996) for PSFs which
were binned in energy and a binary Pγ cut. If the PSF or Pγ distributions are continuous only
the original list of event positions and characteristics retains all of the information, and any sky
map is an approximation.

36



Sum of 3 Photons

Sky Map of the Probability
Distribution from many photons

Photon #2Photon #1

Figure 3.1: This is diagram shows how individual photons are added to form a
sky map in the weighted analysis technique. In the top frame we have events with
varying PSFs. The lower frame shows how these events can be added together to
form a probability density map, first as a 1-dimensional example of three events,
then a more realistic 2-dimensional example incorporating many events.
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Figure 3.2: The shaded background represents the smooth variation of the proba-
bility density seen in an example sky map, with the red dots representing locations
where the probability density has been sampled. The sampling pattern need not
be uniform, and as long as the sample spacing is small compared to the narrowest
PSF, all the information in the continuous sky map is captured in the sampled
map.
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polarization) can be added to a multidimensional sky map to enrich the represen-

tation of the data. In conclusion, we can form a digitized sky map that represents

our direct knowledge by summing the photon probability density distributions of

each event and digitizing the resulting map.

3.3 Source Identification

Now that we have a sky map of the photon probability distribution we need to

tackle the issue of source identification, and again the analysis approach depends

on exactly what question is being asked. A maximum likelihood analysis could be

directly applied to the photon probability distribution of the sky map. Maximum

likelihood is a very flexible approach, allowing searches for sources of different

types and characteristics, and forming the sky map first could lead to significant

time savings when the number of photons exceeds the number of sampled map

locations (very similar to binned maximum likelihood techniques). However, max-

imum likelihood techniques tend to be too slow for searching multiple time scales

in real time. If we are developing a new technique, the question becomes “What

are we looking for, and what compromises are we willing to make?”

The weighted analysis technique was developed for discovery mode real-time

GRB searches in the Milagro experiment. We expect signals to be transient point

sources,4 but the spectrum of a TeV transient is highly model dependent and

uncertain. Furthermore, since we don’t know the signal duration we need an

analysis which is computationally fast enough to handle a real time search over

multiple time scales. So we want a search for point sources which is fast, sensitive,

and not strongly biased by spectral expectations. The compromise we are willing

to make is that this is a discovery mode search: we just need to identify sources,

once sources are identified they can be analyzed at length using slower more precise

methods.

Because we are performing a discovery mode search, the relevant statistic is

4In a transient source the size of the object in light seconds must be smaller than the emission
time to allow different parts of the object to be causally connected. This requirement can be
relaxed somewhat in relativistic outflows due to time dilation, but any signal with a duration
less than a few hours which originates at galactic or cosmological distances will have an angular
extent much smaller than the Milagro PSF, and appear to be a point source.
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the probability of the background producing the observed signal. Since we expect

point sources, we can look at each of the sampled locations independently and

ask “What is the probability of the background producing the observed photon

probability density?” Mathematically, we need to determine the probability that

the background could produce a probability greater than or equal to the observed

photon probability density (wobs) given the spectrum of probability densities ob-

served in the background (g(w)),

P (w ≥ wobs|g(w,N,~k)). (3.4)

Note that in general the probability density spectrum is dependent on both the

number of events (N) and the position in the sky (~k). For small N , the proba-

bility density spectrum is typically very skewed, with many small values from the

tails of the PSF and Pγ distributions and only a few large values. However, as N

becomes large the central limit theorem comes into play and the probability den-

sity spectrum becomes Gaussian-distributed around the mean. The probability

density spectrum can also be spatially dependent if the distribution of event char-

acteristics changes with position in the sky (if the distribution of ψi in Equation

3.3 depends on ~k).

Equation 3.4 represents the full probability of the background producing an

observed probability density if the PSFs used to generate the sky map — called

the weighting functions PSF ′ — cover the entire sky and N is deterministic. In

implementing the weighted analysis technique, the weighting functions are often

truncated at some angular distance (see Table 5.1). Truncating the weighting

function significantly improves the computational speed of the analysis because

only sample locations near the position of a new event must be updated, not the

entire sky map. The cost of truncating the weighting functions is a further compli-

cation of the statistics. When the weighting functions are truncated, the number

of events summed to form the photon probability density will vary from location

to location. Furthermore, the number of events summed at a location on the

sky map (Nobs) experiences Poisson fluctuations around the expected background

value Nexp, which adds a second observable to the probability. Determining the

probability of the background producing an event which is equal or more signal-

like than the current observation is subtle when there are two or more independent
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variables (wobs and Nobs in this case), but can be approximated by5

∞∑
N=Nobs

P (w ≥ wobs|g(w,N,~k))P (N |Nexp). (3.5)

If the background probability density spectrum g(w) changes slowly with N

(∂P (w ≥ wobs|g(w,N,~k))/∂N � ∂P (N |Nexp)/∂N) then equation 3.5 can be

further approximated by:

P (w ≥ wobs|g(w,Nobs, ~k))P (N ≥ Nobs|Nexp). (3.6)

The first term in Equation 3.6 is just the probability of the observed probabil-

ity density being produced by the background, and can be easily measured in a

background dominated experiment like Milagro. The second term is the Poisson

probability of seeing an observed number of events given a background expecta-

tion, and is only important if the weighting functions used have a finite extent.

Qualitatively the two terms serve distinct purposes. The first term depends on

how gamma-like the events are from the Pγ values and how clumped the events

are from the PSF values (see Equation 3.3), and asks how likely is it that the

background could have produced the observed probability density. The second

term is looking for a simple excess of events, and becomes important for Milagro

only if the PSF is truncated at a given angular distance so that there is an effective

bin size for each PSF. Typically g(w) varies slowly with N and a small truncation

distance can introduce correlation between the probability terms in Equation 3.6

which must be accounted for (see Section 5.6).

The probability of the background producing an observation as given by Equa-

tion 3.6 can be used to identify signals in the data. The typical probability thresh-

old for a source discovery is set at ∼5σ, or a probability less than 2.8× 10−5. For

a single search location this is exactly the threshold that would be used. However,

in a GRB search we are looking at hundreds of millions of independent locations

and multiple time scales, and probabilities less than 2.8×10−5 are quite common.

By definition, if a 1000 independent locations are analyzed, ∼1 will have a prob-

ability ≤ 1/1000 and ∼10 will have a probability ≤ 1/100. A log-log plot of the

5For a complete explanation of the relevant statistics and this approximation, please see
Appendix A.
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probability histogram has a characteristic slope of -1 if there are no sources, and

this can be used as a diagnostic to ensure that the distributions used to calculate

the probability are correct. For a search involving many locations, the source dis-

covery threshold is set at “5σ” below the probability where one background event

is expected (for 1000 locations 10−3 × [2.8× 10−5] = 2.8× 10−8). For a real-time

search, the approximate number of independent locations that will be analyzed is

determined in advance, and used to set the probability threshold for the discovery

of transient TeV emission.

Signal identification in the weighted analysis technique has several nice fea-

tures. First, P (w ≥ wobs|g(w,Nobs, ~k)) can be stored in computer lookup tables.

Because no parameter fitting is required to determine the probability, calculating

the significance of a signal is very fast. Second, because we are simply looking for

something which does not look like the background, we are less model sensitive

than some maximum likelihood implementations. However, the weighted analysis

method does sacrifice some features like estimating the observed spectrum in favor

of speed. A source identified with this method would need to be reanalyzed with

maximum likelihood to obtain all the information from a signal.

3.4 Sensitivity

We would like to compare the sensitivity of the weighted analysis technique

to maximum likelihood and binned analyses. Unfortunately, there is no simple

analytic way of comparing the various maximum likelihood analyses to either

the optimal binned analysis or the weighted analysis technique. Qualitatively

we expect the weighted analysis to do well because it is using all available in-

formation, but it is safe to say that it only approaches the sensitivity of a well

implemented maximum likelihood analysis. That being said, many common max-

imum likelihood implementations require a model signal, and their sensitivity can

be significantly impacted by mistakes in the original model.6

Comparing the weighted analysis technique to an optimal binned analysis also

6The oral physics tradition maintains that maximum likelihood is superior to all other tech-
niques. In the literature there are counterexamples which show cases where maximum likelihood
is not ideal (Eadie et al., 1971), though it may be due to how the maximum likelihood analysis
was implemented. I was not able to find citations proving the superiority of maximum likelihood.
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requires a model signal and a Monte Carlo simulation in most cases. However, we

can illustrate the key differences using a few toy models with analytic solutions.

In the limit of large statistics, we can obtain analytic solutions for both the binned

and weighted analysis techniques for a detector with a single Gaussian PSF, and

a detector with events drawn from two Gaussian PSFs of different widths. The

limit of large statistics allows us to use the central limit theorem to calculate the

variance of wobs, and the combination of the large statistics limit, no weighting for

background rejection, and Gaussian PSFs reduces the weighted analysis technique

to the Gaussian weighting analysis developed by Woodhams (1989). Since the

Gaussian weighting and weighted analysis techniques are identical in this limit,

we will refer to them generically as weighted analyses in the following discussion.

For these toy models, N is the number of signal photons and b is the number

of background events per square degree. After background subtraction, the sig-

nificance of the signal is given by the signal/noise ratio and has the form AN/
√
b,

where A characterizes the sensitivity of the search and is the object of the fol-

lowing calculations. Because the PSFs in these models are symmetric, ~k − ~ki

depends only on the angular separation between the source location (~k) and the

reconstructed event location (~ki). To simplify the equations, r is used to denote

the angular separation in degrees between the source and reconstructed positions.

For a single Gaussian, the signal observed in a circular bin of radius R is given

by the integral of the PSF

Signal =

∫ R

0

N

2πσ2
e−r2/2σ2

2πrdr = N(1− e−R2/2σ2

), (3.7)

and the noise is given by the square root of the number of background events√
bπR2. This ratio is maximized for R = 1.585σ, giving a sensitivity parameter

A of 0.255/σ for a Gaussian PSF.

For the weighted analyses, the signal from a point source with N photons is the

probability distribution of the photon positions (the true point spread function

PSF ) times the weight given to each photon (the weighting function PSF ′):

Signal =

∫ ∞

0

N PSF PSF ′ 2πrdr. (3.8)

Since the weighting function and the PSF are the same Gaussian function in this
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example, the integral becomes

Signal =

∫ ∞

0

N
[ 1

2πσ2
e−r2/2σ2

]2

2πrdr =
N

4πσ2
. (3.9)

The noise is given by the square root of the variance of the probability density. In

the limit of large statistics, the variance is given by integrating the flat background

distribution by the square of the weighting function:

Noise =

[∫ ∞

0

b PSF ′2 2πrdr

]1/2

. (3.10)

Since the weighting function is the same Gaussian as the true PSF, this is the

same integral as used for the signal with b replacing N . The signal to noise ratio

becomes N√
4πσ2

√
b
, giving a sensitivity parameter A of 0.282/σ. This implies that

the weighted analyses are ∼ 10% more sensitive than an optimal bin analysis.

Woodhams (1989) argued that this 10% improvement should be a lower limit,

and that detectors which have a spectrum of PSFs should benefit even more from

a weighted analysis.

The next toy model has two Gaussian PSFs, with 25% of the events coming

from a PSF of width 0.33σ, and 75% from a PSF of width 1σ. Following the

previous calculation, the optimal bin size is 0.764σ and the sensitivity parameter is

0.312/σ for the optimal binned analysis. For the weighted analyses the sensitivity

parameter is 0.489/σ, or a ∼ 56% improvement in sensitivity over the binned

analysis. This is the kind of improvement we expected from a weighted analysis

technique.

However, the improvement depends very much on the spectrum of PSFs, and

in special circumstances the improvement can be zero. To show that the 10%

improvement from a single Gaussian PSF is not a lower limit, consider a spectrum

of PSFs given by g(σ). The general problem of finding the signal in a round bin

becomes

N

∫∫ R

0

PSF (σ, r)g(σ)2πr dr dσ, (3.11)

and the signal in a weighted analysis becomes

N

∫∫
PSF 2(σ, r)g(σ)2πr dr dσ. (3.12)
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For a flat spectrum of Gaussian PSFs from width 0.1σ to width 1σ, the weighted

analysis gives less than a 7% improvement over the binned analysis despite the

wide range of PSFs used. In retrospect, this can be explained by reversing the

order of integration. By integrating the spectrum of PSFs first (over dσ), a com-

posite PSF can be obtained which has a distinctly non-Gaussian profile. By

choosing the appropriate PSF and spectrum, a composite PSF with a top-hat

profile could be generated, and in this extreme case the optimal binned analysis

would be just as effective as the weighted analyses. This can be seen by realizing

that the weighted analysis technique with a top-hat weighting function

Θ(
−→
4k) =

a
−→
4k < R

0
−→
4k ≥ R ,

(3.13)

is identical to a binned analysis. In Equation 3.13 R is the size of the bin and a is a

constant. Returning to the probability of a background fluctuation producing the

observed signal as defined in Equation 3.5, the top-hat weighting function leads

to g(w) = δ(aNobs) since all the events with a non-zero probability density have

a probability density of a. Consequently, the total observed probability density

wobs is deterministic and the first probability term is always equal to 1. The total

probability of the background producing the observed signal is solely determined

by the second term which is simply the Poisson probability of seeing Nobs events

inside a bin of radius R — exactly the same result as a binned analysis. It can

also be shown that the optimal weighting function to use in the weighted analysis

technique is the true PSF (Woodhams, 1989). Since the optimal weighting func-

tion is the true PSF, and the weighted analysis with a top-hat weighting function

is identical to a binned analysis, it follows that the sensitivity of a weighted anal-

ysis is never worse than a binned analysis, and would only be equal for a detector

with a top-hat composite PSF. In general, the less square the composite PSF is,

the more effective a weighted analysis will be.

One final topic we can explore with simple examples is model sensitivity. Re-

turning to the example with two Gaussian PSFs, we can compare the sensitivity

of both analyses to signals where all the signal events come from either the narrow

or wide PSFs while the expectation is still for a 25% – 75% division between the

PSFs. In these examples, the bin size or background distributions will be wrong,
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and we can explore how errors in the expected PSF affect the sensitivity of the

analysis. If the PSF of the signal is 0.33σ (all narrow PSF events), the weighted

analyses are more than twice as sensitive as the binned analysis (114% improve-

ment). At the opposite extreme, if the PSF of the signal is 1σ (all wide PSF

events), then the binned analysis is nearly 13% more effective than the weighted

analyses. This surprising result is because the weighted analysis techniques only

use information from a single position on the sky map to identify excesses. An

excess in photon probability at one location can be produced by either a few high

quality photons with narrow PSFs, or a larger number of poor quality photons

with wide PSFs. The weighted analyses determine the significance of a signal

by looking at only one position on the sky map and implicitly assuming that

the excess has the expected spatial distribution. Another way of looking at this

is that the power of the weighed analysis techniques comes from weighting the

events with the expected PSF. However, if the expected PSF is wrong, there can

be times when the expected optimal bin/top-hat PSF from a binned analysis hap-

pens to be more accurate than the expected PSF. This shows that there is some

model dependence in the weighted analysis technique which can be detrimental

in certain specific scenarios.

In the preceding examples the Pγ term from Equation 3.2 has been assumed

to be one. This is equivalent to a hard background cut which treats all events

passing the cut identically (Pγ = 0 or 1). The weighted analysis technique can

use an analog Pγ value instead of a hard cut, and this will magnify the sensitivity

advantage of the weighted analysis technique over a binned analysis. This can

be seen by observing that a background cut is equivalent to a 1-dimensional bin

in the cut parameter, and the same argument which showed that the sensitivity

of the weighted analysis technique is greater than or equal to that of the binned

analysis applies (if the correct PSF and Pγ distributions are used). In effect,

background rejection adds a third dimension to the analysis, and an optimal

binned analysis with a background cut uses a step-like probability distribution in

all three dimensions, whereas the weighted analysis uses the expected probability

distributions.

In general, the sensitivity of two analyses can only be compared using Monte

Carlo simulation and an expected signal. There are a number of subtleties which
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have been masked by the simplicity of these examples, including the effect of

fluctuations (on all parameters) in the limit of low statistics. For GRB searches,

the limit of large statistics does not hold and the similarity between Gaussian

weighting and the weighted analysis technique is broken. Gaussian weighting as

developed by Woodhams (1989) can only be used in the limit of large statistics,

and the weighted analysis technique can be seen as an extension of Gaussian

weighting to arbitrary PSF and the regime of Poisson statistics. Alexandreas

et al. (1993) performed a Monte Carlo simulation to compare the sensitivity of

maximum likelihood and optimal binned analyses, and for the simple case of a

single Gaussian PSF (see the first example in this section) they also observed a

∼ 10% improvement with maximum likelihood. This implies that the weighted

analysis technique is similar to the sensitivity of maximum likelihood in this limit.

The weighted analysis technique is more sensitive than the binned analysis for

much but not all of the possible phase space, and should approach the sensitivity

of well implemented maximum likelihood searches for at least some of the phase

space.

3.5 Summary

The weighted analysis technique fits a particular analysis niche. For discovery

mode GRB searches with variable PSF instruments, we want an analysis which

is fast and uses all available information. Binned analyses are very fast, but

sacrifice sensitivity by ignoring the variable PSF typical of wide-field gamma-ray

telescopes. Maximum likelihood techniques use all available information, and can

give valuable information like the estimated spectrum, but are computationally

slow. The weighted analysis technique is a compromise between binned and max-

imum likelihood techniques, landing somewhere in the middle on computational

speed, but like advanced likelihood techniques uses the event-by-event PSF and

Pγ information for source identification.
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Chapter 4

Characterizing the Milagro

Detector Response

4.1 Introduction

The sensitivity of the weighted analysis and maximum likelihood techniques

depends on how accurately the PSF of an individual event can be characterized

(see Section 3.4 and Appendix ??). Though there is some sensitivity to be gained

from determining the cumulative PSF of all events, this is not optimal because

the PSF varies from one event to the next. In sophisticated analyses such as

the weighted analysis and maximum likelihood techniques, the more event-by-

event information that can be supplied the more sensitive the analysis becomes,

particularly in the Poisson limit when the shape of a signal PSF will display

significant statistical variations. In this chapter I characterize the shape and

variations in the PSF and Pγ distributions seen in the Milagro observatory. This

characterization could be used in implementations of either the weighted analysis

technique or maximum likelihood, but was made with an eye towards the weighted

analysis implementation detailed in Chapter 5.
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4.2 The Problem

While the cumulative PSF can be easily determined from either Monte Carlo

simulations or data, characterizing the event-by-event variations in the PSF is

much more challenging. In particular, how do we know if we have an optimal

characterization of the event-by-event variations? For example, there may be

an observable (such as Cherenkov photon distribution in the bottom tube layer)

which would allow us to pick out a class of events with a very narrow PSF or sharp

Pγ distribution. By identifying this subset of events, we would have improved the

sensitivity of our analysis. But how do we go about formulating an optimal (or at

at least good) characterization of the event-by-event variations without knowing

which observables are important?

Obtaining an optimal detector characterization is particularly difficult for the

Milagro observatory because the detector response is driven by characteristics of

the shower which are not observed. In a satellite gamma-ray telescope such as

GLAST, the variations in the PSF are largely determined by the energy of the

incoming photon and the position in the detector of the first interaction, both of

which are well measured. Similarly, the PSF variations for Milagro are dominated

by the photon energy and position of first interaction in the atmosphere (both

height and distance of the core from the detector), but in Milagro’s case neither

of these shower characteristics are well determined.

The conclusion is that the characterization of Milagro will change as the detec-

tor is upgraded (see Section 2.7) and our understanding of detector response char-

acteristics improves. If we could observe the physical characteristics of a shower

which drive the detector response, we could formulate a near optimal character-

ization of the detector. Barring this, we are limited to trying to determine the

best characterization that we can from our current understanding of the detector.

This characterization will not be optimal and will evolve as our understanding of

the Milagro response characteristics improves.
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4.3 Identifying Regions

In general the PSF shape should be a continuous function of the event char-

acteristics. However, the implementation of the weighted analysis technique for

which we are developing this characterization uses PSF lookup tables to improve

computational speed (see Section 5.3). Thus we need to group events into a small

number “regions,” with a composite PSF for all the events in the same group. To

be effective, all the events in a given region should be very similar to minimize

the difference between the discrete regions and a continuous characterization of

the PSF shapes.

In determining the PSF regions, I decided to rely upon the data and not the

Monte Carlo simulations. Using the data has two advantages. First, because we

have a large quantity of Milagro data, statistics are not a problem as is often

the case with Monte Carlo simulations. Second, there have been concerns about

the accuracy of the Milagro simulations — particularly the early versions that

existed when this work was started — and data-based region finding is not biased

by problems in the Monte Carlo simulations. The disadvantage of using data

is that almost all of the Milagro data consists of background proton-initiated

showers, which may not have the same characteristics as the gamma-initiated

showers that we are really interested in. However, the uncertainties in the Monte

Carlo simulation outweighed the potential benefits during the region finding phase.

Subsequently, the gamma-based Monte Carlo simulation was compared the to the

data to ensure that the regions found by analyzing proton-dominated data samples

form a sensible way of grouping gamma-ray initiated showers.

To identify groups of similar events, I looked through the data in search of

patterns in the PSF. The measure I chose to characterize the PSF is called deleo/2.

In this measure, a shower is split into two separate events, one with the even

numbered tubes, and another with the odd numbered tubes.1 These two events

are then separately fit by the Milagro reconstruction algorithms, and the angular

difference between the two fits is called deleo. For normally distributed errors

with no systematic effects, deleo/2 is approximately equal to the PSF. Neither of

1In practice, the even/odd division explains the conceptual process and not the actual com-
puter code. The actual routine divides events into two even/odd groups in a checkerboard
pattern based on position rather than the channel number.
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these assumptions are true for Milagro, but they are close enough that this is still

a useful measure.

The best observables for capturing the variations in the PSF came from the

angle fitting routine, and are the reduced chi-squared of the fit, and a variable

called nFit. In the shower fitting routine currently in use, there is an iterative

fitting process. After an initial fit, tubes with times far from the initial fit are

removed from the event. The shower is then iteratively refit, with the criteria for

including a tube being gradually adjusted. The number of tubes used in the final

fit is called nFit, and serves as a measure of how many good tubes were available

to the shower fitting routine. The shower fitting routine works by performing a

chi-squared fit to a plane, and as such assumes symmetric errors, where the errors

are related to the number of photoelectrons observed by the tube (see Section

2.5 for a full description). It was discovered during this analysis that the errors

given to the fitting routine are artificially high by approximately a factor of three.

This does not affect the fitting in any way (chi-squared is still minimized), but

the reduced chi-squared values are an order of magnitude lower than expected.

Since the PSF of Milagro is symmetric, ~k−~ki in Equation 3.2 depends only on the

angular separation of the vectors. To aid the readability of the following discussion
~k− ~ki is replaced by the variable r, where r is the angular separation of ~k− ~ki in

degrees.

The deleo/2 distributions for any group of similar events had a characteristic

shape that was well described by the following function:

PSF (r) =
dP (r)

dΩ
=

{
a0

2π
e−r2/2a 2

1 +
a 2
3

2π
r < a2a

2
1

a0

2π
ea 2

2 a 2
1 /2e−a2r +

a 2
3

2π
r ≥ a2a

2
1

(4.1)

Qualitatively this function is a Gaussian which is smoothly joined to an expo-

nential at r = a2a
2
1 , with an additional “random” component (

a 2
3

2π
) for the small

subset of showers the reconstruction had difficulty fitting. An example of the fit

can be seen in Figure 4.1. Using this functional fit was useful because the fit

parameters captured the key characteristics more accurately than the median and

mode of the deleo/2 distributions.

In the reduced chi-squared vs. nFit space, the PSFs were determined by making

a histogram of deleo/2 for many very small areas, then fitting with the function 4.1.
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Figure 4.1: An example fit to ∂P (r)/∂r for a group of similar events.

Note that because the fits are performed as a function of ∂P (r)/∂r not ∂P (r)/∂Ω,

the peak of the function corresponds to the one sigma position of the space angle

PSF. Figure 4.2 shows the contour plot of the peak position of the functional fit.

There are clearly strong trends in the PSF width as a function of nFit and reduced

chi-squared, but neither nFit nor reduced chi-squared captures the variations on

its own. Figure 4.3 shows the overall distribution of event frequency. Note the

“double wing” structure, with ridges of high numbers of events running along

reduced chi-squared ∼ 0.10, and another ridge at very low nFit.

From examining the contour graph of the peak positions, there are natural

groups of events with similar PSF that run parallel to the contour lines. After

initial partitioning into regions by the contour lines, it was noticed that areas with

lower reduced chi-square tended to have smaller tails at high r values. These large

regions were better fit if they were divided into two separate areas. The locations

for these separations were determined by hand, but the best area for separation

was quite clear in most cases. Figure 4.4 shows the final region definitions.

After the region finding was done, the calibration for Milagro went through a

major upgrade. This did affect the distributions, but not in a meaningful way.

I thus decided to leave the region definitions the same. Figure 4.5 shows the
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Figure 4.2: A contour map of the PSF width (peak of ∂P (r)/∂r) in nFit vs.
reduced chi-squared space. Note the bands of events with similar PSF width.
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Figure 4.3: A contour map of the number of events in nFit vs. reduced chi-
squared space, where the contour lines follow a log2 spacing. Note the “double
wing” structure, with ridges of high numbers of events running along reduced
chi-squared ∼ 0.10, and another ridge at very low nFit.
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Figure 4.4: Definition of the 13 regions of events with similar PSF (numbered
0-12) shown with the peak position contours from the original calibrations.
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Figure 4.5: Definition of the 13 regions of events with similar PSF (numbered
0-12) shown with the peak position contours from the new version 53 calibrations.

same regions, but with contour lines from the new calibration. All of the re-

sults presented from here onwards will be in reference to the new set of detector

calibrations.

Figure 4.6 shows the function fits to the deleo/2 distributions for a few example

regions using the functional form of Equation 4.1. (For all regions see Figure B.1

in appendix B.) As can be seen here, the functional fits nicely match the data

within each region, and there are clear differences in the PSF from one region to

another.
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Figure 4.6: PSF fits to deleo/2 distributions for 4 of the 13 regions. The fit
parameters are displayed in the corner of each graph. The fits are not constrained
to be normalized, so that they accurately represent the PSF at each r. Note the
different scales on the horizontal axis.
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4.4 Determining the PSF Fits

Now that the regions characterizing the PSF have been chosen, we need to

analyze the behavior of the detector with respect to these regions and determine

the final PSFs to be used in the analysis. In particular, we need to compare the

results from the data-based region finding with the gamma-based Monte Carlo

simulation. This ends up being a sensitive test of the Milagro simulations and the

differences between proton and gamma initiated showers.

Since the data is dominated by background cosmic rays, the first concern is

that the regions found using the data are not effective for classifying gamma rays.

Unfortunately we do not have a strong gamma-ray signal to use, but must instead

rely on the Monte Carlo simulations to provide gamma-ray events. In addition,

most Milagro data analysis is done with a “compactness” requirement to help

separate gamma-ray and cosmic-ray-induced showers (Sinnis, 2001). This raises

the concern that the gamma-hadron separation could adversely affect the PSF

grouping developed in the last section. Figure 4.7 shows the deleo/2 distributions

for the data (black), Monte Carlo gammas (red), and the same Monte Carlo

gammas after a very hard compactness cut of 3.0 (blue). Though some of the

regions have very low statistics, the agreement between all three distributions is

quite good. This reassures us that the PSF regions depend principally on the

number and quality of data points used in the reconstruction, and not the species

of the initiating particle. Since the compactness cut had a minimal effect on the

deleo/2 distributions, and we can continue to treat the PSF classification and

gamma-hadron separation as independent problems.

So far we have used the measure deleo/2 to classify the PSF. However, because

the timing distributions are asymmetric and systematic effects are not included, we

don’t expect deleo/2 to be the true PSF. The reconstructed direction for the Monte

Carlo data can be compared to the true direction to get a direct determination

of the PSF. Figures 4.8 and 4.9 shows the data deleo/2 distributions in black,

and the Monte Carlo gamma-ray PSF distributions in red. Region 1 shows a

significant discrepancy, where the deleo/2 peaks near 0.35 degrees and the true

angle difference peaks closer to 0.9 degrees. Region 1 events have a large number

of tubes in the fit, but the higher than average chi-squared value indicates that the
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angle angle
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Figure 4.7: Examples of the deleo/2 distributions for 4 of the 13 regions. The
data distribution is in black, the Monte Carlo gamma initiated showers in red,
and the same Monte Carlo showers with a very hard compactness cut of 3.0 in
blue. The plots for all 13 regions can be seen in Figure B.3.
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angle fitter is having trouble with these events. In contrast, the PSF distribution

for region 0 events is slightly narrower than the deleo/2 distribution. This general

trend continues though the other regions. Remember that the even numbered

regions have low reduced chi-squared values, while the next higher odd numbered

regions have a similar deleo/2 distribution but higher reduced chi-square (see

Figure 4.5). Looking through the regions, the PSF is typically better than deleo/2

for the even regions, and worse than deleo/2 for the odd regions.

The argument can be made that even better regions could be found by tuning

on the Monte Carlo gammas. However, significantly better statistics would be

needed, with separate tuning and testing samples to avoid bias. We currently do

not have the computational resources needed to make a Monte Carlo sample of

the necessary size. It is encouraging that the regions based entirely on the deleo/2

distributions from data are finding clear differences in the Monte Carlo sample.

The final PSFs used in the analysis of Milagro data come from a mixture of

Monte Carlo and data distributions. For regions 0 – 7 the Monte Carlo distribu-

tions were used because they correctly capture the systematic errors. However,

as the number of tubes used by the angle fitter decreases the statistical errors

begin overwhelm the systematic errors. For regions 8 – 12, the Monte Carlo dis-

tributions agree well with the distributions from data (see Figure 4.9) and the

data-based distributions have much better statistics. Figure 4.10 shows examples

of the Monte Carlo based PSF distributions and the functional fits used to char-

acterize the final PSFs in regions 0 – 7, where Figure B.2 shows the fits based on

the deleo/2 distributions of the data and used for the final PSF distributions in

regions 8 – 12.

4.5 Determining the Pγ Distributions

In Milagro analyses to date, gamma-hadron separation has consisted of a global

cut, where some events are tagged as gamma-like and others as hadron-like. This

binary logic is necessary for binned analyses, but does not use all of the available

Pγ information (see Section 3.4). Because of Milagro’s poor signal-to-background

ratio, this binary logic tends to favor a very hard cut that throws out most of the

gamma-ray events along with most of the hadron events. In a weighted analysis,
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Figure 4.8: Deleo/2 for the data (black) vs. the angular reconstruction error for
Monte Carlo gamma-rays (red) for regions 0 – 5. Note that in the even regions
(with lower reduced chisquared) the Monte Carlo PSF is narrower than the data
deleo/2, while the Monte Carlo PSF is wider than the data deleo/2 for the odd
regions (having higher reduced chi-squared).
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Figure 4.9: Same as Figure 4.8 for regions 8 – 13.
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Figure 4.10: PSF fits to the gamma-ray Monte Carlo angle difference distributions
for 4 regions. The fit parameters are displayed in the corner of each graph. So that
they accurately represent the PSF at each distance, the fits are not constrained to
be normalized. Figures B.5 and B.6 show the PSF fits to the gamma-ray Monte
Carlo angle difference in all 13 regions.
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we want the probability that a given event is a gamma ray — this uses the quan-

titative information on how gamma-like events are and in theory allows use all of

the events.

Currently the most established gamma-hadron separation technique used in

Milagro is based on the “compactness” parameter.2 This parameter compares the

number of tubes in the muon layer with more than two photoelectrons to the high-

est number of photoelectrons observed in any single phototube in the muon layer.

A simplified way of thinking about this parameter is that it looks for penetrating

particles that deposit a large amount of light into a spot in the bottom layer.

A significant amount of the compactness parameter’s gamma-hadron separation

comes from the identification of muons which often accompany hadron initiated

showers.

Figure 4.11 shows the number of events as a function of the compactness

parameter for four of the regions defined in Section 4.3, with gamma-ray events

histogrammed in red and proton events in black. While the region-by-region

PSFs were largely independent of the compactness parameter, the compactness

distributions are clearly different from one region to the next. This indicates that

we need to determine the gamma probability separately for each region in order

to maximize the sensitivity.

One important subtlety in Figure 4.11 is the normalization. Regardless of

the compactness parameter, what is the probability that an event is a gamma

ray? If we are looking at a weak but steady source like the Crab pulsar, the

signal-to-noise ratio is very low and gamma rays are relatively unlikely. However,

for a millisecond gamma-ray burst, the time window is so short that background

noise is insignificant and proton initiated showers are very rare. In Figure 4.11

the gamma ray and proton showers have been globally normalized to one, so that

there are equal numbers of gamma-rays and protons. Equal weighting was chosen

in an effort to remain as unbiased as possible over intermediate time scales (40 sec.

– 3 hours). In these intermediate time scales we expect the signal to be strong,

but there is still significant background. A truly optimal source search would tune

this normalization to the expected signal strength.

An additional decision had to be made whether to normalize the distributions

2This is an active area of research, and there are several competing techniques.
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Compactness Compactness

Figure 4.11: The probability distributions for 4 example regions plotted as a
function of the compactness parameter for Monte Carlo protons (black) and Monte
Carlo gamma rays (red). The probability distributions are derived from the event
distributions by globally normalizing both the protons and gamma rays to one.
(See text for discussion of this normalization factor.) The distributions for all 13
regions can be seen in Figures B.7 and B.8.
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Figure 4.12: The fraction of the total number of gamma rays in each region is
indicated in red with the fraction of protons in each region indicated in black.
Note that gamma rays are relatively more common in the odd numbered regions.

globally or region-by-region. Global normalization was chosen because gamma-ray

events are more likely to appear in certain regions. Figure 4.12 shows the fraction

of gamma rays in each region. Notice that there are relatively more gamma-ray

induced showers in the odd numbered regions. This implies that the gamma-ray

events have characteristically higher reduced chi-squared values than the hadron

induced showers. Why the purely electromagnetic gamma-ray showers appear

noisier to the reconstruction algorithms is not understood.

The probability Pγ is the relative probability that a particular shower was

initiated by a photon as opposed to a proton. The data in Figure 4.11 is used

to calculate the relative probability by determining the fraction of showers ini-
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Compactness Compactness

Compactness Compactness

Figure 4.13: The Pγ distributions for four example regions with the associated fits
in blue. While the error bars are not show for legibility, they were used in the fit.
All 13 Pγ distributions, fits and fit parameters can be seen in Figure B.9.

tiated by gamma rays as a function of the compactness parameter. The result-

ing distributions are shown in Figure 4.13 and were fit to the function Pγ =

a2 − e−a1(compactness)+a0 as indicated by the blue lines. It is this fit to the distri-

butions which is used in the analysis. Note that the relative probability does not

reach one when separation is hard to achieve, as in region 6. In some cases the fit

exceeds one for high compactness values, and is truncated to a maximum of one

in the code.

Another subtlety arises due to the spectrum of the incoming gamma-rays. The

Monte Carlo files were generated using an E−2.4 spectrum for the gamma-rays and
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an E−2.7 spectrum for the protons. The proton spectrum is from measurement,

but a priori we do not know the spectrum of a signal. E−2.4 was chosen as being

“reasonable” and similar to the observed Crab spectrum and near the observed

MeV GRB spectrum of ∼ E−2.2 (Paciesas et al., 1999). This choice of spectrum

in the Monte Carlo simulation leads to a small spectral dependence in the source

search. A very different gamma-ray spectrum could affect both the number of

gamma-rays expected in each region (the normalization), and to a lesser extent the

compactness distributions in each region. This means that the search is optimized

for the Monte Carlo spectrum, though it is still sensitive to all incoming spectra.

4.6 Future Directions

It is expected that the details of the characterization of the Milagro observa-

tory will change, but the techniques for characterizing the detector will remain

relatively constant. In particular the completion of the outrigger field will sig-

nificantly improve both the angular reconstruction and the background rejection

capabilities of the Milagro detector. There are also a number of planned soft-

ware and hardware advances that should lower the energy threshold and improve

gamma-hadron separation. These changes in the performance of the detector must

be mirrored by updates in the detector characterization.

This characterization of Milagro should apply equally well for both the weighted

analysis technique and a maximum likelihood analysis. With an adjustment of

the expected number of signal events used in the Pγ formulation, this character-

ization could be used by a maximum likelihood analysis to extract the spectral

parameters of a steady source and other precision measurements.
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Chapter 5

Implementing the Weighted

Analysis Technique in Milagro

5.1 Introduction

Implementing the weighted analysis technique for use as a GRB search in

Milagro became a significant programming task, with more than seven thousand

lines of code. When implementing any analysis, there are always trade-offs, and

the quality of an implementation is often in the details of the code and which trade-

offs were made. Because a real-time GRB search needs to be computationally fast,

there are many areas where code simplicity was sacrificed in favor of speed. The

next two chapters detail my implementation of the weighted analysis technique,

and the approximations that were made.

The weighted analysis technique can be applied to both transient and steady

source signals, and many parts of the code are common to both types of analyses.

For this reason the code base is partitioned into two separate pieces. The weighted

analysis framework contains all of the generic code that is common to all analyses

such as building sky maps and background maps, adding maps together, identi-

fying signals, etc. Individual analyses must still determine which events and PSF

distributions to use, and when to add maps or search for signals. The weighted

analysis framework contains about 3700 lines of code, and does most of the hard

computational work. The amount of code needed to convert this framework into
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a full analysis depends on the type of analysis to be performed. A steady source

analysis using cleaned data may be a single page of code — just enough to or-

ganize the adding of events and when to perform source searches. In contrast,

the online GRB search program with its real time requirements, on the fly event

selection, and multi-threaded concurrent searches is nearly three thousand lines

of additional code. This chapter describes the implementation of the analysis

framework, with the next chapter concentrating on turning this framework into a

real-time GRB search.

5.2 Introduction to Object-Oriented Program-

ming

All of the code discussed in this chapter and the next uses advanced object-

oriented programming (OOP) techniques and is written in the Objective-C com-

puter language. Objective-C is compiled by the standard gcc compiler and sim-

ply adds some OOP abilities to the standard C programming language. I chose

Objective-C because there is a sophisticated standard library for Objective-C

which greatly reduced the amount of code that needed to be written.

There is one idea from OOP that needs to be briefly explained before the

implementation of the weighted analysis is discussed — the idea of an “object.”

A programming object can be though of as a little autonomous mini-program,

which is designed to mimic some real world object. The idea is to create many

little programs, and then tie the pieces together with “messages” which are sent

from one object to another. For example, I can write an object (also called a class)

called photon that is designed to represent one shower. Now in my main program

I can create a photon object (give me a new photon with right ascension...), ask it

questions (what is your declination?), give it commands (save a copy of yourself

to disk), or even destroy the photon object. Programming becomes a task of

managing the communication among many small independent objects. For a

large program like the GRB Search, I have a different object for every important

concept, such as sky maps, background maps, or photons. I can then read in

a data file and create a few hundred photon objects (one for each event), put
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them into an array object (a useful object from the standard library), then hand

the array of events to the sky map object with the directive “add this array of

photons to the sky map,” at which point the sky map object will ask each photon

for its position, PSF, and other characteristics, and add the appropriate weights

to the sky map. One advantage of this kind of programming is that an object

can be thoroughly tested in a simple test program, and when it is used in the

main program it is guaranteed to behave in exactly the same way. (This is code

proving.) The framework that I describe in this chapter covers the objects which

are needed to perform a weighted analysis (sky maps, background maps, etc.).

These objects can then be tied together in different ways, and in the next chapter

I describe how they are assembled to perform an advanced real-time GRB search in

Milagro. For an superb conceptual introduction to object-oriented programming

(for any language) read the second chapter of the online book Object-Oriented

Programming and the Objective-C Language (Apple Computer, 1993).

5.3 Building a Sky Map

The heart of the weighted analysis technique is building a digitized sky map

from a sum of PSFs, and the skyMap object is designed to perform this task (see

Section 3.2). There are two required pieces of information for every sampled sky

map location – the sum of the weights (Equation 3.3), and the number of events

used to make the sum (see Equation 3.6). In addition, it is useful to retain the

exposure as a function of sidereal time, again as both a weighted sum (sum of Pγ)

and as a simple event count. The key information for the sky map is contained in

a two dimensional array of sky map locations — with each array entry containing

a weight and number of showers — and an array of the sidereal exposure — again

with each entry containing a weight and number of showers.

In this implementation the sampling pattern of sky map locations is equally

spaced in right ascension and declination. This sampling pattern was chosen to

simplify the implementation of the direct integration background method, where

a distribution of events in local coordinates and the sidereal exposure are used to

create an expected background distribution (see the next section). Sampling in

equal right ascension and declination steps leads to regions near the pole contain-
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Region 0 1 2 3 4 5 6 7 8 9 10 11 12
Cutoff 2.0 3.0 3.0 3.0 3.5 3.5 3.5 4.0 4.0 4.0 4.0 4.0 4.0

Table 5.1: The distance in degrees at which each PSF is truncated in the current
Milagro characterization (see Chapter 4). The truncation was chosen to be where
the probability density became negligible or four degrees, whichever was smaller.

ing much denser sampling than near the equator in the right ascension dimension.

Since we are sampling at points, as opposed to integrating over pixels, this over-

sampling near the pole does not hurt us as long as we make sure the sampling

distance near the equator is small compared to the smallest PSF. The skyMap

object is hard wired to use the equal spacing in right ascension and declination,

but the size of the spacing is a variable that can be set by the user to match the

PSFs under consideration.

In general, for each shower we need to determine the distance from the recon-

structed position to each sampling location, determine the weight of the PSF at

that distance, and add it to the sky map. In practice, the PSFs are truncated

at some distance so that only nearby sampling locations need to be considered.

Table 5.1 lists the truncation distances for all 13 PSF regions used in the current

detector characterization (see Chapter 4). When a PSF is truncated it is not

renormalized. Renormalizing the PSF would incorrectly give too high of a weight

to events of very poor resolution — the PSF distribution should accurately repre-

sent the probability density of an event’s true position being at that distance. Not

renormalizing, but simply setting the probability density to zero at some distance

is equivalent to only keeping showers within a predetermined radius. Even with

this truncation it is typical to have ∼ 400 locations which need to be updated

for each incoming shower. Clearly, repeatedly calculating the distance and PSF

weight for each location would present an enormous computational overhead. To

mitigate the computational load, a series of small approximations has been made

which allow the tabulation of the distance and PSF values into lookup tables.

These lookup tables can then be used to rapidly add weights to the sky map.

The first approximation is to quantize the shower arrival positions in right

ascension and declination. Instead of using the full floating point value of right

ascension and declination provided by the angular reconstruction, the value is
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rounded to some set precision (user determined). For a event of a given decli-

nation, the distance to a sampling point can now only take a small set of values

instead of an infinite number, and this set of possible distances can then be used

in building lookup tables. Digitizing the possible arrival positions is equivalent

to adding a small amount of noise and slightly widening the PSF distributions.

The amount of PSF widening can be minimized by making the digitization of

arrival positions very small compared to the smallest PSF. Digitizing the arrival

positions enables an enormous increase in computational speed, with the precision

only being limited by the available computer memory for storing lookup tables.

A finer position digitization makes for a larger lookup table, but does not impact

the speed of the skyMap algorithm.

For a given declination, there is a predetermined set of distances to the nearby

sampling locations. However, because the sampling becomes denser approaching

the pole, a different set of distances is needed to for each declination. Using the

azimuthal symmetry of the PSFs, a given distance corresponds to a particular

PSF weight. We can then envision making a 4 dimensional lookup table that

contains templates for all of the weights to be used. Given a declination and a

PSF (2 dimensions), there would be a corresponding two dimensional template

of the PSF weights that can be directly added to the sky. Basically, for a given

declination and PSF we know the pattern of weights that must be added to the

sky, and this information can be stored in a lookup table.

The four dimensional lookup table presented above can become enormous,

so in practice there are several tricks used to reduce memory usage. Because

the PSFs are azimuthally symmetric, the templates are symmetric around their

centers in right ascension. In the lookup tables only half of the template is stored,

then mirrored on the fly when added to the sky map. Additionally, changing

the declination by one sampling spacing introduces a negligible change in the

distances used to create the templates. Allowing for sparse filling of the lookup

table in declination can greatly reduce the memory footprint. Using a template for

a nearby declination adds a very small amount of noise and is equivalent to adding

a small additional widening of the PSF. Again, the sparseness of the declination

sampling can be set by the user. A standard analysis of Milagro data with typical

values of photon position digitization and declination undersampling will produce
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a ∼ 100 MByte lookup table. Given that the computational speed increase, the

cost of ∼ 100 MByte memory and the associated code complexity is a small price

to pay for the performance gain.

The basic layout of the skyMap object consists of three memory structures: the

sky map, the sidereal exposure, and the lookup table. When the skyMap object

is first created, the user must determine the spacing of the sampling locations,

the digitization of the photon positions, and the declination undersampling to

be used in the lookup table. The user then gives the skyMap object a set of

PSFs to be used. The skyMap object uses this information to allocate the sky

map and sidereal exposure arrays and build the lookup table (this table can be

given to another skyMap object, so it only needs to be created once). Once this

initialization is complete, the sky map and sidereal exposure can be formed by

adding events. For every shower, the declination and PSF region is used to select

the appropriate template from the lookup table. This template is then multiplied

by the probability that the event really is a photon (Pγ) and added to the sky map.

Pγ is also added to the sidereal exposure, and then the process is repeated for the

next event. Adding showers to the sky map is the most time consuming part of

the weighted analysis technique, and is why the weighted analysis technique is 2

– 8 times slower than a comparable binned analysis.

5.4 Building a Background Map

The background calculation used in this implementation of the weighted anal-

ysis technique is a variation on the background map method (Alexandreas et al.,

1993) called direct integration. The background map methods of background de-

termination are based on the idea that if the data is background dominated, a long

exposure in local coordinates will accurately represent the average distribution of

the background seen by the detector. Any signal contribution to the local coordi-

nate map should be minimal because steady sources are diluted by their motion

across the sky and transient sources will be buried in the long exposure time. This

allows us to assume that the expected probability distribution of the background

in local coordinates is proportional to the event distribution observed in local co-

ordinates Eb(θ, ϕ, t). The method of direct integration can be used when the time
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variation of Eb(θ, ϕ, t) is due almost entirely to changes in the rate Rb(t), with

the local event distribution Eb(θ, ϕ) remaining nearly constant with time. In this

approximation, the probability distribution for a single background event can be

found by normalizing the local event distribution (Pb(θ, ϕ) = Eb(θ, ϕ)/Nb where

Nb =
∫
Rb(t)dt). The expected background distribution in celestial coordinates

P ′obs(RA,DEC) for an observation of any length can then be determined by in-

tegrating the normalized local probability distribution times the observed all-sky

rate during the source interval Robs(t), and the transfer function that maps the

local position and time to right ascension and declination T (θ, ϕ, t→ RA,DEC):

P ′obs(RA,DEC) =

∫
Eb(θ, ϕ)

Nb

Robs(t)T (θ, ϕ, t→ RA,DEC) dt (5.1)

In essence, the local map is used to determine the probability distribution for a

single background event, which is then integrated with the all-sky rate observed

during the source time to produce the expected background in celestial coordi-

nates. This is equivalent to smearing the expected spatial distribution of events

in local coordinates across the observed sky in RA and DEC, with the normaliza-

tion of the local distribution tracking the observed event rate. This process works

equally well for both a smooth probability distribution and a binned analysis —

the definitions of Pb(θ, ϕ), Nb, R(t) just change slightly. Because the observed sky

map contains both the smooth probability distribution and a binned component

from the number of events used in the sum, Equation 5.1 is used twice — once

for the photon probability density and once for the number of showers.

In practice the angular distribution of events “breathes” with diurnal variations

(Fleysher & Nemethy, 2001) and changes in overburden. However, these changes

are slow, and the Pb(θ, ϕ) distribution is constant on time scales of 2 hours or

less. When used in an analysis, this time variation in the local distributions must

be taken into account and the Pb(θ, ϕ) distribution recalculated at least every 2

hours.

In this computational framework the background calculation is performed by

the localMap object and represented in the backgroundMap object. When events

are added to the localMap object to form an Eb(θ, ϕ) distribution, the addition of

the events is identical to the process described for the skyMap object, except that

the sidereal time in degrees is subtracted from the right ascension. In essence this
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makes a sky map in right ascension and hour angle coordinates which represents

what the sky looks like in coordinates local to the detector.

The local and sky maps are digitized in right ascension and declination to

create a discrete symmetry in right ascension. Rotating the sky one right ascension

sampling distance causes the sampling pattern on the sky to repeat, and this

symmetry is used to efficiently build the expected background distribution from

the local coordinate map. To exploit this symmetry, the sidereal exposure is

digitized into the same number of bins as the number of sky map samples in

right ascension. Thus every sidereal time bin corresponds to the right ascension

of detector zenith at that time and is aligned with one of the sky map sampling

positions. This allows equation 5.1 to be integrated by summing over the sidereal

time bins and adding the result to the background map.

5.5 Identifying Signals

The backgroundMap object is the last major piece of the weighted analysis

framework and is used for source identification. The key to source identification

is to compare the signal and background maps, and calculate the probability that

the observed signal could be produced by the background. For this implementation

of the weighted analysis technique this probability is given by equation 3.6:

P (w ≥ wobs|g(w,Nobs, ~k))P (N ≥ Nobs|Nexp). (5.2)

(see Source Identification, Chapter 3).

The Poisson probability term can be calculated in a number of ways, and in

this implementation a slightly modified algorithm from “Numerical Recipes in

C” (Press et al., 1988) is used to determine an iterative approximation. Calcu-

lating the integral Poisson probability is a relatively slow process and could be

accelerated by using a large two dimensional lookup table, but for simplicity this

implementation currently recalculates the Poisson probability for every position.

The value calculated is actually log10 the integral Poisson probability to speed

computation and avoid the floating point errors that creep in with very small

values.
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The weight probability can be measured from the observed background dis-

tribution, though several subtleties must be considered. For a given spectrum

of weights, the probability distribution of the average weight will narrow with

increased Nobs. As the number of events becomes very large the central limit

theorem applies and the distribution becomes Gaussian distributed around the

mean. However, for small Nobs the probability distribution is far from Gaussian

and must be calculated with care (see Figure 5.1 for example distributions). For

Milagro the observed spectrum of weights is very constant over the field of view

and steady in time. This allows P (w≥wobs|g(w,Nobs)) to be calculated once and

loaded into a lookup table that can be used for all zenith angles and observa-

tion times. The average weight is used instead of the total weight to simplify a

number of computations in the code, though the two are statistically identical

(w̄ ≡ w/Nobs and P (w≥wobs|g(w,Nobs)) ≡ P (w̄≥ w̄obs|g(w,Nobs)) ).

A pair of auxiliary programs are used to measure the weight spectrum and cal-

culate the P (w̄≥ w̄obs|g(w,Nobs)) distribution. The weight spectrum g(w,Nobs =

1) is measured using a modified version of the analysis and the SkyMapStat ob-

ject. The SkyMapStat object is identical to the skyMap object discussed earlier in

this chapter, but instead of adding weights to the sky map, records these weights

in a histogram. Running over a few hours of data using the main analysis but

with SkyMapStat substituted for skyMap produces an extremely accurate mea-

surement of the weight spectrum used. This weight spectrum is proportional to

the weight probability distribution for a single event (P (w̄|g(w,Nobs = 1))).

In order to convert this weight probability distribution into P (w̄|g(w,Nobs))

for all Nobs we need to iteratively convolve the observed spectrum. The process

is exactly analogous to calculating the probability distribution for the sum of

N dice. The probability of throwing any given sum (or average) is the sum of

all permutations which lead to this sum, weighted by the probability of each

permutation. It is straightforward to calculate this distribution for successive

values of N , and this is done in the probConvolution program. The probability

that we are interested in is really the integral probability of seeing a weight greater

than the weight observed (P (w̄≥ w̄obs|g(w,Nobs))). The probConvolution program

outputs files with the log10 of the integral probability — with one file for each Nobs

— and these files are used to build a lookup table used by the backgroundMap
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Number Observed = 1 Number Observed = 8

Number Observed = 256 Number Observed = 16,384

Figure 5.1: These plots are examples of the P (w̄|g(w,Nobs)) distributions for four
selected Nobs values from a representative set of background data. Note that both
the horizontal and vertical scales change dramatically from one plot to the next as
the distribution of w̄ narrows, and the red line for the Nobs = 16, 384 plot shows
a Gaussian fit covering 41 orders of magnitude in probability. The Gaussian
approximation is not used until Nobs > 30, 000 to allow the approximation to
become more exact.
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object for source identification.

To save memory and computational time the Nobs of P (w̄≥ w̄obs|g(w,Nobs)) is

sparsely sampled in regions where the probability distribution is changing slowly.

In current usage, all Nobs from 1-300 are calculated, then every 10th Nobs from 300

– 3,000 and every 100th Nobs from 3,000 – 30,000. After Nobs = 30,000 we have

entered the Gaussian regime, and probabilities are determined from the measured

width of the Gaussian distribution (see Figure 5.1 for example distributions).

The basic search algorithm compares the weight and number of events ob-

served in the signal map to the expected values in the background map for each

sampling location. The integral log probability of observing the signal weight is

obtained from the internal lookup table, and the integral log Poisson probability

of seeing N≥Nobs given the Nexp in the background is determined using the Nu-

merical Recipes algorithm. The sum of these log probabilities gives the total log

probability of a background fluctuation producing the observed signal.

One complication that arises for large Nobs is that the shape of the probability

distribution is very stable but the mean wanders slightly with changes in the

detector. As the probability distributions become very narrow any error in the

mean becomes significant. For this reason when Nobs > 300 the weight observed

in the background map is used as the true current mean of the distribution in

order to correct for minor temporal or spatial variations in the mean. This is

accomplished by adding the difference between wobs and wexp to the mean w from

the lookup table to form w′obs, which is insensitive to changes in the observed

mean. For Nobs > 300, w′obs is used to determine the probability from the internal

lookup table.

A technique that can be used to speed up the search process is sparse searching

of the sky map. Because the sky map is densely sampled, any signal appears in

several neighboring sample locations. The sky map can be searched on a sparse

grid eliminating the large areas of the sky map where nothing of interest appears,

with complete sampling of areas which show significant positive fluctuations. The

backgroundMap object can be told what probability the user considers “interest-

ing.” It will search every third location in both right ascension and declination,

then analyze all locations which are near a position within four orders of magni-

tude of “interesting.” This algorithm finds all significant signals while substantially
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increasing the speed of the search. The backgroundMap object will also search all

locations upon user request.

5.6 Examples

Though the full performance of the analysis will be analyzed in Chapter 8, it

would be nice to know that the weighted analysis framework is identifying signals

as expected. To that end, I will briefly review the results of two analyses which

have used this weighted analysis framework.

Figure 5.2 shows the results for the background fluctuations seen in four time

scales of the GRB search algorithm over ∼ 16 hours of data. Note the expected

power-law distribution of fluctuations and the similarity of the distributions for

all four timescales. However the slope of the distributions is not 1, as expected

but ∼ 0.90. The flattening of the probability distribution is caused by the ap-

proximations made in Equation 3.6, and can be easily corrected by multiplying

the log10 probability by the observed slope of the background distribution (see

Appendix A for details).

The background distributions in Figure 5.2 show that the probabilities are rea-

sonably calculated, but a signal is required to test the sensitivity of the technique

and assure ourselves that gamma-ray signals will be correctly identified. To this

end an analysis for long duration sources using the weighted analysis framework

was developed and used to analyze 2.5 months of data during the winter 2000

flare of Mrk421. This analysis used the Pγ distributions developed for the GRB

search (see Chapter 3), and thus was optimized for short bright sources instead of

the long relatively dim source analyzed here, and should be more sensitive if an

optimized Pγ distribution was used. Nevertheless, the weighted analysis detected

a 4.3 sigma signal1 at the position of Mrk421. This can be roughly compared to

the standard optimal bin search which detects a 4.1 sigma signal when using a

compactness cut optimized for DC searches (compactness > 2.5). Because of the

disparate techniques, the two analyses are largely independent and the fluctua-

tions should be weakly correlated. Thus the two analyses give surprisingly close

agreement – well within the 1 sigma errors – and no conclusions can be drawn

1The significance has been corrected for the approximations made in Equation 3.6.
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Figure 5.2: Histogram of the probability distribution of background fluctuations
observed in four time scales of the GRB search algorithm over ∼ 16 hours of
searching.
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as to which analysis is more sensitive. However, we can conclude that this im-

plementation of the weighted analysis technique is working as expected, and is

sensitive to gamma-ray sources.
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Chapter 6

Gamma-Ray Burst Search

Procedure

6.1 Introduction

The complete Milagro transient observation program consists of three separate

analyses which are used to identify all TeV signals from 250 µs duration to steady

state. On the short time scales Milagro is signal limited and the apparent motion

of the sky becomes negligible. Andrew Smith has developed a very fast optimal

bin analysis for the 250 µs – 40 s region which uses no background rejection and

stationary sky and background maps (Smith, 2001). The search described in this

thesis uses the weighted analysis framework to identify moderate duration TeV

signals of 40 seconds to 3 hours duration. In this middle region the background

is comparable to the signal strength for a threshold detection and the apparent

motion of the sky must be taken into account. For long time scales Milagro

becomes background dominated and the science focus shifts from GRBs to flaring

active galactic nuclei (AGN). Elizabeth Hayes is analyzing signals from 2 hours

duration to steady state using an optimal bin search and aggressive background

rejection techniques. All three searches overlap to ensure complete coverage from

250 µs to steady state and to allow cross-checking on unusual fluctuations.

This chapter describes the 40 second to 3 hour search and the use of the

weighted analysis technique to search for TeV transients. This search consists of
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a large number of independent pieces, each performing a specific task in the GRB

search process. Performance was a principal concern in developing this analysis,

and so there are several advanced computing techniques which are employed. Us-

ing the strength of the Objective-C language allows different programs to easily

communicate with one another. This can speed computation by allowing two

separate programs to work on different CPUs or even separate computers, while

synchronizing the work they perform. A related idea is the concept of a program-

ming “thread.” A thread acts just like an independent program, except that it

shares the memory space with the parent program and any sibling threads. By

sharing the memory space, look-up tables and other memory intensive storage can

be easily shared between threads of the same program, even as the threads are

performing their work on different CPUs within the computer. In this analysis

there are two independent programs, and including the threads, twelve separate

execution loops all working simultaneously through the data.

Figure 6.1 shows a schematic layout for the search programs, which divide into

four functional parts. The first thread to analyze the data is ReadGRBData which

is responsible for reading the data as it becomes available; determining the PSF

region and weight for each shower; checking, cleaning and applying cuts to the

data; and then giving it to the GRBMaster thread in 20 s blocks. The GRBMaster

is responsible for maintaining the local map, managing the starting/stopping and

reporting of the other threads in the program (thus the GRBMaster name), and

building 20 second sky and background maps which are given to the third step in

the analysis — the chain of GRBHunter threads. The GRBHunter threads form

long duration maps by adding together shorter maps before searching for transient

signals, with each consecutive thread looking for transients of successively longer

duration. If any of the GRBHunter threads identifies a candidate signal, the

position and time of the signal is sent to the separate SignalResponder program

for final processing. The SignalResponder compiles the candidate signals and

manages the e-mail reporting process. In each section of this chapter I detail one

of the four pieces of the analysis chain and the duties and design of that stage of

the analysis.
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GRBMain

Initializes the GRBMaster
object and schedules
when reports will be
archived - this is the main
process for the
GRBSearch program, with
GRBReadData and
GRBHunters running as
sub -threads. GRBHunter - 40 sec.

Each of the 9 hunters adds
2 sky and background maps,
and searches the resulting
map for a signal. Whenever
a unique composite map is
created it is given to the next
GRBHunter.  If any hunter
finds a signal below a
threshold probability, it sends
a message with the position
and time to the Signal
Responder program.

GRBHunter - 80 sec.

GRBHunter - 160 sec.

GRBHunter - 320 sec.

GRBHunter - 10.7 min.

GRBHunter - 21.3 min.

GRBHunter - 42.7 min.

GRBHunter - 85.3 min.

GRBHunter - 170.7 min.
Signal Responder

The separate SignalResponder program
collects the signals identified by the
GRBHunters. Since a strong signal will be
identified in multiple searches, they are grouped
and sorted to form one notification. If the signal
crosses a set threshold a GRB alert is sent
out, triggering the saving of raw data and
alerting me and the current shift person.

E-mail Alerts

GRBReadData

This process is
responsible for
reading data from
the disk, applying
cuts, determining
the PSF and
weight to use,
identifying and
removing data
errors. When the
events are given to
GRBMaster they
will all be in order
and “good” events.
If a bad block of
data is identified a
reset message is
sent to
GRBMaster to
start a
reinitialization of
the search.

GRBMaster

During Startup starts
all 9 of the
GRBHunter threads,
the SignalResponder
program if it is not
already running, and
the ReadGRBData
thread to read in the
information.

During normal
running, this thread
is responsible for
adding showers to
the signal and local
maps in 20 second
intervals, producing
the background map,
and handing the
signal and
background maps to
the first GRBHunter
(40 second search).
This thread also
organizes the
archiving of run
histograms,
startup/shutdown,
and other run
management.

Legend

Program

Object

Information Flow

Figure 6.1: Conceptual diagram of the programs used to perform the 40 s – 3 hour
TeV transient search. The dashed boxes surround the two independent programs,
with the solid boxes indicating separate threads and the blue arrows showing the
flow of information through the analysis.
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6.2 Data Reading and Event Selection

Because this is a real-time analysis with rapid notification, particular care

must be given to event selection and identifying unusual detector conditions. In

many archival analyses, times when the detector was working poorly or in an

unusual state (calibration or engineering modes, equipment failures, DAQ bugs,

etc.) are filtered out before the analysis is performed. However, to identify and

report transients as rapidly as possible we need to filter out these conditions as

they occur. As my office mate Lowell Boone says, “Computers combine absolute

stupidity with absolute patience,” and are perfectly content to send thousands of

GRB alerts if defective data is handed in. The main jobs of the ReadGRBData

thread are to read the data, identify defective data, and prepare the events for

further processing.

A significant upgrade of the Milagro DAQ system is planned, and the data

reading routine has been designed with this upgrade in mind. Currently data is

written to disk in ∼4 minute segments called subruns. Once a subrun data file

is complete, it is copied from the DAQ computer to the online analysis cluster,

and a link to the subrun is put in the data folder of each of the online analy-

ses. ReadGRBData polls the data folder for the 40 second – 3 hour search, and

identifies and starts analyzing a subrun within 30 seconds of it being copied to

the analysis cluster. In total there is a typical delay of 2 – 5 minutes until the

data is analyzed online. After the DAQ computer is replaced we plan to go to a

port system where the data is passed directly to the online analyses through the

network, cutting this latency to under one second. Though this cannot be fully

implemented until the DAQ changeover is complete, changing a few lines of code

will enable ReadGRBData to pull the data from a port instead of a file.

Once the data is read in, it passes through two tiers of quality filters. The first

set of filters analyzes individual showers and is designed to provide a uniform set

of events while removing showers with obvious defects. The second set of filters

looks at groups of events, and is designed to identify more complex problems such

as bad DAQ reads and unstable detector modes.

The event level filters select showers with zenith angles less than 45 degrees,

no GPS read errors, and a multiplicity of ≥53 tubes in the air shower layer. In
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addition the PSF region and Pγ values are determined, and region 12 events (very

wide PSF) and showers with a Pγ < 0.5 are removed. The Pγ cut serves only

to reduce the computational load by removing events which are almost definitely

background events. All of the event cuts must be included when the weight

spectrum is calculated, because they have a significant impact on the weights

used by the analysis (see Section 5.5).

The second tier of event filters is significantly more complex, and tries to catch

some of the odd errors that are seen in the data. These filters work by analyzing

the global properties of a group of showers, such as the event rate and time order.

To catch errors that happen to coincide with the 20 second block boundaries

(such as data gaps, out of order events, etc.), the initial analysis is performed on

approximately 80 seconds worth of data in a revolving buffer. Once the events in

the ∼80 second buffer have been checked for time errors, 20 seconds of the oldest

events are removed to form a data block and more data is read in to refill the 80

second buffer.

Though the frequency of problems has dropped with successive DAQ software

upgrades, there have been times when events have had erroneous times, are out

of time order, or repeated. To try and filter out these errors it is assumed that

most of the showers are good, and that the errors will typically be large. All the

showers in the ∼80 second buffer are sorted into time order, and any events with

duplicate times or times farther than 60 seconds from the median are removed.

This removes events which have gross time errors, while ignoring possible time

errors of a few tens of seconds.

Most major problems with the detector can be identified by an unusual event

rate or sudden step in the event rate. After sorting and removing the outlying

events, we have a nice clean set of events covering an 80 second interval. Now

the event rate can be accurately calculated without fear of contamination from

defective events. After a 20-second data block is formed, the rate for the data

block is calculated and used in the final set of filters.

The first cut in this filter set requires the event rate within a 20-second data

block to be within the 1200 – 2200 showers/second range typical of normal oper-

ation. This filter is fairly loose to allow for the large but slow rate fluctuations

caused by variations in atmospheric pressure, snow and rain accumulation, or the
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formation of reflective ice under the Milagro cover. Despite the wide range of

accepted rates, this cut is quite effective at filtering out many unusual problems,

such as test runs or low voltage power supply failures. Since small data dropouts

of a few seconds duration are fairly common, one data block with a bad rate only

causes the 80-second data buffer to be discarded. If 10 or more bad blocks occur

in succession, we have definitely entered a bad data taking mode and a full reset

of the entire GRB search is performed, including all sky maps and background

information.

Most detector changes are not severe enough to fall outside of the rate window

used above, but instead cause a step in the event rate. These steps are usually

due to a sudden change in the detector configuration — such as the loss of a patch

of 16 tubes1 — and since the detector configuration has changed the background

distributions need to be updated. To identify these steps, the average rate ob-

served during the last seven 20-second data blocks is compared to the data rate in

the current 20-second data block, and a deviation greater than 7.5σ triggers a full

reset of the GRB search. The bar for a reset is set as high as it is to make acciden-

tal resets rare, since a full reset requires rebuilding the background distributions

and the long timescale sky maps.

6.3 Building Sky and Background Maps

The GRBMaster thread is responsible for building 20-second sky and back-

ground maps from the data blocks generated by ReadGRBData (see Figure 6.1).

This is in many ways the heart of the analysis, with the sky and background maps

produced here being handed to the GRBHunter chain for source identification.

One of the most important jobs of the GRBMaster thread is to manage the

local map representation which is used in determining the background map. The

local map must contain enough data to accurately represent the local event dis-

tribution, but have a duration short enough to allow for slow variations in the

distribution (see Section 5.4). The first 10 minutes of data is used to initialize the

1Typically this is caused by water leaking into the connector between the photomultiplier
base and the RG-59 cable on one tube and tripping the high voltage for that patch of 16 tubes.
Depending on the time of day, it is usually a few hours until the bad tube can be disconnected
and the high voltage reset.
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local map. Because the local map is needed to generate the background maps, we

cannot effectively analyze data until the local map is formed, and 10 minutes is

deemed the minimum amount of data needed to make a reasonable determination

of the background event distribution. As data continues to come in it is added

to the local map until 2 hours of data has accumulated. At this point we need to

limit the integration time of the local map so that it can respond to slow changes

the in the experiment. After 2 hours, the local map exposure is kept constant by

removing showers more than 2 hours old while continuing to add the new events.

On initial startup of the GRB search, or after a reset, the first 10 minutes of

data is used to build up an initial local map, and no sky or background maps are

generated. After this initialization period, each 20-second data block is used to

generate a new sky map and to update the local map. The current local map is

then used to generate a background map to match the sky map, and the 20-second

sky and background maps are given to the 40-second GRB hunter to search for

excesses. As more data comes in the local map representation improves until

2 hours of data has accumulated, at which point the 2-hour-old data block is

subtracted for each new data block which is added.

Ideally, the local map exposure would be centered around the signal exposure

to allow linear changes in the local event distribution to average out. However,

in the GRB search we need to analyze the data immediately to generate prompt

GRB notifications. The GRBMaster local map contains the past 2 hours of data,

so the local map exposure is not centered around the signal map exposure and

linear changes in the local event distribution do not average out. In practice the

detector changes are small enough that this has not been an issue, however, a

follow-up analysis would almost certainly want to use centered local maps to limit

this effect.

6.4 Searching For Transient TeV Signals

The sky and background maps generated by the GRBMaster thread are given

to a chain of GRBHunters as shown in Figure 6.1. The GRBHunter threads

are arranged in series, with the first hunter searching for signals on 40-second

time scales, and each of the subsequent 8 GRBHunters analyzing a time scale
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exactly twice as long (80 s, 160 s, 320 s, ...). Sky and background maps of the

appropriate exposure length are created by adding together shorter duration maps,

then searching the composite maps for a signal. When a signal is identified by

a hunter, the position, time, and duration of the candidate signal is sent to the

SignalResponder program, which handles the GRB notification process.

The first task of a hunter is to create a composite map of the appropriate time

scale. The maps handed in to a GRBHunter are half the length of the timescale

to be searched, so 2 sky maps and 2 background maps are stored in first-in first-

out (FIFO) arrays, with one array each for the sky and background maps. The

more recent maps (#2) are then added to the older maps (#1), so that the older

maps now contain twice the exposure. These composite maps — one signal and

one background — are searched by the hunter to identify candidate signals, then

handed to the next GRBHunter in the analysis chain and removed from the FIFO

arrays (the #2 maps become the new #1 maps), and the process is repeated.

This chain is designed to allow efficient summing of maps and an oversampling

of 2 at each time scale. Note that each incoming map is used in two separate source

searches (once as map #2, then as map #1), so the time window is shifted by half

the search window on every iteration. Additionally, the maps given to the next

GRBHunter in the chain are twice as long as the incoming maps — in essence a

GRBHunter makes use of the map summations created by all the previous hunters

in the chain.

One subtlety is in the passing of maps from one hunter to the next. A GRB-

Hunter is expecting the input maps to be contiguous in exposure, but the com-

posite maps created by two consecutive GRBHunter searches are not contiguous,

but instead overlap in time because of the oversampling. Hence, every other map

is passed to the next GRBHunter to ensure that the composite maps received by

the next hunter are independent and contiguous.

The actual work of identifying signals is performed by the sparse search method

of the backgroundMap object as outlined in Section 5.5. In addition, each hunter

keeps a probability histogram of all locations with probability less than 10−2.

These histograms are snapshots of the observed background fluctuations (see Fig-

ure 5.2), and help monitor the stability of the search and define the significance of

any detected transients. The probability histograms are archived daily at 6 a.m.
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UT and whenever a full reset of the GRB search occurs.

The spacing of the time scales and the oversampling was chosen as a compro-

mise between sensitivity and computational demands. It has been shown by Biller

et al. (1994) that any search with a time scale spacing of 3 (40 s, 120 s, ...) or less,

and an oversampling of 2 (50% overlap) or more approaches the sensitivity of a

massively oversampled search. The algorithms used in the GRBHunters can per-

form searches on any time or oversampling scale, and the factors of 2 were chosen

to give good sensitivity while fitting within the CPU and memory constraints.

6.5 Generating GRB Alerts

The oversampling in both duration and time means that a strong signal (or

unlikely fluctuation) will be identified in several time windows by multiple GRB-

Hunters. This generates a flurry of identifications for each signal, and the job of

the SignalResponder program is to collect these identifications and manage the

e-mail alert process.

The collection of signal identifications is performed by grouping events in time

and position. Two candidate events are considered members of the same group

if they are separated by less than 9 degrees and their start times are closer than

three times the duration of the longer event. When an candidate position comes

in, its position and time is compared to a table of active groups. If it qualifies

as a member of one of the active groups, it is added to the group, otherwise it

becomes the first member of a new group.

All the candidate positions in a group are considered multiple detections of

the same underlying signal, and are reported together. Determining when a group

is complete — and a composite alert should be sent — can be tricky. Currently

the closing time for a group is calculated by selecting the most significant event

in the group and multiplying the signal duration by 10 and adding the start

time. If a more significant event is later added to the group, the closing time is

recalculated and more events may be added. After the closing time, the most

significant detection — presumably the true signal location/duration — is used

to generate the e-mail alert.

Once the most significant event in has been identified, a series of filters are
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used to determine whether an alert should be generated, and the type of alert. If

the probability of seeing a random fluctuation of greater significance is less than

∼20 per year for the observed time interval, an e-mail alert is sent to me. I receive

approximately 1 of these e-mails per day (there are 9 independent time scales),

and they help monitor the performance of the search program but are assumed to

be background fluctuations.

If the probability of seeing a random fluctuation of greater significance is

less than ∼2 per year for the observed time interval, an e-mail alert is sent to

burst@kahuna.lanl.gov. The alert details the position, time, duration, and prob-

ability of the signal, and how many searches it was identified by. This e-mail sets

in motion a series of actions, including paging the shift person and archiving the

raw data surrounding the candidate signal. For particularly strong candidates the

shift person, in consultation with the Milagro collaboration, may issue a full GCN

(2002) alert and ask for target-of-opportunity observations by the rapid x-ray

timing explorer (RXTE) satellite.

In many ways the SignalResponder program is a work in progress, and is

expected to change as we gain experience with the online search. Currently the

e-mail alert system is very conservative, and only generates a few e-mail alerts

which are scrutinized by the collaboration. None has yet been forwarded to the

GCN network. Once we have seen at least one signal and have confidence in

the search program, new e-mail alerts with faster or automated reporting may be

implemented, but for now we want to minimize the chance of sending false alerts.

6.6 Summary

Logically, the search for 40 second – 3 hour transients is divided into 4 distinct

pieces: selecting events and identifying changes in the detector, managing the

background calculation and creating sky and background maps, adding maps and

searching for signals, and finally collecting and managing e-mail alerts for the

candidate events. The current GRB search is able to process events five times

faster than the current data rate on one computer with dual 866 MHz Pentium

IIITM processors and 1 GByte of memory. The ability to analyze data faster

than it is created allows for efficient processing of archival data and quick failure
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recovery. When working on archival data (where we don’t have to wait for data to

appear), the CPU usage is dominated by building the sky and background maps

in the GRBMaster routine and takes all of one processor (> 90%), followed by

event selection in ReadGRBData (∼ 30% of one processor), and the GRBHunters

(∼ 10% for the 40 second search, with each subsequent search dropping by a

factor of 2 in CPU usage). In many ways the analysis is limited by memory

usage, which averages ∼ 700 megabytes, and there is evidence that the processing

speed is limited by the memory bandwidth and not the CPU speed.
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Chapter 7

Results

7.1 Introduction

The Milagro data taken between May 2nd, 2001 and May 22nd, 2002 was

searched for unidentified transients of 40 s to 3 hours duration. Since January

2002 the analysis has been operating in real time with the capability of rapidly

alerting the community to any observed TeV gamma-ray bursts. No evidence for

TeV emission of 40 s to 3 hours duration has yet been observed. This chapter

details the history of the online analysis and presents the observed probability

distributions.

7.2 History of the 40 s – 3 hour Online Search

The GRB search program analyzed all of the Milagro data taken between May

2nd, 2001 and May 22nd, 2002 for transients of 40 s to 3 hours duration.1 The search

interval of slightly over one year was chosen to coincide with significant changes

in Milagro’s data acquisition system. Before the 2nd of May, 2001, the reduced

chi-squared from the angle reconstruction was not recorded due to an error in the

data archiving code. Since the reduced chi-squared value is crucial in determining

the PSF of an event, data before this date was excluded from this study. On

the 22nd of May, 2002, the Silicon Graphics Challenge data acquisition computer

1Dates and times used in the text are local to New Mexico.
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was replaced with a cluster of Linux machines. Though this is a positive change

for the Milagro experiment, the transition was not trouble free and provided a

convenient date to close the data analysis window for this thesis.

Though this thesis covers more than a year of Milagro data, the real-time

analysis code was not operational until the fall of 2001. On the 17th of October,

2001, the online analysis was started in an engineering mode searching only three

of the nine time scales. Between the middle of October and early January the code

remained in an engineering mode, with numerous bug fixes and improvements.

Some of the highlights were:

• October 19th – Running with all 9 time scales.

• November 30th – Using crontab, search is online all the time. Numerous code

improvements. Real-time filtering of odd experiment states much improved.

• December 12th – Automatic email reporting of significant events enabled.

After this date any observed transients save the raw data, page the shift

person, and set in motion possible notification of the GRB community of

any observed events. Stability of the search program is still an issue.

• January 8th – After hunting down a Linux kernel problem and an error in the

Objective-C standard library the online search becomes stable — I didn’t

realize how hard this program would push modern software. From this date

forward all but one death is due to power outages or Linux networking

lockups, and the transient search program is extremely stable.

• January 11th – Update email reporting, code officially leaves engineering

mode.

After the 11th of January, 2002, the online GRB search is officially in data

mode. Over the next few months there are a few small updates to correct minor

problems, with all changes being tested offline before they are introduced to the

online analysis. On the 30th of January these small changes culminate in the

release of version 1.0 of the online search.

On the 1st of April, 2002, a final code update was applied to keep track of

the total exposure in each time scale. April 4th marks the last bug fix to the
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GRB search code: if the search remained running longer than ∼1 month an in-

teger overflow occurred in a counter. The GRB search has been running online

continuously without modification since this date.2

7.3 Probability Distributions

The data for this thesis separates into two sets: the “online” data which was

analyzed in real time at the site after the 1st of April, 2002, and the “offline” data

which was analyzed on computers at the University of Maryland several months

after its collection. Though the online analysis was stable long before April 1st,

2002, this date marks when the analysis began to archive the total exposure for

each time scale. While unimportant for identifying TeV signals, the total exposure

is needed to determine upper limits (see Chapter 8).

The raw probability of the background producing a candidate signal is given

by Equation 3.6. Because of the approximation made in deriving Equation 3.6, the

slope of a probability histogram on a log-log plot is slightly shallower than 1 (see

Section 3.4). Instead of correcting for this effect, the raw probability histograms

are presented to show the actual output of the GRB search.

An additional complication is introduced by the variable search density used

in the analysis. The GRB search program performs a sparse search of nearly

independent locations over the full sky, and only searches all locations near large

candidate signals (see Section 5.5). The raw probability histograms contain only

the nearly independent locations from the sparse search with a raw probability

less than 10−2. These histograms are written to disk at 6 a.m. universal time —

or whenever a significant change in the detector is observed — and characterize

the daily performance of the analysis.3

The online data covers the period from April 1st, 2002 to May 22nd, 2002. The

raw probability distributions are shown in Figure 7.1 and the cumulative exposure

2The only intervention since April 4th has consisted of rebooting the online computer ap-
proximately once per month to correct Linux networking lockups associated with NFS disk
mounting.

3Since the analysis rate is ∼7 times faster than the typical data rate on the computer used
for the offline search, the offline search can include up to one week of data in a daily histogram
set.
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Search Duration (s) Total Exposure (days)
40 s 41.2
80 s 41.2
160 s 41.1
320 s 41.1
640 s 41.0
1280 s 40.9
2560 s 40.6
5124 s 40.1
10240 s 39.1

Table 7.1: Total exposure in days for the online data set for each of the nine time
scales.

in Table 7.1. All the data between April 1st, 2002 to May 22nd, 2002 is included,

with no data cuts.

The offline data covers the period from May 2nd, 2001 to March 1st, 2002. The

data from March of 2002 was not included because of an upgrade of the Mila-

gro trigger which shifted the weight distributions. The March data was analyzed

online and no unusual events were identified, however, this was before the archiv-

ing of cumulative exposure was implemented. Consequently the March data was

analyzed, but is not included in the online or offline data sets presented here.4

Unlike the online data set, there are several offline probability distributions

which were corrupted by unusual detector states missed by the on-the-fly data

quality cuts (see Section 6.2). These corrupted runs are easily identified by eye,

and have a characteristic shallow tail of low probability events (see Figure 7.2).

After analyzing all of the offline distributions, nine data sets covering six time

periods were deemed to be of “poor” quality based on the raw probability dis-

tributions and removed. Table 7.2 lists the time periods removed, with a brief

description of the reason.

The raw probability distributions for the offline data are shown in Figure 7.3

with a list of the offline exposures in Table 7.3. The total exposure can be formed

by combining the online and offline data sets. Figure 7.4 shows the combined

4The March data could be reanalyzed offline by carefully piecing together the proper weight
distributions. This re-analysis was not performed due to time constraints and the minimal effect
of the extra exposure on the upper limit calculations.
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Figure 7.1: Distribution of raw probabilities less than 10−2 observed in the online
search data set for each of the nine time scales. The duration of the search window
in seconds is listed above each plot.
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-log10(Raw Probability)

Figure 7.2: An example of a poor distribution of raw probabilities from the 160
s search in early October 2001 (part of the offline data set). When distributions
like this occur, many false alerts from different locations in the sky are generated.

∼End Date Duration Reason
5/30/2001 0.3 days 2560 s and longer time scales had poor distributions
6/13/2001 0.3 days 640 s and longer time scales had poor distributions
9/23/2001 3.6 days 160 s to 2560 s scales had poor distributions
10/09/2001 9.4 days all time scales had very poor distributions
10/24/2001 0.6 days 640 s to 2560 s scales had poor distributions
12/15/2001 12.4 days 4 long alerts from different locations

Table 7.2: This table lists the time periods which were deemed to have “poor”
probability distributions and removed, and a brief description of why. Nine files
covering six time periods were removed.
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Search Duration (s) Total Exposure (days)
40 s 249.1
80 s 249.0
160 s 248.9
320 s 248.6
640 s 248.2
1280 s 247.3
2560 s 245.5
5124 s 242.1
10240 s 236.6

Table 7.3: Total exposure in days for the offline data set for each of the nine time
scales. The data sets listed in Table 7.2 are not included.

Search Duration (s) Total Exposure (days)
40 s 290.2
80 s 290.2
160 s 290.0
320 s 289.7
640 s 289.2
1280 s 288.1
2560 s 286.1
5124 s 282.2
10240 s 275.7

Table 7.4: Total exposure for the combined online and offline data sets.

online and offline raw probability distributions, with the total exposure for each

time scale listed in Table 7.4.

7.4 Results

No evidence for 40 s to 3 hour transient TeV emission was found in the Milagro

data taken between May 2nd 2001 and May 22nd 2002. The raw probability distri-

butions shown in Figure 7.4 cover ∼290 days of observation in the northern sky,

with no signals below a probability of 10−12 being observed. These observations

are entirely consistent with no transient TeV emission of 40 s to 3 hours duration.
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Figure 7.3: Distribution of raw probabilities below 10−2 for the offline May 2nd,
2001 to March 1st, 2002 data. The duration of the search window in seconds is
listed above each plot.
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Figure 7.4: Total distributions of raw probabilities below 10−2 for the combined
online and offline data sets. The duration of the search window in seconds is listed
above each plot.
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Chapter 8

Discussion

8.1 Introduction

While one always hopes for a detection, the lack of a signal can be just as

important scientifically. Two sets of limits — one for the observed radiation and

one for the emitted radiation — are calculated because of the attenuation of

very high energy gamma rays by extragalactic background light. The observed

emission limits are model independent but difficult to compare with theoretical

calculations, whereas the limits on emitted radiation can be directly compared to

theory but depend on the predicted redshift distribution of GRBs and other model

parameters. In this chapter I describe how to calculate upper limits using the

weighted analysis technique, and then determine upper limits for both observed

and emitted TeV emission from gamma-ray bursts.

8.2 Generating Limits with the Weighted Anal-

ysis Technique

Although the weighted analysis technique should increase the sensitivity of

the TeV transient search, it also complicates the calculation of upper limits. This

section describes how to determine the response of the Milagro detector using the

weighted analysis technique, with the following sections convolving this detector

response with various spectra to calculate specific upper limits.
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In the weighted analysis technique, the response of the detector and analysis

chain to an incident photon is represented by the photon probability density at the

source location ( p(~ks) where ~ks is the position of the source, see Section 3.2). For

Milagro, the detector response is a strong function of the zenith angle and energy

of the initiating particle, but is azimuthally symmetric and constant in time.1

Thus the Milagro detector can be characterized by determining the spectrum of

detector responses as a function of energy and zenith angle. Since the detector

response is determined by p(~ks), we need to determine the relative probability of

an incident gamma-ray causing p(~ks) of a certain value to be added to the sky

map, depending on the energy and zenith angle of the incident gamma-ray.

The energy and angle dependent detector response was determined by using a

Monte Carlo simulation of 22 million gamma-ray initiated EAS with zenith angles

from 0 – 45 degrees and energies from 100 GeV – 21 TeV thrown over a 1 km2

area. This Monte Carlo simulation modeled both the EAS development and the

detection of the shower by the Milagro detector. The simulated detector signal

was then propagated through the Milagro reconstruction code (Section 2.5) and

the weighted analyses implementation (Section 5.3) to determine the photon prob-

ability density at the source position. The photon probability density was then

added to a three dimensional histogram g(pi, θj, Ek), with 1001 photon probability

density bins, seven zenith angle bins, and 101 logarithmically spaced energy bins.2

The histogram g(pi, θj, Ek) was then normalized for every combination of θj and

Ek so that g(pi, θj, Ek) represents the probability of the photon density pi being

added to the source location as a function of zenith angle and energy.

g(pi, θj, Ek) is the characterization of the Milagro detector and analysis re-

1There are small changes in the detector response with time, particularly with diurnal freezing
and melting of surface water during the winter. However, these have a minimal effect on the
event reconstruction, and no diurnal changes in the p(~k) values have been observed. Similarly,
the very weak diurnal “breathing” of Milagro’s zenith angle response is unimportant in this
analysis (Fleysher & Nemethy, 2001). Because the trials factors associated with the transient
searches are so large, a fairly strong signal is required to make a detection. Consequently the 1
part in 10,000 effects some analyses must correct for are completely irrelevant to the transient
searches.

2Photon probability densities of zero are included in the histogram. The probability density
bins range from 0 – 1 and the energy bins from 100 GeV – 21 TeV. The zenith angle bins are
seven degrees wide, but because only events up to 45 degrees are analyzed the seventh bin only
contains showers from 42 – 45 degrees.
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sponse. The response to an individual source (at zenith angle θs with spectrum

Ps(Ek) ) can be generated by determining the number of photons Ns that would be

incident on the 1 km2 simulation area, and then randomly selecting photon prob-

ability densities pi according to the probability distribution Ps(Ek)g(pi, θs, Ek).

The photon probability densities pi represent the detector’s response to the indi-

vidual gamma-rays, with the total detector response to the simulated source given

by

ws =
Ns∑
i=0

pi. (8.1)

The response to an expected source ws can be used with slightly modified

versions of the analysis to add fake signals to the sky maps. If the resulting

probability falls below a predetermined threshold — 10−12 for this study — the

simulated signal would have been identified by the analysis. Upper limits can be

determined by adding many fake sources of various zenith angles, luminosities and

spectra, and recording the percentage of the simulated sources which are detected.

8.3 Observer Frame Limits

The first set of limits we wish to calculate is the observed TeV transient lu-

minosities excluded by this study at the 90% confidence level. The question is:

what is the observed TeV transient luminosity — as a function of zenith angle,

duration, and spectrum — at which Milagro detects at least 90% of the events?

The spectral dependence of the luminosity limit is problematic because of the

incredible diversity of possible spectra. Not only are there very few predictions

of the emitted TeV spectrum, but the emitted spectrum must then be convolved

with the absorption by extragalactic background light to determine the observed

spectrum (Jelley, 1966). In general, every source needs to be individually mod-

eled. For this section I ignore these effects, and choose two plausible spectra as

observed local to the earth. The first spectrum is E−2.0 which has equal energy

per logarithmic energy interval. While somewhat harder than the mode of E−2.25

observed by BATSE at MeV energies (Preece et al., 2000), this is well within the

scatter of observed spectra and serves as a reasonable model for an inverse Comp-

ton spectral bump at TeV energies. The second spectrum is somewhat softer at
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E−2.4, and brackets the observed BATSE MeV spectrum. These examples are

only used to pick a few plausible points in the phase space of all possible spectra,

and are not intended to be exhaustive.

For a given spectrum and luminosity, the percentage of events that would be

detected is calculated with a slightly modified version of the online GRB search

program. A set of real data with no candidate signals (we have lots to choose

from) is run though the analysis described in Chapters 5 and 6, but without

searching for the most significant fluctuations. Instead the photon probability

density from a simulated signal (ws) is added to the sky map,3 and the probability

of the background producing the observed signal is calculated (see Sections 3.3

and 8.2). If the probability falls below the detection threshold, the online GRB

search would have found the signal. By repeatedly adding simulated signals of a

given spectrum and luminosity, the percentage of signals identified by the GRB

search can be determined. A single power-law spectrum is given by

dN

dE
= J

(
E

E0

)−α

, (8.2)

where J , in photons
s cm2 TeV

units, is the normalization factor which determines the signal

intensity. An iterative fitting algorithm adjusts the signal intensity until 90% of

the simulated events are detected by the GRB search.

The limits for observed spectra of E−2.0 and E−2.4 are presented in Figures

8.1 and 8.2 as a function of zenith angle and burst duration. These upper limits

may be directly compared to the limits obtained by McCullough (2001), and are 4

– 10 times more restrictive.4 These represent the strongest observer-frame limits

on TeV GRB emission obtained to date.

The errors for the upper limits are from the iterative fitting algorithm which

required a step size ≤5% in J for at least 300 simulated bursts in order to converge.

Since we are looking to identify at least 90% of the bursts this leads to a Poisson

3We want to use many different locations on the sky map to accurately represent the fluctu-
ations seen in the absence of any signal. However, using a unique sky map for each simulated
GRB becomes computationally expensive, especially for the long time scales. As a compromise
each location on the sky map is used for 20 simulated signals.

4In McCullough (2001) there were several different detector configurations with separate
upper limits for each, but the upper limits for all configurations were very similar.
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Figure 8.1: The 90% confidence upper limits for an E−2.0 spectrum for all nine
time scales as a function of zenith angle. The diamonds indicate the calculated
limits on the normalization factor J (see Equation 8.2), with the lines of matching
color providing visual interpolation between the points. The time scales are from
top to bottom: 40 s, 80 s, 160 s, 320 s, 640 s, 1280 s, 2560 s, 5120 s, and 10240 s.
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Figure 8.2: The 90% confidence upper limits for an E−2.4 spectrum for all nine
time scales as a function of zenith angle. The diamonds indicate the calculated
limits on the normalization factor J (see Equation 8.2), with the lines of matching
color providing visual interpolation between the points. The time scales are from
top to bottom: 40 s, 80 s, 160 s, 320 s, 640 s, 1280 s, 2560 s, 5120 s, and 10240 s.
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error of 18% on the 30 missed bursts in addition to the 5% convergence window.

This leads to an error due to Monte Carlo statistics of 19%.

Other systematic errors are harder to quantify and are due principally to un-

certainty in the Monte Carlo simulation. In many ways the Monte Carlo predicts

the behavior of the detector very well. However, Benbow (2002) has found evi-

dence which suggests that the true PSF may be ∼30% worse than predicted when

using a hard compactness cut. A small set of the upper limits were recalculated

assuming that the true PSF in each region was 30% worse than PSF used in the

analysis, and the resulting limits were ∼30% less restrictive. It is possible that

the effect is larger or smaller than this ∼30% value depending on which events

are affected5 and how dependent the effect is upon the compactness parameter.

Because Milagro is somewhat data limited at 40 s - 3 hour time scales, this anal-

ysis uses a much looser effective compactness “cut” (see Section 4.5) and may be

less sensitive to the observed effect.

Since indications are that errors in the Monte Carlo are probably detrimental,

I will estimate the systematic uncertainty in the limits as +40%/-20%. Combining

with the error from Monte Carlo statistics, this gives a total estimated error of

+44%/-27%.

8.4 Intrinsic Limits

The observer frame limits are useful for comparing the sensitivity of this study

to previous work, and can be used to set limits on local TeV transient sources.

However, it is difficult to use these limits to set direct constraints on GRB emission

due to the absorption of TeV photons by extragalactic background light (EBL).

The observed spectrum becomes a convolution of the emitted spectrum, the EBL

absorption (which depends on cosmology and the star formation history of the uni-

verse), and the intrinsic distance distribution of GRBs — none of which have been

well measured. Upper limits on TeV radiation from GRBs are thus necessarily

model dependent. In an effort to place the current observations in context, I have

5Benbow (2002) uses an optimal binned analysis so all events are treated equally. It is
uncertain whether all PSF regions are affected equally and thus the magnitude of the effect on
this analysis is unclear (see Chapter 4).
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chosen a set of reasonable6 assumptions about the emitted spectrum, the EBL

absorption, the cosmology, and the distance distribution of GRBs, and calculated

limits within this framework.

The absorption of TeV gamma-rays by extragalactic background light has

been extensively modelled (Primack, 2002; Stecker & de Jager, 1997), but direct

measurements of the EBL are not particularly restrictive. For these upper limits,

I have chosen results from the semi-analytic modeling of Bullock (2002) shown

in Figure 8.3. The calculation assumes a flat ΛCDM cosmology with ΩM = 0.3,

collisional starburst effects and a Kennicut initial mass function. While these

calculations depend on the star formation history, the stellar initial mass function,

the cosmology, and the star formation mechanism, all of the models agree fairly

closely on the absorption of high energy gamma rays (Primack, 2002). The net

effect of the EBL absorption is to constrain the redshift distribution of GRBs

observable with Milagro to z . 0.5.

The most controversial element of the theoretical framework is the distance

distribution of GRBs. In the collapsar model very high mass stars are the pro-

genitors of GRBs. Because of the short lifespans of high mass stars, GRBs are

closely associated with the star formation rate in this model (Woosley, 2000).

Although there has been some evidence for an association for GRBs with star

formation (Holland, 2001; Bloom et al., 2002), the correlation is still a source of

strong debate within the community. Even if the collapsar model is correct, for-

mation of the massive spinning helium star that immediately precedes the GRB

may be easier for low metallicity stars. The dependence on metallicity could lead

to a collapsar population which declines earlier than the star formation rate, with

very few GRBs at low redshift. Alternatively, there are progenitor models based

on the mergers of binary systems — containing various combinations of white

dwarfs, neutron stars, and black holes — which are long lived and whose distri-

bution trails the star formation rate. These models would predict nearby GRBs

to be relatively common. The excellent paper by Fryer et al. (1999) calculates

the formation rate of GRB progenitors for most of the black hole based models

— including three types of collapsars and many binary merger models — with a

6Different readers may disagree on how “reasonable” these model parameters are, but an
attempt has been made to choose parameters which are popular in current theoretical papers.
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Figure 8.3: The optical depth τ as a function of observed photon energy and
redshift. The z value of the optical depth curve is indicated by the number with
matching color. The attenuation factor is given by e−τ . The vertical black line
indicates the lower limit of the optical depth calculation, while the vertical grey
lines indicate the limits of the Monte Carlo simulation and correspond to the
approximate observation band of the Milagro telescope for GRBs. Data courtesy
Bullock (2002).
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review of the theoretical uncertainties.

For this upper limit calculation I have chosen to use the star formation rate

(SFR) to predict the distance distribution of GRBs. This is currently a popular

conjecture in the GRB community, and lies somewhere in the middle with respect

to the number of low redshift GRBs. The best determination to date of the

SFR is by Somerville et al. (2001) based on semi-analytic modeling and collisional

starbursts. This theoretical work nicely fits the observable data, and provides

a fairly robust determination of the SFR, particularly at low redshift. A three

part power-law fit to the SFR determined by Somerville et al. (2001) is used to

calculate the distance distribution of GRBs for these upper limit calculations.

The predicted TeV emission spectrum of GRBs is highly model dependent,

with everything from very hard rising spectra to very soft spectra proposed. For

these upper limits a spectrum of E−2.0 was chosen. The sensitivity of Milagro to

distant objects is dominated by the number of photons at a few hundred GeV

where the absorption by the EBL is less severe (see Figure 8.3). Because the EBL

absorption creates such a narrow window of observable gamma-ray energies, the

sensitivity becomes dominated by the luminosity at a few hundred GeV and is

less dependent on the emitted spectrum.

The cosmology for these upper limit calculations uses the fashionable ΛCDM

cosmology, with ΩM = 0.3, ΩΛ = 0.7, and h = 0.65, which is commonly used

in theoretical calculations including the EBL absorption and SFR calculations by

Bullock (2002) and Somerville et al. (2001).7 It is important when performing

the upper limit calculation to correct for cosmological effects. In particular the

comoving volume element determines the volume of space as a function of red-

shift, and the luminosity distance determines the apparent luminosity of a source.

Following the development by Hogg (2000) the comoving volume element dVc for

a flat cosmology is given by

dVc =
D3

H

E(z)

[∫ z

0

dz′

E(z′)

]2

dΩdz, (8.3)

where E(z) =
√

ΩM(1 + z)3 + ΩΛ and DH = 3000h−1 Mpc. The comoving vol-

ume element is used in conjunction with the SFR to determine the redshift dis-

7The SFR calculation by Somerville (2001) uses h = 0.7, but this does not affect the calcu-
lation which is stated in terms of h.
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tribution of GRBs. The luminosity distance DL is given by

DL = (1 + z)DH

∫ z

0

dz′

E(z′)
, (8.4)

and is used to determine the photon flux. Given an isotropic luminosity at TeV

energies LTeV , the photon flux depends on LTeV and DL according to

Photon Flux ∝ LTeV

4πD2
L

. (8.5)

Given an emitted spectrum, the size of the Monte Carlo throw area, and the

duration of the GRB, the number of photons that would be incident on the upper

atmosphere in the absence of absorption can be directly calculated.

Given the theoretical model parameters, the upper limits are calculated by

constructing a set of fake GRBs. Since we have an ensemble of events which

were not observed, we want to determine the number of TeV GRBs needed for

Milagro to have a 90% chance of observing at least one event. Using the Poisson

probability this is equivalent to determining the number of TeV GRBs needed

for Milagro to observe on average 2.3 bursts. The only model parameter we have

not yet determined is the isotropic gamma ray luminosity at TeV energies LTeV ,

measured in ergs/s. The result of the limit calculation can then be presented as

the frequency of TeV GRBs at a given isotropic TeV luminosity which can be

ruled out with current observations.

To determine the limits, a LTeV value was chosen and a large sample of fake

GRBs generated.8 The distance of each GRB was generated according to the

product of the SFR times the comoving volume element, with a maximum redshift

of 1.28. The number of photons that would impact the 1 km2 throw area of the

Monte Carlo simulation in the absence of EBL absorption can then be determined

from the luminosity distance of the burst. This gives the raw number of photons

that need to be generated for each GRB. The energy of each photon is then chosen

according to the emitted E−2.0 spectrum, and then the probability of the photon

being absorbed by the EBL is calculated using the data by Bullock (2002).9 For

8Typically 5000 bursts were generated, though 1000 bursts were used for some of the longer
time scales to reduce the computational demands.

9If the redshift falls between the calculated redshift values, a linear interpolation is used to
estimate the appropriate optical depth.
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Figure 8.4: Upper limits on the number of GRBs per solar mass of star formation
versus burst duration in seconds. Three intrinsic isotropic TeV luminosities from
100 GeV – 21 TeV are shown: 1052 ergs/s in black, 1051 ergs/s in blue, and 1050

ergs/s in red.

the photons which are not absorbed, the Monte Carlo based detector response is

then used determine whether the GRB would have been detected by Milagro (see

Section 8.2).

The upper limits for all nine time scales are shown in Figures 8.4, 8.5, and 8.6

for GRBs which follow the SFR in a flat ΛCDM cosmology10 with an emitted TeV

spectrum of E−2.0 and an EBL absorption based on collisional starbursts and a

Kennicut initial mass function. The three figures contain the same data points

with different units and axis to ease comparison with theoretical models.

10ΩM = 0.3, ΩΛ = 0.7, and h = 0.65.
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lower limits with increased luminosity. The time scale of each curve is indicated
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The systematic errors for these upper limits are identical to the observer frame

limits generated in Section 8.3. The errors due to Monte Carlo statistics are

somewhat higher due to the small number of simulated GRBs which were detected,

with values of ∼20% for the 1052 ergs/s points to a maximum of 50% for one of

the 1050 ergs/s points.11,12 In addition there is significant uncertainty in some

of the model parameters. Of particular note is the uncertainty in the SFR at

low redshift which some measurements indicate may be as much as an order of

magnitude higher than in the model used here. These upper limits are inherently

dependent on the theoretical framework in which they were calculated and the

specifics of the model parameters. Because of the dependence on the theory, these

limits apply only for the model in which they were calculated.

8.5 Conclusion

This search for 40 s – 3 hour TeV transient emission observed by Milagro

between May 2nd, 2001 and May 22nd, 2002 represents the most sensitive search

for moderate duration unidentified TeV transients yet performed. Because of the

absorption of very high energy gamma rays by extragalactic background light and

the diverse predictions of the distance distribution of GRB progenitors and their

TeV emission, no model independent limits on the TeV emission of GRBs can be

set. The limits in Section 8.3 detail the sensitivity of the Milagro search and the

limits in Section 8.4 detail the constraints on the frequency of moderate duration

TeV emission for one set of model parameters. Interested parties are encouraged

to contact the author to convert the observations presented in this thesis into

upper limits for particular theoretical models of very high energy GRB emission.

11If the error exceeded 50% no limit was set.
12A missing geometric correction in the calculation of the intrinsic limits was discovered too

late for correction in this thesis, and is believed to increase the intrinsic limits by .5%.
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Appendix A

Probability of the Background

Producing a Signal-Like Event

The probability calculation represented by Equation 3.5 is an approximation

of the true probability. The question of how to determine the correct probability

when there are two independent variables (wobs and Nobs) can be answered using

an argument analogous to the one used by Feldman and Cousins (1998) in their

excellent paper on confidence limits.

Since we have two independent variables, the probability density distributions

will be two dimensional. The probability density distribution for the background is

represented by the contour lines in Figure A.1. Given a theoretical model, a similar

probability density distribution can be constructed for the expected signal.1 The

ratio of the background probability density to the signal probability density can

then be determined for every point in the field. This likelihood ratio is analogous

to Equation 4.1 in Feldman and Cousins (1998). Feldman and Cousins used the

likelihood ratio to determine the order in which terms should be summed, then

defined the confidence interval by adding terms until a predetermined probability

was reached (ie. 90%). The problem under consideration here is very similar.

Instead of using the sum to determine the location of a confidence limit, we have

an observation and want to determine the sum. Since the likelihood ratio of

1In the case of Milagro the model would need to supply both an energy spectrum and a
luminosity spectrum. The probability density of the expected signal as a function of wobs and
Nobs could then be determined using a Monte Carlo simulation.
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the observed point is known, we can determine the probability of the background

producing an event which is more signal-like by integrating the probability density

of the background at all points where the likelihood ratio of background to signal

is equal to or lower (more signal-like) than the likelihood ratio at the observed

location.

This process is shown graphically in Figure A.1. In this example, signal events

tend to have both higher wobs and Nobs, as indicated by the heavy line. An

observation is indicated by the red dot. The blue region includes all of the positions

where the likelihood ratio is as signal-like or more than the observed position. The

probability of the background producing an event which is more signal-like is then

given by integrating the background probability density (shown by contour lines)

in the blue region. This defines the probability of the background producing an

observation when there are two or more independent variables.

In the case of Milagro, the problem is complicated by the lack of a good model,

making any determination of the likelihood ratio uncertain. Without a model, the

question becomes how can the appropriate integration region be approximated?

The reason we have two independent measures of the probability density is the

truncation of the PSFs used in this implementation of the weighted analysis tech-

nique (see Table 5.1). Because of the truncation, we expect a signal to increase

both the wobs and Nobs values. Equation 3.5 provides a first order approximation

of the probability of the background creating a more signal-like event by integrat-

ing the background probability density for all w and N greater than the observed

value, as depicted by region II in Figure A.2. This is not the ideal integration

region, but gives a rough indication of the relevant probability.

The effect of the approximation in Equation 3.5 is to slightly degrade the

sensitivity of the analysis through two separate mechanisms. First, for a true

signal event, the probability of the background producing an event that signal-

like or more is only approximated. A second more subtle effect is caused by

the value of the probability integral not having a one-to-one mapping to the

integration region. Using the approximation, two events may have the same total

probability without integrating the same region. Because the integral should

include all locations as signal-like or more than the current observation — and thus

all events with equal or lower probability — not including the other event location
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Figure A.1: A cartoon of how to determine the probability of the background pro-
ducing an event which is more signal-like than an observation. The contour lines
are the probability density of the background producing a particular combination
of wobs and Nobs; the heavy line indicates the trend where signal events are likely
to be. The red dot is a particular observation, with the blue region including all
of the points where the likelihood ratio is equal to or more signal-like than the
current observation. Please see the text for a full description.
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Figure A.2: This is the same diagram as Figure A.1, with lines indicating the wobs

and Nobs values. Equation 3.5 approximates the true probability by integrating
the background probability density in region II.
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in the integral systematically underestimates the probability. This flattens the

probability distribution as seen in Figure 5.2 and reduces the sensitivity of the

analysis to weak signals.

It is interesting to note that both a binned analysis and a “pure” weighted

analysis can be obtained by integrating different regions of Figure A.2. An inte-

gral of all N greater than the observation (regions II and III) is equivalent to a

binned analysis and recreates the familiar integral Poisson distribution. Similarly,

integrating all w greater than the observation (regions I and II) recreates a “pure”

weighted technique with no dependence on the number of observed events.

A better implementation of the weighted analysis technique could be achieved

by modeling an expected signal; determining the likelihood-based integration re-

gions; and forming a table in wobs and Nobs of the resulting background probability

density integrals. The table could then be used online to quickly look up the cor-

rect probability, and is an interesting avenue for future work.
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Appendix B

Detailed Plots

In this appendix are the detailed plots showing the functional fits and compar-

isons for all the regions, not just the example regions used for figures in Chapter

4.
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Figure B.1: PSF fits to deleo/2 for regions 0 – 5. The fit parameters are displayed
in the corner of each graph. The fits are not constrained to be normalized, so that
they accurately represent the PSF at each distance.
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Figure B.2: Same as B.1 for regions 6 – 12.
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Figure B.3: The deleo/2 distributions for regions 0 – 5. The data distribution
is in black, the Monte Carlo gamma initiated showers are in red, and the same
Monte Carlo showers with a very hard compactness cut of 3.0 are in blue.
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Figure B.4: Same as B.3 for regions 6 – 12.

127



angle

Region 0

angle

Region 1

angle

Region 2

angle

Region 3

angle

Region 4

angle

Region 5

Figure B.5: PSF fits to the gamma-ray Monte Carlo angle difference distributions
for regions 0 – 5. The fit parameters are displayed in the corner of each graph.
The fits are not constrained to be normalized, so that they accurately represent
the PSF at each distance.
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Figure B.6: Same as B.5 for regions 6 – 12.
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Figure B.7: The probability distributions for regions 0 – 5 plotted as a function
of the compactness parameter for Monte Carlo protons (black) and Monte Carlo
gamma rays (red).
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Figure B.8: Same as B.7 for regions 6 – 12.
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Figure B.9: The Pγ distributions for regions 0 – 5 with the associated fits in blue.
The plots are Pγ vs. compactness, with the fit parameters listed on each plot. For
clarity the error bars on the individual data points are not shown, but they were
used in the fit.
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Figure B.10: Same as B.9 for regions 6 – 12.
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